Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm3/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file electromagnetic/TestEm3/src/Run.cc
 27 /// \brief Implementation of the Run class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "Run.hh"
 34 
 35 #include "DetectorConstruction.hh"
 36 #include "EmAcceptance.hh"
 37 #include "HistoManager.hh"
 38 #include "PrimaryGeneratorAction.hh"
 39 
 40 #include "G4Electron.hh"
 41 #include "G4Gamma.hh"
 42 #include "G4ParticleDefinition.hh"
 43 #include "G4ParticleTable.hh"
 44 #include "G4Positron.hh"
 45 #include "G4SystemOfUnits.hh"
 46 #include "G4Track.hh"
 47 #include "G4UnitsTable.hh"
 48 
 49 #include <iomanip>
 50 
 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 52 
 53 Run::Run(DetectorConstruction* det) : fDetector(det)
 54 {
 55   // initialize cumulative quantities
 56   //
 57   for (G4int k = 0; k < kMaxAbsor; k++) {
 58     fSumEAbs[k] = fSum2EAbs[k] = fSumLAbs[k] = fSum2LAbs[k] = 0.;
 59     fEnergyDeposit[k].clear();
 60     fEdeptrue[k] = fRmstrue[k] = 1.;
 61     fLimittrue[k] = DBL_MAX;
 62   }
 63 
 64   fEdepTot = fEdepTot2 = 0.;
 65   fEleakTot = fEleakTot2 = 0.;
 66   fEtotal = fEtotal2 = 0.;
 67 
 68   // initialize Eflow
 69   //
 70   G4int nbPlanes = (fDetector->GetNbOfLayers()) * (fDetector->GetNbOfAbsor()) + 2;
 71   fEnergyFlow.resize(nbPlanes);
 72   fLateralEleak.resize(nbPlanes);
 73   for (G4int k = 0; k < nbPlanes; k++) {
 74     fEnergyFlow[k] = fLateralEleak[k] = 0.;
 75   }
 76 }
 77 
 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 79 
 80 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy)
 81 {
 82   fParticle = particle;
 83   fEkin = energy;
 84 }
 85 
 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87 
 88 void Run::FillPerEvent(G4int kAbs, G4double EAbs, G4double LAbs)
 89 {
 90   // accumulate statistic with restriction
 91   //
 92   if (fApplyLimit) fEnergyDeposit[kAbs].push_back(EAbs);
 93   fSumEAbs[kAbs] += EAbs;
 94   fSum2EAbs[kAbs] += EAbs * EAbs;
 95   fSumLAbs[kAbs] += LAbs;
 96   fSum2LAbs[kAbs] += LAbs * LAbs;
 97 }
 98 
 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
100 
101 void Run::SumEnergies(G4double edeptot, G4double eleak)
102 {
103   fEdepTot += edeptot;
104   fEdepTot2 += edeptot * edeptot;
105   fEleakTot += eleak;
106   fEleakTot2 += eleak * eleak;
107 
108   G4double etotal = edeptot + eleak;
109   fEtotal += etotal;
110   fEtotal2 += etotal * etotal;
111 }
112 
113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
114 
115 void Run::SumEnergyFlow(G4int plane, G4double Eflow)
116 {
117   fEnergyFlow[plane] += Eflow;
118 }
119 
120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121 
122 void Run::SumLateralEleak(G4int cell, G4double Eflow)
123 {
124   fLateralEleak[cell] += Eflow;
125 }
126 
127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
128 
129 void Run::AddChargedStep()
130 {
131   fChargedStep += 1.0;
132 }
133 
134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
135 
136 void Run::AddNeutralStep()
137 {
138   fNeutralStep += 1.0;
139 }
140 
141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
142 
143 void Run::AddSecondaryTrack(const G4Track* track)
