Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/parton_string/qgsm/src/G4SingleDiffractiveExcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/parton_string/qgsm/src/G4SingleDiffractiveExcitation.cc (Version 11.3.0) and /processes/hadronic/models/parton_string/qgsm/src/G4SingleDiffractiveExcitation.cc (Version 6.0.p1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // -------------------------------------------    
 28 //      GEANT 4 class implemetation file          
 29 //                                                
 30 //      ---------------- G4SingleDiffractiveEx    
 31 //             by Gunter Folger, October 1998.    
 32 //      diffractive Excitation used by strings    
 33 //  Take a projectile and a target                
 34 //  excite the projectile and target              
 35 // -------------------------------------------    
 36                                                   
 37 #include "G4SingleDiffractiveExcitation.hh"       
 38 #include "globals.hh"                             
 39 #include "G4PhysicalConstants.hh"                 
 40 #include "G4SystemOfUnits.hh"                     
 41 #include "Randomize.hh"                           
 42 #include "G4LorentzRotation.hh"                   
 43 #include "G4ThreeVector.hh"                       
 44 #include "G4ParticleDefinition.hh"                
 45 #include "G4VSplitableHadron.hh"                  
 46 #include "G4ExcitedString.hh"                     
 47                                                   
 48 #include "G4Log.hh"                               
 49 #include "G4Pow.hh"                               
 50                                                   
 51 //#define debugSingleDiffraction                  
 52                                                   
 53 G4SingleDiffractiveExcitation::G4SingleDiffrac    
 54                                                   
 55 G4SingleDiffractiveExcitation::~G4SingleDiffra    
 56                                                   
 57 G4bool G4SingleDiffractiveExcitation::            
 58 ExciteParticipants( G4VSplitableHadron *projec    
 59                     G4bool ProjectileDiffracti    
 60 {                                                 
 61   #ifdef debugSingleDiffraction                   
 62     G4cout<<G4endl<<"G4SingleDiffractiveExcita    
 63   #endif                                          
 64                                                   
 65   G4LorentzVector Pprojectile=projectile->Get4    
 66   G4double Mprojectile =    projectile->GetDef    
 67   G4double Mprojectile2=sqr(projectile->GetDef    
 68                                                   
 69   G4LorentzVector Ptarget=target->Get4Momentum    
 70   G4double Mtarget =    target->GetDefinition(    
 71   G4double Mtarget2=sqr(target->GetDefinition(    
 72                                                   
 73   #ifdef debugSingleDiffraction                   
 74     G4cout<<"Proj Targ "<<projectile->GetDefin    
 75     G4cout<<"Pr Tr 4-Mom "<<Pprojectile<<" "<<    
 76           <<"            "<<Ptarget    <<" "<<    
 77   #endif                                          
 78                                                   
 79   G4LorentzVector Psum=Pprojectile+Ptarget;       
 80   G4double SqrtS=Psum.mag();                      
 81   G4double S    =Psum.mag2();                     
 82                                                   
 83   #ifdef debugSingleDiffraction                   
 84     G4cout<<"SqrtS-Mprojectile-Mtarget "<<Sqrt    
 85           <<" "<<SqrtS-Mprojectile-Mtarget<<G4    
 86   #endif                                          
 87   if (SqrtS-Mprojectile-Mtarget <= 250.0*MeV)     
 88     #ifdef debugSingleDiffraction                 
 89     G4cerr<<"Projectile: "<<projectile->GetDef    
 90           <<Pprojectile<<" "<<Pprojectile.mag(    
 91     G4cerr<<"Target:     "<<target->GetDefinit    
 92           <<Ptarget<<" "<<Ptarget.mag()<<G4end    
 93     G4cerr<<"sqrt(S) = "<<SqrtS<<" Mp + Mt = "    
 94     #endif                                        
 95     return true;                                  
 96   }                                               
 97                                                   
 98   G4LorentzRotation toCms(-1*Psum.boostVector(    
 99                                                   
100   G4LorentzVector Ptmp=toCms*Pprojectile;         
101                                                   
102   if ( Ptmp.pz() <= 0. )                          
103   {                                               
104     // "String" moving backwards in  CMS, abor    
105     //         G4cout << " abort Collision!! "    
106     return false;                                 
107   }                                               
108                                                   
109   toCms.rotateZ(-1*Ptmp.phi());                   
110   toCms.rotateY(-1*Ptmp.theta());                 
111                                                   
112   G4LorentzRotation toLab(toCms.inverse());       
113                                                   
114   Pprojectile.transform(toCms);                   
115   Ptarget.transform(toCms);                       
116   #ifdef debugSingleDiffraction                   
117     G4cout << "Pprojectile  in CMS " << Pproje    
118     G4cout << "Ptarget      in CMS " << Ptarge    
