Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/event/src/G4AdjointPosOnPhysVolGenerator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4AdjointPosOnPhysVolGenerator class implementation
 27 //
 28 // Author: L. Desorgher, SpaceIT GmbH - 01.06.2006
 29 // Contract: ESA contract 21435/08/NL/AT
 30 // Customer: ESA/ESTEC
 31 // --------------------------------------------------------------------
 32 
 33 #include "G4AdjointPosOnPhysVolGenerator.hh"
 34 #include "G4VSolid.hh"
 35 #include "G4VoxelLimits.hh"
 36 #include "G4AffineTransform.hh"
 37 #include "Randomize.hh"
 38 #include "G4VPhysicalVolume.hh"
 39 #include "G4PhysicalVolumeStore.hh"
 40 #include "G4LogicalVolumeStore.hh"
 41 
 42 G4ThreadLocal G4AdjointPosOnPhysVolGenerator*
 43 G4AdjointPosOnPhysVolGenerator::theInstance = nullptr;
 44 
 45 // --------------------------------------------------------------------
 46 //
 47 G4AdjointPosOnPhysVolGenerator* G4AdjointPosOnPhysVolGenerator::GetInstance()
 48 {
 49   if(theInstance == nullptr)
 50   {
 51     theInstance = new G4AdjointPosOnPhysVolGenerator;
 52   }
 53   return theInstance;
 54 }
 55 
 56 // --------------------------------------------------------------------
 57 //
 58 G4VPhysicalVolume*
 59 G4AdjointPosOnPhysVolGenerator::DefinePhysicalVolume(const G4String& aName)
 60 {
 61   thePhysicalVolume = nullptr;
 62   theSolid = nullptr;
 63   G4PhysicalVolumeStore* thePhysVolStore = G4PhysicalVolumeStore::GetInstance();
 64   for ( unsigned int i=0; i< thePhysVolStore->size(); ++i )
 65   {
 66     G4String vol_name =(*thePhysVolStore)[i]->GetName();
 67     if (vol_name.empty())
 68     {
 69       vol_name = (*thePhysVolStore)[i]->GetLogicalVolume()->GetName();
 70     }
 71     if (vol_name == aName)
 72     {
 73       thePhysicalVolume = (*thePhysVolStore)[i];
 74     }
 75   }
 76   if (thePhysicalVolume != nullptr)
 77   {
 78     theSolid = thePhysicalVolume->GetLogicalVolume()->GetSolid();
 79     ComputeTransformationFromPhysVolToWorld();
 80   }
 81   else
 82   {
 83     G4cout << "The physical volume with name " << aName
 84            << " does not exist!!" << G4endl;
 85     G4cout << "Before generating a source on an external surface " << G4endl
 86            << "of a volume you should select another physical volume."
 87            << G4endl; 
 88   }
 89   return thePhysicalVolume;
 90 }
 91 
 92 // --------------------------------------------------------------------
 93 //
 94 void
 95 G4AdjointPosOnPhysVolGenerator::DefinePhysicalVolume1(const G4String& aName)
 96 {
 97   thePhysicalVolume = DefinePhysicalVolume(aName);
 98 }
 99 
100 // --------------------------------------------------------------------
101 //
102 G4double G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface()
103 {
104   return ComputeAreaOfExtSurface(theSolid); 
105 }
106 
107 // --------------------------------------------------------------------
108 //
109 G4double G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface(G4int NStats)
110 {
111   return ComputeAreaOfExtSurface(theSolid,NStats); 
112 }
113 
114 // --------------------------------------------------------------------
115 //
116 G4double G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface(G4double eps)
117 {
118   return ComputeAreaOfExtSurface(theSolid,eps); 
119 }
120 
121 // --------------------------------------------------------------------
122 //
123 G4double
124 G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface(G4VSolid* aSolid)
125 {
126   return ComputeAreaOfExtSurface(aSolid,1.e-3); 
127 }
128 
129 // --------------------------------------------------------------------
130 //
131 G4double
132 G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface(G4VSolid* aSolid,
133                                                         G4int NStats)
