Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4AdjointPosOnPhysVolGenerator 27 // 28 // Class description: 29 // 30 // This class is responsible for the generation of primary adjoint particles 31 // on the external surface of a user selected volume. 32 // The particles are generated uniformly on the surface with the angular 33 // distribution set to a cosine law relative to normal of the surface. 34 // It is equivalent to the flux going in from the surface if an isotropic flux 35 // is considered outside. 36 // It uses ray tracking technique and can be applied to all kind of convex 37 // volumes. Using the ray tracking technique the area of the external surface 38 // is also computed. The area is needed to fix the weight of the primary 39 // adjoint particle. 40 // At the time of the development of this class, generation of points on 41 // volume surface and computation of surface was limited in Geant4, therefore 42 // the general ray tracking technique was adopted. The direct method in 43 // G4VSolid could be now (2009) used instead. 44 45 // Author: L. Desorgher, SpaceIT GmbH - 01.06.2006 46 // Contract: ESA contract 21435/08/NL/AT 47 // Customer: ESA/ESTEC 48 // -------------------------------------------------------------------- 49 #ifndef G4AdjointPosOnPhysVolGenerator_hh 50 #define G4AdjointPosOnPhysVolGenerator_hh 1 51 52 #include "G4VPhysicalVolume.hh" 53 #include "G4AffineTransform.hh" 54 #include "G4ThreeVector.hh" 55 56 class G4VSolid; 57 58 class G4AdjointPosOnPhysVolGenerator 59 { 60 //--------- 61 public: 62 //--------- 63 64 static G4AdjointPosOnPhysVolGenerator* GetInstance(); 65 66 G4VPhysicalVolume* DefinePhysicalVolume(const G4String& aName); 67 void DefinePhysicalVolume1(const G4String& aName); 68 G4double ComputeAreaOfExtSurface(); 69 G4double ComputeAreaOfExtSurface(G4int NStat); 70 G4double ComputeAreaOfExtSurface(G4double epsilon); 71 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid); 72 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4int NStat); 73 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4double epsilon); 74 75 void GenerateAPositionOnTheExtSurfaceOfASolid(G4VSolid* aSolid, 76 G4ThreeVector& p, 77 G4ThreeVector& direction); 78 void GenerateAPositionOnTheExtSurfaceOfTheSolid(G4ThreeVector& p, 79 G4ThreeVector& direction); 80 void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, 81 G4ThreeVector& direction); 82 void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, 83 G4ThreeVector& direction, 84 G4double& costh_to_normal); 85 86 inline void SetSolid(G4VSolid* aSolid) 87 { theSolid=aSolid; } 88 inline G4double GetAreaOfExtSurfaceOfThePhysicalVolume() 89 { return AreaOfExtSurfaceOfThePhysicalVolume; } 90 inline G4double GetCosThDirComparedToNormal() 91 { return CosThDirComparedToNormal; } 92 93 //--------- 94 private: // private methods 95 //--------- 96 G4AdjointPosOnPhysVolGenerator() = default; 97 ~G4AdjointPosOnPhysVolGenerator() = default; 98 G4double ComputeAreaOfExtSurfaceStartingFromSphere(G4VSolid* aSolid, 99 G4int NStat); 100 G4double ComputeAreaOfExtSurfaceStartingFromBox(G4VSolid* aSolid, 101 G4int NStat); 102 void GenerateAPositionOnASolidBoundary(G4VSolid* aSolid, 103 G4ThreeVector& p, 104 G4ThreeVector& direction); 105 G4double GenerateAPositionOnASphereBoundary(G4VSolid* aSolid, 106 G4ThreeVector& p, 107 G4ThreeVector& direction); 108 G4double GenerateAPositionOnABoxBoundary(G4VSolid* aSolid, 109 G4ThreeVector& p, 110 G4ThreeVector& direction); 111 void ComputeTransformationFromPhysVolToWorld(); 112 113 //--------- 114 private: // attributes 115 //--------- 116 117 static G4ThreadLocal G4AdjointPosOnPhysVolGenerator* theInstance; 118 G4VSolid* theSolid = nullptr; 119 G4VPhysicalVolume* thePhysicalVolume = nullptr; 120 121 G4bool UseSphere{true}; 122 G4String ModelOfSurfaceSource{"OnSolid"}; 123 G4AffineTransform theTransformationFromPhysVolToWorld; 124 G4double AreaOfExtSurfaceOfThePhysicalVolume{0.}; 125 G4double CosThDirComparedToNormal{0.}; 126 }; 127 128 #endif 129