Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /// \file electromagnetic/TestEm2/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConstruction class 28 // 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 32 #include "DetectorConstruction.hh" 33 34 #include "DetectorMessenger.hh" 35 36 #include "G4AutoDelete.hh" 37 #include "G4GeometryManager.hh" 38 #include "G4GlobalMagFieldMessenger.hh" 39 #include "G4LogicalVolume.hh" 40 #include "G4LogicalVolumeStore.hh" 41 #include "G4NistManager.hh" 42 #include "G4PVPlacement.hh" 43 #include "G4PhysicalVolumeStore.hh" 44 #include "G4RunManager.hh" 45 #include "G4SolidStore.hh" 46 #include "G4SystemOfUnits.hh" 47 #include "G4Tubs.hh" 48 #include "G4UnitsTable.hh" 49 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 52 DetectorConstruction::DetectorConstruction() 53 { 54 DefineMaterials(); 55 SetMaterial("G4_PbWO4"); 56 fDetectorMessenger = new DetectorMessenger(this); 57 } 58 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 61 DetectorConstruction::~DetectorConstruction() 62 { 63 delete fDetectorMessenger; 64 } 65 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 68 void DetectorConstruction::DefineMaterials() 69 { 70 // 71 // define few Elements by hand 72 // 73 G4double a, z; 74 75 G4Element* H = new G4Element("Hydrogen", "H", z = 1., a = 1.01 * g / mole); 76 G4Element* O = new G4Element("Oxygen", "O", z = 8., a = 16.00 * g / mole); 77 G4Element* Ge = new G4Element("Germanium", "Ge", z = 32., a = 72.59 * g / mole); 78 G4Element* Bi = new G4Element("Bismuth", "Bi", z = 83., a = 208.98 * g / mole); 79 80 // 81 // define materials 82 // 83 G4double density; 84 G4int ncomponents, natoms; 85 86 // water with ionisation potential 78 eV 87 G4Material* H2O = new G4Material("Water", density = 1.00 * g / cm3, ncomponents = 2); 88 H2O->AddElement(H, natoms = 2); 89 H2O->AddElement(O, natoms = 1); 90 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0 * eV); 91 92 // pure materails 93 new G4Material("liquidArgon", z = 18., a = 39.95 * g / mole, density = 1.390 * g / cm3); 94 new G4Material("Aluminium", z = 13., a = 26.98 * g / mole, density = 2.7 * g / cm3); 95 new G4Material("Iron", z = 26., a = 55.85 * g / mole, density = 7.87 * g / cm3); 96 new G4Material("Copper", z = 29., a = 63.55 * g / mole, density = 8.960 * g / cm3); 97 new G4Material("Tungsten", z = 74., a = 183.84 * g / mole, density = 19.35 * g / cm3); 98 new G4Material("Lead", z = 82., a = 207.19 * g / mole, density = 11.35 * g / cm3); 99 new G4Material("Uranium", z = 92., a = 238.03 * g / mole, density = 18.95 * g / cm3); 100 101 // compound material 102 G4Material* BGO = new G4Material("BGO", density = 7.10 * g / cm3, ncomponents = 3); 103 BGO->AddElement(O, natoms = 12); 104 BGO->AddElement(Ge, natoms = 3); 105 BGO->AddElement(Bi, natoms = 4); 106 107 ////G4cout << *(G4Material::GetMaterialTable()) << G4endl; 108 } 109 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 112 void DetectorConstruction::UpdateParameters() 113 { 114 G4double Radl = fMaterial->GetRadlen(); 115 fDLlength = fDLradl * Radl; 116 fDRlength = fDRradl * Radl; 117 fEcalLength = fNLtot * fDLlength; 118 fEcalRadius = fNRtot * fDRlength; 119 if (fSolidEcal) { 120 fSolidEcal->SetOuterRadius(fEcalRadius); 121 fSolidEcal->SetZHalfLength(0.5 * fEcalLength); 122 } 123 } 124 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 127 G4VPhysicalVolume* DetectorConstruction::Construct() 128 { 129 UpdateParameters(); 130 // 131 // Ecal 132 // 133 if (!fPhysiEcal) { 134 fSolidEcal = new G4Tubs("Ecal", 0., fEcalRadius, 0.5 * fEcalLength, 0., 360 * deg); 135 fLogicEcal = new G4LogicalVolume(fSolidEcal, fMaterial, "Ecal", 0, 0, 0); 136 fPhysiEcal = new G4PVPlacement(0, G4ThreeVector(), fLogicEcal, "Ecal", 0, false, 0); 137 } 138 G4cout << "\n Absorber is " << G4BestUnit(fEcalLength, "Length") << " of " << fMaterial->GetName() 139 << " R= " << fEcalRadius / cm << " cm \n" 140 << G4endl; 141 G4cout << fMaterial << G4endl; 142 // 143 // always return the physical World 144 // 145 return fPhysiEcal; 146 } 147 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 149 150 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 151 { 152 // search the material by its name 153 G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 154 155 if (pttoMaterial && fMaterial != pttoMaterial) { 156 fMaterial = pttoMaterial; 157 if (fLogicEcal) { 158 fLogicEcal->SetMaterial(fMaterial); 159 } 160 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 161 } 162 } 163 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 165 166 void DetectorConstruction::SetLBining(G4ThreeVector Value) 167 { 168 fNLtot = (G4int)Value(0); 169 if (fNLtot > kMaxBin) { 170 G4cout << "\n ---> warning from SetLBining: " << fNLtot << " truncated to " << kMaxBin 171 << G4endl; 172 fNLtot = kMaxBin; 173 } 174 fDLradl = Value(1); 175 UpdateParameters(); 176 } 177 178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 179 180 void DetectorConstruction::SetRBining(G4ThreeVector Value) 181 { 182 fNRtot = (G4int)Value(0); 183 if (fNRtot > kMaxBin) { 184 G4cout << "\n ---> warning from SetRBining: " << fNRtot << " truncated to " << kMaxBin 185 << G4endl; 186 fNRtot = kMaxBin; 187 } 188 fDRradl = Value(1); 189 UpdateParameters(); 190 } 191 192 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 194 void DetectorConstruction::ConstructSDandField() 195 { 196 if (fFieldMessenger.Get() == nullptr) { 197 // Create global magnetic field messenger. 198 // Uniform magnetic field is then created automatically if 199 // the field value is not zero. 200 G4ThreeVector fieldValue = G4ThreeVector(); 201 G4GlobalMagFieldMessenger* msg = new G4GlobalMagFieldMessenger(fieldValue); 202 // msg->SetVerboseLevel(1); 203 G4AutoDelete::Register(msg); 204 fFieldMessenger.Put(msg); 205 } 206 } 207 208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 209