Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /// \file electromagnetic/TestEm1/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConstruction class 28 // 29 // 30 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 33 34 #include "DetectorConstruction.hh" 35 36 #include "DetectorMessenger.hh" 37 38 #include "G4AutoDelete.hh" 39 #include "G4Box.hh" 40 #include "G4GeometryManager.hh" 41 #include "G4GlobalMagFieldMessenger.hh" 42 #include "G4LogicalVolume.hh" 43 #include "G4LogicalVolumeStore.hh" 44 #include "G4Material.hh" 45 #include "G4NistManager.hh" 46 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" 48 #include "G4PhysicalVolumeStore.hh" 49 #include "G4RunManager.hh" 50 #include "G4SolidStore.hh" 51 #include "G4SystemOfUnits.hh" 52 #include "G4UnitsTable.hh" 53 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 56 DetectorConstruction::DetectorConstruction() 57 { 58 fBoxSize = 10 * m; 59 DefineMaterials(); 60 SetMaterial("G4_Al"); 61 fDetectorMessenger = new DetectorMessenger(this); 62 } 63 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 66 DetectorConstruction::~DetectorConstruction() 67 { 68 delete fDetectorMessenger; 69 } 70 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 73 void DetectorConstruction::DefineMaterials() 74 { 75 // 76 // define Elements 77 // 78 G4double z, a; 79 80 G4Element* H = new G4Element("Hydrogen", "H", z = 1., a = 1.01 * g / mole); 81 G4Element* C = new G4Element("Hydrogen", "C", z = 6., a = 12.00 * g / mole); 82 G4Element* N = new G4Element("Nitrogen", "N", z = 7., a = 14.01 * g / mole); 83 G4Element* O = new G4Element("Oxygen", "O", z = 8., a = 16.00 * g / mole); 84 G4Element* Ge = new G4Element("Germanium", "Ge", z = 32., a = 72.59 * g / mole); 85 G4Element* Bi = new G4Element("Bismuth", "Bi", z = 83., a = 208.98 * g / mole); 86 87 // 88 // define materials 89 // 90 G4double density; 91 G4int ncomponents, natoms; 92 G4double fractionmass; 93 94 G4Material* Air = new G4Material("Air", density = 1.290 * mg / cm3, ncomponents = 2); 95 Air->AddElement(N, fractionmass = 70. * perCent); 96 Air->AddElement(O, fractionmass = 30. * perCent); 97 98 G4Material* H2l = new G4Material("H2liquid", density = 70.8 * mg / cm3, ncomponents = 1); 99 H2l->AddElement(H, fractionmass = 1.); 100 101 G4Material* H2O = new G4Material("Water", density = 1.000 * g / cm3, ncomponents = 2); 102 H2O->AddElement(H, natoms = 2); 103 H2O->AddElement(O, natoms = 1); 104 /// H2O->SetChemicalFormula("H_2O"); 105 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0 * eV); 106 107 density = 0.001 * mg / cm3; 108 G4Material* CO2 = new G4Material("CO2", density, ncomponents = 2); 109 CO2->AddElement(C, natoms = 1); 110 CO2->AddElement(O, natoms = 2); 111 112 G4Isotope* d = new G4Isotope("d", 1, 2, 0.0, 0); 113 G4Element* D = new G4Element("Heavy-Hydrogen", "D", ncomponents = 1); 114 D->AddIsotope(d, 1.0); 115 G4Material* D2 = new G4Material("D2_gas", density = 0.036 * mg / cm3, ncomponents = 1); 116 D2->AddElement(D, natoms = 2); 117 118 new G4Material("liquidArgon", z = 18., a = 39.95 * g / mole, density = 1.390 * g / cm3); 119 120 new G4Material("Aluminium", z = 13., a = 26.98 * g / mole, density = 2.700 * g / cm3); 121 122 new G4Material("Silicon", z = 14., a = 28.09 * g / mole, density = 2.330 * g / cm3); 123 124 new G4Material("Chromium", z = 24., a = 51.99 * g / mole, density = 7.140 * g / cm3); 125 126 new G4Material("Germanium", z = 32., a = 72.61 * g / mole, density = 5.323 * g / cm3); 127 128 G4Material* BGO = new G4Material("BGO", density = 7.10 * g / cm3, ncomponents = 3); 129 BGO->AddElement(O, natoms = 12); 130 BGO->AddElement(Ge, natoms = 3); 131 BGO->AddElement(Bi, natoms = 4); 132 133 new G4Material("Iron", z = 26., a = 55.85 * g / mole, density = 7.870 * g / cm3); 134 135 new G4Material("Tungsten", z = 74., a = 183.85 * g / mole, density = 19.30 * g / cm3); 136 137 new G4Material("Gold", z = 79., a = 196.97 * g / mole, density = 19.32 * g / cm3); 138 139 new G4Material("Lead", z = 82., a = 207.19 * g / mole, density = 11.35 * g / cm3); 140 141 new G4Material("Uranium", z = 92., a = 238.03 * g / mole, density = 18.95 * g / cm3); 142 143 G4Material* argonGas = 144 new G4Material("ArgonGas", z = 18, a = 39.948 * g / mole, density = 1.782 * mg / cm3, kStateGas, 145 273.15 * kelvin, 1 * atmosphere); 146 147 G4Material* butane = new G4Material("Isobutane", density = 2.42 * mg / cm3, ncomponents = 2, 148 kStateGas, 273.15 * kelvin, 1 * atmosphere); 149 butane->AddElement(C, natoms = 4); 150 butane->AddElement(H, natoms = 10); 151 152 G4Material* ArButane = new G4Material("ArgonButane", density = 1.835 * mg / cm3, ncomponents = 2, 153 kStateGas, 273.15 * kelvin, 1. * atmosphere); 154 ArButane->AddMaterial(argonGas, fractionmass = 70 * perCent); 155 ArButane->AddMaterial(butane, fractionmass = 30 * perCent); 156 157 // example of vacuum 158 // 159 density = universe_mean_density; // from PhysicalConstants.h 160 new G4Material("Galactic", z = 1., a = 1.008 * g / mole, density, kStateGas, 2.73 * kelvin, 161 3.e-18 * pascal); 162 163 // use Nist 164 // 165 G4NistManager* man = G4NistManager::Instance(); 166 167 G4bool isotopes = false; 168 /// G4Element* O = man->FindOrBuildElement("O" , isotopes); 169 G4Element* Si = man->FindOrBuildElement("Si", isotopes); 170 G4Element* Lu = man->FindOrBuildElement("Lu", isotopes); 171 172 G4Material* LSO = new G4Material("Lu2SiO5", 7.4 * g / cm3, 3); 173 LSO->AddElement(Lu, 2); 174 LSO->AddElement(Si, 1); 175 LSO->AddElement(O, 5); 176 177 /// G4cout << *(G4Material::GetMaterialTable()) << G4endl; 178 } 179 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 182 G4VPhysicalVolume* DetectorConstruction::Construct() 183 { 184 if (fPBox) { 185 return fPBox; 186 } 187 fBox = new G4Box("Container", // its name 188 fBoxSize / 2, fBoxSize / 2, fBoxSize / 2); // its dimensions 189 190 fLBox = new G4LogicalVolume(fBox, // its shape 191 fMaterial, // its material 192 fMaterial->GetName()); // its name 193 194 fPBox = new G4PVPlacement(0, // no rotation 195 G4ThreeVector(), // at (0,0,0) 196 fLBox, // its logical volume 197 fMaterial->GetName(), // its name 198 0, // its mother volume 199 false, // no boolean operation 200 0); // copy number 201 202 PrintParameters(); 203 204 // always return the root volume 205 // 206 return fPBox; 207 } 208 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 211 void DetectorConstruction::PrintParameters() 212 { 213 G4cout << "\n The Box is " << G4BestUnit(fBoxSize, "Length") << " of " << fMaterial->GetName() 214 << G4endl; 215 G4cout << fMaterial << G4endl; 216 } 217 218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 220 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 221 { 222 // search the material by its name 223 G4Material* pttoMaterial = G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 224 225 if (pttoMaterial) { 226 fMaterial = pttoMaterial; 227 if (fLBox) { 228 fLBox->SetMaterial(fMaterial); 229 } 230 } 231 else { 232 G4cout << "\n--> warning from DetectorConstruction::SetMaterial : " << materialChoice 233 << " not found" << G4endl; 234 } 235 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 236 } 237 238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 240 void DetectorConstruction::SetSize(G4double value) 241 { 242 fBoxSize = value; 243 if (fBox) { 244 fBox->SetXHalfLength(fBoxSize / 2); 245 fBox->SetYHalfLength(fBoxSize / 2); 246 fBox->SetZHalfLength(fBoxSize / 2); 247 } 248 } 249 250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 251 252 void DetectorConstruction::ConstructSDandField() 253 { 254 if (fFieldMessenger.Get() == 0) { 255 // Create global magnetic field messenger. 256 // Uniform magnetic field is then created automatically if 257 // the field value is not zero. 258 G4ThreeVector fieldValue = G4ThreeVector(); 259 G4GlobalMagFieldMessenger* msg = new G4GlobalMagFieldMessenger(fieldValue); 260 // msg->SetVerboseLevel(1); 261 G4AutoDelete::Register(msg); 262 fFieldMessenger.Put(msg); 263 } 264 } 265 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267