Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm3/src/DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file electromagnetic/TestEm3/src/DetectorConstruction.cc
 27 /// \brief Implementation of the DetectorConstruction class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "DetectorConstruction.hh"
 34 
 35 #include "DetectorMessenger.hh"
 36 
 37 #include "G4Box.hh"
 38 #include "G4GeometryManager.hh"
 39 #include "G4LogicalVolume.hh"
 40 #include "G4LogicalVolumeStore.hh"
 41 #include "G4Material.hh"
 42 #include "G4NistManager.hh"
 43 #include "G4PVPlacement.hh"
 44 #include "G4PVReplica.hh"
 45 #include "G4PhysicalConstants.hh"
 46 #include "G4PhysicalVolumeStore.hh"
 47 #include "G4RunManager.hh"
 48 #include "G4SolidStore.hh"
 49 #include "G4SystemOfUnits.hh"
 50 #include "G4UnitsTable.hh"
 51 
 52 #include <iomanip>
 53 
 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 55 
 56 DetectorConstruction::DetectorConstruction()
 57 {
 58   for (G4int i = 0; i < kMaxAbsor; ++i) {
 59     fAbsorMaterial[i] = nullptr;
 60     fAbsorThickness[i] = 0.0;
 61     fSolidAbsor[i] = nullptr;
 62     fLogicAbsor[i] = nullptr;
 63     fPhysiAbsor[i] = nullptr;
 64   }
 65 
 66   // default parameter values of the calorimeter
 67   fNbOfAbsor = 2;
 68   fAbsorThickness[1] = 2.3 * mm;
 69   fAbsorThickness[2] = 5.7 * mm;
 70   fNbOfLayers = 50;
 71   fCalorSizeYZ = 40. * cm;
 72   ComputeCalorParameters();
 73 
 74   // materials
 75   DefineMaterials();
 76   SetWorldMaterial("Galactic");
 77   SetAbsorMaterial(1, "G4_Pb");
 78   SetAbsorMaterial(2, "G4_lAr");
 79 
 80   // create commands for interactive definition of the calorimeter
 81   fDetectorMessenger = new DetectorMessenger(this);
 82 }
 83 
 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85 
 86 DetectorConstruction::~DetectorConstruction()
 87 {
 88   delete fDetectorMessenger;
 89 }
 90 
 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 92 
 93 void DetectorConstruction::DefineMaterials()
 94 {
 95   // This function illustrates the possible ways to define materials using
 96   // G4 database on G4Elements
 97   G4NistManager* manager = G4NistManager::Instance();
 98   manager->SetVerbose(0);
 99   //
100   // define Elements
101   //
102   G4double z, a;
103 
104   G4Element* H = manager->FindOrBuildElement(1);
105   G4Element* C = manager->FindOrBuildElement(6);
106   G4Element* N = manager->FindOrBuildElement(7);
107   G4Element* O = manager->FindOrBuildElement(8);
108   G4Element* Si = manager->FindOrBuildElement(14);
109   G4Element* Ge = manager->FindOrBuildElement(32);
110   G4Element* Sb = manager->FindOrBuildElement(51);
111   G4Element* I = manager->FindOrBuildElement(53);
112   G4Element* Cs = manager->FindOrBuildElement(55);
113   G4Element* Pb = manager->FindOrBuildElement(82);
114   G4Element* Bi = manager->FindOrBuildElement(83);
115 
116   //
117   // define an Element from isotopes, by relative abundance
118   //
119   G4int iz, n;  // iz=number of protons  in an isotope;
120                 //  n=number of nucleons in an isotope;
121   G4int ncomponents;
122   G4double abundance;
123 
124   G4Isotope* U5 = new G4Isotope("U235", iz = 92, n = 235, a = 235.01 * g / mole);
125   G4Isotope* U8 = new G4Isotope("U238", iz = 92, n = 238, a = 238.03 * g / mole);
126 
127   G4Element* U = new G4Element("enriched Uranium", "U", ncomponents = 2);
128   U->AddIsotope(U5, abundance = 90. * perCent);
129   U->AddIsotope(U8, abundance = 10. * perCent);
130 
131   //
132   // define simple materials
133   //
134   G4double density;
135 
