Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/field/field01/src/F01DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file field/field01/src/F01DetectorConstruction.cc
 27 /// \brief Implementation of the F01DetectorConstruction class
 28 //
 29 //
 30 //
 31 //
 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 34 
 35 #include "F01DetectorConstruction.hh"
 36 
 37 #include "F01CalorimeterSD.hh"
 38 #include "F01DetectorMessenger.hh"
 39 
 40 #include "G4AutoDelete.hh"
 41 #include "G4GeometryManager.hh"
 42 #include "G4FieldBuilder.hh"
 43 #include "G4LogicalVolume.hh"
 44 #include "G4LogicalVolumeStore.hh"
 45 #include "G4Material.hh"
 46 #include "G4PVPlacement.hh"
 47 #include "G4PhysicalConstants.hh"
 48 #include "G4PhysicalVolumeStore.hh"
 49 #include "G4RunManager.hh"
 50 #include "G4SDManager.hh"
 51 #include "G4SolidStore.hh"
 52 #include "G4SystemOfUnits.hh"
 53 #include "G4Tubs.hh"
 54 #include "G4UniformMagField.hh"
 55 
 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57 
 58 F01DetectorConstruction::F01DetectorConstruction()
 59 {
 60   // create commands for interactive definition of the calorimeter
 61 
 62   G4cout << "F01DetectorConstruction::F01DetectorConstruction()" << G4endl;
 63 
 64   fDetectorMessenger = new F01DetectorMessenger(this);
 65 
 66   // create field builder
 67   // this will create commands for field configuration
 68   G4FieldBuilder::Instance();
 69   // G4FieldBuilder::Instance()->SetVerboseLevel(2);
 70 
 71   // create materials
 72 
 73   DefineMaterials();
 74 }
 75 
 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 77 
 78 F01DetectorConstruction::~F01DetectorConstruction()
 79 {
 80   // delete fDetectorMessenger;
 81 }
 82 
 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 84 
 85 G4VPhysicalVolume* F01DetectorConstruction::Construct()
 86 {
 87   return ConstructCalorimeter();
 88 }
 89 
 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91 
 92 void F01DetectorConstruction::DefineMaterials()
 93 {
 94   // This function illustrates the possible ways to define materials
 95 
 96   G4String name, symbol;  // a=mass of a mole;
 97   G4double a, z, density;  // z=mean number of protons;
 98   G4int nel;
 99   G4int ncomponents;
100   G4double fractionmass, pressure, temperature;
101 
102   //
103   // define Elements
104   //
105 
106   a = 1.01 * g / mole;
107   auto elH = new G4Element(name = "Hydrogen", symbol = "H", z = 1., a);
108 
109   a = 12.01 * g / mole;
110   auto elC = new G4Element(name = "Carbon", symbol = "C", z = 6., a);
111 
112   a = 14.01 * g / mole;
113   auto elN = new G4Element(name = "Nitrogen", symbol = "N", z = 7., a);
114 
115   a = 16.00 * g / mole;
116   auto elO = new G4Element(name = "Oxygen", symbol = "O", z = 8., a);
117 
118   a = 39.948 * g / mole;
119   auto elAr = new G4Element(name = "Argon", symbol = "Ar", z = 18., a);
120 
121   //
122   // define simple materials
123   //
124 
125   // Mylar
126 
127   density = 1.39 * g / cm3;
128   auto mylar = new G4Material(name = "Mylar", density, nel = 3);
129   mylar->AddElement(elO, 2);
130   mylar->AddElement(elC, 5);
131   mylar->AddElement(elH, 4);
132 
133   // Polypropelene
134 
135   auto CH2 = new G4Material("Polypropelene", 0.91 * g / cm3, 2);
136   CH2->AddElement(elH, 2);
137   CH2->AddElement(elC, 1);
138 
139   // Krypton as detector gas, STP
140 
141   density = 3.700 * mg / cm3;
142   a = 83.80 * g / mole;
143   auto Kr = new G4Material(name = "Kr", z = 36., a, density);
144 
145   // Dry air (average composition)
146 
147   density = 1.7836 * mg / cm3;  // STP