144 {
145   const G4ParticleDefinition* d = track->GetDefinition();
146   if (d == G4Gamma::Gamma()) {
147     ++fN_gamma;
148   }
149   else if (d == G4Electron::Electron()) {
150     ++fN_elec;
151   }
152   else if (d == G4Positron::Positron()) {
153     ++fN_pos;
154   }
155 }
156 
157 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
158 
159 void Run::Merge(const G4Run* run)
160 {
161   const Run* localRun = static_cast<const Run*>(run);
162 
163   // pass information about primary particle
164   fParticle = localRun->fParticle;
165   fEkin = localRun->fEkin;
166 
167   // accumulate sums
168   //
169   for (G4int k = 0; k < kMaxAbsor; k++) {
170     fSumEAbs[k] += localRun->fSumEAbs[k];
171     fSum2EAbs[k] += localRun->fSum2EAbs[k];
172     fSumLAbs[k] += localRun->fSumLAbs[k];
173     fSum2LAbs[k] += localRun->fSum2LAbs[k];
174   }
175 
176   fEdepTot += localRun->fEdepTot;
177   fEdepTot2 += localRun->fEdepTot2;
178 
179   fEleakTot += localRun->fEleakTot;
180   fEleakTot2 += localRun->fEleakTot2;
181 
182   fEtotal += localRun->fEtotal;
183   fEtotal2 += localRun->fEtotal2;
184 
185   G4int nbPlanes = (fDetector->GetNbOfLayers()) * (fDetector->GetNbOfAbsor()) + 2;
186   for (G4int k = 0; k < nbPlanes; k++) {
187     fEnergyFlow[k] += localRun->fEnergyFlow[k];
188     fLateralEleak[k] += localRun->fLateralEleak[k];
189   }
190 
191   for (G4int k=0; k<kMaxAbsor; k++) {
192     fEnergyDeposit[k].insert(fEnergyDeposit[k].end(),
193     localRun->fEnergyDeposit[k].begin(), localRun->fEnergyDeposit[k].end());
194   }  
195 
196   fChargedStep += localRun->fChargedStep;
197   fNeutralStep += localRun->fNeutralStep;
198 
199   fN_gamma += localRun->fN_gamma;
200   fN_elec += localRun->fN_elec;
201   fN_pos += localRun->fN_pos;
202 
203   fApplyLimit = localRun->fApplyLimit;
204 
205   for (G4int k = 0; k < kMaxAbsor; k++) {
206     fEdeptrue[k] = localRun->fEdeptrue[k];
207     fRmstrue[k] = localRun->fRmstrue[k];
208     fLimittrue[k] = localRun->fLimittrue[k];
209   }
210 
211   G4Run::Merge(run);
212 }
213 
214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
215 
216 void Run::EndOfRun()
217 {
218   G4int nEvt = numberOfEvent;
219   G4double norm = G4double(nEvt);
220   if (norm > 0) norm = 1. / norm;
221   G4double qnorm = std::sqrt(norm);
222 
223   fChargedStep *= norm;
224   fNeutralStep *= norm;
225 
226   // compute and print statistic
227   //
228   G4double beamEnergy = fEkin;
229   G4double sqbeam = std::sqrt(beamEnergy / GeV);
230 
231   G4double MeanEAbs, MeanEAbs2, rmsEAbs, resolution, rmsres;
232   G4double MeanLAbs, MeanLAbs2, rmsLAbs;
233 
234   std::ios::fmtflags mode = G4cout.flags();
235   G4int prec = G4cout.precision(2);
236   G4cout << "\n------------------------------------------------------------\n";
237   G4cout << std::setw(14) << "material" << std::setw(17) << "Edep       RMS" << std::setw(33)
238          << "sqrt(E0(GeV))*rmsE/Emean" << std::setw(23) << "total tracklen \n \n";
239 
240   for (G4int k = 1; k <= fDetector->GetNbOfAbsor(); k++) {
241     MeanEAbs = fSumEAbs[k] * norm;
242     MeanEAbs2 = fSum2EAbs[k] * norm;
243     rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - MeanEAbs * MeanEAbs));
