Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // GEANT 4 class implemetation file 29 // 30 // ---------------- G4SingleDiffractiveEx 31 // by Gunter Folger, October 1998. 32 // diffractive Excitation used by strings 33 // Take a projectile and a target 34 // excite the projectile and target 35 // ------------------------------------------- 36 37 #include "G4SingleDiffractiveExcitation.hh" 38 #include "globals.hh" 39 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "Randomize.hh" 42 #include "G4LorentzRotation.hh" 43 #include "G4ThreeVector.hh" 44 #include "G4ParticleDefinition.hh" 45 #include "G4VSplitableHadron.hh" 46 #include "G4ExcitedString.hh" 47 48 #include "G4Log.hh" 49 #include "G4Pow.hh" 50 51 //#define debugSingleDiffraction 52 53 G4SingleDiffractiveExcitation::G4SingleDiffrac 54 55 G4SingleDiffractiveExcitation::~G4SingleDiffra 56 57 G4bool G4SingleDiffractiveExcitation:: 58 ExciteParticipants( G4VSplitableHadron *projec 59 G4bool ProjectileDiffracti 60 { 61 #ifdef debugSingleDiffraction 62 G4cout<<G4endl<<"G4SingleDiffractiveExcita 63 #endif 64 65 G4LorentzVector Pprojectile=projectile->Get4 66 G4double Mprojectile = projectile->GetDef 67 G4double Mprojectile2=sqr(projectile->GetDef 68 69 G4LorentzVector Ptarget=target->Get4Momentum 70 G4double Mtarget = target->GetDefinition( 71 G4double Mtarget2=sqr(target->GetDefinition( 72 73 #ifdef debugSingleDiffraction 74 G4cout<<"Proj Targ "<<projectile->GetDefin 75 G4cout<<"Pr Tr 4-Mom "<<Pprojectile<<" "<< 76 <<" "<<Ptarget <<" "<< 77 #endif 78 79 G4LorentzVector Psum=Pprojectile+Ptarget; 80 G4double SqrtS=Psum.mag(); 81 G4double S =Psum.mag2(); 82 83 #ifdef debugSingleDiffraction 84 G4cout<<"SqrtS-Mprojectile-Mtarget "<<Sqrt 85 <<" "<<SqrtS-Mprojectile-Mtarget<<G4 86 #endif 87 if (SqrtS-Mprojectile-Mtarget <= 250.0*MeV) 88 #ifdef debugSingleDiffraction 89 G4cerr<<"Projectile: "<<projectile->GetDef 90 <<Pprojectile<<" "<<Pprojectile.mag( 91 G4cerr<<"Target: "<<target->GetDefinit 92 <<Ptarget<<" "<<Ptarget.mag()<<G4end 93 G4cerr<<"sqrt(S) = "<<SqrtS<<" Mp + Mt = " 94 #endif 95 return true; 96 } 97 98 G4LorentzRotation toCms(-1*Psum.boostVector( 99 100 G4LorentzVector Ptmp=toCms*Pprojectile; 101 102 if ( Ptmp.pz() <= 0. ) 103 { 104 // "String" moving backwards in CMS, abor 105 // G4cout << " abort Collision!! " 106 return false; 107 } 108 109 toCms.rotateZ(-1*Ptmp.phi()); 110 toCms.rotateY(-1*Ptmp.theta()); 111 112 G4LorentzRotation toLab(toCms.inverse()); 113 114 Pprojectile.transform(toCms); 115 Ptarget.transform(toCms); 116 #ifdef debugSingleDiffraction 117 G4cout << "Pprojectile in CMS " << Pproje 118 G4cout << "Ptarget in CMS " << Ptarge 119 #endif 120 G4double maxPtSquare=sqr(Ptarget.pz()); 121 122 G4double ProjectileMinDiffrMass(0.), TargetM 123 G4double AveragePt2(0.); 124 G4int absPDGcode=std::abs(projectile->GetDef 125 126 if ( ProjectileDiffraction ) { 127 if ( absPDGcode > 1000 ) 128 { 129 if ( absPDGcode > 4000 && absPDGcode < 6 130 { 131 ProjectileMinDiffrMass = projectile->G 132 AveragePt2 = 0.3; 133 } 134 else 135 { 136 ProjectileMinDiffrMass = 1.16; 137 AveragePt2 = 0.3; 138 } 139 } 140 else if( absPDGcode == 211 || absPDGcode = 141 { 142 ProjectileMinDiffrMass = 1.0; 143 AveragePt2 = 0.3; 144 } 145 else if( absPDGcode == 321 || absPDGcode = 146 { 147 ProjectileMinDiffrMass = 1.1; 148 AveragePt2 = 0.3; 149 } 150 else if( absPDGcode == 22) 151 { 152 ProjectileMinDiffrMass = 0.25; 153 AveragePt2 = 0.36; 154 } 155 else if( absPDGcode > 400 && absPDGcode < 156 { 157 ProjectileMinDiffrMass = projectile->Get 158 AveragePt2 = 0.3; 159 } 160 else 161 { 162 ProjectileMinDiffrMass = 1.1; 163 AveragePt2 = 0.3; 164 }; 165 166 ProjectileMinDiffrMass = ProjectileMinDiff 167 Mprojectile2=sqr(ProjectileMinDiffrMass); 168 } 169 else 170 { 171 TargetMinDiffrMass = 1.16*GeV; 