Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4QGSDiffractiveExcitation.cc 69570 2013-05-08 13:23:39Z gcosmo $ 27 // ------------------------------------------- 28 // ------------------------------------------------------------ 28 // GEANT 4 class implemetation file 29 // GEANT 4 class implemetation file 29 // 30 // 30 // ---------------- G4QGSDiffractiveExcit 31 // ---------------- G4QGSDiffractiveExcitation -------------- 31 // by Gunter Folger, October 1998. 32 // by Gunter Folger, October 1998. 32 // diffractive Excitation used by stri 33 // diffractive Excitation used by strings models 33 // Take a projectile and a target 34 // Take a projectile and a target 34 // excite the projectile and target 35 // excite the projectile and target 35 // Essential changed by V. Uzhinsky in Novemb 36 // Essential changed by V. Uzhinsky in November - December 2006 36 // in order to put it in a correspondence wit 37 // in order to put it in a correspondence with original FRITIOF 37 // model. Variant of FRITIOF with nucleon de- 38 // model. Variant of FRITIOF with nucleon de-excitation is implemented. 38 // ------------------------------------------- 39 // --------------------------------------------------------------------- 39 40 40 // Modified: 41 // Modified: 41 // 25-05-07 : G.Folger 42 // 25-05-07 : G.Folger 42 // move from management/G4DiffractiveExc 43 // move from management/G4DiffractiveExcitation to to qgsm/G4QGSDiffractiveExcitation 43 // 44 // 44 45 45 #include "globals.hh" 46 #include "globals.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4SystemOfUnits.hh" 48 #include "Randomize.hh" 49 #include "Randomize.hh" 49 50 50 #include "G4QGSDiffractiveExcitation.hh" 51 #include "G4QGSDiffractiveExcitation.hh" 51 #include "G4LorentzRotation.hh" 52 #include "G4LorentzRotation.hh" 52 #include "G4ThreeVector.hh" 53 #include "G4ThreeVector.hh" 53 #include "G4ParticleDefinition.hh" 54 #include "G4ParticleDefinition.hh" 54 #include "G4VSplitableHadron.hh" 55 #include "G4VSplitableHadron.hh" 55 #include "G4ExcitedString.hh" 56 #include "G4ExcitedString.hh" 56 //#include "G4ios.hh" 57 //#include "G4ios.hh" 57 58 58 #include "G4Exp.hh" << 59 G4QGSDiffractiveExcitation::G4QGSDiffractiveExcitation() // Uzhi 59 #include "G4Log.hh" << 60 #include "G4Pow.hh" << 61 << 62 //============================================ << 63 << 64 //#define debugDoubleDiffraction << 65 << 66 //============================================ << 67 << 68 G4QGSDiffractiveExcitation::G4QGSDiffractiveEx << 69 { 60 { 70 } 61 } 71 62 72 G4QGSDiffractiveExcitation::~G4QGSDiffractiveE 63 G4QGSDiffractiveExcitation::~G4QGSDiffractiveExcitation() 73 { 64 { 74 } 65 } 75 66 76 67 77 G4bool G4QGSDiffractiveExcitation:: 68 G4bool G4QGSDiffractiveExcitation:: 78 ExciteParticipants(G4VSplitableHadron *project << 69 ExciteParticipants(G4VSplitableHadron *projectile, G4VSplitableHadron *target) const 79 { 70 { 80 #ifdef debugDoubleDiffraction << 81 G4cout<<G4endl<<"G4QGSDiffractiveExcitatio << 82 G4cout<<"Proj Targ "<<projectile->GetDefin << 83 G4cout<<"Proj 4 Mom "<<projectile->Get4Mom << 84 G4cout<<"Targ 4 Mom "<<target->Get4Momentu << 85 #endif << 86 << 87 G4LorentzVector Pprojectile=projectile->Get4 << 88 << 89 // -------------------- Projectile parameter << 90 G4bool PutOnMassShell=0; << 91 << 92 G4double M0projectile = Pprojectile.mag(); << 93 << 94 if(M0projectile < projectile->GetDefinition( << 95 { << 96 PutOnMassShell=1; << 97 M0projectile=projectile->GetDefinition()-> << 98 } << 99 << 100 // -------------------- Target parameters -- << 101 G4LorentzVector Ptarget=target->Get4Momentum << 102 << 103 G4double M0target = Ptarget.mag(); << 104 << 105 if(M0target < target->GetDefinition()->GetPD << 106 { << 107 PutOnMassShell=1; << 108 M0target=target->GetDefinition()->GetPDGMa << 109 } << 110 << 111 G4LorentzVector Psum=Pprojectile+Ptarget; << 112 G4double S=Psum.mag2(); << 113 G4double SqrtS=std::sqrt(S); << 114 << 115 if (SqrtS < M0projectile + M0target) {return << 116 << 117 << 118 G4double Mprojectile2 = M0projectile * M0pro << 119 G4double Mtarget2 = M0target * M0tar << 120 << 121 // Transform momenta to cms and then rotate << 122 << 123 G4LorentzRotation toCms(-1*Psum.boostVector( << 124 << 125 G4LorentzVector Ptmp=toCms*Pprojectile; << 126 << 127 if ( Ptmp.pz() <= 0. ) << 128 { << 129 // "String" moving backwards in CMS, abor << 130 //G4cout << " abort Collision!! " << G4end << 131 return false; << 132 } << 133 << 134 toCms.rotateZ(-1*Ptmp.phi()); << 135 toCms.rotateY(-1*Ptmp.theta()); << 136 << 137 G4LorentzRotation toLab(toCms.inverse()); << 138 << 139 Pprojectile.transform(toCms); << 140 Ptarget.transform(toCms); << 141 << 142 G4double PZcms2=(S*S+Mprojectile2*Mprojectil << 143 2*S*Mprojectile2-2*S*Mtarget2-2*Mproj << 144 << 145 if (PZcms2 < 0) {return false;} // It can << 146 << 147 G4double PZcms = std::sqrt(PZcms2); << 148 << 149 if (PutOnMassShell) << 150 { << 151 if (Pprojectile.z() > 0.) << 152 { << 153 Pprojectile.setPz( PZcms); << 154 Ptarget.setPz( -PZcms); << 155 } << 156 else << 157 { << 158 Pprojectile.setPz(-PZcms); << 159 Ptarget.setPz( PZcms); << 160 }; << 161 << 162 Pprojectile.setE(std::sqrt(Mprojectile2+sq << 163 Ptarget.setE( std::sqrt( Mtarget2+sq << 164 } << 165 << 166 G4double maxPtSquare = PZcms2; << 167 << 168 #ifdef debugDoubleDiffraction << 169 G4cout << "Pprojectile after boost to CMS: << 170 G4cout << "Ptarget after boost to CMS: << 171 #endif << 172 << 173 G4int PrPDGcode=projectile->GetDefinition << 174 G4int absPrPDGcode=std::abs(PrPDGcode); << 175 G4double MinPrDiffMass(0.); << 176 G4double AveragePt2(0.); << 177 << 178 if (M0projectile <= projectile->GetDefinitio << 179 { // Normal projectile << 180 if( absPrPDGcode > 1000 ) << 181 { << 182 if ( absPrPDGcode > 4000 && absPrPDGcode << 183 { << 184 MinPrDiffMass = projectile->GetDefinit << 185 AveragePt2 = 0.3; << 186 } << 187 else << 188 { << 189 MinPrDiffMass = 1.16; // << 190 AveragePt2 = 0.3; << 191 } << 192 } << 193 else if( absPrPDGcode == 211 || PrPDGcode << 194 { << 195 MinPrDiffMass = 1.0; << 196 AveragePt2 = 0.3; << 197 } << 198 else if( absPrPDGcode == 321 || absPrPDGco << 199 { << 200 MinPrDiffMass = 1.1; << 201 AveragePt2 = 0.3; << 202 } << 203 else if( absPrPDGcode > 400 && absPrPDGcod << 204 { << 205 MinPrDiffMass = projectile->GetDefinitio << 206 AveragePt2 = 0.3; << 207 } << 208 else << 209 { << 210 MinPrDiffMass = 1.16; << 211 AveragePt2 = 0.3; << 212 } << 213 } << 214 else << 215 { // Excited