Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file electromagnetic/TestEm5/src/DetectorConstruction.cc
 27 /// \brief Implementation of the DetectorConstruction class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "DetectorConstruction.hh"
 34 
 35 #include "DetectorMessenger.hh"
 36 
 37 #include "G4AutoDelete.hh"
 38 #include "G4Box.hh"
 39 #include "G4GeometryManager.hh"
 40 #include "G4GlobalMagFieldMessenger.hh"
 41 #include "G4LogicalVolume.hh"
 42 #include "G4LogicalVolumeStore.hh"
 43 #include "G4Material.hh"
 44 #include "G4NistManager.hh"
 45 #include "G4PVPlacement.hh"
 46 #include "G4PhysicalConstants.hh"
 47 #include "G4PhysicalVolumeStore.hh"
 48 #include "G4RunManager.hh"
 49 #include "G4SolidStore.hh"
 50 #include "G4SystemOfUnits.hh"
 51 #include "G4UniformMagField.hh"
 52 #include "G4UnitsTable.hh"
 53 
 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 55 
 56 DetectorConstruction::DetectorConstruction()
 57 {
 58   // default parameter values of the calorimeter
 59   fAbsorberThickness = 1. * cm;
 60   fAbsorberSizeYZ = 2. * cm;
 61   fXposAbs = 0. * cm;
 62   ComputeGeomParameters();
 63 
 64   // materials
 65   DefineMaterials();
 66   SetWorldMaterial("G4_Galactic");
 67   SetAbsorberMaterial("G4_Si");
 68 
 69   // create commands for interactive definition of the calorimeter
 70   fDetectorMessenger = new DetectorMessenger(this);
 71 }
 72 
 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 74 
 75 DetectorConstruction::~DetectorConstruction()
 76 {
 77   delete fDetectorMessenger;
 78 }
 79 
 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 81 
 82 void DetectorConstruction::DefineMaterials()
 83 {
 84   // This function illustrates the possible ways to define materials
 85 
 86   G4String symbol;  // a=mass of a mole;
 87   G4double a, z, density;  // z=mean number of protons;
 88 
 89   G4int ncomponents, natoms;
 90   G4double fractionmass;
 91   G4double temperature, pressure;
 92 
 93   //
 94   // define Elements
 95   //
 96 
 97   G4Element* H = new G4Element("Hydrogen", symbol = "H", z = 1, a = 1.01 * g / mole);
 98   G4Element* C = new G4Element("Carbon", symbol = "C", z = 6, a = 12.01 * g / mole);
 99   G4Element* N = new G4Element("Nitrogen", symbol = "N", z = 7, a = 14.01 * g / mole);
100   G4Element* O = new G4Element("Oxygen", symbol = "O", z = 8, a = 16.00 * g / mole);
101   G4Element* Na = new G4Element("Sodium", symbol = "Na", z = 11, a = 22.99 * g / mole);
102   G4Element* Ar = new G4Element("Argon", symbol = "Ar", z = 18, a = 39.95 * g / mole);
103   G4Element* I = new G4Element("Iodine", symbol = "I", z = 53, a = 126.90 * g / mole);
104   G4Element* Xe = new G4Element("Xenon", symbol = "Xe", z = 54, a = 131.29 * g / mole);
105 
106   //
107   // define simple materials
108   //
109 
110   new G4Material("H2Liq", z = 1, a = 1.01 * g / mole, density = 70.8 * mg / cm3);
111   new G4Material("Beryllium", z = 4, a = 9.01 * g / mole, density = 1.848 * g / cm3);
112   new G4Material("Aluminium", z = 13, a = 26.98 * g / mole, density = 2.700 * g / cm3);
113   new G4Material("Silicon", z = 14, a = 28.09 * g / mole, density = 2.330 * g / cm3);
114 
115   G4Material* lAr = new G4Material("liquidArgon", density = 1.390 * g / cm3, ncomponents = 1);
116   lAr->AddElement(Ar, natoms = 1);
117 
118   new G4Material("Iron", z = 26, a = 55.85 * g / mole, density = 7.870 * g / cm3);
119   new G4Material("Copper", z = 29, a = 63.55 * g / mole, density = 8.960 * g / cm3);
120   new G4Material("Germanium", z = 32, a = 72.61 * g / mole, density = 5.323 * g / cm3);
121   new G4Material("Silver", z = 47, a = 107.87 * g / mole, density = 10.50 * g / cm3);
122   new G4Material("Tungsten", z = 74, a = 183.85 * g / mole, density = 19.30 * g / cm3);