119   #endif                                          
120   G4double maxPtSquare=sqr(Ptarget.pz());         
121                                                   
122   G4double ProjectileMinDiffrMass(0.), TargetM    
123   G4double AveragePt2(0.);                        
124   G4int absPDGcode=std::abs(projectile->GetDef    
125                                                   
126   if ( ProjectileDiffraction ) {                  
127     if ( absPDGcode > 1000 )                      
128     {                                             
129       if ( absPDGcode > 4000 && absPDGcode < 6    
130       {                                           
131         ProjectileMinDiffrMass = projectile->G    
132         AveragePt2 = 0.3;                         
133       }                                           
134       else                                        
135       {                                           
136         ProjectileMinDiffrMass = 1.16;            
137         AveragePt2 = 0.3;                         
138       }                                           
139     }                                             
140     else if( absPDGcode == 211 || absPDGcode =    
141     {                                             
142       ProjectileMinDiffrMass = 1.0;               
143       AveragePt2 = 0.3;                           
144     }                                             
145     else if( absPDGcode == 321 || absPDGcode =    
146     {                                             
147       ProjectileMinDiffrMass = 1.1;               
148       AveragePt2 = 0.3;                           
149     }                                             
150     else if( absPDGcode == 22)                    
151     {                                             
152       ProjectileMinDiffrMass = 0.25;              
153       AveragePt2 = 0.36;                          
154     }                                             
155     else if( absPDGcode > 400 && absPDGcode <     
156     {                                             
157       ProjectileMinDiffrMass = projectile->Get    
158       AveragePt2 = 0.3;                           
159     }                                             
160     else                                          
161     {                                             
162       ProjectileMinDiffrMass = 1.1;               
163       AveragePt2 = 0.3;                           
164     };                                            
165                                                   
166     ProjectileMinDiffrMass = ProjectileMinDiff    
167     Mprojectile2=sqr(ProjectileMinDiffrMass);     
168   }                                               
169   else                                            
170   {                                               
171     TargetMinDiffrMass = 1.16*GeV;                
172     Mtarget2 = sqr( TargetMinDiffrMass) ;         
173     AveragePt2 = 0.3;                             
174   }   // end of if ( ProjectileDiffraction )      
175                                                   
176   AveragePt2 = AveragePt2 * GeV*GeV;              
177                                                   
178   G4double Pt2, PZcms, PZcms2;                    
179   G4double ProjMassT2, ProjMassT;                 
180   G4double TargMassT2, TargMassT;                 
181   G4double PMinusMin, PMinusMax;                  
182   G4double TPlusMin, TPlusMax;                    
183   G4double PMinusNew, PPlusNew, TPlusNew, TMin    
184                                                   
185   G4LorentzVector Qmomentum;                      
186   G4double Qminus, Qplus;                         
187                                                   
188   G4int whilecount=0;                             
189   do {                                            
190     whilecount++;                                 
191                                                   
192     if (whilecount > 1000 )                       
193     {                                             
194       Qmomentum=G4LorentzVector(0.,0.,0.,0.);     
195       return false;     //  Ignore this intera    
196     }                                             
197                                                   
198     //  Generate pt                               
199     Qmomentum=G4LorentzVector(GaussianPt(Avera    
200                                                   
201     Pt2 = G4ThreeVector( Qmomentum.vect() ).ma    
202                                                   
203     ProjMassT2 = Mprojectile2 + Pt2;              
204     ProjMassT = std::sqrt( ProjMassT2 );          
205     TargMassT2 = Mtarget2 + Pt2;                  
206     TargMassT = std::sqrt( TargMassT2 );          
207                                                   
208     #ifdef debugSingleDiffraction                 
209       G4cout<<whilecount<<" "<<Pt2<<" "<<ProjM    
210     #endif                                        
211     if ( SqrtS < ProjMassT + TargMassT ) conti    
212                                                   
213     PZcms2 = ( S*S + ProjMassT2*ProjMassT2 + T    
214               - 2.0*S*ProjMassT2 - 2.0*S*TargM    
215                                                   
216     if ( PZcms2 < 0 ) continue;                   
217                                                   