172 Mtarget2 = sqr( TargetMinDiffrMass) ; 173 AveragePt2 = 0.3; 174 } // end of if ( ProjectileDiffraction ) 175 176 AveragePt2 = AveragePt2 * GeV*GeV; 177 178 G4double Pt2, PZcms, PZcms2; 179 G4double ProjMassT2, ProjMassT; 180 G4double TargMassT2, TargMassT; 181 G4double PMinusMin, PMinusMax; 182 G4double TPlusMin, TPlusMax; 183 G4double PMinusNew, PPlusNew, TPlusNew, TMin 184 185 G4LorentzVector Qmomentum; 186 G4double Qminus, Qplus; 187 188 G4int whilecount=0; 189 do { 190 whilecount++; 191 192 if (whilecount > 1000 ) 193 { 194 Qmomentum=G4LorentzVector(0.,0.,0.,0.); 195 return false; // Ignore this intera 196 } 197 198 // Generate pt 199 Qmomentum=G4LorentzVector(GaussianPt(Avera 200 201 Pt2 = G4ThreeVector( Qmomentum.vect() ).ma 202 203 ProjMassT2 = Mprojectile2 + Pt2; 204 ProjMassT = std::sqrt( ProjMassT2 ); 205 TargMassT2 = Mtarget2 + Pt2; 206 TargMassT = std::sqrt( TargMassT2 ); 207 208 #ifdef debugSingleDiffraction 209 G4cout<<whilecount<<" "<<Pt2<<" "<<ProjM 210 #endif 211 if ( SqrtS < ProjMassT + TargMassT ) conti 212 213 PZcms2 = ( S*S + ProjMassT2*ProjMassT2 + T 214 - 2.0*S*ProjMassT2 - 2.0*S*TargM 215 216 if ( PZcms2 < 0 ) continue; 217 218 PZcms = std::sqrt( PZcms2 ); 219 220 if ( ProjectileDiffraction ) 221 { // The projectile will fragment, t 222 PMinusMin = std::sqrt( ProjMassT2 + PZcm 223 PMinusMax = SqrtS - TargMassT; 224 225 PMinusNew = ChooseX( PMinusMin, PMinusMa 226 TMinusNew = SqrtS - PMinusNew; 227 228 Qminus = Ptarget.minus() - TMinusNew; 229 TPlusNew = TargMassT2 / TMinusNew; 230 Qplus = Ptarget.plus() - TPlusNew; 231 232 } else { // The target will fragment, the 233 TPlusMin = std::sqrt( TargMassT2 + PZcms 234 TPlusMax = SqrtS - ProjMassT; 235 236 TPlusNew = ChooseX( TPlusMin, TPlusMax ) 237 PPlusNew = SqrtS - TPlusNew; 238 239 Qplus = PPlusNew - Pprojectile.plus(); 240 PMinusNew = ProjMassT2 / PPlusNew; 241 Qminus = PMinusNew - Pprojectile.minus() 242 } 243 244 Qmomentum.setPz( (Qplus - Qminus)/2 ); 245 Qmomentum.setE( (Qplus + Qminus)/2 ); 246 247 #ifdef debugSingleDiffraction 248 G4cout<<ProjectileDiffraction<<" "<<( Pp 249 G4cout<<!ProjectileDiffraction<<" "<<( P 250 #endif 251 252 } while ( ( ProjectileDiffraction&&( Pprojec 253 (!ProjectileDiffraction&&( Ptarget 254 // Repeat the sampling because there was n 255 256 Pprojectile += Qmomentum; 257 258 Ptarget -= Qmomentum; 259 260 // Transform back and update SplitableHadron 261 Pprojectile.transform(toLab); 262 Ptarget.transform(toLab); 263 264 #ifdef debugSingleDiffraction 265 G4cout << "Pprojectile in Lab. " << Pproj 266 G4cout << "Ptarget in Lab. " << Ptarg 267 G4cout << "G4SingleDiffractiveExcitation- 268 G4cout << "G4SingleDiffractiveExcitation- 269 #endif 270 271 target->Set4Momentum(Ptarget); 272 projectile->Set4Momentum(Pprojectile); 273 274 return true; 275 } 276 277 // --------- private methods ----------------- 278 279 G4double G4SingleDiffractiveExcitation::Choose 280 { 281 // choose an x between Xmin and Xmax with P( 282 G4double range=Xmax-Xmin; 283 284 if ( Xmin <= 0. || range <=0. ) 285 { 286 G4cout << " Xmin, range : " << Xmin << " , 287 throw G4HadronicException(__FILE__, __LINE 288 } 289 290 G4double x = Xmin*G4Pow::GetInstance()->powA 291 // G4double x = 1.0/sqr(1.0/std::sqrt(Xmin) 292 return x; 293 } 294 295 296 G4ThreeVector G4SingleDiffractiveExcitation::G 297 { // @@ this method is used in FTF 298 299 G4double pt2; 300 301 const G4int maxNumberOfLoops = 1000; 302 G4int loopCounter = 0; 303 do { 304 pt2=-widthSquare * G4Log( G4UniformRand() 305 } while ( ( pt2 > maxPtSquare) && ++loopCoun 306 if ( loopCounter >= maxNumberOfLoops ) { 307 pt2 = 0.99*maxPtSquare; // Just an accept 308 } 309 310 pt2=std::sqrt(pt2); 311 312 G4double phi=G4UniformRand() * twopi; 313 314 return G4ThreeVector (pt2*std::cos(phi), pt2 315 } 316 317