Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4FTFAnnihilation.cc 91914 2015-08-11 07:00:39Z gcosmo $ 27 // 28 // 28 29 29 // ------------------------------------------- 30 // ------------------------------------------------------------ 30 // GEANT 4 class implemetation file 31 // GEANT 4 class implemetation file 31 // 32 // 32 // ---------------- G4FTFAnnihilation --- 33 // ---------------- G4FTFAnnihilation -------------- 33 // by V. Uzhinsky, Spring 2011. 34 // by V. Uzhinsky, Spring 2011. 34 // Take a projectile and a targ 35 // Take a projectile and a target 35 // make annihilation or re-orangement o 36 // make annihilation or re-orangement of quarks and anti-quarks. 36 // Ideas of Quark-Gluon-String model my A. 37 // Ideas of Quark-Gluon-String model my A. Capella and A.B. Kaidalov 37 // are implemented. 38 // are implemented. 38 // ------------------------------------------- 39 // --------------------------------------------------------------------- 39 40 40 #include "globals.hh" 41 #include "globals.hh" 41 #include "Randomize.hh" 42 #include "Randomize.hh" 42 #include "G4PhysicalConstants.hh" 43 #include "G4PhysicalConstants.hh" 43 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 44 45 45 #include "G4DiffractiveSplitableHadron.hh" 46 #include "G4DiffractiveSplitableHadron.hh" 46 #include "G4DiffractiveExcitation.hh" 47 #include "G4DiffractiveExcitation.hh" 47 #include "G4FTFParameters.hh" 48 #include "G4FTFParameters.hh" 48 #include "G4ElasticHNScattering.hh" 49 #include "G4ElasticHNScattering.hh" 49 #include "G4FTFAnnihilation.hh" 50 #include "G4FTFAnnihilation.hh" 50 51 51 #include "G4LorentzRotation.hh" 52 #include "G4LorentzRotation.hh" 52 #include "G4RotationMatrix.hh" 53 #include "G4RotationMatrix.hh" 53 #include "G4ThreeVector.hh" 54 #include "G4ThreeVector.hh" 54 #include "G4ParticleDefinition.hh" 55 #include "G4ParticleDefinition.hh" 55 #include "G4VSplitableHadron.hh" 56 #include "G4VSplitableHadron.hh" 56 #include "G4ExcitedString.hh" 57 #include "G4ExcitedString.hh" 57 #include "G4ParticleTable.hh" 58 #include "G4ParticleTable.hh" 58 #include "G4Neutron.hh" 59 #include "G4Neutron.hh" 59 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleDefinition.hh" 60 61 61 #include "G4Exp.hh" 62 #include "G4Exp.hh" 62 #include "G4Log.hh" 63 #include "G4Log.hh" 63 #include "G4Pow.hh" 64 #include "G4Pow.hh" 64 65 >> 66 //#include "G4ios.hh" 65 //#include "UZHI_diffraction.hh" 67 //#include "UZHI_diffraction.hh" 66 68 67 #include "G4ParticleTable.hh" << 68 69 69 //============================================ 70 //============================================================================ 70 71 71 //#define debugFTFannih << 72 //define debugFTFannih 72 73 73 74 74 //============================================ 75 //============================================================================ 75 76 76 G4FTFAnnihilation::G4FTFAnnihilation() {} 77 G4FTFAnnihilation::G4FTFAnnihilation() {} 77 78 78 79 79 //============================================ 80 //============================================================================ 80 81 81 G4FTFAnnihilation::~G4FTFAnnihilation() {} 82 G4FTFAnnihilation::~G4FTFAnnihilation() {} 82 83 83 84 84 //============================================ 85 //============================================================================ 85 86 86 G4bool G4FTFAnnihilation::Annihilate( G4VSplit 87 G4bool G4FTFAnnihilation::Annihilate( G4VSplitableHadron* projectile, 87 G4VSplit 88 G4VSplitableHadron* target, 88 G4VSplit 89 G4VSplitableHadron*& AdditionalString, 89 G4FTFPar 90 G4FTFParameters* theParameters ) const { 90 91 91 #ifdef debugFTFannih 92 #ifdef debugFTFannih 92 G4cout << "---------------------------- Anni 93 G4cout << "---------------------------- Annihilation----------------" << G4endl; 93 #endif 94 #endif 94 95 95 CommonVariables common; << 96 << 97 // Projectile parameters 96 // Projectile parameters 98 common.Pprojectile = projectile->Get4Momentu << 97 G4LorentzVector Pprojectile = projectile->Get4Momentum(); 99 G4int ProjectilePDGcode = projectile->GetDef 98 G4int ProjectilePDGcode = projectile->GetDefinition()->GetPDGEncoding(); 100 if ( ProjectilePDGcode > 0 ) { 99 if ( ProjectilePDGcode > 0 ) { 101 target->SetStatus( 3 ); << 100 target->SetStatus( 3 ); // 2->3 Uzhi Oct 2014 102 return false; 101 return false; 103 } 102 } 104 G4double M0projectile2 = common.Pprojectile. << 103 //G4double M0projectile = Pprojectile.mag(); >> 104 //G4double M0projectile2 = projectile->GetDefinition()->GetPDGMass() * >> 105 // projectile->GetDefinition()->GetPDGMass(); >> 106 G4double M0projectile2 = Pprojectile.mag2(); 105 107 106 // Target parameters 108 // Target parameters 107 G4int TargetPDGcode = target->GetDefinition( 109 G4int TargetPDGcode = target->GetDefinition()->GetPDGEncoding(); 108 common.Ptarget = target->Get4Momentum(); << 110 G4LorentzVector Ptarget = target->Get4Momentum(); 109 G4double M0target2 = common.Ptarget.mag2(); << 111 //G4double M0target = Ptarget.mag(); >> 112 //G4double M0target2 = target->GetDefinition()->GetPDGMass() * >> 113 // target->GetDefinition()->GetPDGMass(); >> 114 G4double M0target2 = Ptarget.mag2(); 110 115 111 #ifdef debugFTFannih 116 #ifdef debugFTFannih 112 G4cout << "PDG codes " << ProjectilePDGcode 117 G4cout << "PDG codes " << ProjectilePDGcode << " " << TargetPDGcode << G4endl 113 << "Pprojec " << common.Pprojectile < << 118 << "Pprojec " << Pprojectile << " " << Pprojectile.mag() << G4endl 114 << "Ptarget " << common.Ptarget << << 119 << "Ptarget " << Ptarget << " " << Ptarget.mag() << G4endl 115 << "M0 proj target " << std::sqrt( M0 120 << "M0 proj target " << std::sqrt( M0projectile2 ) 116 << " " << std::sqrt( M0target2 ) << G 121 << " " << std::sqrt( M0target2 ) << G4endl; 117 #endif 122 #endif 118 123 >> 124 G4double AveragePt2 = theParameters->GetAveragePt2(); >> 125 119 // Kinematical properties of the interaction 126 // Kinematical properties of the interactions 120 G4LorentzVector Psum = common.Pprojectile + << 127 G4LorentzVector Psum; // 4-momentum in CMS 121 common.S = Psum.mag2(); << 128 Psum = Pprojectile + Ptarget; 122 common.SqrtS = std::sqrt( common.S ); << 129 G4double S = Psum.mag2(); >> 130 123 #ifdef debugFTFannih 131 #ifdef debugFTFannih 124 G4cout << "Psum SqrtS S " << Psum << " " << << 132 G4cout << "Psum SqrtS S " << Psum << " " << std::sqrt( S ) << " " << S << G4endl; 125 #endif 133 #endif 126 134 127 // Transform momenta to cms and then rotate 135 // Transform momenta to cms and then rotate parallel to z axis 128 G4LorentzRotation toCms( -1*Psum.boostVector 136 G4LorentzRotation toCms( -1*Psum.boostVector() ); 129 G4LorentzVector Ptmp( toCms*common.Pprojecti << 137 G4LorentzVector Ptmp = toCms*Pprojectile; 130 toCms.rotateZ( -1*Ptmp.phi() ); 138 toCms.rotateZ( -1*Ptmp.phi() ); 131 toCms.rotateY( -1*Ptmp.theta() ); 139 toCms.rotateY( -1*Ptmp.theta() ); 132 common.toLab = toCms.inverse(); << 140 G4LorentzRotation toLab( toCms.inverse() ); 133 << 134 if ( G4UniformRand() <= G4Pow::GetInstance() << 135 common.RotateStrings = true; << 136 common.RandomRotation.rotateZ( 2.0*pi*G4Un << 137 common.RandomRotation.rotateY( std::acos( << 138 common.RandomRotation.rotateZ( 2.0*pi*G4Un << 139 } << 140 141 >> 142 G4double SqrtS = std::sqrt( S ); >> 143 G4double maxPtSquare; >> 144 G4double X_a( 0.0 ), X_b( 0.0 ), X_c( 0.0 ), X_d( 0.0 ); 141 G4double MesonProdThreshold = projectile->Ge 145 G4double MesonProdThreshold = projectile->GetDefinition()->GetPDGMass() + 142 target->GetDef 146 target->GetDefinition()->GetPDGMass() + 143 ( 2.0*140.0 + 147 ( 2.0*140.0 + 16.0 )*MeV; // 2 Mpi + DeltaE 144 G4double Prel2 = sqr(common.S) + sqr(M0proje << 148 G4double Prel2 = S*S + M0projectile2*M0projectile2 + M0target2*M0target2 - 145 - 2.0*( common.S*(M0project << 149 2.0*S*M0projectile2 - 2.0*S*M0target2 - 2.0*M0projectile2*M0target2; 146 Prel2 /= common.S; << 150 Prel2 /= S; 147 G4double X_a = 0.0, X_b = 0.0, X_c = 0.0, X_ << 151 //G4cout << "Prel2 " << Prel2 << G4endl; 148 if ( Prel2 <= 0.0 ) { << 152 if ( Prel2 <= 0.0 ) { // *MeV*MeV 1600. 