218     PZcms = std::sqrt( PZcms2 );                  
219                                                   
220     if ( ProjectileDiffraction )                  
221     {       // The projectile will fragment, t    
222       PMinusMin = std::sqrt( ProjMassT2 + PZcm    
223       PMinusMax = SqrtS - TargMassT;              
224                                                   
225       PMinusNew = ChooseX( PMinusMin, PMinusMa    
226       TMinusNew = SqrtS - PMinusNew;              
227                                                   
228       Qminus = Ptarget.minus() - TMinusNew;       
229       TPlusNew = TargMassT2 / TMinusNew;          
230       Qplus = Ptarget.plus() - TPlusNew;          
231                                                   
232     } else {  // The target will fragment, the    
233       TPlusMin = std::sqrt( TargMassT2 + PZcms    
234       TPlusMax = SqrtS - ProjMassT;               
235                                                   
236       TPlusNew = ChooseX( TPlusMin, TPlusMax )    
237       PPlusNew = SqrtS - TPlusNew;                
238                                                   
239       Qplus = PPlusNew - Pprojectile.plus();      
240       PMinusNew = ProjMassT2 / PPlusNew;          
241       Qminus = PMinusNew - Pprojectile.minus()    
242     }                                             
243                                                   
244     Qmomentum.setPz( (Qplus - Qminus)/2 );        
245     Qmomentum.setE(  (Qplus + Qminus)/2 );        
246                                                   
247     #ifdef debugSingleDiffraction                 
248       G4cout<<ProjectileDiffraction<<" "<<( Pp    
249       G4cout<<!ProjectileDiffraction<<" "<<( P    
250     #endif                                        
251                                                   
252   } while ( ( ProjectileDiffraction&&( Pprojec    
253             (!ProjectileDiffraction&&( Ptarget    
254     // Repeat the sampling because there was n    
255                                                   
256   Pprojectile += Qmomentum;                       
257                                                   
258   Ptarget     -= Qmomentum;                       
259                                                   
260   // Transform back and update SplitableHadron    
261   Pprojectile.transform(toLab);                   
262   Ptarget.transform(toLab);                       
263                                                   
264   #ifdef debugSingleDiffraction                   
265     G4cout << "Pprojectile  in Lab. " << Pproj    
266     G4cout << "Ptarget      in Lab. " << Ptarg    
267     G4cout << "G4SingleDiffractiveExcitation-     
268     G4cout << "G4SingleDiffractiveExcitation-     
269   #endif                                          
270                                                   
271   target->Set4Momentum(Ptarget);                  
272   projectile->Set4Momentum(Pprojectile);          
273                                                   
274   return true;                                    
275 }                                                 
276                                                   
277 // --------- private methods -----------------    
278                                                   
279 G4double G4SingleDiffractiveExcitation::Choose    
280 {                                                 
281   // choose an x between Xmin and Xmax with P(    
282   G4double range=Xmax-Xmin;                       
283                                                   
284   if ( Xmin <= 0. || range <=0. )                 
285   {                                               
286     G4cout << " Xmin, range : " << Xmin << " ,    
287     throw G4HadronicException(__FILE__, __LINE    
288   }                                               
289                                                   
290   G4double x = Xmin*G4Pow::GetInstance()->powA    
291   // G4double x = 1.0/sqr(1.0/std::sqrt(Xmin)     
292   return x;                                       
293 }                                                 
294                                                   
295                                                   
296 G4ThreeVector G4SingleDiffractiveExcitation::G    
297 {            //  @@ this method is used in FTF    
298                                                   
299   G4double pt2;                                   
300                                                   
301   const G4int maxNumberOfLoops = 1000;            
302   G4int loopCounter = 0;                          
303   do {                                            
304     pt2=-widthSquare * G4Log( G4UniformRand()     
305   } while ( ( pt2 > maxPtSquare) && ++loopCoun    
306   if ( loopCounter >= maxNumberOfLoops ) {        
307     pt2 = 0.99*maxPtSquare;  // Just an accept    
308   }                                               
309                                                   
310   pt2=std::sqrt(pt2);                             
311                                                   
312   G4double phi=G4UniformRand() * twopi;           
313                                                   
314   return G4ThreeVector (pt2*std::cos(phi), pt2    
315 }                                                 
316                                                   
317