136   new G4Material("liquidH2", z = 1., a = 1.008 * g / mole, density = 70.8 * mg / cm3);
137   new G4Material("Aluminium", z = 13., a = 26.98 * g / mole, density = 2.700 * g / cm3);
138   new G4Material("Titanium", z = 22., a = 47.867 * g / mole, density = 4.54 * g / cm3);
139   new G4Material("Iron", z = 26., a = 55.85 * g / mole, density = 7.870 * g / cm3);
140   new G4Material("Copper", z = 29., a = 63.55 * g / mole, density = 8.960 * g / cm3);
141   new G4Material("Tungsten", z = 74., a = 183.85 * g / mole, density = 19.30 * g / cm3);
142   new G4Material("Gold", z = 79., a = 196.97 * g / mole, density = 19.32 * g / cm3);
143   new G4Material("Uranium", z = 92., a = 238.03 * g / mole, density = 18.95 * g / cm3);
144 
145   //
146   // define a material from elements.   case 1: chemical molecule
147   //
148   G4int natoms;
149 
150   G4Material* H2O = new G4Material("Water", density = 1.000 * g / cm3, ncomponents = 2);
151   H2O->AddElement(H, natoms = 2);
152   H2O->AddElement(O, natoms = 1);
153   H2O->GetIonisation()->SetMeanExcitationEnergy(78.0 * eV);
154   H2O->SetChemicalFormula("H_2O");
155 
156   G4Material* CH = new G4Material("Polystyrene", density = 1.032 * g / cm3, ncomponents = 2);
157   CH->AddElement(C, natoms = 1);
158   CH->AddElement(H, natoms = 1);
159 
160   G4Material* Sci = new G4Material("Scintillator", density = 1.032 * g / cm3, ncomponents = 2);
161   Sci->AddElement(C, natoms = 9);
162   Sci->AddElement(H, natoms = 10);
163 
164   Sci->GetIonisation()->SetBirksConstant(0.126 * mm / MeV);
165 
166   G4Material* Lct = new G4Material("Lucite", density = 1.185 * g / cm3, ncomponents = 3);
167   Lct->AddElement(C, 59.97 * perCent);
168   Lct->AddElement(H, 8.07 * perCent);
169   Lct->AddElement(O, 31.96 * perCent);
170 
171   G4Material* Sili = new G4Material("Silicon", density = 2.330 * g / cm3, ncomponents = 1);
172   Sili->AddElement(Si, natoms = 1);
173 
174   G4Material* SiO2 = new G4Material("quartz", density = 2.200 * g / cm3, ncomponents = 2);
175   SiO2->AddElement(Si, natoms = 1);
176   SiO2->AddElement(O, natoms = 2);
177 
178   G4Material* G10 = new G4Material("NemaG10", density = 1.700 * g / cm3, ncomponents = 4);
179   G10->AddElement(Si, natoms = 1);
180   G10->AddElement(O, natoms = 2);
181   G10->AddElement(C, natoms = 3);
182   G10->AddElement(H, natoms = 3);
183 
184   G4Material* CsI = new G4Material("CsI", density = 4.534 * g / cm3, ncomponents = 2);
185   CsI->AddElement(Cs, natoms = 1);
186   CsI->AddElement(I, natoms = 1);
187   CsI->GetIonisation()->SetMeanExcitationEnergy(553.1 * eV);
188 
189   G4Material* BGO = new G4Material("BGO", density = 7.10 * g / cm3, ncomponents = 3);
190   BGO->AddElement(O, natoms = 12);
191   BGO->AddElement(Ge, natoms = 3);
192   BGO->AddElement(Bi, natoms = 4);
193 
194   // SiNx
195   density = 3.1 * g / cm3;
196   G4Material* SiNx = new G4Material("SiNx", density, ncomponents = 3);
197   SiNx->AddElement(Si, 300);
198   SiNx->AddElement(N, 310);
199   SiNx->AddElement(H, 6);
200 
201   //
202   // define gaseous materials using G4 NIST database
203   //
204   G4double fractionmass;
205 
206   G4Material* Air = manager->FindOrBuildMaterial("G4_AIR");
207   manager->ConstructNewGasMaterial("Air20", "G4_AIR", 293. * kelvin, 1. * atmosphere);
208 
209   G4Material* lAr = manager->FindOrBuildMaterial("G4_lAr");
210   G4Material* lArEm3 = new G4Material("liquidArgon", density = 1.390 * g / cm3, ncomponents = 1);
211   lArEm3->AddMaterial(lAr, fractionmass = 1.0);
212 
213   //
214   // define a material from elements and others materials (mixture of mixtures)
