Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/stopping/src/G4MuMinusCapturePrecompound.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/stopping/src/G4MuMinusCapturePrecompound.cc (Version 11.3.0) and /processes/hadronic/stopping/src/G4MuMinusCapturePrecompound.cc (Version 9.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id$
 26 //                                                 27 //
 27 //--------------------------------------------     28 //-----------------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file 
 30 //                                                 31 //
 31 // File name:  G4MuMinusCapturePrecompound         32 // File name:  G4MuMinusCapturePrecompound
 32 //                                                 33 //
 33 // Author:        V.Ivanchenko (Vladimir.Ivant     34 // Author:        V.Ivanchenko (Vladimir.Ivantchenko@cern.ch)
 34 //                                                 35 // 
 35 // Creation date: 22 April 2012 on base of G4M     36 // Creation date: 22 April 2012 on base of G4MuMinusCaptureCascade
 36 //                                                 37 //
 37 //                                                 38 //
 38 //--------------------------------------------     39 //-----------------------------------------------------------------------------
 39 //                                                 40 //
 40 // Modifications:                                  41 // Modifications: 
 41 //                                                 42 //
 42 //--------------------------------------------     43 //-----------------------------------------------------------------------------
 43                                                    44 
 44 #include "G4MuMinusCapturePrecompound.hh"          45 #include "G4MuMinusCapturePrecompound.hh"
 45 #include "Randomize.hh"                            46 #include "Randomize.hh" 
 46 #include "G4RandomDirection.hh"                    47 #include "G4RandomDirection.hh"
 47 #include "G4PhysicalConstants.hh"                  48 #include "G4PhysicalConstants.hh"
 48 #include "G4SystemOfUnits.hh"                      49 #include "G4SystemOfUnits.hh"
 49 #include "G4MuonMinus.hh"                          50 #include "G4MuonMinus.hh"
 50 #include "G4NeutrinoMu.hh"                         51 #include "G4NeutrinoMu.hh"
 51 #include "G4Neutron.hh"                            52 #include "G4Neutron.hh"
 52 #include "G4Proton.hh"                             53 #include "G4Proton.hh"
 53 #include "G4Triton.hh"                             54 #include "G4Triton.hh"
 54 #include "G4LorentzVector.hh"                      55 #include "G4LorentzVector.hh"
 55 #include "G4ParticleDefinition.hh"                 56 #include "G4ParticleDefinition.hh"
 56 #include "G4NucleiProperties.hh"                   57 #include "G4NucleiProperties.hh"
 57 #include "G4VPreCompoundModel.hh"                  58 #include "G4VPreCompoundModel.hh"
 58 #include "G4PreCompoundModel.hh"                   59 #include "G4PreCompoundModel.hh"
 59 #include "G4HadronicInteractionRegistry.hh"        60 #include "G4HadronicInteractionRegistry.hh"
 60                                                    61 
 61 //....oooOO0OOooo........oooOO0OOooo........oo     62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 62                                                    63 
 63 G4MuMinusCapturePrecompound::G4MuMinusCaptureP     64 G4MuMinusCapturePrecompound::G4MuMinusCapturePrecompound(
 64     G4VPreCompoundModel* ptr)                      65     G4VPreCompoundModel* ptr)
 65   : G4HadronicInteraction("muMinusNuclearCaptu     66   : G4HadronicInteraction("muMinusNuclearCapture")
 66 {                                                  67 { 
 67   fMuMass = G4MuonMinus::MuonMinus()->GetPDGMa     68   fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass(); 
 68   fProton = G4Proton::Proton();                    69   fProton = G4Proton::Proton();
 69   fNeutron = G4Neutron::Neutron();                 70   fNeutron = G4Neutron::Neutron();
 70   fThreshold = 10*MeV;                             71   fThreshold = 10*MeV;
 71   fTime = 0.0;                                 << 
 72   fPreCompound = ptr;                              72   fPreCompound = ptr;
 73   if(!ptr) {                                       73   if(!ptr) { 
 74     G4HadronicInteraction* p =                     74     G4HadronicInteraction* p =
 75       G4HadronicInteractionRegistry::Instance(     75       G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
 76     ptr = static_cast<G4VPreCompoundModel*>(p)     76     ptr = static_cast<G4VPreCompoundModel*>(p); 