149 // Annihilation at rest! Values are copied 153 // Annihilation at rest! Values are copied from Parameters 150 X_a = 625.1; // mb // 3-shirt diagram << 154 X_a = 625.1; // mb // 3-shirt diagram 151 X_b = 0.0; // mb // anti-quark-quark << 155 X_b = 0.0; // 9.780 12 Dec. 2012; // mb // anti-quark-quark annihilation 152 X_c = 49.989; // mb // 2 Q-Qbar string << 156 X_c = 49.989; // mb 153 X_d = 6.614; // mb // One Q-Qbar strin << 157 X_d = 6.614; // mb >> 158 154 #ifdef debugFTFannih 159 #ifdef debugFTFannih 155 G4cout << "Annih at Rest X a b c d " << X_ 160 G4cout << "Annih at Rest X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d 156 << G4endl; 161 << G4endl; 157 #endif 162 #endif >> 163 158 } else { // Annihilation in flight! 164 } else { // Annihilation in flight! 159 G4double FlowF = 1.0 / std::sqrt( Prel2 )* 165 G4double FlowF = 1.0 / std::sqrt( Prel2 )*GeV; >> 166 160 // Process cross sections 167 // Process cross sections 161 X_a = 25.0*FlowF; // mb 3-shirt diagram 168 X_a = 25.0*FlowF; // mb 3-shirt diagram 162 if ( common.SqrtS < MesonProdThreshold ) { << 169 if ( SqrtS < MesonProdThreshold ) { 163 X_b = 3.13 + 140.0*G4Pow::GetInstance()- << 170 X_b = 3.13 + 140.0*G4Pow::GetInstance()->powA( ( MesonProdThreshold - SqrtS )/GeV, 2.5 ); 164 } else { 171 } else { 165 X_b = 6.8*GeV / common.SqrtS; // mb ant << 172 X_b = 6.8*GeV / SqrtS; // mb anti-quark-quark annihilation 166 } 173 } 167 if ( projectile->GetDefinition()->GetPDGMa 174 if ( projectile->GetDefinition()->GetPDGMass() + target->GetDefinition()->GetPDGMass() 168 > common.SqrtS ) { << 175 > SqrtS ) { 169 X_b = 0.0; 176 X_b = 0.0; 170 } 177 } 171 // This can be in an interaction of low en 178 // This can be in an interaction of low energy anti-baryon with off-shell nuclear nucleon 172 X_c = 2.0 * FlowF * sqr( projectile->GetDe 179 X_c = 2.0 * FlowF * sqr( projectile->GetDefinition()->GetPDGMass() + 173 target->GetDefini << 180 target->GetDefinition()->GetPDGMass() ) / S; // mb re-arrangement of 174 << 181 // 2 quarks and 2 anti-quarks 175 X_d = 23.3*GeV*GeV / common.S; // mb anti- << 182 X_d = 23.3*GeV*GeV / S; // mb anti-quark-quark string creation >> 183 176 #ifdef debugFTFannih 184 #ifdef debugFTFannih 177 G4cout << "Annih in Flight X a b c d " << 185 G4cout << "Annih in Flight X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d 178 << G4endl << "SqrtS MesonProdThresh << 186 << G4endl << "SqrtS MesonProdThreshold " << SqrtS << " " << MesonProdThreshold 179 << G4endl; 187 << G4endl; 180 #endif 188 #endif >> 189 181 } 190 } 182 191 183 G4bool isUnknown = false; << 192 if ((ProjectilePDGcode == -2212 || ProjectilePDGcode == -2214)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 184 if ( TargetPDGcode == 2212 || TargetPDGcod << 193 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // Pbar P 185 if ( ProjectilePDGcode == -2212 || << 194 } else if ((ProjectilePDGcode == -2212 || ProjectilePDGcode == -2214)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 186 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // << 195 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // Pbar N 187 } else if ( ProjectilePDGcode == -2112 || << 196 } else if ((ProjectilePDGcode == -2112 || ProjectilePDGcode == -2114)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 188 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // << 197 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // NeutrBar P 189 } else if ( ProjectilePDGcode == -3122 ) { << 198 } else if ((ProjectilePDGcode == -2112 || ProjectilePDGcode == -2114)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 190 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 199 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // NeutrBar N 191 } else if ( ProjectilePDGcode == -3112 ) { << 200 } else if ((ProjectilePDGcode == -3122 || ProjectilePDGcode == -3124)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 192 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 201 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // LambdaBar P 193 } else if ( ProjectilePDGcode == -3212 ) { << 202 } else if ((ProjectilePDGcode == -3122 || ProjectilePDGcode == -3124)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 194 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 203 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // LambdaBar N 195 } else if ( ProjectilePDGcode == -3222 ) { << 204 } else if ((ProjectilePDGcode == -3112 || ProjectilePDGcode == -3114)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 196 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // << 205 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Sigma-Bar P 197 } else if ( ProjectilePDGcode == -3312 ) { << 206 } else if ((ProjectilePDGcode == -3112 || ProjectilePDGcode == -3114)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 198 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // << 207 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // Sigma-Bar N 199 } else if ( ProjectilePDGcode == -3322 ) { << 208 } else if ((ProjectilePDGcode == -3212 || ProjectilePDGcode == -3214)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 200 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 209 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // Sigma0Bar P 201 } else if ( ProjectilePDGcode == -3334 ) { << 210 } else if ((ProjectilePDGcode == -3212 || ProjectilePDGcode == -3214)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 202 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // << 211 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // Sigma0Bar N 203 } else { << 212 } else if ((ProjectilePDGcode == -3222 || ProjectilePDGcode == -3224)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 204 isUnknown = true; << 213 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // Sigma+Bar P 205 } << 214 } else if ((ProjectilePDGcode == -3222 || ProjectilePDGcode == -3224)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 206 } else if ( TargetPDGcode == 2112 || Targe << 215 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Sigma+Bar N 207 if ( ProjectilePDGcode == -2212 || << 216 } else if ((ProjectilePDGcode == -3312 || ProjectilePDGcode == -3314)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 208 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // << 217 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // Xi-Bar P 209 } else if ( ProjectilePDGcode == -2112 || << 218 } else if ((ProjectilePDGcode == -3312 || ProjectilePDGcode == -3314)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 210 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // << 219 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Xi-Bar N 211 } else if ( ProjectilePDGcode == -3122 ) { << 220 } else if ((ProjectilePDGcode == -3322 || ProjectilePDGcode == -3324)&& ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 212 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 221 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Xi0Bar P 213 } else if ( ProjectilePDGcode == -3112 ) { << 222 } else if ((ProjectilePDGcode == -3322 || ProjectilePDGcode == -3324)&& ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 214 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // << 223 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // Xi0Bar N 215 } else if ( ProjectilePDGcode == -3212 ) { << 224 } else if ( ProjectilePDGcode == -3334 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 216 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 225 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // Omega-Bar P 217 } else if ( ProjectilePDGcode == -3222 ) { << 226 } else if ( ProjectilePDGcode == -3334 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 218 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 227 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // Omega-Bar N 219 } else if ( ProjectilePDGcode == -3312 ) { << 220 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 221 } else if ( ProjectilePDGcode == -3322 ) { << 222 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // << 223 } else if ( ProjectilePDGcode == -3334 ) { << 224 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // << 225 } else { << 226 isUnknown = true; << 227 } << 228 } else { 228 } else { 229 isUnknown = true; << 230 } << 231 if ( isUnknown ) { << 232 G4cout << "Unknown anti-baryon for FTF ann 229 G4cout << "Unknown anti-baryon for FTF annihilation: PDGcodes - " 233 << ProjectilePDGcode << " " << Targ 230 << ProjectilePDGcode << " " << TargetPDGcode << G4endl; 234 } 231 } 235 232 236 #ifdef debugFTFannih 233 #ifdef debugFTFannih 237 G4cout << "Annih Actual X a b c d " << X_a < 234 G4cout << "Annih Actual X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d << G4endl; 238 #endif 235 #endif 239 236 240 G4double Xannihilation = X_a + X_b + X_c + X 237 G4double Xannihilation = X_a + X_b + X_c + X_d; 241 238 242 // Projectile unpacking 239 // Projectile unpacking 243 UnpackBaryon( ProjectilePDGcode, common.AQ[0 << 240 G4int AQ[3]; >> 241 UnpackBaryon( ProjectilePDGcode, AQ[0], AQ[1], AQ[2] ); 244 242 245 // Target unpacking 243 // Target unpacking 246 UnpackBaryon( TargetPDGcode, common.Q[0], co << 244 G4int Q[3]; >> 245 UnpackBaryon( TargetPDGcode, Q[0], Q[1], Q[2] ); 247 246 248 G4double Ksi = G4UniformRand(); 247 G4double Ksi = G4UniformRand(); 249 248 250 if ( Ksi < X_a / Xannihilation ) { 249 if ( Ksi < X_a / Xannihilation ) { 251 return Create3QuarkAntiQuarkStrings( proje << 252 } << 253 << 254 G4int resultCode = 99; << 255 if ( Ksi < (X_a + X_b) / Xannihilation ) { << 256 resultCode = Create1DiquarkAntiDiquarkStri << 257 if ( resultCode == 0 ) { << 258 return true; << 259 } else if ( resultCode == 99 ) { << 260 return false; << 261 } << 262 } << 263 << 264 if ( Ksi < ( X_a + X_b + X_c ) / Xannihilati << 265 resultCode = Create2QuarkAntiQuarkStrings( << 266 if ( resultCode == 0 ) { << 267 return true; << 268 } else if ( resultCode == 99 ) { << 269 return false; << 270 } << 271 } << 272 << 273 if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xanni << 274 return Create1QuarkAntiQuarkString( projec << 275 } << 276 << 277 return true; << 278 } << 279 << 280 << 281 //-------------------------------------------- << 282 << 283 G4bool G4FTFAnnihilation:: << 284 Create3QuarkAntiQuarkStrings( G4VSplitableHadr << 285 G4VSplitableHadr << 286 G4VSplitableHadr << 287 G4FTFParameters* << 288 G4FTFAnnihilatio << 289 // Simulation of 3 anti-quark - quark string << 290 << 291 #ifdef debugFTFannih << 292 G4cout << "Process a, 3 shirt diagram" << G4 << 293 #endif << 294 250 295 // Sampling kinematical properties of quark. << 251 // Simulation of 3 anti-quark-quark strings creation >> 252 // Sampling of anti-quark order in projectile 296 253 297 const G4int maxNumberOfLoops = 1000; << 254 #ifdef debugFTFannih 298 G4double MassQ2 = 0.0; // Simp << 255 G4cout << "Process a, 3 shirt diagram" << G4endl; 299 // In p << 256 #endif 300 G4double Quark_Xs[6]; << 301 G4ThreeVector Quark_Mom[6]; << 302 << 303 G4double Alfa_R = 0.5; << 304 G4double AveragePt2 = 200.0*200.0, maxPtSqua << 305 G4double ScaleFactor = 1.0; << 306 G4double Alfa = 0.0, Beta = 0.0; << 307 << 308 G4int NumberOfTries = 0, loopCounter = 0; << 309 << 310 do { << 311 // Sampling X's of anti-baryon and baryon << 312 G4double x1 = 0.0, x2 = 0.0, x3 = 0.0; << 313 G4double Product = 1.0; << 314 for ( G4int iCase = 0; iCase < 2; ++iCase << 315 257 316 G4double r1 = G4UniformRand(), r2 = G4Un << 258 G4int SampledCase = G4RandFlat::shootInt( G4long( 6 ) ); 317 if ( Alfa_R == 1.0 ) { << 318 x1 = 1.0 - std::sqrt( r1 ); << 319 x2 = (1.0 - x1) * r2; << 320 } else { << 321 x1 = sqr( r1 ); << 322 x2 = (1.0 - x1) * sqr( std::sin( pi/2. << 323 } << 324 x3 = 1.0 - x1 - x2; << 325 259 326 G4int index = iCase*3; // 0 for anti-ba << 260 G4int Tmp1( 0 ), Tmp2( 0 ); 327 Quark_Xs[index] = x1; Quark_Xs[index+1] << 261 if ( SampledCase == 0 ) { 328 Product *= (x1*x2*x3); << 262 } else if ( SampledCase == 1 ) { 329 } << 263 Tmp1 = AQ[1]; AQ[1] = AQ[2]; AQ[2] = Tmp1; >> 264 } else if ( SampledCase == 2 ) { >> 265 Tmp1 = AQ[0]; AQ[0] = AQ[1]; AQ[1] = Tmp1; >> 266 } else if ( SampledCase == 3 ) { >> 267 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = AQ[2]; AQ[1] = Tmp1; AQ[2] = Tmp2; >> 268 } else if ( SampledCase == 4 ) { >> 269 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = Tmp2; AQ[1] = AQ[2]; AQ[2] = Tmp1; >> 270 } else if ( SampledCase == 5 ) { >> 271 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = AQ[2]; AQ[1] = Tmp2; AQ[2] = Tmp1; >> 272 } 330 273 331 if ( Product == 0.0 ) continue; << 274 // Set the string properties 332 275 333 ++NumberOfTries; << 276 //G4cout << "String 1 " << AQ[0] << " " << Q[0] << G4endl; 334 if ( NumberOfTries == 100*(NumberOfTries/1 << 277 projectile->SplitUp(); 335 // After a large number of tries, it is << 278 projectile->SetFirstParton( AQ[0] ); 336 ScaleFactor /= 2.0; << 279 projectile->SetSecondParton( Q[0] ); 337 AveragePt2 *= ScaleFactor; << 280 projectile->SetStatus( 0 ); 338 } << 339 281 340 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); << 282 //G4cout << "String 2 " << Q[1] << " " << AQ[1] << G4endl; 341 for ( G4int i = 0; i < 6; ++i ) { << 283 target->SplitUp(); 342 Quark_Mom [i] = GaussianPt( AveragePt2, << 284 target->SetFirstParton( Q[1] ); 343 PtSum += Quark_Mom[i]; << 285 target->SetSecondParton( AQ[1] ); >> 286 target->SetStatus( 0 ); >> 287 >> 288 //G4cout << "String 3 " << AQ[2] << " " << Q[2] << G4endl; >> 289 AdditionalString = new G4DiffractiveSplitableHadron(); >> 290 AdditionalString->SplitUp(); >> 291 AdditionalString->SetFirstParton( AQ[2] ); >> 292 AdditionalString->SetSecondParton( Q[2] ); >> 293 AdditionalString->SetStatus( 0 ); >> 294 //G4cout << G4endl << "*AdditionalString in Annih" << AdditionalString << G4endl; >> 295 >> 296 // Sampling kinematical properties >> 297 // 1 string AQ[0]-Q[0]// 2 string AQ[1]-Q[1]// 3 string AQ[2]-Q[2] >> 298 >> 299 G4ThreeVector Quark_Mom[6]; >> 300 G4double ModMom2[6]; //ModMom[6] >> 301 >> 302 AveragePt2 = 200.0*200.0; maxPtSquare = S; >> 303 >> 304 G4double SumMt( 0.0 ); >> 305 G4double MassQ2 = 0.0; // 100.0*100.0*MeV*MeV; >> 306 G4int NumberOfTries( 0 ); >> 307 G4double ScaleFactor( 1.0 ); >> 308 >> 309 const G4int maxNumberOfLoops = 1000; >> 310 G4int loopCounter = 0; >> 311 do { >> 312 NumberOfTries++; >> 313 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 314 // At large number of tries it would be better to reduce the values of <Pt^2> >> 315 ScaleFactor /= 2.0; >> 316 AveragePt2 *= ScaleFactor; >> 317 } >> 318 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); >> 319 for ( G4int i = 0; i < 6; i++ ) { >> 320 Quark_Mom [i] = GaussianPt( AveragePt2, maxPtSquare ); >> 321 PtSum += Quark_Mom[i]; >> 322 } >> 323 PtSum /= 6.0; >> 324 SumMt = 0.0; >> 325 for( G4int i = 0; i < 6; i++ ) { >> 326 Quark_Mom[i] -= PtSum; >> 327 //ModMom[i] = Quark_Mom[i].mag(); >> 328 ModMom2[i] = Quark_Mom[i].mag2(); >> 329 SumMt += std::sqrt( ModMom2[i] + MassQ2 ); >> 330 } >> 331 } while ( ( SumMt > SqrtS ) && >> 332 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ >> 333 if ( loopCounter >= maxNumberOfLoops ) { >> 334 return false; 344 } 335 } 345 336 346 PtSum /= 6.0; << 337 G4double WminusTarget( 0.0 ), WplusProjectile( 0.0 ); 347 Alfa = 0.0; Beta = 0.0; << 348 338 349 for ( G4int i = 0; i < 6; ++i ) { // Loop << 339 // Closed is variant with sampling of Xs at minimum 350 Quark_Mom[i] -= PtSum; << 340 //G4double SumMod_anti = ModMom[0] + ModMom[1] + ModMom[2]; 351 << 341 //Quark_Mom[0].setZ( ModMom[0]/SumMod_anti ); 352 G4double val = ( Quark_Mom[i].mag2() + M << 342 //Quark_Mom[1].setZ( ModMom[1]/SumMod_anti ); 353 if ( i < 3 ) { // anti-baryon << 343 //Quark_Mom[2].setZ( ModMom[2]/SumMod_anti ); 354 Alfa += val; << 344 //G4double SumMod_bary = ModMom[3] + ModMom[4] + ModMom[5]; 355 } else { // baryon (iCase == 1) << 345 //Quark_Mom[3].setZ( ModMom[3]/SumMod_bary ); 356 Beta += val; << 346 //Quark_Mom[4].setZ( ModMom[4]/SumMod_bary ); >> 347 //Quark_Mom[5].setZ( ModMom[5]/SumMod_bary ); >> 348 //G4double Alfa = SumMod_anti*SumMod_anti; >> 349 //G4double Beta = SumMod_bary*SumMod_bary; >> 350 //G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta >> 351 // - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; >> 352 //WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) )/2.0/SqrtS; >> 353 //WplusProjectile = SqrtS - Beta/WminusTarget; >> 354 // Closed is variant with sampling of Xs at minimum >> 355 >> 356 // Sampling X's of anti-baryon >> 357 G4double Alfa_R = 0.5; >> 358 NumberOfTries = 0; >> 359 ScaleFactor = 1.0; >> 