134 {
135   if (ModelOfSurfaceSource == "OnSolid")
136   {
137     if (UseSphere)
138     {
139       return ComputeAreaOfExtSurfaceStartingFromSphere(aSolid,NStats);        
140     }
141     
142     return ComputeAreaOfExtSurfaceStartingFromBox(aSolid,NStats);
143   }
144   
145   G4ThreeVector p, dir;
146   if (ModelOfSurfaceSource == "ExternalSphere")
147   {
148     return GenerateAPositionOnASphereBoundary(aSolid, p,dir);
149   }
150   
151   return GenerateAPositionOnABoxBoundary(aSolid, p,dir);
152 }
153 
154 // --------------------------------------------------------------------
155 //
156 G4double
157 G4AdjointPosOnPhysVolGenerator::ComputeAreaOfExtSurface(G4VSolid* aSolid,
158                                                         G4double eps)
159 {
160   auto  Nstats = G4int(1./(eps*eps));
161   return ComputeAreaOfExtSurface(aSolid,Nstats);
162 }
163 
164 // --------------------------------------------------------------------
165 //
166 void G4AdjointPosOnPhysVolGenerator::
167 GenerateAPositionOnTheExtSurfaceOfASolid(G4VSolid* aSolid, G4ThreeVector& p,
168                                          G4ThreeVector& direction)
169 {
170   if (ModelOfSurfaceSource == "OnSolid")
171   {
172     GenerateAPositionOnASolidBoundary(aSolid, p,direction);
173     return;
174   }
175   if (ModelOfSurfaceSource == "ExternalSphere")
176   {
177     GenerateAPositionOnASphereBoundary(aSolid, p, direction);
178     return;
179   }        
180   GenerateAPositionOnABoxBoundary(aSolid, p, direction);
181   return;
182 }
183 
184 // --------------------------------------------------------------------
185 //
186 void G4AdjointPosOnPhysVolGenerator::
187 GenerateAPositionOnTheExtSurfaceOfTheSolid(G4ThreeVector& p,
188                                            G4ThreeVector& direction)
189 {
190   GenerateAPositionOnTheExtSurfaceOfASolid(theSolid,p,direction);
191 }
192 
193 // --------------------------------------------------------------------
194 //
195 G4double G4AdjointPosOnPhysVolGenerator::
196 ComputeAreaOfExtSurfaceStartingFromBox(G4VSolid* aSolid, G4int Nstat)
197 {
198   if ( Nstat <= 0 ) { return 0.; }
199   G4double area=1.;
200   G4int i=0, j=0;
201   while (i<Nstat)
202   {
203     G4ThreeVector p, direction;
204     area = GenerateAPositionOnABoxBoundary( aSolid,p, direction);
205     G4double dist_to_in = aSolid->DistanceToIn(p,direction);
206     if (dist_to_in<kInfinity/2.) { ++i; }
207     ++j;
208   }
209   area=area*G4double(i)/G4double(j);
210   return area;
211 }
212 
213 // --------------------------------------------------------------------
214 //
215 G4double G4AdjointPosOnPhysVolGenerator::
216 ComputeAreaOfExtSurfaceStartingFromSphere(G4VSolid* aSolid, G4int Nstat)
217 {
218   if ( Nstat <= 0 ) { return 0.; }
219   G4double area=1.;
220   G4int i=0, j=0;
221   while (i<Nstat)
222   {
223     G4ThreeVector p, direction;
224     area = GenerateAPositionOnASphereBoundary( aSolid,p, direction);
225     G4double dist_to_in = aSolid->DistanceToIn(p,direction);
226     if (dist_to_in<kInfinity/2.)  { ++i; }
227     ++j;
228   }
229   area=area*G4double(i)/G4double(j);
230   return area;
231 }
232 
233 // --------------------------------------------------------------------
234 //
235 void G4AdjointPosOnPhysVolGenerator::
236 GenerateAPositionOnASolidBoundary(G4VSolid* aSolid, G4ThreeVector& p,
237                                   G4ThreeVector& direction)
238 { 
239   G4bool find_pos = false;
240   while (!find_pos)
241   {
242     if (UseSphere)
243     {
244       GenerateAPositionOnASphereBoundary( aSolid,p, direction );
245     }
246     else
247     {
248       GenerateAPositionOnABoxBoundary( aSolid,p, direction);
249     }
250     G4double dist_to_in = aSolid->DistanceToIn(p,direction);
251     if (dist_to_in<kInfinity/2.)