148   auto argon = new G4Material(name = "Argon", density, ncomponents = 1);
149   argon->AddElement(elAr, 1);
150 
151   density = 1.25053 * mg / cm3;  // STP
152   auto nitrogen = new G4Material(name = "N2", density, ncomponents = 1);
153   nitrogen->AddElement(elN, 2);
154 
155   density = 1.4289 * mg / cm3;  // STP
156   auto oxygen = new G4Material(name = "O2", density, ncomponents = 1);
157   oxygen->AddElement(elO, 2);
158 
159   density = 1.2928 * mg / cm3;  // STP
160   density *= 1.0e-8;  // pumped vacuum
161 
162   temperature = STP_Temperature;
163   pressure = 1.0e-8 * STP_Pressure;
164 
165   auto air =
166     new G4Material(name = "Air", density, ncomponents = 3, kStateGas, temperature, pressure);
167   air->AddMaterial(nitrogen, fractionmass = 0.7557);
168   air->AddMaterial(oxygen, fractionmass = 0.2315);
169 
170   air->AddMaterial(argon, fractionmass = 0.0128);
171 
172   // Xenon as detector gas, STP
173 
174   density = 5.858 * mg / cm3;
175   a = 131.29 * g / mole;
176   auto Xe = new G4Material(name = "Xenon", z = 54., a, density);
177 
178   // Carbon dioxide, STP
179 
180   density = 1.842 * mg / cm3;
181   auto CarbonDioxide = new G4Material(name = "CO2", density, nel = 2);
182   CarbonDioxide->AddElement(elC, 1);
183   CarbonDioxide->AddElement(elO, 2);
184 
185   // 80% Xe + 20% CO2, STP
186 
187   density = 5.0818 * mg / cm3;
188   auto Xe20CO2 = new G4Material(name = "Xe20CO2", density, ncomponents = 2);
189   Xe20CO2->AddMaterial(Xe, fractionmass = 0.922);
190   Xe20CO2->AddMaterial(CarbonDioxide, fractionmass = 0.078);
191 
192   // 80% Kr + 20% CO2, STP
193 
194   density = 3.601 * mg / cm3;
195   auto Kr20CO2 = new G4Material(name = "Kr20CO2", density, ncomponents = 2);
196   Kr20CO2->AddMaterial(Kr, fractionmass = 0.89);
197   Kr20CO2->AddMaterial(CarbonDioxide, fractionmass = 0.11);
198 
199   // Print material table -- silence it for now
200   // G4cout << *(G4Material::GetMaterialTable()) << G4endl;
201   G4cout << "F01DetectorConstruction: not printing material table - to see it edit the source."
202          << G4endl;
203 
204   // default materials of the calorimeter
205 
206   fAbsorberMaterial = air;  //  Kr20CO2;   // XeCO2CF4;
207 
208   fWorldMaterial = air;
209 }
210 
211 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
212 
213 G4VPhysicalVolume* F01DetectorConstruction::ConstructCalorimeter()
214 {
215   // In case an old geometry is present... clean it up
216 
217   if (fPhysiWorld) {
218     G4GeometryManager::GetInstance()->OpenGeometry();
219     G4PhysicalVolumeStore::GetInstance()->Clean();
220     G4LogicalVolumeStore::GetInstance()->Clean();
221     G4SolidStore::GetInstance()->Clean();
222   }
223 
224   // Compute the Calor parameters definition and Print
225 
226   ComputeCalorParameters();
227   PrintCalorParameters();
228 
229   // World
230 
231   fSolidWorld = new G4Tubs("World",  // its name
232                            0., fWorldSizeR, fWorldSizeZ / 2., 0., twopi);  // its size
233 
234   fLogicWorld = new G4LogicalVolume(fSolidWorld,  // its solid
235                                     fWorldMaterial,  // its material
236                                     "World");  // its name
237 
238   fPhysiWorld = new G4PVPlacement(nullptr,  // no rotation
239                                   G4ThreeVector(),  // at (0,0,0)
240                                   "World",  // its name
241                                   fLogicWorld,  // its logical volume
242                                   nullptr,  // its mother  volume
243                                   false,  // no boolean op.