244     // G4cout << "k= " << k << "  RMS= " <<  rmsEAbs
245     //      << "  fApplyLimit: " << fApplyLimit << G4endl;
246     if (fApplyLimit) {
247       G4int nn = 0;
248       G4double sume = 0.0;
249       G4double sume2 = 0.0;
250       // compute trancated means
251       G4double lim = rmsEAbs * 2.5;
252       for (G4int i = 0; i < nEvt; i++) {
253         G4double e = (fEnergyDeposit[k])[i];
254         if (std::abs(e - MeanEAbs) < lim) {
255           sume += e;
256           sume2 += e * e;
257           nn++;
258         }
259       }
260       G4double norm1 = G4double(nn);
261       if (norm1 > 0.0) norm1 = 1.0 / norm1;
262       MeanEAbs = sume * norm1;
263       MeanEAbs2 = sume2 * norm1;
264       rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - MeanEAbs * MeanEAbs));
265     }
266 
267     resolution = (MeanEAbs > 0.) ? 100. * sqbeam * rmsEAbs / MeanEAbs : 0.0;
268     rmsres = resolution * qnorm;
269 
270     // Save mean and RMS
271     fSumEAbs[k] = MeanEAbs;
272     fSum2EAbs[k] = rmsEAbs;
273 
274     MeanLAbs = fSumLAbs[k] * norm;
275     MeanLAbs2 = fSum2LAbs[k] * norm;
276     rmsLAbs = std::sqrt(std::abs(MeanLAbs2 - MeanLAbs * MeanLAbs));
277 
278     // print
279     //
280     G4cout << std::setw(14) << fDetector->GetAbsorMaterial(k)->GetName() << ": "
281            << std::setprecision(5) << std::setw(6) << G4BestUnit(MeanEAbs, "Energy") << " :  "
282            << std::setprecision(4) << std::setw(5) << G4BestUnit(rmsEAbs, "Energy") << std::setw(10)
283            << resolution << " +- " << std::setw(5) << rmsres << " %" << std::setprecision(3)
284            << std::setw(10) << G4BestUnit(MeanLAbs, "Length") << " +- " << std::setw(4)
285            << G4BestUnit(rmsLAbs, "Length") << G4endl;
286   }
287 
288   // total energy deposited
289   //
290   fEdepTot *= norm;
291   fEdepTot2 *= norm;
292   G4double rmsEdep = std::sqrt(std::abs(fEdepTot2 - fEdepTot * fEdepTot));
293 
294   G4cout << "\n Total energy deposited = " << std::setprecision(4) << G4BestUnit(fEdepTot, "Energy")
295          << " +- " << G4BestUnit(rmsEdep, "Energy") << G4endl;
296 
297   // Energy leakage
298   //
299   fEleakTot *= norm;
300   fEleakTot2 *= norm;
301   G4double rmsEleak = std::sqrt(std::abs(fEleakTot2 - fEleakTot * fEleakTot));
302 
303   G4cout << " Energy leakage = " << G4BestUnit(fEleakTot, "Energy") << " +- "
304          << G4BestUnit(rmsEleak, "Energy") << G4endl;
305 
306   // total energy
307   //
308   fEtotal *= norm;
309   fEtotal2 *= norm;
310   G4double rmsEtotal = std::sqrt(std::abs(fEtotal2 - fEtotal * fEtotal));
311 
312   G4cout << " Total energy :  Edep + Eleak = " << G4BestUnit(fEtotal, "Energy") << " +- "
313          << G4BestUnit(rmsEtotal, "Energy") << G4endl;
314 
315   G4cout << "------------------------------------------------------------\n";
316 
317   G4cout << " Beam particle " << fParticle->GetParticleName()
318          << "  E = " << G4BestUnit(beamEnergy, "Energy") << G4endl;
319   G4cout << " Mean number of gamma       " << (G4double)fN_gamma * norm << G4endl;
320   G4cout << " Mean number of e-          " << (G4double)fN_elec * norm << G4endl;