123   new G4Material("Gold", z = 79, a = 196.97 * g / mole, density = 19.32 * g / cm3);
124   new G4Material("Lead", z = 82, a = 207.19 * g / mole, density = 11.35 * g / cm3);
125 
126   //
127   // define a material from elements.   case 1: chemical molecule
128   //
129 
130   G4Material* H2O = new G4Material("Water", density = 1.000 * g / cm3, ncomponents = 2);
131   H2O->AddElement(H, natoms = 2);
132   H2O->AddElement(O, natoms = 1);
133   H2O->GetIonisation()->SetMeanExcitationEnergy(78 * eV);
134 
135   G4Material* CH = new G4Material("Plastic", density = 1.04 * g / cm3, ncomponents = 2);
136   CH->AddElement(C, natoms = 1);
137   CH->AddElement(H, natoms = 1);
138 
139   G4Material* NaI = new G4Material("NaI", density = 3.67 * g / cm3, ncomponents = 2);
140   NaI->AddElement(Na, natoms = 1);
141   NaI->AddElement(I, natoms = 1);
142   NaI->GetIonisation()->SetMeanExcitationEnergy(452 * eV);
143 
144   //
145   // define a material from elements.   case 2: mixture by fractional mass
146   //
147 
148   G4Material* Air = new G4Material("Air", density = 1.290 * mg / cm3, ncomponents = 2);
149   Air->AddElement(N, fractionmass = 0.7);
150   Air->AddElement(O, fractionmass = 0.3);
151 
152   G4Material* Air20 = new G4Material("Air20", density = 1.205 * mg / cm3, ncomponents = 2,
153                                      kStateGas, 293. * kelvin, 1. * atmosphere);
154   Air20->AddElement(N, fractionmass = 0.7);
155   Air20->AddElement(O, fractionmass = 0.3);
156 
157   // Graphite
158   //
159   G4Material* Graphite = new G4Material("Graphite", density = 1.7 * g / cm3, ncomponents = 1);
160   Graphite->AddElement(C, fractionmass = 1.);
161 
162   // Havar
163   //
164   G4Element* Cr = new G4Element("Chrome", "Cr", z = 24, a = 51.996 * g / mole);
165   G4Element* Fe = new G4Element("Iron", "Fe", z = 26, a = 55.845 * g / mole);
166   G4Element* Co = new G4Element("Cobalt", "Co", z = 27, a = 58.933 * g / mole);
167   G4Element* Ni = new G4Element("Nickel", "Ni", z = 28, a = 58.693 * g / mole);
168   G4Element* W = new G4Element("Tungsten", "W", z = 74, a = 183.850 * g / mole);
169 
170   G4Material* Havar = new G4Material("Havar", density = 8.3 * g / cm3, ncomponents = 5);
171   Havar->AddElement(Cr, fractionmass = 0.1785);
172   Havar->AddElement(Fe, fractionmass = 0.1822);
173   Havar->AddElement(Co, fractionmass = 0.4452);
174   Havar->AddElement(Ni, fractionmass = 0.1310);
175   Havar->AddElement(W, fractionmass = 0.0631);
176 
177   //
178   // examples of gas
179   //
180   new G4Material("ArgonGas", z = 18, a = 39.948 * g / mole, density = 1.782 * mg / cm3, kStateGas,
181                  273.15 * kelvin, 1 * atmosphere);
182 
183   new G4Material("XenonGas", z = 54, a = 131.29 * g / mole, density = 5.458 * mg / cm3, kStateGas,
184                  293.15 * kelvin, 1 * atmosphere);
185 
186   G4Material* CO2 = new G4Material("CarbonicGas", density = 1.977 * mg / cm3, ncomponents = 2);
187   CO2->AddElement(C, natoms = 1);
188   CO2->AddElement(O, natoms = 2);
189 
190   G4Material* ArCO2 = new G4Material("ArgonCO2", density = 1.8223 * mg / cm3, ncomponents = 2);
191   ArCO2->AddElement(Ar, fractionmass = 0.7844);
192   ArCO2->AddMaterial(CO2, fractionmass = 0.2156);
193 
194   // another way to define mixture of gas per volume
195   G4Material* NewArCO2 =
196     new G4Material("NewArgonCO2", density = 1.8223 * mg / cm3, ncomponents = 3);
197   NewArCO2->AddElement(Ar, natoms = 8);
198   NewArCO2->AddElement(C, natoms = 2);
199   NewArCO2->AddElement(O, natoms = 4);
200 
201   G4Material* ArCH4 = new G4Material("ArgonCH4", density = 1.709 * mg / cm3, ncomponents = 3);
202   ArCH4->AddElement(Ar, natoms = 93);
203   ArCH4->AddElement(C, natoms = 7);
204   ArCH4->AddElement(H, natoms = 28);
205 
206   G4Material* XeCH = new G4Material("XenonMethanePropane", density = 4.9196 * mg / cm3,