360 G4bool Succes( true ); >> 361 >> 362 loopCounter = 0; >> 363 do { >> 364 >> 365 Succes = true; >> 366 NumberOfTries++; >> 367 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 368 // At large number of tries it would be better to reduce the values of Pt's >> 369 ScaleFactor /= 2.0; 357 } 370 } 358 } << 359 << 360 } while ( ( std::sqrt( Alfa ) + std::sqrt( B << 361 ++loopCounter < maxNumberOfLoops ) << 362 371 363 if ( loopCounter >= maxNumberOfLoops ) { << 372 if ( Alfa_R == 1.0 ) { 364 return false; << 373 G4double Xaq1 = 1.0 - std::sqrt( G4UniformRand() ); 365 } << 374 G4double Xaq2 = (1.0 - Xaq1) * G4UniformRand(); 366 << 375 G4double Xaq3 = 1.0 - Xaq1 - Xaq2; 367 G4double DecayMomentum2 = sqr(common.S) + sq << 376 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); Quark_Mom[2].setZ( Xaq3 ); 368 - 2.0*( common.S*( << 369 << 370 G4double WminusTarget = 0.0, WplusProjectile << 371 WminusTarget = ( common.S - Alfa + Beta + st << 372 WplusProjectile = common.SqrtS - Beta/Wminus << 373 << 374 for ( G4int iCase = 0; iCase < 2; ++iCase ) << 375 G4int index = iCase*3; // << 376 G4double w = WplusProjectile; // << 377 if ( iCase == 1 ) w = - WminusTarget; // << 378 for ( G4int i = 0; i < 3; ++i ) { << 379 G4double Pz = w * Quark_Xs[index+i] / 2. << 380 ( Quark_Mom[index+i].mag2( << 381 ( 2.0 * w * Quark_Xs[index << 382 Quark_Mom[index+i].setZ( Pz ); << 383 } << 384 } << 385 << 386 // Sampling of anti-quark order in projectil << 387 G4int SampledCase = (G4int)G4RandFlat::shoot << 388 G4int Tmp1 = 0, Tmp2 = 0; << 389 switch ( SampledCase ) { << 390 case 1 : Tmp1 = common.AQ[1]; common.AQ[1] << 391 case 2 : Tmp1 = common.AQ[0]; common.AQ[0] << 392 case 3 : Tmp1 = common.AQ[0]; Tmp2 << 393 common.AQ[1] = Tmp1; comm << 394 case 4 : Tmp1 = common.AQ[0]; Tmp2 << 395 common.AQ[1] = common.AQ[2]; comm << 396 case 5 : Tmp1 = common.AQ[0]; Tmp2 << 397 common.AQ[1] = Tmp2; comm << 398 } << 399 << 400 // Set the string properties << 401 // An anti quark - quark pair can have the q << 402 // or a vector meson: the last digit of the << 403 // For simplicity only scalar is considered << 404 G4int NewCode = 0, antiQuark = 0, quark = 0; << 405 G4ParticleDefinition* TestParticle = nullptr << 406 for ( G4int iString = 0; iString < 3; ++iStr << 407 if ( iString == 0 ) { << 408 antiQuark = common.AQ[0]; quark = commo << 409 projectile->SetFirstParton( antiQuark ); << 410 projectile->SetSecondParton( quark ); << 411 projectile->SetStatus( 0 ); << 412 } else if ( iString == 1 ) { << 413 quark = common.Q[1]; antiQuark = common << 414 target->SetFirstParton( quark ); << 415 target->SetSecondParton( antiQuark ); << 416 target->SetStatus( 0 ); << 417 } else { // iString == 2 << 418 antiQuark = common.AQ[2]; quark = commo << 419 } << 420 G4int absAntiQuark = std::abs( antiQuark ) << 421 G4double aKsi = G4UniformRand(); << 422 if ( absAntiQuark == absQuark ) { << 423 if ( absAntiQuark != 3 ) { // Not yet c << 424 NewCode = 111; // Pi0-meson << 425 if ( aKsi < 0.5 ) { << 426 NewCode = 221; // Eta -meso << 427 if ( aKsi < 0.25 ) { << 428 NewCode = 331; // Eta'-meso << 429 } << 430 } << 431 } else { << 432 NewCode = 221; // Eta -meso << 433 if ( aKsi < 0.5 ) { << 434 NewCode = 331; // Eta'-meso << 435 } << 436 } << 437 } else { // Vector mesons - rho, omega, p << 438 if ( absAntiQuark > absQuark ) { << 439 NewCode = absAntiQuark*100 + absQuark* << 440 } else { 377 } else { 441 NewCode = absQuark*100 + absAntiQuark* << 378 G4double Xaq1 = sqr( G4UniformRand() ); >> 379 G4double Xaq2 = (1.0 - Xaq1)*sqr( std::sin( pi/2.0*G4UniformRand() ) ); >> 380 G4double Xaq3 = 1.0 - Xaq1 - Xaq2; >> 381 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); Quark_Mom[2].setZ( Xaq3 ); 442 } 382 } 443 } << 444 if ( iString == 2 ) AdditionalString = new << 445 TestParticle = G4ParticleTable::GetParticl << 446 if ( ! TestParticle ) return false; << 447 if ( iString == 0 ) { << 448 projectile->SetDefinition( TestParticle << 449 theParameters->SetProjMinDiffMass( 0.5 ) << 450 theParameters->SetProjMinNonDiffMass( 0. << 451 } else if ( iString == 1 ) { << 452 target->SetDefinition( TestParticle ); << 453 theParameters->SetTarMinDiffMass( 0.5 ); << 454 theParameters->SetTarMinNonDiffMass( 0.5 << 455 } else { // iString == 2 << 456 AdditionalString->SetDefinition( TestPar << 457 AdditionalString->SetFirstParton( common << 458 AdditionalString->SetSecondParton( commo << 459 AdditionalString->SetStatus( 0 ); << 460 } << 461 } // End of the for loop over the 3 string << 462 << 463 // 1st string AQ[0]-Q[0], 2nd string AQ[1]-Q << 464 383 465 G4LorentzVector Pstring1, Pstring2, Pstring3 << 384 // Sampling X's of baryon 466 G4int QuarkOrder[3] = { 0 }; << 385 if ( Alfa_R == 1.0 ) { 467 G4double YstringMax = 0.0, YstringMin = 0.0; << 386 G4double Xq1 = 1.0 - std::sqrt( G4UniformRand() ); 468 for ( G4int i = 0; i < 3; ++i ) { << 387 G4double Xq2 = (1.0 - Xq1) * G4UniformRand(); 469 G4ThreeVector tmp = Quark_Mom[i] + Quark_M << 388 G4double Xq3 = 1.0 - Xq1 - Xq2; 470 G4LorentzVector Pstring( tmp, std::sqrt( Q << 389 Quark_Mom[3].setZ( Xq1 ); Quark_Mom[4].setZ( Xq2 ); Quark_Mom[5].setZ( Xq3 ); 471 std::sqrt( Q << 472 // Add protection for rapidity = 0.5*ln( << 473 G4double Ystring = 0.0; << 474 if ( Pstring.e() > 1.0e-30 ) { << 475 if ( Pstring.e() + Pstring.pz() < 1.0e-3 << 476 Ystring = -1.0e30; // A very large n << 477 if ( Pstring.e() - Pstring.pz() < 1.0e << 478 Ystring = 1.0e30; // A very large p << 479 } else { // Normal case << 480 Ystring = Pstring.rapidity(); << 481 } << 482 } << 483 } << 484 // Keep ordering in rapidity: "1" highest, << 485 if ( i == 0 ) { << 486 Pstring1 = Pstring; YstringMax = Yst << 487 QuarkOrder[0] = 0; << 488 } else if ( i == 1 ) { << 489 if ( Ystring > YstringMax ) { << 490 Pstring2 = Pstring1; YstringMin = Yst << 491 Pstring1 = Pstring; YstringMax = Yst << 492 QuarkOrder[0] = 1; QuarkOrder[1] = 0; << 493 } else { << 494 Pstring2 = Pstring; YstringMin = Yst << 495 QuarkOrder[1] = 1; << 496 } << 497 } else { // i == 2 << 498 if ( Ystring > YstringMax ) { << 499 Pstring3 = Pstring2; << 500 Pstring2 = Pstring1; << 501 Pstring1 = Pstring; << 502 QuarkOrder[1] = QuarkOrder[0]; << 503 QuarkOrder[2] = QuarkOrder[1]; << 504 QuarkOrder[0] = 2; << 505 } else if ( Ystring > YstringMin ) { << 506 Pstring3 = Pstring2; << 507 Pstring2 = Pstring; << 508 } else { 390 } else { 509 Pstring3 = Pstring; << 391 G4double Xq1 = sqr( G4UniformRand() ); 510 QuarkOrder[2] = 2; << 392 G4double Xq2 = (1.0 - Xq1) * sqr( std::sin( pi/2.0*G4UniformRand() ) ); >> 393 G4double Xq3 = 1.0 - Xq1 - Xq2; >> 394 Quark_Mom[3].setZ( Xq1 ); Quark_Mom[4].setZ( Xq2 ); Quark_Mom[5].setZ( Xq3 ); 511 } 395 } 512 } << 513 } << 514 << 515 G4LorentzVector Quark_4Mom[6]; << 516 for ( G4int i = 0; i < 6; ++i ) { << 517 Quark_4Mom[i] = G4LorentzVector( Quark_Mom << 518 if ( common.RotateStrings ) Quark_4Mom[i] << 519 Quark_4Mom[i].transform( common.toLab ); << 520 } << 521 << 522 projectile->Splitting(); << 523 projectile->GetNextAntiParton()->Set4Momentu << 524 projectile->GetNextParton()->Set4Momentum( Q << 525 << 526 target->Splitting(); << 527 target->GetNextParton()->Set4Momentum( Quark << 528 target->GetNextAntiParton()->Set4Momentum( Q << 529 << 530 AdditionalString->Splitting(); << 531 AdditionalString->GetNextAntiParton()->Set4M << 532 AdditionalString->GetNextParton()->Set4Momen << 533 << 534 common.Pprojectile = Pstring1; // << 535 common.Ptarget = Pstring3; // << 536 G4LorentzVector LeftString( Pstring2 ); // << 537 << 538 if ( common.RotateStrings ) { << 539 common.Pprojectile *= common.RandomRotatio << 540 common.Ptarget *= common.RandomRotatio << 541 LeftString *= common.RandomRotatio << 542 } << 543 << 544 common.Pprojectile.transform( common.toLab ) << 545 common.Ptarget.transform( common.toLab ); << 546 LeftString.transform( common.toLab ); << 547 << 548 // Calculation of the creation time << 549 // Creation time and position of target nucl << 550 projectile->SetTimeOfCreation( target->GetTi << 551 projectile->SetPosition( target->GetPosition << 552 AdditionalString->SetTimeOfCreation( target- << 553 AdditionalString->SetPosition( target->GetPo << 554 << 555 projectile->Set4Momentum( common.Pprojectile << 556 AdditionalString->Set4Momentum( LeftString ) << 557 target->Set4Momentum( common.Ptarget ); << 558 << 559 projectile->IncrementCollisionCount( 1 ); << 560 AdditionalString->IncrementCollisionCount( 1 << 561 target->IncrementCollisionCount( 1 ); << 562 396 563 return true; << 397 G4double Alfa( 0.0 ), Beta( 0.0 ); 564 } << 398 for ( G4int i = 0; i < 3; i++ ) { // For Anti-baryon 565 << 399 if ( Quark_Mom[i].getZ() != 0.0 ) { 566 << 400 Alfa += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); 567 //-------------------------------------------- << 401 } else { 568 << 402 Succes = false; 569 G4int G4FTFAnnihilation:: << 403 } 570 Create1DiquarkAntiDiquarkString( G4VSplitableH << 404 } 571 G4VSplitableH << 405 for ( G4int i = 3; i < 6; i++ ) { // For baryon 572 G4FTFAnnihila << 406 if ( Quark_Mom[i].getZ() != 0.0 ) { 573 // Simulation of anti-diquark-diquark string << 407 Beta += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); 574 // This method returns an integer code - ins << 408 } else { 575 // "0" : successfully ended and nothing el << 409 Succes = false; 576 // "1" : successfully completed, but the w << 410 } 577 // "99" : unsuccessfully ended, nothing els << 411 } 578 412 579 #ifdef debugFTFannih << 413 if ( ! Succes ) continue; 580 G4cout << "Process b, quark - anti-quark ann << 581 #endif << 582 414 583 G4int CandidatsN = 0, CandAQ[9][2] = {}, Can << 415 if ( std::sqrt( Alfa ) + std::sqrt( Beta ) > SqrtS ) { 584 for ( G4int iAQ = 0; iAQ < 3; ++iAQ ) { // << 416 Succes = false; 585 for ( G4int iQ = 0; iQ < 3; ++iQ ) { // << 417 continue; 586 if ( -common.AQ[iAQ] == common.Q[iQ] ) { << 587 // Here "0", "1", "2" means, respectiv << 588 // of the (anti-baryon) projectile or << 589 if ( iAQ == 0 ) { CandAQ[CandidatsN][0 << 590 if ( iAQ == 1 ) { CandAQ[CandidatsN][0 << 591 if ( iAQ == 2 ) { CandAQ[CandidatsN][0 << 592 if ( iQ == 0 ) { CandQ[CandidatsN][0] << 593 if ( iQ == 1 ) { CandQ[CandidatsN][0] << 594 if ( iQ == 2 ) { CandQ[CandidatsN][0] << 595 ++CandidatsN; << 596 } 418 } 597 } << 598 } << 599 419 600 // Remaining two (anti-)quarks that form the << 420 G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta 601 G4int LeftAQ1 = 0, LeftAQ2 = 0, LeftQ1 = 0, << 421 - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; 602 if ( CandidatsN != 0 ) { << 422 603 G4int SampledCase = (G4int)G4RandFlat::sho << 423 WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) ) / 2.0 / SqrtS; 604 LeftAQ1 = common.AQ[ CandAQ[SampledCase][0 << 424 WplusProjectile = SqrtS - Beta/WminusTarget; 605 LeftAQ2 = common.AQ[ CandAQ[SampledCase][1 << 606 LeftQ1 = common.Q[ CandQ[SampledCase][0] << 607 LeftQ2 = common.Q[ CandQ[SampledCase][1] << 608 << 609 // Build anti-diquark and diquark : the la << 610 // of anti-quark - anti-quark and quark - << 611 // or quarks are different. For simplicity << 612 G4int Anti_DQ = 0, DQ = 0; << 613 if ( std::abs( LeftAQ1 ) > std::abs( LeftA << 614 Anti_DQ = 1000*LeftAQ1 + 100*LeftAQ2 - 3 << 615 } else { << 616 Anti_DQ = 1000*LeftAQ2 + 100*LeftAQ1 - 3 << 617 } << 618 if ( std::abs( LeftQ1 ) > std::abs( LeftQ2 << 619 DQ = 1000*LeftQ1 + 100*LeftQ2 + 3; << 620 } else { << 621 DQ = 1000*LeftQ2 + 100*LeftQ1 + 3; << 622 } << 623 425 624 // Set the string properties << 426 } while ( ( ! Succes ) && 625 projectile->SetFirstParton( DQ ); << 427 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ 626 projectile->SetSecondParton( Anti_DQ ); << 428 if ( loopCounter >= maxNumberOfLoops ) { 627 << 429 return false; 628 // It is assumed that quark and di-quark m << 629 G4LorentzVector Pquark = G4LorentzVector( << 630 G4LorentzVector Paquark = G4LorentzVector( << 631 << 632 if ( common.RotateStrings ) { << 633 Pquark *= common.RandomRotation; << 634 Paquark *= common.RandomRotation; << 635 } 430 } 636 431 637 Pquark.transform( common.toLab ); << 432 G4double SqrtScaleF = std::sqrt( ScaleFactor ); 638 Paquark.transform( common.toLab ); << 433 for ( G4int i = 0; i < 3; i++ ) { 639 << 434 G4double Pz = WplusProjectile * Quark_Mom[i].getZ() / 2.0 - 640 projectile->GetNextParton()->Set4Momentum( << 435 ( ScaleFactor * ModMom2[i] + MassQ2 ) / 641 projectile->GetNextAntiParton()->Set4Momen << 436 ( 2.0 * WplusProjectile * Quark_Mom[i].getZ() ); 642 << 437 Quark_Mom[i].setZ( Pz ); 643 projectile->Splitting(); << 438 if ( ScaleFactor != 1.0 ) { 644 << 439 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); 645 projectile->SetStatus( 0 ); << 440 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); 646 target->SetStatus( 4 ); // The target nuc << 441 } 647 common.Pprojectile.setPx( 0.0 ); << 442 } 648 common.Pprojectile.setPy( 0.0 ); << 443 for ( G4int i = 3; i < 6; i++ ) { 649 common.Pprojectile.setPz( 0.0 ); << 444 G4double Pz = -WminusTarget * Quark_Mom[i].getZ() / 2.0 + 650 common.Pprojectile.setE( common.SqrtS ); << 445 ( ScaleFactor * ModMom2[i] + MassQ2 ) / 651 common.Pprojectile.transform( common.toLab << 446 ( 2.0 * WminusTarget * Quark_Mom[i].getZ() ); >> 447 Quark_Mom[i].setZ( Pz ); >> 448 if ( ScaleFactor != 1.0 ) { >> 449 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 450 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 451 } >> 452 } >> 453 //G4cout << "Sum AQ " << Quark_Mom[0] + Quark_Mom[1] + Quark_Mom[2] << G4endl >> 454 // << "Sum Q " << Quark_Mom[3] + Quark_Mom[4] + Quark_Mom[5] << G4endl; >> 455 >> 456 G4ThreeVector tmp = Quark_Mom[0] + Quark_Mom[3]; >> 457 G4LorentzVector Pstring1( tmp, std::sqrt( Quark_Mom[0].mag2() + MassQ2 ) + >> 458 std::sqrt( Quark_Mom[3].mag2() + MassQ2 ) ); >> 459 G4double Ystring1 = Pstring1.rapidity(); >> 460 >> 461 //G4cout << "Mom 1 string " << G4endl << Quark_Mom[0] << G4endl << Quark_Mom[3] << G4endl >> 462 // << tmp << " " << tmp.mag() << G4endl; >> 463 //G4cout << "1 str " << Pstring1 << " " << Pstring1.mag() << " " << Ystring1 << G4endl; >> 464 >> 465 tmp = Quark_Mom[1] + Quark_Mom[4]; >> 466 G4LorentzVector Pstring2( tmp, std::sqrt( Quark_Mom[1].mag2() + MassQ2 ) + >> 467 std::sqrt( Quark_Mom[4].mag2() + MassQ2 ) ); >> 468 G4double Ystring2 = Pstring2.rapidity(); >> 469 >> 470 //G4cout << "Mom 2 string " << G4endl << Quark_Mom[1] << G4endl << Quark_Mom[4] << G4endl >> 471 // << tmp << " " << tmp.mag() << G4endl; >> 472 //G4cout << "2 str " << Pstring2 << " " << Pstring2.mag() << " " << Ystring2 << G4endl; >> 473 >> 474 tmp = Quark_Mom[2] + Quark_Mom[5]; >> 475 G4LorentzVector Pstring3( tmp, std::sqrt( Quark_Mom[2].mag2() + MassQ2 ) + >> 476 std::sqrt( Quark_Mom[5].mag2() + MassQ2 ) ); >> 477 G4double Ystring3 = Pstring3.rapidity(); >> 478 >> 479 //G4cout << "Mom 3 string " << G4endl << Quark_Mom[2] << G4endl << Quark_Mom[5] << G4endl >> 480 // << tmp << " " << tmp.mag() << G4endl; >> 481 //G4cout << "3 str " << Pstring3 << " " << Pstring3.mag() << " " << Ystring3 << G4endl >> 482 // << "SumE " << Pstring1.e() + Pstring2.e() + Pstring3.e() << G4endl >> 483 // << Pstring1.mag() << " " <<Pstring2.mag() << " " << Pstring3.mag() << G4endl; >> 484 //G4int Uzhi; G4cin >> Uzhi; >> 485 >> 486 G4LorentzVector LeftString( 0.0, 0.0, 0.0, 0.0 ); >> 487 if ( Ystring1 > Ystring2 && Ystring2 > Ystring3 ) { >> 488 Pprojectile = Pstring1; >> 489 LeftString = Pstring2; >> 490 Ptarget = Pstring3; >> 491 } >> 492 if ( Ystring1 > Ystring3 && Ystring3 > Ystring2 ) { >> 493 Pprojectile = Pstring1; >> 494 LeftString = Pstring3; >> 495 Ptarget = Pstring2; >> 496 } >> 497 >> 498 if ( Ystring2 > Ystring1 && Ystring1 > Ystring3 ) { >> 499 Pprojectile = Pstring2; >> 500 LeftString = Pstring1; >> 501 Ptarget = Pstring3; >> 502 } >> 503 if ( Ystring2 > Ystring3 && Ystring3 > Ystring1 ) { >> 504 Pprojectile = Pstring2; >> 505 LeftString = Pstring3; >> 506 Ptarget = Pstring1; >> 507 } >> 508 >> 509 if ( Ystring3 > Ystring1 && Ystring1 > Ystring2 ) { >> 510 Pprojectile = Pstring3; >> 511 LeftString = Pstring1; >> 512 Ptarget = Pstring2; >> 513 } >> 514 if ( Ystring3 > Ystring2 && Ystring2 > Ystring1 ) { >> 515 Pprojectile = Pstring3; >> 516 LeftString = Pstring2; >> 517 Ptarget = Pstring1; >> 518 } >> 519 //G4cout << "SumP " << Pprojectile + LeftString + Ptarget << " " << SqrtS << G4endl; >> 520 >> 521 Pprojectile.transform( toLab ); >> 522 LeftString.transform( toLab ); >> 523 Ptarget.transform( toLab ); >> 524 //G4cout << "SumP " << Pprojectile + LeftString + Ptarget << " " << SqrtS << G4endl; 652 525 653 // Calculation of the creation time 526 // Calculation of the creation time 654 // Creation time and position of target nu << 655 projectile->SetTimeOfCreation( target->Get 527 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); 656 projectile->SetPosition( target->GetPositi 528 projectile->SetPosition( target->GetPosition() ); 657 projectile->Set4Momentum( common.Pprojecti << 529 AdditionalString->SetTimeOfCreation( target->GetTimeOfCreation() ); 658 << 530 AdditionalString->SetPosition( target->GetPosition() ); >> 531 // Creation time and position of target nucleon were determined in >> 532 // ReggeonCascade() of G4FTFModel >> 533 >> 534 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; >> 535 projectile->Set4Momentum( Pprojectile ); >> 536 AdditionalString->Set4Momentum( LeftString ); >> 537 target->Set4Momentum( Ptarget ); 659 projectile->IncrementCollisionCount( 1 ); 538 projectile->IncrementCollisionCount( 1 ); >> 539 AdditionalString->IncrementCollisionCount( 1 ); 660 target->IncrementCollisionCount( 1 ); 540 target->IncrementCollisionCount( 1 ); 661 541 662 return 0; // Completed successfully: noth << 542 return true; 663 } // End of if ( CandidatsN != 0 ) << 664 543 665 // If we allow the string to interact with o << 544 } // End of if ( Ksi < X_a / Xannihilation ) 666 // set up MinDiffrMass in Parameters, and as << 667 << 668 return 1; // Successfully ended, but the wo << 669 } << 670 545 >> 546 // Simulation of anti-diquark-diquark string creation 671 547 672 //-------------------------------------------- << 548 if ( Ksi < (X_a + X_b) / Xannihilation ) { 673 549 674 G4int G4FTFAnnihilation:: << 550 #ifdef debugFTFannih 675 Create2QuarkAntiQuarkStrings( G4VSplitableHadr << 551 G4cout << "Process b, quark - anti-quark annihilation, di-q - anti-di-q string" << G4endl; 676 G4VSplitableHadr << 552 #endif 677 G4FTFParameters* << 678 G4FTFAnnihilatio << 679 // Simulation of 2 anti-quark-quark strings << 680 // This method returns an integer code - ins << 681 // "0" : successfully ended and nothing el << 682 // "1" : successfully completed, but the w << 683 // "99" : unsuccessfully ended, nothing els << 684 553 685 #ifdef debugFTFannih << 554 G4int CandidatsN( 0 ), CandAQ[9][2], CandQ[9][2]; 686 G4cout << "Process c, quark - anti-quark and << 555 G4int LeftAQ1( 0 ), LeftAQ2( 0 ), LeftQ1( 0 ), LeftQ2( 0 ); 687 << G4endl; << 688 #endif << 689 556 690 // Sampling kinematical properties: 1st stri << 557 for ( G4int iAQ = 0; iAQ < 3; iAQ++ ) { 691 G4ThreeVector Quark_Mom[4]; << 558 for ( G4int iQ = 0; iQ < 3; iQ++ ) { 692 G4double Quark_Xs[4]; << 559 if ( -AQ[iAQ] == Q[iQ] ) { 693 G4double AveragePt2 = 200.0*200.0, maxPtSqua << 560 if ( iAQ == 0 ) { CandAQ[CandidatsN][0] = 1; CandAQ[CandidatsN][1] = 2; } 694 G4int NumberOfTries = 0, loopCounter = 0; << 561 if ( iAQ == 1 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 2; } 695 const G4int maxNumberOfLoops = 1000; << 562 if ( iAQ == 2 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 1; } 696 G4double Alfa = 0.0, Beta = 0.0; << 563 if ( iQ == 0 ) { CandQ[CandidatsN][0] = 1; CandQ[CandidatsN][1] = 2; } 697 G4double WminusTarget = 0.0, WplusProjectile << 564 if ( iQ == 1 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 2; } 698 do { << 565 if ( iQ == 2 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 1; } 699 // Sampling X's of the 2 quarks and 2 anti << 566 CandidatsN++; 700 << 701 G4double Product = 1.0; << 702 for ( G4int iCase = 0; iCase < 2; ++iCase << 703 G4double x = 0.0, r = G4UniformRand(); << 704 if ( Alfa_R == 1.0 ) { << 705 if ( iCase == 0 ) { // first string << 706 x = std::sqrt( r ); << 707 } else { // second string << 708 x = 1.0 - std::sqrt( r ); << 709 } 567 } 710 } else { << 711 x = sqr( std::sin( pi/2.0*r ) ); << 712 } 568 } 713 G4int index = iCase*2; // 0 for the fir << 714 Quark_Xs[index] = x ; Quark_Xs[index+1] << 715 Product *= x*(1.0-x); << 716 } 569 } >> 570 //G4cout << "CandidatsN " << CandidatsN << G4endl; 717 571 718 if ( Product == 0.0 ) continue; << 572 if ( CandidatsN != 0 ) { >> 573 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); >> 574 LeftAQ1 = AQ[ CandAQ[SampledCase][0] ]; >> 575 LeftAQ2 = AQ[ CandAQ[SampledCase][1] ]; >> 576 LeftQ1 = Q[ CandQ[SampledCase][0] ]; >> 577 LeftQ2 = Q[ CandQ[SampledCase][1] ]; >> 578 >> 579 // Build anti-diquark and diquark >> 580 G4int Anti_DQ( 0 ), DQ( 0 ); >> 581 if ( std::abs( LeftAQ1 ) > std::abs( LeftAQ2 ) ) { >> 582 Anti_DQ = 1000*LeftAQ1 + 100*LeftAQ2 - 3; // 1 >> 583 } else { >> 584 Anti_DQ = 1000*LeftAQ2 + 100*LeftAQ1 - 3; // 1 >> 585 } >> 586 //if ( G4UniformRand() > 0.5 ) Anti_DQ -= 2; >> 587 if ( std::abs( LeftQ1 ) > std::abs( LeftQ2 ) ) { >> 588 DQ = 1000*LeftQ1 + 100*LeftQ2 + 3; // 1 >> 589 } else { >> 590 DQ = 1000*LeftQ2 + 100*LeftQ1 + 3; // 1 >> 591 } >> 592 // if ( G4UniformRand() > 0.5 ) DQ += 2; 719 593 720 ++NumberOfTries; << 594 // Set the string properties 721 if ( NumberOfTries == 100*(NumberOfTries/1 << 595 //G4cout << "Left ADiQ DiQ " << Anti_DQ << " " << DQ << G4endl; 722 // After a large number of tries, it is << 596 projectile->SplitUp(); 723 ScaleFactor /= 2.0; << 597 //projectile->SetFirstParton( Anti_DQ ); 724 AveragePt2 *= ScaleFactor; << 598 //projectile->SetSecondParton( DQ ); 725 } << 599 projectile->SetFirstParton( DQ ); >> 600 projectile->SetSecondParton( Anti_DQ ); >> 601 projectile->SetStatus( 0 ); >> 602 target->SetStatus( 4 ); // The target nucleon has annihilated 3->4 Uzhi Oct 2014 >> 603 Pprojectile.setPx( 0.0 ); >> 604 Pprojectile.setPy( 0.0 ); >> 605 Pprojectile.setPz( 0.0 ); >> 606 Pprojectile.setE( SqrtS ); >> 607 Pprojectile.transform( toLab ); >> 608 >> 609 // Calculation of the creation time >> 610 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 611 projectile->SetPosition( target->GetPosition() ); >> 612 // Creation time and position of target nucleon were determined in >> 613 // ReggeonCascade() of G4FTFModel >> 614 >> 615 //G4cout << "Mproj " << Pprojectile.mag() << G4endl >> 616 // << "Mtarg " << Ptarget.mag() << G4endl; >> 617 projectile->Set4Momentum( Pprojectile ); 726 618 727 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); << 619 projectile->IncrementCollisionCount( 1 ); 728 for( G4int i = 0; i < 4; ++i ) { << 620 target->IncrementCollisionCount( 1 ); 729 Quark_Mom[i] = GaussianPt( AveragePt2, m << 730 PtSum += Quark_Mom[i]; << 731 } << 732 621 733 PtSum /= 4.0; << 622 return true; 734 for ( G4int i = 0; i < 4; ++i ) { << 735 Quark_Mom[i] -= PtSum; << 736 } 623 } 737 624 738 Alfa = 0.0; Beta = 0.0; << 625 } // End of if ( Ksi < (X_a + X_b) / Xannihilation ) 739 for ( G4int iCase = 0; iCase < 2; ++iCase << 740 G4int index = iCase * 2; << 741 for ( G4int i = 0; i < 2; ++i ) { << 742 G4double val = ( Quark_Mom[index+i]. << 743 if ( iCase == 0 ) { // first string << 744 Alfa += val; << 745 } else { // second strin << 746 Beta += val; << 747 } << 748 } << 749 } << 750 626 751 } while ( ( std::sqrt( Alfa ) + std::sqrt( B << 627 if ( Ksi < ( X_a + X_b + X_c ) / Xannihilation ) { 752 ++loopCounter < maxNumberOfLoops ) << 753 628 754 if ( loopCounter >= maxNumberOfLoops ) { << 629 // Simulation of 2 anti-quark-quark strings creation 755 return 99; // unsuccessfully ended, nothi << 756 } << 757 630 758 G4double DecayMomentum2 = sqr(common.S) + sq << 631 #ifdef debugFTFannih 759 - 2.0*( common.S*( << 632 G4cout << "Process c, quark - anti-quark and string junctions annihilation, 2 strings left." 760 WminusTarget = ( common.S - Alfa + Beta + st << 633 << G4endl; 761 WplusProjectile = common.SqrtS - Beta/Wminus << 634 #endif 762 << 763 for ( G4int iCase = 0; iCase < 2; ++iCase ) << 764 G4int index = iCase*2; // 0 for the first << 765 for ( G4int i = 0; i < 2; ++i ) { << 766 G4double w = WplusProjectile; / << 767 if ( iCase == 1 ) w = - WminusTarget; / << 768 G4double Pz = w * Quark_Xs[index+i] / 2. << 769 - ( Quark_Mom[index+i].mag << 770 ( 2.0 * w * Quark_Xs[ind << 771 Quark_Mom[index+i].setZ( Pz ); << 772 } << 773 } << 774 635 775 G4int CandidatsN = 0, CandAQ[9][2] = {}, Can << 636 G4int CandidatsN( 0 ), CandAQ[9][2], CandQ[9][2]; 776 G4int LeftAQ1 = 0, LeftAQ2 = 0, LeftQ1 = 0, << 637 G4int LeftAQ1( 0 ), LeftAQ2( 0 ), LeftQ1( 0 ), LeftQ2( 0 ); 