 77     fPreCompound = ptr;                            77     fPreCompound = ptr;
 78     if(!ptr) { fPreCompound = new G4PreCompoun     78     if(!ptr) { fPreCompound = new G4PreCompoundModel(); }
 79   }                                                79   }
 80 }                                                  80 }
 81                                                    81 
 82 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 83                                                    83 
 84 G4MuMinusCapturePrecompound::~G4MuMinusCapture     84 G4MuMinusCapturePrecompound::~G4MuMinusCapturePrecompound()
 85 {                                                  85 {
 86   result.Clear();                                  86   result.Clear();
 87 }                                                  87 }
 88                                                    88 
 89 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 90                                                    90 
 91 G4HadFinalState*                                   91 G4HadFinalState* 
 92 G4MuMinusCapturePrecompound::ApplyYourself(con     92 G4MuMinusCapturePrecompound::ApplyYourself(const G4HadProjectile& projectile, 
 93              G4Nucleus& targetNucleus)             93              G4Nucleus& targetNucleus)
 94 {                                                  94 {
 95   result.Clear();                                  95   result.Clear();
 96   result.SetStatusChange(stopAndKill);             96   result.SetStatusChange(stopAndKill);
 97   fTime = projectile.GetGlobalTime();              97   fTime = projectile.GetGlobalTime();
 98   G4double time0 = fTime;                          98   G4double time0 = fTime;
 99                                                    99 
100   G4double muBindingEnergy = projectile.GetBou    100   G4double muBindingEnergy = projectile.GetBoundEnergy();
101                                                   101 
102   G4int Z = targetNucleus.GetZ_asInt();           102   G4int Z = targetNucleus.GetZ_asInt(); 
103   G4int A = targetNucleus.GetA_asInt();           103   G4int A = targetNucleus.GetA_asInt();
104   G4double massA = G4NucleiProperties::GetNucl    104   G4double massA = G4NucleiProperties::GetNuclearMass(A, Z);
105                                                   105 
106   /*                                              106   /*
107   G4cout << "G4MuMinusCapturePrecompound::Appl    107   G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Emu= "
108    << muBindingEnergy << G4endl;                  108    << muBindingEnergy << G4endl;
109   */                                              109   */
110   // Energy on K-shell                            110   // Energy on K-shell
111   G4double muEnergy = fMuMass + muBindingEnerg    111   G4double muEnergy = fMuMass + muBindingEnergy;
112   G4double muMom =std::sqrt(muBindingEnergy*(m << 112   G4double muMom = std::sqrt(muBindingEnergy*(muBindingEnergy + 2.0*fMuMass));
113   G4double availableEnergy = massA + fMuMass -    113   G4double availableEnergy = massA + fMuMass - muBindingEnergy;
114   G4double residualMass = G4NucleiProperties::    114   G4double residualMass = G4NucleiProperties::GetNuclearMass(A, Z - 1);
115                                                   115 
116   G4ThreeVector vmu = muMom*G4RandomDirection(    116   G4ThreeVector vmu = muMom*G4RandomDirection();
117   G4LorentzVector aMuMom(vmu, muEnergy);          117   G4LorentzVector aMuMom(vmu, muEnergy);
118                                                   118 
119   const G4double nenergy = keV;                << 
120                                                << 
121   // p or 3He as a target                         119   // p or 3He as a target 
122   // two body reaction mu- + A(Z,A) -> nuMu +     120   // two body reaction mu- + A(Z,A) -> nuMu + A(Z-1,A)
123   if((1 == Z && 1 == A) || (2 == Z && 3 == A))    121   if((1 == Z && 1 == A) || (2 == Z && 3 == A)) {
124                                                   122 
125     const G4ParticleDefinition* pd = 0;        << 123     G4ParticleDefinition* pd = 0;
126     if(1 == Z) { pd = fNeutron; }                 124     if(1 == Z) { pd = fNeutron; }
127     else { pd = G4Triton::Triton(); }             125     else { pd = G4Triton::Triton(); }
128                                                   126 
129     //                                            127     //
130     //  Computation in assumption of CM reacti    128     //  Computation in assumption of CM reaction
131     //                                            129     //  