207                                     ncomponents = 3, kStateGas, 293.15 * kelvin, 1 * atmosphere);
208   XeCH->AddElement(Xe, natoms = 875);
209   XeCH->AddElement(C, natoms = 225);
210   XeCH->AddElement(H, natoms = 700);
211 
212   G4Material* steam = new G4Material("WaterSteam", density = 1.0 * mg / cm3, ncomponents = 1);
213   steam->AddMaterial(H2O, fractionmass = 1.);
214   steam->GetIonisation()->SetMeanExcitationEnergy(71.6 * eV);
215 
216   G4Material* rock1 = new G4Material("StandardRock", 2.65 * CLHEP::g / CLHEP::cm3, 1, kStateSolid);
217   rock1->AddElement(Na, 1);
218 
219   //
220   // example of vacuum
221   //
222   density = universe_mean_density;  // from PhysicalConstants.h
223   pressure = 3.e-18 * pascal;
224   temperature = 2.73 * kelvin;
225   new G4Material("Galactic", z = 1, a = 1.01 * g / mole, density, kStateGas, temperature, pressure);
226 }
227 
228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
229 
230 void DetectorConstruction::ComputeGeomParameters()
231 {
232   // Compute derived parameters of the calorimeter
233   fXstartAbs = fXposAbs - 0.5 * fAbsorberThickness;
234   fXendAbs = fXposAbs + 0.5 * fAbsorberThickness;
235 
236   G4double xmax = std::max(std::abs(fXstartAbs), std::abs(fXendAbs));
237   fWorldSizeX = 2.4 * xmax;
238   fWorldSizeYZ = 1.2 * fAbsorberSizeYZ;
239   if (nullptr != fPhysiWorld) {
240     ChangeGeometry();
241   }
242 }
243 
244 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
245 
246 G4VPhysicalVolume* DetectorConstruction::Construct()
247 {
248   if (nullptr != fPhysiWorld) {
249     return fPhysiWorld;
250   }
251   // World
252   //
253   fSolidWorld = new G4Box("World",  // its name
254                           fWorldSizeX / 2, fWorldSizeYZ / 2, fWorldSizeYZ / 2);  // its size
255 
256   fLogicWorld = new G4LogicalVolume(fSolidWorld,  // its solid
257                                     fWorldMaterial,  // its material
258                                     "World");  // its name
259 
260   fPhysiWorld = new G4PVPlacement(0,  // no rotation
261                                   G4ThreeVector(0., 0., 0.),  // at (0,0,0)
262                                   fLogicWorld,  // its logical volume
263                                   "World",  // its name
264                                   0,  // its mother  volume
265                                   false,  // no boolean operation
266                                   0);  // copy number
267 
268   // Absorber
269   //
270   fSolidAbsorber =
271     new G4Box("Absorber", fAbsorberThickness / 2, fAbsorberSizeYZ / 2, fAbsorberSizeYZ / 2);
272 
273   fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber,  // its solid
274                                        fAbsorberMaterial,  // its material
275                                        "Absorber");  // its name
276 
277   fPhysiAbsorber = new G4PVPlacement(0,  // no rotation
278                                      G4ThreeVector(fXposAbs, 0., 0.),  // its position
279                                      fLogicAbsorber,  // its logical volume
280                                      "Absorber",  // its name
281                                      fLogicWorld,  // its mother
282                                      false,  // no boulean operat
283                                      0);  // copy number
284 
285   PrintGeomParameters();
286 
287   // always return the physical World
288   //
289   return fPhysiWorld;
290 }
291 
292 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
293 
294 void DetectorConstruction::PrintGeomParameters()
295 {
296   G4cout << "\n" << fWorldMaterial << G4endl;
297   G4cout << "\n" << fAbsorberMaterial << G4endl;
298 