215   //
216 
217   G4Material* Lead = new G4Material("Lead", density = 11.35 * g / cm3, ncomponents = 1);
218   Lead->AddElement(Pb, fractionmass = 1.0);
219 
220   G4Material* LeadSb = new G4Material("LeadSb", density = 11.35 * g / cm3, ncomponents = 2);
221   LeadSb->AddElement(Sb, fractionmass = 4. * perCent);
222   LeadSb->AddElement(Pb, fractionmass = 96. * perCent);
223 
224   G4Material* Aerog = new G4Material("Aerogel", density = 0.200 * g / cm3, ncomponents = 3);
225   Aerog->AddMaterial(SiO2, fractionmass = 62.5 * perCent);
226   Aerog->AddMaterial(H2O, fractionmass = 37.4 * perCent);
227   Aerog->AddElement(C, fractionmass = 0.1 * perCent);
228 
229   //
230   // examples of gas in non STP conditions
231   //
232   G4double temperature, pressure;
233 
234   G4Material* CO2 =
235     new G4Material("CarbonicGas", density = 27. * mg / cm3, ncomponents = 2, kStateGas,
236                    temperature = 325. * kelvin, pressure = 50. * atmosphere);
237   CO2->AddElement(C, natoms = 1);
238   CO2->AddElement(O, natoms = 2);
239 
240   G4Material* steam =
241     new G4Material("WaterSteam", density = 1.0 * mg / cm3, ncomponents = 1, kStateGas,
242                    temperature = 273 * kelvin, pressure = 1 * atmosphere);
243   steam->AddMaterial(H2O, fractionmass = 1.);
244 
245   new G4Material("ArgonGas", z = 18, a = 39.948 * g / mole, density = 1.782 * mg / cm3, kStateGas,
246                  273.15 * kelvin, 1 * atmosphere);
247   //
248   // examples of vacuum
249   //
250 
251   density = universe_mean_density;  // from PhysicalConstants.h
252   pressure = 3.e-18 * pascal;
253   temperature = 2.73 * kelvin;
254   new G4Material("Galactic", z = 1., a = 1.008 * g / mole, density, kStateGas, temperature,
255                  pressure);
256 
257   density = 1.e-5 * g / cm3;
258   pressure = 2.e-2 * bar;
259   temperature = STP_Temperature;  // from PhysicalConstants.h
260   G4Material* beam =
261     new G4Material("Beam", density, ncomponents = 1, kStateGas, temperature, pressure);
262   beam->AddMaterial(Air, fractionmass = 1.);
263 
264   //  G4cout << *(G4Material::GetMaterialTable()) << G4endl;
265 }
266 
267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
268 
269 void DetectorConstruction::ComputeCalorParameters()
270 {
271   // Compute derived parameters of the calorimeter
272   fLayerThickness = 0.;
273   for (G4int iAbs = 1; iAbs <= fNbOfAbsor; iAbs++) {
274     fLayerThickness += fAbsorThickness[iAbs];
275   }
276   fCalorThickness = fNbOfLayers * fLayerThickness;
277   fWorldSizeX = 1.2 * fCalorThickness;
278   fWorldSizeYZ = 1.2 * fCalorSizeYZ;
279 }
280 
281 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
282 
283 G4VPhysicalVolume* DetectorConstruction::Construct()
284 {
285   if (fPhysiWorld) {
286     return fPhysiWorld;
287   }
288   // complete the Calor parameters definition
289   ComputeCalorParameters();
290 
291   //
292   // World
293   //
294   fSolidWorld = new G4Box("World",  // its name
295                           fWorldSizeX / 2, fWorldSizeYZ / 2, fWorldSizeYZ / 2);  // its size
296 
297   fLogicWorld = new G4LogicalVolume(fSolidWorld,  // its solid
298                                     fWorldMaterial,  // its material
299                                     "World");  // its name
300 
301   fPhysiWorld = new G4PVPlacement(0,  // no rotation
302                                   G4ThreeVector(),  // at (0,0,0)
303                                   fLogicWorld,  // its fLogical volume
304                                   "World",  // its name