321   G4cout << " Mean number of e+          " << (G4double)fN_pos * norm << G4endl;
322   G4cout << std::setprecision(6) << " Mean number of charged steps  " << fChargedStep << G4endl;
323   G4cout << " Mean number of neutral steps  " << fNeutralStep << G4endl;
324   G4cout << "------------------------------------------------------------\n";
325 
326   // Energy flow
327   //
328   G4AnalysisManager* analysis = G4AnalysisManager::Instance();
329   G4int Idmax = (fDetector->GetNbOfLayers()) * (fDetector->GetNbOfAbsor());
330   for (G4int Id = 1; Id <= Idmax + 1; Id++) {
331     analysis->FillH1(2 * kMaxAbsor + 1, (G4double)Id, fEnergyFlow[Id]);
332     analysis->FillH1(2 * kMaxAbsor + 2, (G4double)Id, fLateralEleak[Id]);
333   }
334 
335   // Energy deposit from energy flow balance
336   //
337   G4double EdepTot[kMaxAbsor];
338   for (G4int k = 0; k < kMaxAbsor; k++)
339     EdepTot[k] = 0.;
340 
341   G4int nbOfAbsor = fDetector->GetNbOfAbsor();
342   for (G4int Id = 1; Id <= Idmax; Id++) {
343     G4int iAbsor = Id % nbOfAbsor;
344     if (iAbsor == 0) iAbsor = nbOfAbsor;
345     EdepTot[iAbsor] += (fEnergyFlow[Id] - fEnergyFlow[Id + 1] - fLateralEleak[Id]);
346   }
347 
348   G4cout << std::setprecision(3) << "\n Energy deposition from Energy flow balance : \n"
349          << std::setw(10) << "  material \t Total Edep \n \n";
350   G4cout.precision(6);
351 
352   for (G4int k = 1; k <= nbOfAbsor; k++) {
353     EdepTot[k] *= norm;
354     G4cout << std::setw(10) << fDetector->GetAbsorMaterial(k)->GetName() << ":"
355            << "\t " << G4BestUnit(EdepTot[k], "Energy") << "\n";
356   }
357 
358   G4cout << "\n------------------------------------------------------------\n" << G4endl;
359 
360   // Acceptance
361   EmAcceptance acc;
362   G4bool isStarted = false;
363   for (G4int j = 1; j <= fDetector->GetNbOfAbsor(); j++) {
364     if (fLimittrue[j] < DBL_MAX) {
365       if (!isStarted) {
366         acc.BeginOfAcceptance("Sampling Calorimeter", nEvt);
367         isStarted = true;
368       }
369       MeanEAbs = fSumEAbs[j];
370       rmsEAbs = fSum2EAbs[j];
371       G4String mat = fDetector->GetAbsorMaterial(j)->GetName();
372       acc.EmAcceptanceGauss("Edep" + mat, nEvt, MeanEAbs, fEdeptrue[j], fRmstrue[j], fLimittrue[j]);
373       acc.EmAcceptanceGauss("Erms" + mat, nEvt, rmsEAbs, fRmstrue[j], fRmstrue[j],
374                             2.0 * fLimittrue[j]);
375     }
376   }
377   if (isStarted) acc.EndOfAcceptance();
378 
379   // normalize histograms
380   //
381   for (G4int ih = kMaxAbsor + 1; ih < kMaxHisto - 2; ih++) {
382     analysis->ScaleH1(ih, norm / MeV);
383   }
384 
385   G4cout.setf(mode, std::ios::floatfield);
386   G4cout.precision(prec);
387 }
388 
389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
390 
391 void Run::SetEdepAndRMS(G4int i, G4double edep, G4double rms, G4double lim)
392 {
393   if (i >= 0 && i < kMaxAbsor) {
394     fEdeptrue[i] = edep;
395     fRmstrue[i] = rms;
396     fLimittrue[i] = lim;
397   }
398 }
399 
400 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
401 
402 void Run::SetApplyLimit(G4bool val)
403 {
404   fApplyLimit = val;
405 }
406 
407 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
408