projectile << 216 MinPrDiffMass = M0projectile + 220.0*MeV; << 217 AveragePt2 = 0.3; << 218 } << 219 << 220 MinPrDiffMass = MinPrDiffMass * GeV; << 221 AveragePt2 = AveragePt2 * GeV*GeV; << 222 //------------------------------------------ << 223 G4double MinTrDiffMass = 1.16*GeV; << 224 << 225 if (SqrtS < MinPrDiffMass + MinTrDiffMass) { << 226 << 227 G4double MinPrDiffMass2 = MinPrDiffMass * Mi << 228 G4double MinTrDiffMass2 = MinTrDiffMass * Mi << 229 << 230 G4double Pt2; << 231 G4double ProjMassT2, ProjMassT; << 232 G4double TargMassT2, TargMassT; << 233 G4double PMinusNew, TPlusNew; << 234 << 235 G4LorentzVector Qmomentum; << 236 G4double Qminus, Qplus; << 237 << 238 G4int whilecount=0; << 239 do { << 240 if (whilecount++ >= 500 && (whilecount%100 << 241 if (whilecount > 1000 ) { << 242 Qmomentum=G4LorentzVector(0.,0.,0.,0.); << 243 return false; // Ignore this interactio << 244 } << 245 << 246 // Generate pt << 247 Qmomentum=G4LorentzVector(GaussianPt(Avera << 248 << 249 Pt2=G4ThreeVector(Qmomentum.vect()).mag2() << 250 ProjMassT2=MinPrDiffMass2+Pt2; << 251 ProjMassT =std::sqrt(ProjMassT2); << 252 << 253 TargMassT2=MinTrDiffMass2+Pt2; << 254 TargMassT =std::sqrt(TargMassT2); << 255 << 256 if (SqrtS < ProjMassT + TargMassT) continu << 257 << 258 PZcms2=(S*S+ProjMassT2*ProjMassT2+TargMass << 259 2.*S*ProjMassT2-2.*S*TargMassT2-2.*ProjM << 260 if (PZcms2 < 0 ) {PZcms2=0;}; << 261 PZcms =std::sqrt(PZcms2); << 262 << 263 G4double PMinusMin=std::sqrt(ProjMassT2+PZ << 264 G4double PMinusMax=SqrtS-TargMassT; << 265 << 266 PMinusNew=ChooseP(PMinusMin,PMinusMax); << 267 Qminus=PMinusNew-Pprojectile.minus(); << 268 << 269 G4double TPlusMin=std::sqrt(TargMassT2+PZc << 270 G4double TPlusMax=SqrtS-ProjMassT; << 271 << 272 TPlusNew=ChooseP(TPlusMin, TPlusMax); << 273 Qplus=-(TPlusNew-Ptarget.plus()); << 274 << 275 Qmomentum.setPz( (Qplus-Qminus)/2 ); << 276 Qmomentum.setE( (Qplus+Qminus)/2 ); << 277 << 278 } while ( (Pprojectile+Qmomentum).mag2() < << 279 (Ptarget -Qmomentum).mag2() < MinTrD << 280 << 281 Pprojectile += Qmomentum; << 282 Ptarget -= Qmomentum; << 283 << 284 // Transform back and update SplitableHadron << 285 Pprojectile.transform(toLab); << 286 Ptarget.transform(toLab); << 287 << 288 #ifdef debugDoubleDiffraction << 289 G4cout << "Pprojectile after boost to Lab: << 290 G4cout << "Ptarget after boost to Lab: << 291 #endif << 292 71 293 target->Set4Momentum(Ptarget); << 72 G4LorentzVector Pprojectile=projectile->Get4Momentum(); 294 projectile->Set4Momentum(Pprojectile); << 73 >> 74 // -------------------- Projectile parameters ----------------------------------- >> 75 G4bool PutOnMassShell=0; >> 76 >> 77 // G4double M0projectile=projectile->GetDefinition()->GetPDGMass(); // With de-excitation >> 78 G4double M0projectile = Pprojectile.mag(); // Without de-excitation >> 79 >> 80 if(M0projectile < projectile->GetDefinition()->GetPDGMass()) >> 81 { >> 82 PutOnMassShell=1; >> 83 M0projectile=projectile->GetDefinition()->GetPDGMass(); >> 84 } >> 85 >> 86 G4double Mprojectile2 = M0projectile * M0projectile; >> 87 >> 88 G4int PDGcode=projectile->GetDefinition()->GetPDGEncoding(); >> 89 G4int absPDGcode=std::abs(PDGcode); >> 90 G4double ProjectileDiffCut; >> 91 G4double AveragePt2; >> 92 >> 