252     {
253       find_pos = true;
254       p += 0.999999*direction*dist_to_in;
255     }
256   }
257 }
258 
259 // --------------------------------------------------------------------
260 //
261 G4double G4AdjointPosOnPhysVolGenerator::
262 GenerateAPositionOnASphereBoundary(G4VSolid* aSolid, G4ThreeVector& p,
263                                    G4ThreeVector& direction)
264 {
265   G4double minX,maxX,minY,maxY,minZ,maxZ;
266 
267   // values needed for CalculateExtent signature
268 
269   G4VoxelLimits limit;                // Unlimited
270   G4AffineTransform origin;
271 
272   // min max extents of pSolid along X,Y,Z
273 
274   aSolid->CalculateExtent(kXAxis,limit,origin,minX,maxX);
275   aSolid->CalculateExtent(kYAxis,limit,origin,minY,maxY);
276   aSolid->CalculateExtent(kZAxis,limit,origin,minZ,maxZ);
277 
278   G4ThreeVector center = G4ThreeVector((minX+maxX)/2.,
279                                        (minY+maxY)/2.,
280                                        (minZ+maxZ)/2.);
281   G4double dX=(maxX-minX)/2.;
282   G4double dY=(maxY-minY)/2.;
283   G4double dZ=(maxZ-minZ)/2.;
284   G4double scale=1.01;
285   G4double r=scale*std::sqrt(dX*dX+dY*dY+dZ*dZ);
286 
287   G4double cos_th2 = G4UniformRand();
288   G4double theta = std::acos(std::sqrt(cos_th2));
289   G4double phi=G4UniformRand()*CLHEP::twopi;
290   direction.setRThetaPhi(1.,theta,phi);
291   direction=-direction;
292   G4double cos_th = (1.-2.*G4UniformRand());
293   theta = std::acos(cos_th);
294   if (G4UniformRand() < 0.5)  { theta=CLHEP::pi-theta; }
295   phi=G4UniformRand()*CLHEP::twopi;
296   p.setRThetaPhi(r,theta,phi);
297   p+=center;
298   direction.rotateY(theta);
299   direction.rotateZ(phi);
300   return 4.*CLHEP::pi*r*r;;
301 }
302 
303 // --------------------------------------------------------------------
304 //
305 G4double G4AdjointPosOnPhysVolGenerator::
306 GenerateAPositionOnABoxBoundary(G4VSolid* aSolid, G4ThreeVector& p,
307                                 G4ThreeVector& direction)
308 {
309 
310   G4double ran_var,px,py,pz,minX,maxX,minY,maxY,minZ,maxZ;
311   
312   // values needed for CalculateExtent signature
313 
314   G4VoxelLimits limit;                // Unlimited
315   G4AffineTransform origin;
316 
317   // min max extents of pSolid along X,Y,Z
318 
319   aSolid->CalculateExtent(kXAxis,limit,origin,minX,maxX);
320   aSolid->CalculateExtent(kYAxis,limit,origin,minY,maxY);
321   aSolid->CalculateExtent(kZAxis,limit,origin,minZ,maxZ);
322   
323   G4double scale=.1;
324   minX-=scale*std::abs(minX);
325   minY-=scale*std::abs(minY);
326   minZ-=scale*std::abs(minZ);
327   maxX+=scale*std::abs(maxX);
328   maxY+=scale*std::abs(maxY);
329   maxZ+=scale*std::abs(maxZ);
330   
331   G4double dX=(maxX-minX);
332   G4double dY=(maxY-minY);
333   G4double dZ=(maxZ-minZ);
334 
335   G4double XY_prob=2.*dX*dY;
336   G4double YZ_prob=2.*dY*dZ;
337   G4double ZX_prob=2.*dZ*dX;
338   G4double area=XY_prob+YZ_prob+ZX_prob;
339   XY_prob/=area;
340   YZ_prob/=area;
341   ZX_prob/=area;
342   
343   ran_var=G4UniformRand();
344   G4double cos_th2 = G4UniformRand();
345   G4double sth = std::sqrt(1.-cos_th2);
346   G4double cth = std::sqrt(cos_th2);
347   G4double phi = G4UniformRand()*CLHEP::twopi;
348   G4double dirX = sth*std::cos(phi);
349   G4double dirY = sth*std::sin(phi);
350   G4double dirZ = cth;
351   if (ran_var <=XY_prob)  // on the XY faces
352   {
353     G4double ran_var1=ran_var/XY_prob;
354     G4double ranX=ran_var1;
355     if (ran_var1<=0.5)
356     {
357       pz=minZ;
358       direction=G4ThreeVector(dirX,dirY,dirZ);
359       ranX=ran_var1*2.;