244                                   0);  // copy number
245   // Absorber
246 
247   fSolidAbsorber =
248     new G4Tubs("Absorber", 1.0 * mm, fAbsorberRadius, fAbsorberThickness / 2., 0.0, twopi);
249 
250   fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber, fAbsorberMaterial, "Absorber");
251 
252   fPhysiAbsorber = new G4PVPlacement(nullptr, G4ThreeVector(0., 0., fZAbsorber), "Absorber",
253                                      fLogicAbsorber, fPhysiWorld, false, 0);
254 
255   return fPhysiWorld;
256 }
257 
258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
259 
260 void F01DetectorConstruction::PrintCalorParameters()
261 {
262   G4cout << "\n The  WORLD   is made of " << fWorldSizeZ / mm << "mm of "
263          << fWorldMaterial->GetName();
264   G4cout << ", the transverse size (R) of the world is " << fWorldSizeR / mm << " mm. " << G4endl;
265   G4cout << " The ABSORBER is made of " << fAbsorberThickness / mm << "mm of "
266          << fAbsorberMaterial->GetName();
267   G4cout << ", the transverse size (R) is " << fAbsorberRadius / mm << " mm. " << G4endl;
268   G4cout << " Z position of the (middle of the) absorber " << fZAbsorber / mm << "  mm." << G4endl;
269   G4cout << G4endl;
270 }
271 
272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
273 
274 void F01DetectorConstruction::SetAbsorberMaterial(G4String materialChoice)
275 {
276   // get the pointer to the material table
277   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
278 
279   // search the material by its name
280   G4Material* material;
281   for (size_t j = 0; j < theMaterialTable->size(); j++) {
282     material = (*theMaterialTable)[j];
283     if (material->GetName() == materialChoice) {
284       fAbsorberMaterial = material;
285       fLogicAbsorber->SetMaterial(material);
286       G4RunManager::GetRunManager()->PhysicsHasBeenModified();
287     }
288   }
289 }
290 
291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
292 
293 void F01DetectorConstruction::SetWorldMaterial(G4String materialChoice)
294 {
295   // get the pointer to the material table
296   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
297 
298   // search the material by its name
299   G4Material* material;
300   for (size_t j = 0; j < theMaterialTable->size(); j++) {
301     material = (*theMaterialTable)[j];
302     if (material->GetName() == materialChoice) {
303       fWorldMaterial = material;
304       fLogicWorld->SetMaterial(material);
305       G4RunManager::GetRunManager()->PhysicsHasBeenModified();
306     }
307   }
308 }
309 
310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311 
312 void F01DetectorConstruction::SetAbsorberThickness(G4double val)
313 {
314   // change Absorber thickness and recompute the calorimeter parameters
315   fAbsorberThickness = val;
316   ComputeCalorParameters();
317   G4RunManager::GetRunManager()->GeometryHasBeenModified();
318 }
319 
320 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
321 
322 void F01DetectorConstruction::SetAbsorberRadius(G4double val)
323 {
324   // change the transverse size and recompute the calorimeter parameters
325   fAbsorberRadius = val;
326   ComputeCalorParameters();
327   G4RunManager::GetRunManager()->GeometryHasBeenModified();
328 }
329 
330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
331 
332 void F01DetectorConstruction::SetWorldSizeZ(G4double val)
333 {
334   fWorldSizeZ = val;
335   ComputeCalorParameters();
336   G4RunManager::GetRunManager()->GeometryHasBeenModified();
337 }
338 
339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
340 
341 void F01DetectorConstruction::SetWorldSizeR(G4double val)
342 {
343   fWorldSizeR = val;
344   ComputeCalorParameters();
345   G4RunManager::GetRunManager()->GeometryHasBeenModified();
346 }
347 
348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
349 
350 void F01DetectorConstruction::SetAbsorberZpos(G4double val)
351 {
352   fZAbsorber = val;
353   ComputeCalorParameters();
354   G4RunManager::GetRunManager()->GeometryHasBeenModified();
355 }
356 
357 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
358 
359 void F01DetectorConstruction::SetFieldValue(G4ThreeVector value)
360 {
361   fFieldVector = value;
362 
363   G4UniformMagField* magField = nullptr;
364   if (fFieldVector != G4ThreeVector(0.,0.,0.)) {
365     magField = new G4UniformMagField(fFieldVector);
366   }
367 
368   // Set field to the field builder
369   auto fieldBuilder = G4FieldBuilder::Instance();
370   fieldBuilder->SetGlobalField(magField);
371 }
372 
373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
374 #include "G4FieldManager.hh"
375 
376 void F01DetectorConstruction::ConstructSDandField()
377 {
378   // Sensitive Detectors: Absorber
379 
380   if (!fCalorimeterSD.Get()) {
381     auto calorimeterSD = new F01CalorimeterSD("CalorSD", this);
382     fCalorimeterSD.Put(calorimeterSD);
383   }
384   G4SDManager::GetSDMpointer()->AddNewDetector(fCalorimeterSD.Get());
385   SetSensitiveDetector(fLogicAbsorber, fCalorimeterSD.Get());
386 
387   // Create detector field
388   SetFieldValue(fFieldVector);
389 
390   // Construct all Geant4 field objects
391   auto fieldBuilder = G4FieldBuilder::Instance();
392   fieldBuilder->ConstructFieldSetup();
393 }
394 
395 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
396