93 if( absPDGcode > 1000 ) //------Projectile is baryon -------- >> 94 { >> 95 ProjectileDiffCut = 1.1; // GeV >> 96 AveragePt2 = 0.3; // GeV^2 >> 97 } >> 98 else if( absPDGcode == 211 || PDGcode == 111) //------Projectile is Pion ----------- >> 99 { >> 100 ProjectileDiffCut = 1.0; // GeV >> 101 AveragePt2 = 0.3; // GeV^2 >> 102 } >> 103 else if( absPDGcode == 321 || PDGcode == -311) //------Projectile is Kaon ----------- >> 104 { >> 105 ProjectileDiffCut = 1.1; // GeV >> 106 AveragePt2 = 0.3; // GeV^2 >> 107 } >> 108 else //------Projectile is undefined, Nucleon assumed >> 109 { >> 110 ProjectileDiffCut = 1.1; // GeV >> 111 AveragePt2 = 0.3; // GeV^2 >> 112 }; >> 113 >> 114 ProjectileDiffCut = ProjectileDiffCut * GeV; >> 115 AveragePt2 = AveragePt2 * GeV*GeV; >> 116 >> 117 // -------------------- Target parameters ---------------------------------------------- >> 118 G4LorentzVector Ptarget=target->Get4Momentum(); >> 119 >> 120 G4double M0target = Ptarget.mag(); >> 121 >> 122 if(M0target < target->GetDefinition()->GetPDGMass()) >> 123 { >> 124 PutOnMassShell=1; >> 125 M0target=target->GetDefinition()->GetPDGMass(); >> 126 } >> 127 >> 128 G4double Mtarget2 = M0target * M0target; //Ptarget.mag2(); // for AA-inter. >> 129 >> 130 G4double NuclearNucleonDiffCut = 1.1*GeV; >> 131 >> 132 G4double ProjectileDiffCut2 = ProjectileDiffCut * ProjectileDiffCut; >> 133 G4double NuclearNucleonDiffCut2 = NuclearNucleonDiffCut * NuclearNucleonDiffCut; >> 134 >> 135 // Transform momenta to cms and then rotate parallel to z axis; >> 136 >> 137 G4LorentzVector Psum; >> 138 Psum=Pprojectile+Ptarget; >> 139 >> 140 G4LorentzRotation toCms(-1*Psum.boostVector()); >> 141 >> 142 G4LorentzVector Ptmp=toCms*Pprojectile; >> 143 >> 144 if ( Ptmp.pz() <= 0. ) >> 145 { >> 146 // "String" moving backwards in CMS, abort collision !! >> 147 //G4cout << " abort Collision!! " << G4endl; >> 148 return false; >> 149 } >> 150 >> 151 toCms.rotateZ(-1*Ptmp.phi()); >> 152 toCms.rotateY(-1*Ptmp.theta()); >> 153 >> 154 G4LorentzRotation toLab(toCms.inverse()); >> 155 >> 156 Pprojectile.transform(toCms); >> 157 Ptarget.transform(toCms); >> 158 >> 159 G4double Pt2; >> 160 G4double ProjMassT2, ProjMassT; >> 161 G4double TargMassT2, TargMassT; >> 162 G4double PZcms2, PZcms; >> 163 G4double PMinusNew, TPlusNew; >> 164 >> 165 G4double S=Psum.mag2(); >> 166 G4double SqrtS=std::sqrt(S); >> 167 >> 168 if(SqrtS < 2200*MeV) {return false;} // The model cannot work for pp-interactions >> 169 // at Plab < 1.3 GeV/c. Uzhi >> 170 >> 171 PZcms2=(S*S+Mprojectile2*Mprojectile2+Mtarget2*Mtarget2- >> 172 2*S*Mprojectile2-2*S*Mtarget2-2*Mprojectile2*Mtarget2)/4./S; >> 173 if(PZcms2 < 0) >> 174 {return false;} // It can be in an interaction with off-shell nuclear nucleon >> 175 >> 176 PZcms = std::sqrt(PZcms2); >> 177 >> 178 if(PutOnMassShell) >> 179 { >> 180 if(Pprojectile.z() > 0.) >> 181 { >> 182 Pprojectile.setPz( PZcms); >> 183 Ptarget.setPz( -PZcms); >> 184 } >> 185 else >> 186 { >> 187 Pprojectile.setPz(-PZcms); >> 188 Ptarget.setPz( PZcms); >> 189 }; >> 190 >> 191 Pprojectile.setE(std::sqrt(Mprojectile2+ >> 192 Pprojectile.x()*Pprojectile.x()+ >> 193 Pprojectile.y()*Pprojectile.y()+ >> 194 PZcms2)); >> 195 Ptarget.setE(std::sqrt( Mtarget2 + >> 196 Ptarget.x()*Ptarget.x()+ >> 197 Ptarget.y()*Ptarget.y()+ >> 198 PZcms2)); >> 199 } >> 200 >> 201 G4double maxPtSquare = PZcms2; >> 202 >> 203 //G4cout << "Pprojectile aft boost : " << Pprojectile << G4endl; >> 204 //G4cout << "Ptarget aft boost : " << Ptarget << G4endl; >> 205 // G4cout << "cms aft boost : " << (Pprojectile+ Ptarget) << G4endl; >> 206 >> 207 // G4cout << " Projectile Xplus / Xminus : " << >> 208 // Pprojectile.plus() << " / " << Pprojectile.minus() << G4endl; >> 209 // G4cout << " Target Xplus / Xminus : " << >> 210 // Ptarget.plus() << " / " << Ptarget.minus() << G4endl; >> 211 >> 212 G4LorentzVector Qmomentum; >> 213 G4double Qminus, Qplus; >> 214 >> 215 // /* Vova >> 216 G4int whilecount=0; >> 217 do { >> 218 // Generate pt >> 219 >> 220 if (whilecount++ >= 500 && (whilecount%100)==0) >> 221 // G4cout << "G4QGSDiffractiveExcitation::ExciteParticipants possibly looping" >> 222 // << ", loop count/ maxPtSquare : " >> 223 // << whilecount << " / " << maxPtSquare << G4endl; >> 224 if (whilecount > 1000 ) >> 225 { >> 226 Qmomentum=G4LorentzVector(0.,0.,0.,0.); >> 227 return false; // Ignore this interaction >> 228 } >> 229 >> 230 Qmomentum=G4LorentzVector(GaussianPt(AveragePt2,maxPtSquare),0); >> 231 >> 232 //G4cout << "generated Pt " << Qmomentum << G4endl; >> 233 //G4cout << "Pprojectile with pt : " << Pprojectile+Qmomentum << G4endl; >> 234 //G4cout << "Ptarget with pt : " << Ptarget-Qmomentum << G4endl; >> 235 >> 236 // Momentum transfer >> 237 /* // Uzhi >> 238 G4double Xmin = minmass / ( Pprojectile.e() + Ptarget.e() ); >> 239 G4double Xmax=1.; >> 240 G4double Xplus =ChooseX(Xmin,Xmax); >> 241 G4double Xminus=ChooseX(Xmin,Xmax); >> 242 >> 243 // G4cout << " X-plus " << Xplus << G4endl; >> 244 // G4cout << " X-minus " << Xminus << G4endl; >> 245 >> 246 G4double pt2=G4ThreeVector(Qmomentum.vect()).mag2(); >> 247 G4double Qplus =-1 * pt2 / Xminus/Ptarget.minus(); >> 248 G4double Qminus= pt2 / Xplus /Pprojectile.plus(); >> 249 */ // Uzhi * >> 250 >> 251 Pt2=G4ThreeVector(Qmomentum.vect()).mag2(); >> 252 ProjMassT2=Mprojectile2+Pt2; >> 253 ProjMassT =std::sqrt(ProjMassT2); >> 254 >> 255 TargMassT2=Mtarget2+Pt2; >> 256 TargMassT =std::sqrt(TargMassT2); >> 257 >> 258 PZcms2=(S*S+ProjMassT2*ProjMassT2+ >> 259 TargMassT2*TargMassT2- >> 260 2.*S*ProjMassT2-2.*S*TargMassT2- >> 261 2.*ProjMassT2*TargMassT2)/4./S; >> 262 if(PZcms2 < 0 ) {PZcms2=0;}; >> 263 PZcms =std::sqrt(PZcms2); >> 264 >> 265 G4double PMinusMin=std::sqrt(ProjMassT2+PZcms2)-PZcms; >> 266 G4double PMinusMax=SqrtS-TargMassT; >> 267 >> 268 PMinusNew=ChooseP(PMinusMin,PMinusMax); >> 269 Qminus=PMinusNew-Pprojectile.minus(); >> 270 >> 271 G4double TPlusMin=std::sqrt(TargMassT2+PZcms2)-PZcms; >> 272 G4double TPlusMax=SqrtS-ProjMassT; >> 273 >> 274 TPlusNew=ChooseP(TPlusMin, TPlusMax); >> 275 Qplus=-(TPlusNew-Ptarget.plus()); >> 276 >> 277 Qmomentum.setPz( (Qplus-Qminus)/2 ); >> 278 Qmomentum.setE( (Qplus+Qminus)/2 ); >> 279 >> 280 //G4cout << "Qplus / Qminus " << Qplus << " / " << Qminus<<G4endl; >> 281 // G4cout << "pt2" << pt2 << G4endl; >> 282 // G4cout << "Qmomentum " << Qmomentum << G4endl; >> 283 // G4cout << " Masses (P/T) : " << (Pprojectile+Qmomentum).mag() << >> 284 // " / " << (Ptarget-Qmomentum).mag() << G4endl; >> 