132     G4double e = 0.5*(availableEnergy -           130     G4double e = 0.5*(availableEnergy - 
133           residualMass*residualMass/availableE    131           residualMass*residualMass/availableEnergy);
134                                                   132 
135     G4ThreeVector nudir = G4RandomDirection();    133     G4ThreeVector nudir = G4RandomDirection();
136     AddNewParticle(G4NeutrinoMu::NeutrinoMu(),    134     AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
137     nudir *= -1.0;                                135     nudir *= -1.0;
138     AddNewParticle(pd, nudir, availableEnergy     136     AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
139                                                   137 
140   // d or 4He as a target                      << 
141   // three body reaction mu- + A(Z,A) -> nuMu  << 
142   // extra neutron produced at rest            << 
143   } else if((1 == Z && 2 == A) || (2 == Z && 4 << 
144                                                << 
145     const G4ParticleDefinition* pd = 0;        << 
146     if(1 == Z) { pd = fNeutron; }              << 
147     else { pd = G4Triton::Triton(); }          << 
148                                                << 
149     availableEnergy -= neutron_mass_c2 - nener << 
150     residualMass = pd->GetPDGMass();           << 
151                                                << 
152     //                                         << 
153     //  Computation in assumption of CM reacti << 
154     //                                         << 
155     G4double e = 0.5*(availableEnergy -        << 
156           residualMass*residualMass/availableE << 
157                                                << 
158     G4ThreeVector nudir = G4RandomDirection(); << 
159     AddNewParticle(G4NeutrinoMu::NeutrinoMu(), << 
160     nudir *= -1.0;                             << 
161     AddNewParticle(pd, nudir, availableEnergy  << 
162                                                << 
163     // extra low-energy neutron                << 
164     nudir = G4RandomDirection();               << 
165     AddNewParticle(fNeutron, nudir, nenergy);  << 
166                                                   138 
167   } else {                                        139   } else {
168     // sample mu- + p -> nuMu + n reaction in     140     // sample mu- + p -> nuMu + n reaction in CM of muonic atom
169                                                   141 
                                                   >> 142     // muon
                                                   >> 143 //    
                                                   >> 144 // NOTE by K.Genser and J.Yarba:
                                                   >> 145 // The code below isn't working because emu always turns smaller than fMuMass
                                                   >> 146 // For this reason the sqrt is producing a NaN    
                                                   >> 147 //
                                                   >> 148 //    G4double emu = (availableEnergy*availableEnergy - massA*massA
                                                   >> 149 //        + fMuMass*fMuMass)/(2*availableEnergy);
                                                   >> 150 //    G4ThreeVector mudir = G4RandomDirection();
                                                   >> 151 //    G4LorentzVector momMuon(std::sqrt(emu*emu - fMuMass*fMuMass)*mudir, emu);
                                                   >> 152 
170     // nucleus                                    153     // nucleus
171     G4LorentzVector momInitial(0.0,0.0,0.0,ava    154     G4LorentzVector momInitial(0.0,0.0,0.0,availableEnergy);
172     G4LorentzVector momResidual, momNu;           155     G4LorentzVector momResidual, momNu;
173                                                   156 
174     // pick random proton inside nucleus          157     // pick random proton inside nucleus 
175     G4double eEx;                                 158     G4double eEx;
176     fNucleus.Init(A, Z);                          159     fNucleus.Init(A, Z);
177     const std::vector<G4Nucleon>& nucleons= fN    160     const std::vector<G4Nucleon>& nucleons= fNucleus.GetNucleons();
178     const G4ParticleDefinition* pDef;          << 161     G4ParticleDefinition* pDef;
179                                                   162 
                                                   >> 163     G4int nneutrons = 1;
180     G4int reentryCount = 0;                       164     G4int reentryCount = 0;