360     } 
361     else
362     {
363       pz=maxZ;
364       direction=-G4ThreeVector(dirX,dirY,dirZ);
365       ranX=(ran_var1-0.5)*2.;
366     }
367     G4double ranY=G4UniformRand();
368     px=minX+(maxX-minX)*ranX;
369     py=minY+(maxY-minY)*ranY;
370   }
371   else if (ran_var <=(XY_prob+YZ_prob))  // on the YZ faces
372   {
373     G4double ran_var1=(ran_var-XY_prob)/YZ_prob;
374     G4double ranY=ran_var1;
375     if (ran_var1<=0.5)
376     {
377       px=minX;
378       direction=G4ThreeVector(dirZ,dirX,dirY);
379       ranY=ran_var1*2.;
380     } 
381     else
382     {
383       px=maxX;
384       direction=-G4ThreeVector(dirZ,dirX,dirY);
385       ranY=(ran_var1-0.5)*2.;
386     }
387     G4double ranZ=G4UniformRand();
388     py=minY+(maxY-minY)*ranY;
389     pz=minZ+(maxZ-minZ)*ranZ;
390   }
391   else  // on the ZX faces
392   {
393     G4double ran_var1=(ran_var-XY_prob-YZ_prob)/ZX_prob;
394     G4double ranZ=ran_var1;
395     if (ran_var1<=0.5)
396     {
397       py=minY;
398       direction=G4ThreeVector(dirY,dirZ,dirX);
399       ranZ=ran_var1*2.;
400     } 
401     else
402     {
403       py=maxY;
404       direction=-G4ThreeVector(dirY,dirZ,dirX);
405       ranZ=(ran_var1-0.5)*2.;
406     }
407     G4double ranX=G4UniformRand();
408     px=minX+(maxX-minX)*ranX;
409     pz=minZ+(maxZ-minZ)*ranZ;
410   }
411   
412   p=G4ThreeVector(px,py,pz);
413   return area;
414 }
415 
416 // --------------------------------------------------------------------
417 //
418 void G4AdjointPosOnPhysVolGenerator::
419 GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p,
420                                                     G4ThreeVector& direction)
421 {
422   if (thePhysicalVolume == nullptr)
423   {
424     G4cout << "Before generating a source on an external surface" << G4endl
425            << "of volume you should select a physical volume" << G4endl; 
426     return;
427   }
428   GenerateAPositionOnTheExtSurfaceOfTheSolid(p,direction);
429   p = theTransformationFromPhysVolToWorld.TransformPoint(p);
430   direction = theTransformationFromPhysVolToWorld.TransformAxis(direction);
431 }
432 
433 // --------------------------------------------------------------------
434 //
435 void G4AdjointPosOnPhysVolGenerator::
436 GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p,
437                                                     G4ThreeVector& direction,
438                                                     G4double& costh_to_normal)
439 {
440   GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(p, direction);
441   costh_to_normal = CosThDirComparedToNormal;
442 }
443 
444 // --------------------------------------------------------------------
445 //
446 void G4AdjointPosOnPhysVolGenerator::ComputeTransformationFromPhysVolToWorld()
447 {
448   G4VPhysicalVolume* daughter = thePhysicalVolume;
449   G4LogicalVolume* mother = thePhysicalVolume->GetMotherLogical();
450   theTransformationFromPhysVolToWorld = G4AffineTransform();
451   G4PhysicalVolumeStore* thePhysVolStore = G4PhysicalVolumeStore::GetInstance();
452   while (mother != nullptr)
453   {
454     theTransformationFromPhysVolToWorld *=
455       G4AffineTransform(daughter->GetFrameRotation(),
456                         daughter->GetObjectTranslation());
457     for ( unsigned int i=0; i<thePhysVolStore->size(); ++i )
458     {
459       if ((*thePhysVolStore)[i]->GetLogicalVolume() == mother)
460       {
461         daughter = (*thePhysVolStore)[i];
462         mother = daughter->GetMotherLogical();
463         break;
464       }
465     }
466   }
467 }
468