285 /* // Uzhi >> 286 } while ( (Pprojectile+Qmomentum).mag2() <= Mprojectile2 || >> 287 (Ptarget-Qmomentum).mag2() <= Mtarget2 ); >> 288 */ // Uzhi * >> 289 >> 290 >> 291 } while (( (Pprojectile+Qmomentum).mag2() < Mprojectile2 || // Uzhi No without excitation >> 292 (Ptarget -Qmomentum).mag2() < Mtarget2 ) || // Uzhi >> 293 ( (Pprojectile+Qmomentum).mag2() < ProjectileDiffCut2 && // Uzhi No double Diffraction >> 294 (Ptarget -Qmomentum).mag2() < NuclearNucleonDiffCut2) );// Uzhi >> 295 >> 296 if((Ptarget-Qmomentum).mag2() < NuclearNucleonDiffCut2) // Uzhi Projectile diffraction >> 297 { >> 298 G4double TMinusNew=SqrtS-PMinusNew; >> 299 Qminus=Ptarget.minus()-TMinusNew; >> 300 TPlusNew=TargMassT2/TMinusNew; >> 301 Qplus=Ptarget.plus()-TPlusNew; >> 302 >> 303 Qmomentum.setPz( (Qplus-Qminus)/2 ); >> 304 Qmomentum.setE( (Qplus+Qminus)/2 ); >> 305 } >> 306 else if((Pprojectile+Qmomentum).mag2() < ProjectileDiffCut2) // Uzhi Target diffraction >> 307 { >> 308 G4double PPlusNew=SqrtS-TPlusNew; >> 309 Qplus=PPlusNew-Pprojectile.plus(); >> 310 PMinusNew=ProjMassT2/PPlusNew; >> 311 Qminus=PMinusNew-Pprojectile.minus(); >> 312 >> 313 Qmomentum.setPz( (Qplus-Qminus)/2 ); >> 314 Qmomentum.setE( (Qplus+Qminus)/2 ); >> 315 }; >> 316 >> 317 Pprojectile += Qmomentum; >> 318 Ptarget -= Qmomentum; >> 319 >> 320 // Vova >> 321 >> 322 /* >> 323 Pprojectile.setPz(0.); >> 324 Pprojectile.setE(SqrtS-M0target); >> 325 >> 326 Ptarget.setPz(0.); >> 327 Ptarget.setE(M0target); >> 328 */ >> 329 >> 330 //G4cout << "Pprojectile with Q : " << Pprojectile << G4endl; >> 331 //G4cout << "Ptarget with Q : " << Ptarget << G4endl; >> 332 >> 333 // G4cout << "Projectile back: " << toLab * Pprojectile << G4endl; >> 334 // G4cout << "Target back: " << toLab * Ptarget << G4endl; >> 335 >> 336 // Transform back and update SplitableHadron Participant. >> 337 Pprojectile.transform(toLab); >> 338 Ptarget.transform(toLab); >> 339 >> 340 //G4cout << "Pprojectile with Q M: " << Pprojectile<<" "<< Pprojectile.mag() << G4endl; >> 341 //G4cout << "Ptarget with Q M: " << Ptarget <<" "<< Ptarget.mag() << G4endl; >> 342 >> 343 //G4cout << "Target mass " << Ptarget.mag() << G4endl; >> 344 >> 345 target->Set4Momentum(Ptarget); 295 346 296 return true; << 347 //G4cout << "Projectile mass " << Pprojectile.mag() << G4endl; >> 348 >> 349 projectile->Set4Momentum(Pprojectile); >> 350 >> 351 return true; 297 } 352 } 298 353 299 354 300 G4ExcitedString * G4QGSDiffractiveExcitation:: 355 G4ExcitedString * G4QGSDiffractiveExcitation:: 301 String(G4VSplitableHadron * hadron, G4bool isP 356 String(G4VSplitableHadron * hadron, G4bool isProjectile) const 302 { 357 { 303 hadron->SplitUp(); << 358 hadron->SplitUp(); 304 G4Parton *start= hadron->GetNextParton(); << 359 G4Parton *start= hadron->GetNextParton(); 305 if ( start==NULL) << 360 if ( start==NULL) 306 { G4cout << " G4QGSDiffractiveExcitation::St << 361 { G4cout << " G4FTFModel::String() Error:No start parton found"<< G4endl; 307 return NULL; << 362 return NULL; 308 } << 363 } 309 G4Parton *end = hadron->GetNextParton(); << 364 G4Parton *end = hadron->GetNextParton(); 310 if ( end==NULL) << 365 if ( end==NULL) 311 { G4cout << " G4QGSDiffractiveExcitation::St << 366 { G4cout << " G4FTFModel::String() Error:No end parton found"<< G4endl; 312 return NULL; << 367 return NULL; 313 } << 368 } 314 << 369 315 G4ExcitedString * string; << 370 G4ExcitedString * string; 316 if ( isProjectile ) << 371 if ( isProjectile ) 317 { << 372 { 318 string= new G4ExcitedString(end,start, +1) << 373 string= new G4ExcitedString(end,start, +1); 319 } else { << 374 } else { 320 string= new G4ExcitedString(start,end, -1) << 375 string= new G4ExcitedString(start,end, -1); 321 } << 376 } 322 << 377 323 string->SetPosition(hadron->GetPosition()); << 378 string->SetPosition(hadron->GetPosition()); 324 << 379 325 // momenta of string ends << 380 // momenta of string ends 326 << 381 G4double ptSquared= hadron->Get4Momentum().perp2(); 327 G4double maxAvailMomentumSquared=sqr(hadron- << 382 G4double transverseMassSquared= hadron->Get4Momentum().plus() 328 << 383 * hadron->Get4Momentum().minus(); 329 G4double widthOfPtSquare = 0.5*sqr(GeV); << 384 330 G4ThreeVector pt=GaussianPt(widthOfPtSquare, << 385 331 << 386 G4double maxAvailMomentumSquared= 332 G4LorentzVector Pstart(G4LorentzVector(pt,0. << 387 sqr( std::sqrt(transverseMassSquared) - std::sqrt(ptSquared) ); 333 G4LorentzVector Pend; << 388 334 Pend.setPx(hadron->Get4Momentum().px() - pt. << 389 G4double widthOfPtSquare = 0.25; // Uzhi <Pt^2>=0.25 ?????????????????? 335 Pend.setPy(hadron->Get4Momentum().py() - pt. << 390 G4ThreeVector pt=GaussianPt(widthOfPtSquare,maxAvailMomentumSquared); 336 << 391 337 G4double tm1=hadron->Get4Momentum().minus() << 392 G4LorentzVector Pstart(G4LorentzVector(pt,0.)); 338 ( Pend.perp2()-Pstart.perp2() ) / had << 393 G4LorentzVector Pend; 339 << 394 Pend.setPx(hadron->Get4Momentum().px() - pt.x()); 340 G4double tm2= std::sqrt( std::max(0., sqr(tm << 395 Pend.setPy(hadron->Get4Momentum().py() - pt.y()); 341 4. * Pend.perp2() * hadron->Get4Momen << 396 342 / hadron->Get4Momentum().plus() )); << 397 G4double tm1=hadron->Get4Momentum().minus() + 343 << 398 ( Pend.perp2()-Pstart.perp2() ) / hadron->Get4Momentum().plus(); 344 G4int Sign= isProjectile ? -1 : 1; << 399 345 << 400 G4double tm2= std::sqrt( std::max(0., sqr(tm1) - 346 G4double endMinus = 0.5 * (tm1 + Sign*tm2); << 401 4. * Pend.perp2() * hadron->Get4Momentum().minus() 347 G4double startMinus= hadron->Get4Momentum(). << 402 / hadron->Get4Momentum().plus() )); 348 << 403 349 G4double startPlus= Pstart.perp2() / startM << 404 G4int Sign= isProjectile ? -1 : 1; 350 G4double endPlus = hadron->Get4Momentum().p << 405 351 << 406 G4double endMinus = 0.5 * (tm1 + Sign*tm2); 352 Pstart.setPz(0.5*(startPlus - startMinus)); << 407 G4double startMinus= hadron->Get4Momentum().minus() - endMinus; 353 Pstart.setE(0.5*(startPlus + startMinus)); << 408 354 << 409 G4double startPlus= Pstart.perp2() / startMinus; 355 Pend.setPz(0.5*(endPlus - endMinus)); << 410 G4double endPlus = hadron->Get4Momentum().plus() - startPlus; 356 Pend.setE(0.5*(endPlus + endMinus)); << 411 357 << 412 Pstart.setPz(0.5*(startPlus - startMinus)); 358 start->Set4Momentum(Pstart); << 413 Pstart.setE(0.5*(startPlus + startMinus)); 359 end->Set4Momentum(Pend); << 414 360 << 415 Pend.setPz(0.5*(endPlus - endMinus)); 361 #ifdef debugQGSdiffExictation << 416 Pend.setE(0.5*(endPlus + endMinus)); 