181                                                   165   
182     do {                                          166     do {
183       ++reentryCount;                             167       ++reentryCount;
184       G4int index = 0;                            168       G4int index = 0;
185       do {                                        169       do {
186   index=G4int(A*G4UniformRand());                 170   index=G4int(A*G4UniformRand());
187   pDef = nucleons[index].GetDefinition();         171   pDef = nucleons[index].GetDefinition();
188       } while(pDef != fProton);                   172       } while(pDef != fProton);
189       G4LorentzVector momP = nucleons[index].G    173       G4LorentzVector momP = nucleons[index].Get4Momentum();
190                                                   174 
191       // Get CMS kinematics                       175       // Get CMS kinematics
192       G4LorentzVector theCMS = momP + aMuMom;     176       G4LorentzVector theCMS = momP + aMuMom;
193       G4ThreeVector bst = theCMS.boostVector()    177       G4ThreeVector bst = theCMS.boostVector();
194                                                   178 
195       G4double Ecms = theCMS.mag();               179       G4double Ecms = theCMS.mag();
196       G4double Enu  = 0.5*(Ecms - neutron_mass    180       G4double Enu  = 0.5*(Ecms - neutron_mass_c2*neutron_mass_c2/Ecms);
197       eEx = 0.0;                                  181       eEx = 0.0;
198                                                   182 
199       if(Enu > 0.0) {                             183       if(Enu > 0.0) {
200   // make the nu, and transform to lab;           184   // make the nu, and transform to lab;
201   momNu.set(Enu*G4RandomDirection(), Enu);        185   momNu.set(Enu*G4RandomDirection(), Enu);
202                                                   186 
203   // nu in lab.                                   187   // nu in lab.
204   momNu.boost(bst);                               188   momNu.boost(bst);
205   momResidual = momInitial - momNu;               189   momResidual = momInitial - momNu;
206   eEx = momResidual.mag() - residualMass;         190   eEx = momResidual.mag() - residualMass;
207         if(eEx < 0.0 && eEx + nenergy >= 0.0)  << 191 
208           momResidual.set(0.0, 0.0, 0.0, resid << 192   // release neutron
209           eEx = 0.0;                           << 193         
                                                   >> 194         if(eEx > 0.0) {
                                                   >> 195     G4double eth = residualMass - massA + fThreshold + 2*neutron_mass_c2;
                                                   >> 196     if(Ecms - Enu > eth) {
                                                   >> 197       theCMS -= momNu;
                                                   >> 198       G4double ekin =  theCMS.e() - eth;
                                                   >> 199       G4ThreeVector dir = theCMS.vect().unit();
                                                   >> 200       AddNewParticle(fNeutron, dir, ekin);
                                                   >> 201       momResidual -= 
                                                   >> 202         result.GetSecondary(0)->GetParticle()->Get4Momentum();
                                                   >> 203       --Z;
                                                   >> 204             --A; 
                                                   >> 205       residualMass = G4NucleiProperties::GetNuclearMass(A, Z);
                                                   >> 206       nneutrons = 0;  
                                                   >> 207     }
210   }                                               208   }
211       }                                           209       }
212       // in the case of many iterations stop t << 210       if(Enu <= 0.0 && eEx <= 0.0 && reentryCount > 100) {
213       // with zero excitation energy           << 
214       if(reentryCount > 100 && eEx < 0.0) {    << 
215   G4ExceptionDescription ed;                      211   G4ExceptionDescription ed;
216   ed << "Call for " << GetModelName() << G4end    212   ed << "Call for " << GetModelName() << G4endl;
217   ed << "Target  Z= " << Z                        213   ed << "Target  Z= " << Z  
218      << "  A= " << A << "  Eex(MeV)= " << eEx/ << 214      << "  A= " << A << G4endl;
219   ed << " ApplyYourself does not completed aft << 215   ed << " ApplyYourself does not completed after 100 attempts" << G4endl;