305                                   0,  // its mother  volume
306                                   false,  // no boolean operation
307                                   0);  // copy number
308   //
309   // Calorimeter
310   //
311 
312   fSolidCalor = new G4Box("Calorimeter", fCalorThickness / 2, fCalorSizeYZ / 2, fCalorSizeYZ / 2);
313 
314   fLogicCalor = new G4LogicalVolume(fSolidCalor, fWorldMaterial, "Calorimeter");
315 
316   fPhysiCalor = new G4PVPlacement(0,  // no rotation
317                                   G4ThreeVector(),  // at (0,0,0)
318                                   fLogicCalor,  // its fLogical volume
319                                   "Calorimeter",  // its name
320                                   fLogicWorld,  // its mother  volume
321                                   false,  // no boolean operation
322                                   0);  // copy number
323 
324   //
325   // Layers
326   //
327 
328   fSolidLayer = new G4Box("Layer", fLayerThickness / 2, fCalorSizeYZ / 2, fCalorSizeYZ / 2);
329 
330   fLogicLayer = new G4LogicalVolume(fSolidLayer, fWorldMaterial, "Layer");
331   if (fNbOfLayers > 1) {
332     fPhysiLayer =
333       new G4PVReplica("Layer", fLogicLayer, fLogicCalor, kXAxis, fNbOfLayers, fLayerThickness);
334   }
335   else {
336     fPhysiLayer =
337       new G4PVPlacement(0, G4ThreeVector(), fLogicLayer, "Layer", fLogicCalor, false, 0);
338   }
339   //
340   // Absorbers
341   //
342 
343   G4double xfront = -0.5 * fLayerThickness;
344   for (G4int k = 1; k <= fNbOfAbsor; ++k) {
345     fSolidAbsor[k] = new G4Box("Absorber",  // its name
346                                fAbsorThickness[k] / 2, fCalorSizeYZ / 2, fCalorSizeYZ / 2);
347 
348     fLogicAbsor[k] = new G4LogicalVolume(fSolidAbsor[k],  // its solid
349                                          fAbsorMaterial[k],  // its material
350                                          fAbsorMaterial[k]->GetName());
351 
352     G4double xcenter = xfront + 0.5 * fAbsorThickness[k];
353     xfront += fAbsorThickness[k];
354     fPhysiAbsor[k] = new G4PVPlacement(0, G4ThreeVector(xcenter, 0., 0.), fLogicAbsor[k],
355                                        fAbsorMaterial[k]->GetName(), fLogicLayer, false,
356                                        k);  // copy number
357   }
358 
359   PrintCalorParameters();
360 
361   // always return the fPhysical World
362   //
363   return fPhysiWorld;
364 }
365 
366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
367 
368 void DetectorConstruction::PrintCalorParameters()
369 {
370   G4cout << "\n-------------------------------------------------------------"
371          << "\n ---> The calorimeter is " << fNbOfLayers << " layers of:";
372   for (G4int i = 1; i <= fNbOfAbsor; ++i) {
373     G4cout << "\n \t" << std::setw(12) << fAbsorMaterial[i]->GetName() << ": " << std::setw(6)
374            << G4BestUnit(fAbsorThickness[i], "Length");
375   }
376   G4cout << "\n-------------------------------------------------------------\n";
377 
378   G4cout << "\n" << fWorldMaterial << G4endl;
379   for (G4int j = 1; j <= fNbOfAbsor; ++j) {
380     G4cout << "\n" << fAbsorMaterial[j] << G4endl;
381   }
382   G4cout << "\n-------------------------------------------------------------\n";
383 }
384 
385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
386 
387 void DetectorConstruction::SetWorldMaterial(const G4String& material)
388 {
389   // search the material by its name
390   G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(material);
391   if (pttoMaterial) {
392     fWorldMaterial = pttoMaterial;