362 G4cout << " generated string flavors << 417 363 G4cout << " generated string momenta: qu << 418 start->Set4Momentum(Pstart); 364 G4cout << " generated string momenta: Diqu << 419 end->Set4Momentum(Pend); 365 G4cout << " sum of ends << 420 366 G4cout << " Original << 421 #ifdef G4_FTFDEBUG 367 #endif << 422 G4cout << " generated string flavors " << start->GetPDGcode() << " / " << end->GetPDGcode() << G4endl; >> 423 G4cout << " generated string momenta: quark " << start->Get4Momentum() << "mass : " <<start->Get4Momentum().mag()<< G4endl; >> 424 G4cout << " generated string momenta: Diquark " << end ->Get4Momentum() << "mass : " <<end->Get4Momentum().mag()<< G4endl; >> 425 G4cout << " sum of ends " << Pstart+Pend << G4endl; >> 426 G4cout << " Original " << hadron->Get4Momentum() << G4endl; >> 427 #endif 368 428 369 return string; << 429 return string; 370 } 430 } 371 431 372 432 373 // --------- private methods ----------------- 433 // --------- private methods ---------------------- 374 434 375 G4double G4QGSDiffractiveExcitation::ChooseP(G << 435 G4double G4QGSDiffractiveExcitation::ChooseP(G4double Pmin, G4double Pmax) const // Uzhi 376 { 436 { 377 // choose an x between Xmin and Xmax with P( << 437 // choose an x between Xmin and Xmax with P(x) ~ 1/x 378 // to be improved... << 379 438 380 G4double range=Pmax-Pmin; << 439 // to be improved... 381 440 382 if ( Pmin <= 0. || range <=0. ) << 441 G4double range=Pmax-Pmin; // Uzhi 383 { << 442 384 G4cout << " Pmin, range : " << Pmin << " , << 443 if ( Pmin <= 0. || range <=0. ) 385 throw G4HadronicException(__FILE__, __LINE << 444 { 386 } << 445 G4cout << " Pmin, range : " << Pmin << " , " << range << G4endl; 387 << 446 throw G4HadronicException(__FILE__, __LINE__, "G4QGSDiffractiveExcitation::ChooseP : Invalid arguments "); 388 G4double P; << 447 } 389 P=Pmin * G4Pow::GetInstance()->powA(Pmax/Pmi << 390 //debug-hpw cout << "DiffractiveX "<<x<<G4en << 391 return P; << 392 } << 393 448 >> 449 G4double P; >> 450 /* // Uzhi >> 451 do { >> 452 x=Xmin + G4UniformRand() * range; >> 453 } while ( Xmin/x < G4UniformRand() ); >> 454 */ // Uzhi 394 455 395 G4ThreeVector G4QGSDiffractiveExcitation::Gaus << 456 P=Pmin * std::pow(Pmax/Pmin,G4UniformRand()); // Uzhi >> 457 >> 458 //debug-hpw cout << "DiffractiveX "<<x<<G4endl; >> 459 return P; >> 460 } >> 461 >> 462 G4ThreeVector G4QGSDiffractiveExcitation::GaussianPt(G4double AveragePt2, G4double maxPtSquare) const // Uzhi 396 { // @@ this method is used in FTF 463 { // @@ this method is used in FTFModel as well. Should go somewhere common! 397 G4double Pt2; << 398 464 399 Pt2 = -AveragePt2 * G4Log(1. + G4UniformRand << 465 G4double Pt2; >> 466 /* // Uzhi >> 467 do { >> 468 pt2=widthSquare * std::log( G4UniformRand() ); >> 469 } while ( pt2 > maxPtSquare); >> 470 */ // Uzhi >> 471 >> 472 Pt2 = -AveragePt2 * std::log(1. + G4UniformRand() * (std::exp(-maxPtSquare/AveragePt2)-1.));// Uzhi 400 473 401 G4double Pt=std::sqrt(Pt2); << 474 G4double Pt=std::sqrt(Pt2); 402 475 403 G4double phi=G4UniformRand() * twopi; << 476 G4double phi=G4UniformRand() * twopi; 404 477 405 return G4ThreeVector (Pt*std::cos(phi), Pt*s << 478 return G4ThreeVector (Pt*std::cos(phi), Pt*std::sin(phi), 0.); 406 } 479 } 407 480