220      << " excitation energy is set to zero";   << 216   G4Exception("G4MuMinusCapturePrecompound::AtRestDoIt", "had006", 
221   G4Exception("G4MuMinusCapturePrecompound::Ap << 217         FatalException, ed);        
222         JustWarning, ed);                      << 
223   momResidual.set(0.0, 0.0, 0.0, residualMass) << 
224   eEx = 0.0;                                   << 
225       }                                           218       }
226       // Loop checking, 06-Aug-2015, Vladimir  << 
227     } while(eEx <= 0.0);                          219     } while(eEx <= 0.0);
228                                                   220 
229     G4ThreeVector dir = momNu.vect().unit();      221     G4ThreeVector dir = momNu.vect().unit();
230     AddNewParticle(G4NeutrinoMu::NeutrinoMu(),    222     AddNewParticle(G4NeutrinoMu::NeutrinoMu(), dir, momNu.e());
231                                                   223 
232     G4Fragment initialState(A, Z-1, momResidua << 224     G4Fragment initialState(A, Z, momResidual);
233     initialState.SetNumberOfExcitedParticle(2, << 225     initialState.SetNumberOfExcitedParticle(nneutrons,0);
234     initialState.SetNumberOfHoles(1,1);           226     initialState.SetNumberOfHoles(1,1);
235                                                   227 
236     // decay time for pre-compound/de-excitati    228     // decay time for pre-compound/de-excitation starts from zero
237     G4ReactionProductVector* rpv = fPreCompoun    229     G4ReactionProductVector* rpv = fPreCompound->DeExcite(initialState);
238     size_t n = rpv->size();                       230     size_t n = rpv->size();
239     for(size_t i=0; i<n; ++i) {                   231     for(size_t i=0; i<n; ++i) {
240       G4ReactionProduct* rp = (*rpv)[i];          232       G4ReactionProduct* rp = (*rpv)[i];
241                                                   233 
242       // reaction time                            234       // reaction time
243       fTime = time0 + rp->GetTOF();               235       fTime = time0 + rp->GetTOF();
244       G4ThreeVector direction = rp->GetMomentu    236       G4ThreeVector direction = rp->GetMomentum().unit();
245       AddNewParticle(rp->GetDefinition(), dire    237       AddNewParticle(rp->GetDefinition(), direction, rp->GetKineticEnergy());
246       delete rp;                                  238       delete rp;
247     }                                             239     }
248     delete rpv;                                   240     delete rpv;
249   }                                               241   } 
250   if(verboseLevel > 1)                            242   if(verboseLevel > 1)
251     G4cout << "G4MuMinusCapturePrecompound::Ap    243     G4cout << "G4MuMinusCapturePrecompound::ApplyYourself:  Nsec= " 
252      << result.GetNumberOfSecondaries()           244      << result.GetNumberOfSecondaries() 
253      <<" E0(MeV)= " <<availableEnergy/MeV         245      <<" E0(MeV)= " <<availableEnergy/MeV
254      <<" Mres(GeV)= " <<residualMass/GeV          246      <<" Mres(GeV)= " <<residualMass/GeV
255      <<G4endl;                                    247      <<G4endl;
256                                                   248 
257   return &result;                                 249   return &result;
258 }                                                 250 }
259                                                   251 
260 //....oooOO0OOooo........oooOO0OOooo........oo    252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
261                                                   253 
262 void G4MuMinusCapturePrecompound::ModelDescrip    254 void G4MuMinusCapturePrecompound::ModelDescription(std::ostream& outFile) const
263 {                                                 255 {
264   outFile << "Sampling of mu- capture by atomi    256   outFile << "Sampling of mu- capture by atomic nucleus from K-shell"
265     << " mesoatom orbit.\n"                       257     << " mesoatom orbit.\n"
266     << "Primary reaction mu- + p -> n + neutri    258     << "Primary reaction mu- + p -> n + neutrino, neutron providing\n"
267     << "  initial excitation of the target nuc    259     << "  initial excitation of the target nucleus and PreCompound"
268     << " model samples final state\n";            260     << " model samples final state\n";
269 }                                                 261 }
270                                                   262 
271 //....oooOO0OOooo........oooOO0OOooo........oo    263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
272                                                   264