393     if (fLogicWorld) {
394       fLogicWorld->SetMaterial(fWorldMaterial);
395       fLogicLayer->SetMaterial(fWorldMaterial);
396       G4RunManager::GetRunManager()->PhysicsHasBeenModified();
397     }
398   }
399 }
400 
401 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
402 
403 void DetectorConstruction::SetNbOfLayers(G4int ival)
404 {
405   // set the number of Layers
406   //
407   if (ival < 1) {
408     G4cout << "\n --->warning from SetfNbOfLayers: " << ival
409            << " must be at least 1. Command refused" << G4endl;
410     return;
411   }
412   fNbOfLayers = ival;
413 }
414 
415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
416 
417 void DetectorConstruction::SetNbOfAbsor(G4int ival)
418 {
419   // set the number of Absorbers
420   //
421   if (ival < 1 || ival > (kMaxAbsor - 1)) {
422     G4cout << "\n ---> warning from SetfNbOfAbsor: " << ival << " must be at least 1 and and most "
423            << kMaxAbsor - 1 << ". Command refused" << G4endl;
424     return;
425   }
426   fNbOfAbsor = ival;
427 }
428 
429 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
430 
431 void DetectorConstruction::SetAbsorMaterial(G4int ival, const G4String& material)
432 {
433   // search the material by its name
434   //
435   if (ival > fNbOfAbsor || ival <= 0) {
436     G4cout << "\n --->warning from SetAbsorMaterial: absor number " << ival
437            << " out of range. Command refused" << G4endl;
438     return;
439   }
440 
441   G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(material);
442   if (pttoMaterial) {
443     fAbsorMaterial[ival] = pttoMaterial;
444     if (fLogicAbsor[ival]) {
445       fLogicAbsor[ival]->SetMaterial(pttoMaterial);
446       G4RunManager::GetRunManager()->PhysicsHasBeenModified();
447     }
448   }
449 }
450 
451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
452 
453 void DetectorConstruction::SetAbsorThickness(G4int ival, G4double val)
454 {
455   // change Absorber thickness
456   //
457   if (ival > fNbOfAbsor || ival <= 0) {
458     G4cout << "\n --->warning from SetAbsorThickness: absor number " << ival
459            << " out of range. Command refused" << G4endl;
460     return;
461   }
462   if (val <= DBL_MIN) {
463     G4cout << "\n --->warning from SetAbsorThickness: thickness " << val
464            << " out of range. Command refused" << G4endl;
465     return;
466   }
467   fAbsorThickness[ival] = val;
468 }
469 
470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
471 
472 void DetectorConstruction::SetCalorSizeYZ(G4double val)
473 {
474   // change the transverse size
475   //
476   if (val <= DBL_MIN) {
477     G4cout << "\n --->warning from SetfCalorSizeYZ: thickness " << val
478            << " out of range. Command refused" << G4endl;
479     return;
480   }
481   fCalorSizeYZ = val;
482 }
483 
484 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
485 
486 #include "G4AutoDelete.hh"
487 #include "G4GlobalMagFieldMessenger.hh"
488 
489 void DetectorConstruction::ConstructSDandField()
490 {
491   if (fFieldMessenger.Get() == nullptr) {
492     // Create global magnetic field messenger.
493     // Uniform magnetic field is then created automatically if
494     // the field value is not zero.
495     G4ThreeVector fieldValue = G4ThreeVector();
496     G4GlobalMagFieldMessenger* msg = new G4GlobalMagFieldMessenger(fieldValue);
497     // msg->SetVerboseLevel(1);
498     G4AutoDelete::Register(msg);
499     fFieldMessenger.Put(msg);
500   }
501 }
502 
503 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
504