299   G4cout << "\n The  WORLD   is made of " << G4BestUnit(fWorldSizeX, "Length") << " of "
300          << fWorldMaterial->GetName();
301   G4cout << ". The transverse size (YZ) of the world is " << G4BestUnit(fWorldSizeYZ, "Length")
302          << G4endl;
303   G4cout << " The ABSORBER is made of " << G4BestUnit(fAbsorberThickness, "Length") << " of "
304          << fAbsorberMaterial->GetName();
305   G4cout << ". The transverse size (YZ) is " << G4BestUnit(fAbsorberSizeYZ, "Length") << G4endl;
306   G4cout << " X position of the middle of the absorber " << G4BestUnit(fXposAbs, "Length");
307   G4cout << G4endl;
308 }
309 
310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311 
312 void DetectorConstruction::SetAbsorberMaterial(const G4String& materialChoice)
313 {
314   // search the material by its name
315   G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
316 
317   if (pttoMaterial && fAbsorberMaterial != pttoMaterial) {
318     fAbsorberMaterial = pttoMaterial;
319     if (fLogicAbsorber) {
320       fLogicAbsorber->SetMaterial(fAbsorberMaterial);
321     }
322     G4RunManager::GetRunManager()->PhysicsHasBeenModified();
323   }
324 }
325 
326 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
327 
328 void DetectorConstruction::SetWorldMaterial(const G4String& materialChoice)
329 {
330   // search the material by its name
331   G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
332 
333   if (pttoMaterial && fWorldMaterial != pttoMaterial) {
334     fWorldMaterial = pttoMaterial;
335     if (fLogicWorld) {
336       fLogicWorld->SetMaterial(fWorldMaterial);
337     }
338     G4RunManager::GetRunManager()->PhysicsHasBeenModified();
339   }
340 }
341 
342 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
343 
344 void DetectorConstruction::SetAbsorberThickness(G4double val)
345 {
346   fAbsorberThickness = val;
347   ComputeGeomParameters();
348 }
349 
350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
351 
352 void DetectorConstruction::SetAbsorberSizeYZ(G4double val)
353 {
354   fAbsorberSizeYZ = val;
355   ComputeGeomParameters();
356 }
357 
358 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
359 
360 void DetectorConstruction::SetWorldSizeX(G4double val)
361 {
362   fWorldSizeX = val;
363   ComputeGeomParameters();
364 }
365 
366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
367 
368 void DetectorConstruction::SetWorldSizeYZ(G4double val)
369 {
370   fWorldSizeYZ = val;
371   ComputeGeomParameters();
372 }
373 
374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
375 
376 void DetectorConstruction::SetAbsorberXpos(G4double val)
377 {
378   fXposAbs = val;
379   ComputeGeomParameters();
380 }
381 
382 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
383 
384 void DetectorConstruction::ConstructSDandField()
385 {
386   if (fFieldMessenger.Get() == 0) {
387     // Create global magnetic field messenger.
388     // Uniform magnetic field is then created automatically if
389     // the field value is not zero.
390     G4ThreeVector fieldValue = G4ThreeVector();
391     G4GlobalMagFieldMessenger* msg = new G4GlobalMagFieldMessenger(fieldValue);
392     // msg->SetVerboseLevel(1);
393     G4AutoDelete::Register(msg);
394     fFieldMessenger.Put(msg);
395   }
396 }
397 
398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
399 
400 void DetectorConstruction::ChangeGeometry()
401 {
402   fSolidWorld->SetXHalfLength(fWorldSizeX * 0.5);
403   fSolidWorld->SetYHalfLength(fWorldSizeYZ * 0.5);
404   fSolidWorld->SetZHalfLength(fWorldSizeYZ * 0.5);
405 
406   fSolidAbsorber->SetXHalfLength(fAbsorberThickness * 0.5);
407   fSolidAbsorber->SetYHalfLength(fAbsorberSizeYZ * 0.5);
408   fSolidAbsorber->SetZHalfLength(fAbsorberSizeYZ * 0.5);
409 }
410 
411 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
412