777 for ( G4int iAQ = 0; iAQ < 3; ++iAQ ) { // << 778 for ( G4int iQ = 0; iQ < 3; ++iQ ) { // << 779 if ( -common.AQ[iAQ] == common.Q[iQ] ) { << 780 // Here "0", "1", "2" means, respectiv << 781 // of the (anti-baryon) projectile or << 782 if ( iAQ == 0 ) { CandAQ[CandidatsN][0 << 783 if ( iAQ == 1 ) { CandAQ[CandidatsN][0 << 784 if ( iAQ == 2 ) { CandAQ[CandidatsN][0 << 785 if ( iQ == 0 ) { CandQ[CandidatsN][0] << 786 if ( iQ == 1 ) { CandQ[CandidatsN][0] << 787 if ( iQ == 2 ) { CandQ[CandidatsN][0] << 788 ++CandidatsN; << 789 } << 790 } << 791 } << 792 638 793 if ( CandidatsN != 0 ) { << 639 for ( G4int iAQ = 0; iAQ < 3; iAQ++ ) { 794 G4int SampledCase = (G4int)G4RandFlat::sho << 640 for ( G4int iQ = 0; iQ < 3; iQ++ ) { 795 LeftAQ1 = common.AQ[ CandAQ[SampledCase][0 << 641 if ( -AQ[iAQ] == Q[iQ] ) { 796 LeftAQ2 = common.AQ[ CandAQ[SampledCase][1 << 642 if ( iAQ == 0 ) { CandAQ[CandidatsN][0] = 1; CandAQ[CandidatsN][1] = 2; } 797 if ( G4UniformRand() < 0.5 ) { << 643 if ( iAQ == 1 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 2; } 798 LeftQ1 = common.Q[ CandQ[SampledCase][0] << 644 if ( iAQ == 2 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 1; } 799 LeftQ2 = common.Q[ CandQ[SampledCase][1] << 645 if ( iQ == 0 ) { CandQ[CandidatsN][0] = 1; CandQ[CandidatsN][1] = 2; } 800 } else { << 646 if ( iQ == 1 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 2; } 801 LeftQ2 = common.Q[ CandQ[SampledCase][0] << 647 if ( iQ == 2 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 1; } 802 LeftQ1 = common.Q[ CandQ[SampledCase][1] << 648 CandidatsN++; >> 649 } >> 650 } 803 } 651 } >> 652 //G4cout << "CandidatsN " << CandidatsN << G4endl; 804 653 805 // Set the string properties << 654 if ( CandidatsN != 0 ) { 806 // An anti quark - quark pair can have the << 655 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); 807 // or a vector meson: the last digit of th << 656 LeftAQ1 = AQ[ CandAQ[SampledCase][0] ]; 808 // For simplicity only scalar is considere << 657 LeftAQ2 = AQ[ CandAQ[SampledCase][1] ]; 809 G4int NewCode = 0, antiQuark = 0, quark = << 658 if ( G4UniformRand() < 0.5 ) { 810 G4ParticleDefinition* TestParticle = nullp << 659 LeftQ1 = Q[ CandQ[SampledCase][0] ]; 811 for ( G4int iString = 0; iString < 2; ++iS << 660 LeftQ2 = Q[ CandQ[SampledCase][1] ]; 812 if ( iString == 0 ) { << 661 } else { 813 antiQuark = LeftAQ1; quark = LeftQ1; << 662 LeftQ2 = Q[ CandQ[SampledCase][0] ]; 814 projectile->SetFirstParton( antiQuark << 663 LeftQ1 = Q[ CandQ[SampledCase][1] ]; 815 projectile->SetSecondParton( quark ); << 816 projectile->SetStatus( 0 ); << 817 } else { // iString == 1 << 818 quark = LeftQ2; antiQuark = LeftAQ2; << 819 target->SetFirstParton( quark ); << 820 target->SetSecondParton( antiQuark ); << 821 target->SetStatus( 0 ); << 822 } 664 } 823 G4int absAntiQuark = std::abs( antiQuark << 665 824 G4double aKsi = G4UniformRand(); << 666 // Set the string properties 825 if ( absAntiQuark == absQuark ) { << 667 //G4cout << "String 1 " << LeftAQ1 << " " << LeftQ1 << G4endl; 826 if ( absAntiQuark != 3 ) { << 668 projectile->SplitUp(); 827 NewCode = 111; // Pi0-meson << 669 projectile->SetFirstParton( LeftAQ1 ); 828 if ( aKsi < 0.5 ) { << 670 projectile->SetSecondParton( LeftQ1 ); 829 NewCode = 221; // Eta -meso << 671 projectile->SetStatus( 0 ); 830 if ( aKsi < 0.25 ) { << 672 //G4cout << "String 2 " << LeftAQ2 << " " << LeftQ2 << G4endl; 831 NewCode = 331; // Eta'-meso << 673 target->SplitUp(); 832 } << 674 target->SetFirstParton( LeftQ2 ); 833 } << 675 target->SetSecondParton( LeftAQ2 ); >> 676 target->SetStatus( 0 ); >> 677 >> 678 // Sampling kinematical properties >> 679 // 1 string LeftAQ1-LeftQ1// 2 string LeftAQ2-LeftQ2 >> 680 G4ThreeVector Quark_Mom[4]; >> 681 G4double ModMom2[4]; //ModMom[4], >> 682 >> 683 AveragePt2 = 200.0*200.0; maxPtSquare = S; >> 684 >> 685 G4double SumMt( 0.0 ); >> 686 G4double MassQ2 = 0.0; //100.0*100.0*MeV*MeV; >> 687 G4int NumberOfTries( 0 ); >> 688 G4double ScaleFactor( 1.0 ); >> 689 >> 690 const G4int maxNumberOfLoops = 1000; >> 691 G4int loopCounter = 0; >> 692 do { >> 693 NumberOfTries++; >> 694 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 695 // At large number of tries it would be better to reduce the values of <Pt^2> >> 696 ScaleFactor /= 2.0; >> 697 AveragePt2 *= ScaleFactor; >> 698 } >> 699 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); >> 700 for( G4int i = 0; i < 4; i++ ) { >> 701 Quark_Mom[i] = GaussianPt( AveragePt2, maxPtSquare ); >> 702 PtSum += Quark_Mom[i]; >> 703 } >> 704 PtSum /= 4.0; >> 705 SumMt = 0.0; >> 706 for ( G4int i = 0; i < 4; i++ ) { >> 707 Quark_Mom[i] -= PtSum; >> 708 //ModMom[i] = Quark_Mom[i].mag(); >> 709 ModMom2[i] = Quark_Mom[i].mag2(); >> 710 SumMt += std::sqrt( ModMom2[i] + MassQ2 ); >> 711 } >> 712 } while ( ( SumMt > SqrtS ) && >> 713 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ >> 714 if ( loopCounter >= maxNumberOfLoops ) { >> 715 return false; >> 716 } >> 717 >> 718 G4double WminusTarget( 0.0 ), WplusProjectile( 0.0 ); >> 719 >> 720 // Sampling X's of anti-baryon >> 721 G4double Alfa_R = 0.5; >> 722 NumberOfTries = 0; >> 723 ScaleFactor = 1.0; >> 724 G4bool Succes( true ); >> 725 >> 726 loopCounter = 0; >> 727 do { >> 728 >> 729 Succes = true; >> 730 NumberOfTries++; >> 731 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 732 // At large number of tries it would be better to reduce the values of Pt's >> 733 ScaleFactor /= 2.0; >> 734 } >> 735 >> 736 if ( Alfa_R == 1.0 ) { >> 737 G4double Xaq1 = std::sqrt( G4UniformRand() ); >> 738 G4double Xaq2 = 1.0 - Xaq1; >> 739 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); 834 } else { 740 } else { 835 NewCode = 221; // Eta -meso << 741 G4double Xaq1 = sqr( std::sin( pi/2.0*G4UniformRand() ) ); 836 if ( aKsi < 0.5 ) { << 742 G4double Xaq2 = 1.0 - Xaq1; 837 NewCode = 331; // Eta'-meso << 743 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); 838 } << 839 } 744 } 840 } else { << 745 841 if ( absAntiQuark > absQuark ) { << 746 // Sampling X's of baryon ------------ 842 NewCode = absAntiQuark*100 + absQuar << 747 if ( Alfa_R == 1.0 ) { 843 } else { << 748 G4double Xq1 = 1.0 - std::sqrt( G4UniformRand() ); 844 NewCode = absQuark*100 + absAntiQuar << 749 G4double Xq2 = 1.0 - Xq1; >> 750 Quark_Mom[2].setZ( Xq1 ); Quark_Mom[3].setZ( Xq2 ); >> 751 } else { >> 752 G4double Xq1 = sqr( std::sin( pi/2.0*G4UniformRand() ) ); >> 753 G4double Xq2 = 1.0 - Xq1; >> 754 Quark_Mom[2].setZ( Xq1 ); Quark_Mom[3].setZ( Xq2 ); 845 } 755 } 846 } << 847 TestParticle = G4ParticleTable::GetParti << 848 if ( ! TestParticle ) return 99; // uns << 849 if ( iString == 0 ) { << 850 projectile->SetDefinition( TestParticl << 851 theParameters->SetProjMinDiffMass( 0.5 << 852 theParameters->SetProjMinNonDiffMass( << 853 } else { // iString == 1 << 854 target->SetDefinition( TestParticle ); << 855 theParameters->SetTarMinDiffMass( 0.5 << 856 theParameters->SetTarMinNonDiffMass( 0 << 857 } << 858 } // End of loop over the 2 string cases << 859 756 860 G4int QuarkOrder[2]; << 757 G4double Alfa( 0.0 ), Beta( 0.0 ); 861 G4LorentzVector Pstring1, Pstring2; << 758 for ( G4int i = 0; i < 2; i++ ) { // For Anti-baryon 862 G4double Ystring1 = 0.0, Ystring2 = 0.0; << 759 if ( Quark_Mom[i].getZ() != 0.0 ) { 863 << 760 Alfa += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); 864 for ( G4int iCase = 0; iCase < 2; ++iCase << 761 } else { 865 G4ThreeVector tmp = Quark_Mom[iCase] + Q << 762 Succes = false; 866 G4LorentzVector Pstring( tmp, std::sqrt( << 867 std::sqrt( << 868 // Add protection for rapidity = 0.5*ln << 869 G4double Ystring = 0.0; << 870 if ( Pstring.e() > 1.0e-30 ) { << 871 if ( Pstring.e() + Pstring.pz() < 1.0e << 872 Ystring = -1.0e30; // A very large << 873 if ( Pstring.e() - Pstring.pz() < 1. << 874 Ystring = 1.0e30; // A very large << 875 } else { // Normal case << 876 Ystring = Pstring.rapidity(); << 877 } 763 } >> 764 } >> 765 for ( G4int i = 2; i < 4; i++ ) { // For baryon >> 766 if ( Quark_Mom[i].getZ() != 0.0 ) { >> 767 Beta += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); >> 768 } else { >> 769 Succes = false; >> 770 } >> 771 } >> 772 >> 773 if ( ! Succes ) continue; >> 774 >> 775 if ( std::sqrt( Alfa ) + std::sqrt( Beta ) > SqrtS ) { >> 776 Succes = false; >> 777 continue; 878 } 778 } >> 779 >> 780 G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta >> 781 - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; >> 782 WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) ) / 2.0 / SqrtS; >> 783 WplusProjectile = SqrtS - Beta/WminusTarget; >> 784 >> 785 } while ( ( ! Succes ) && >> 786 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ >> 787 if ( loopCounter >= maxNumberOfLoops ) { >> 788 return false; >> 789 } >> 790 >> 791 G4double SqrtScaleF = std::sqrt( ScaleFactor ); >> 792 >> 793 for ( G4int i = 0; i < 2; i++ ) { >> 794 G4double Pz = WplusProjectile * Quark_Mom[i].getZ() / 2.0 - >> 795 ( ScaleFactor * ModMom2[i] + MassQ2 ) / >> 796 ( 2.0 * WplusProjectile * Quark_Mom[i].getZ() ); >> 797 Quark_Mom[i].setZ( Pz ); >> 798 if ( ScaleFactor != 1.0 ) { >> 799 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 800 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 801 } >> 802 //G4cout << "Anti Q " << i << " " << Quark_Mom[i] << G4endl; 879 } 803 } 880 if ( iCase == 0 ) { // For the first st << 804 for ( G4int i = 2; i < 4; i++ ) { 881 Pstring1 = Pstring; Ystring1 = Ystring << 805 G4double Pz = -WminusTarget * Quark_Mom[i].getZ() / 2.0 + 882 } else { // For the second s << 806 ( ScaleFactor * ModMom2[i] + MassQ2 ) / 883 Pstring2 = Pstring; Ystring2 = Ystring << 807 ( 2.0 * WminusTarget * Quark_Mom[i].getZ() ); >> 808 Quark_Mom[i].setZ( Pz ); >> 809 if ( ScaleFactor != 1.0 ) { >> 810 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 811 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 812 } >> 813 //G4cout << "Bary Q " << i << " " << Quark_Mom[i] << G4endl; 884 } 814 } 885 } << 815 //G4cout << "Sum AQ " << Quark_Mom[0] + Quark_Mom[1] << G4endl 886 if ( Ystring1 > Ystring2 ) { << 816 // << "Sum Q " << Quark_Mom[2] + Quark_Mom[3] << G4endl; 887 common.Pprojectile = Pstring1; common.P << 888 QuarkOrder[0] = 0; QuarkOrder[1] = 1; << 889 } else { << 890 common.Pprojectile = Pstring2; common.P << 891 QuarkOrder[0] = 1; QuarkOrder[1] = 0; << 892 } << 893 << 894 if ( common.RotateStrings ) { << 895 common.Pprojectile *= common.RandomRotat << 896 common.Ptarget *= common.RandomRotat << 897 } << 898 817 899 common.Pprojectile.transform( common.toLab << 818 G4ThreeVector tmp = Quark_Mom[0] + Quark_Mom[2]; 900 common.Ptarget.transform( common.toLab ); << 819 G4LorentzVector Pstring1( tmp, std::sqrt( Quark_Mom[0].mag2() + MassQ2 ) + 901 << 820 std::sqrt( Quark_Mom[2].mag2() + MassQ2 ) ); 902 G4LorentzVector Quark_4Mom[4]; << 821 G4double Ystring1 = Pstring1.rapidity(); 903 for ( G4int i = 0; i < 4; ++i ) { << 822 904 Quark_4Mom[i] = G4LorentzVector( Quark_M << 823 //G4cout << "Mom 1 string " << G4endl << Quark_Mom[0] << G4endl << Quark_Mom[2] << G4endl 905 if ( common.RotateStrings ) Quark_4Mom[i << 824 // << tmp << " " << tmp.mag() << G4endl; 906 Quark_4Mom[i].transform( common.toLab ); << 825 //G4cout << "1 str " << Pstring1 << " " << Pstring1.mag() << " " << Ystring1 << G4endl; 907 } << 826 >> 827 tmp = Quark_Mom[1] + Quark_Mom[3]; >> 828 G4LorentzVector Pstring2( tmp, std::sqrt( Quark_Mom[1].mag2() + MassQ2 ) + >> 829 std::sqrt( Quark_Mom[3].mag2() + MassQ2 ) ); >> 830 G4double Ystring2 = Pstring2.rapidity(); >> 831 >> 832 //G4cout << "Mom 2 string " << G4endl <<Quark_Mom[1] << G4endl << Quark_Mom[3] << G4endl >> 833 // << tmp << " " << tmp.mag() << G4endl; >> 834 //G4cout << "2 str " << Pstring2 << " " << Pstring2.mag() << " " << Ystring2 << G4endl; >> 835 >> 836 if ( Ystring1 > Ystring2 ) { >> 837 Pprojectile = Pstring1; >> 838 Ptarget = Pstring2; >> 839 } else { >> 840 Pprojectile = Pstring2; >> 841 Ptarget = Pstring1; >> 842 } 908 843 909 projectile->Splitting(); << 844 //G4cout << "SumP CMS " << Pprojectile + Ptarget << " " << SqrtS << G4endl; 910 projectile->GetNextAntiParton()->Set4Momen << 845 Pprojectile.transform( toLab ); 911 projectile->GetNextParton()->Set4Momentum( << 846 Ptarget.transform( toLab ); 912 << 847 //G4cout << " SumP Lab " << Pprojectile + Ptarget << " " << SqrtS << G4endl; 913 target->Splitting(); << 848 914 target->GetNextParton()->Set4Momentum( Qua << 849 // Calculation of the creation time 915 target->GetNextAntiParton()->Set4Momentum( << 850 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 851 projectile->SetPosition( target->GetPosition() ); >> 852 // Creation time and position of target nucleon were determined in >> 853 // ReggeonCascade() of G4FTFModel >> 854 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; >> 855 projectile->Set4Momentum( Pprojectile ); >> 856 target->Set4Momentum( Ptarget ); >> 857 projectile->IncrementCollisionCount( 1 ); >> 858 target->IncrementCollisionCount( 1 ); 916 859 917 // Calculation of the creation time << 860 return true; 918 // Creation time and position of target nu << 919 projectile->SetTimeOfCreation( target->Get << 920 projectile->SetPosition( target->GetPositi << 921 projectile->Set4Momentum( common.Pprojecti << 922 target->Set4Momentum( common.Ptarget ); << 923 << 924 projectile->IncrementCollisionCount( 1 ); << 925 target->IncrementCollisionCount( 1 ); << 926 861 927 return 0; // Completed successfully: noth << 862 } // End of if ( CandidatsN != 0 ) 928 } // End of if ( CandidatsN != 0 ) << 929 863 930 return 1; // Successfully ended, but the wo << 864 } // End of if ( Ksi < ( X_a + X_b + X_c ) / Xannihilation ) 931 } << 932 865 >> 866 // Simulation of anti-quark-quark string creation 933 867 934 //-------------------------------------------- << 868 if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xannihilation ) { 935 869 936 G4bool G4FTFAnnihilation:: << 870 #ifdef debugFTFannih 937 Create1QuarkAntiQuarkString( G4VSplitableHadro << 871 G4cout << "Process d, only 1 quark - anti-quark string" << G4endl; 938 G4VSplitableHadro << 872 #endif 939 G4FTFParameters* << 940 G4FTFAnnihilation << 941 // Simulation of anti-quark - quark string c << 942 873 943 #ifdef debugFTFannih << 874 G4int CandidatsN( 0 ), CandAQ[36], CandQ[36]; 944 G4cout << "Process d, only 1 quark - anti-qu << 875 G4int LeftAQ( 0 ), LeftQ( 0 ); 945 #endif << 946 876 947 // Determine the set of candidates anti-quar << 877 for ( G4int iAQ1 = 0; iAQ1 < 3; iAQ1++ ) { 948 // Here "0", "1", "2" means, respectively, " << 878 for ( G4int iAQ2 = 0; iAQ2 < 3; iAQ2++ ) { 949 // of the (anti-baryon) projectile or (nucle << 879 if ( iAQ1 != iAQ2 ) { 950 G4int CandidatsN = 0, CandAQ[36], CandQ[36]; << 880 for ( G4int iQ1 = 0; iQ1 < 3; iQ1++ ) { 951 G4int LeftAQ = 0, LeftQ = 0; << 881 for ( G4int iQ2 = 0; iQ2 < 3; iQ2++ ) { 952 for ( G4int iAQ1 = 0; iAQ1 < 3; ++iAQ1 ) { << 882 if ( iQ1 != iQ2 ) { 953 for ( G4int iAQ2 = 0; iAQ2 < 3; ++iAQ2 ) { << 883 if ( -AQ[iAQ1] == Q[iQ1] && -AQ[iAQ2] == Q[iQ2] ) { 954 if ( iAQ1 != iAQ2 ) { << 884 if ( iAQ1 == 0 && iAQ2 == 1 ) { CandAQ[CandidatsN] = 2; } 955 for ( G4int iQ1 = 0; iQ1 < 3; ++iQ1 ) << 885 if ( iAQ1 == 1 && iAQ2 == 0 ) { CandAQ[CandidatsN] = 2; } 956 for ( G4int iQ2 = 0; iQ2 < 3; ++iQ2 << 886 957 if ( iQ1 != iQ2 ) { << 887 if ( iAQ1 == 0 && iAQ2 == 2 ) { CandAQ[CandidatsN] = 1; } 958 if ( -common.AQ[iAQ1] == common. << 888 if ( iAQ1 == 2 && iAQ2 == 0 ) { CandAQ[CandidatsN] = 1; } 959 if ( ( iAQ1 == 0 && i << 889 960 CandAQ[CandidatsN] = 2; << 890 if ( iAQ1 == 1 && iAQ2 == 2 ) { CandAQ[CandidatsN] = 0; } 961 } else if ( ( iAQ1 == 0 && i << 891 if ( iAQ1 == 2 && iAQ2 == 1 ) { CandAQ[CandidatsN] = 0; } 962 CandAQ[CandidatsN] = 1; << 892 963 } else if ( ( iAQ1 == 1 && i << 893 if ( iQ1 == 0 && iQ2 == 1 ) { CandQ[CandidatsN] = 2; } 964 CandAQ[CandidatsN] = 0; << 894 if ( iQ1 == 1 && iQ2 == 0 ) { CandQ[CandidatsN] = 2; } 965 } << 895 966 if ( ( iQ1 == 0 && << 896 if ( iQ1 == 0 && iQ2 == 2 ) { CandQ[CandidatsN] = 1; } 967 CandQ[CandidatsN] = 2; << 897 if ( iQ1 == 2 && iQ2 == 0 ) { CandQ[CandidatsN] = 1; } 968 } else if ( ( iQ1 == 0 && << 898 969 CandQ[CandidatsN] = 1; << 899 if ( iQ1 == 1 && iQ2 == 2 ) { CandQ[CandidatsN] = 0; } 970 } else if ( ( iQ1 == 1 && << 900 if ( iQ1 == 2 && iQ2 == 1 ) { CandQ[CandidatsN] = 0; } 971 CandQ[CandidatsN] = 0; << 901 CandidatsN++; 972 } 902 } 973 ++CandidatsN; << 974 } 903 } 975 } 904 } 976 } 905 } 977 } 906 } 978 } 907 } 979 } 908 } 980 } << 981 << 982 if ( CandidatsN != 0 ) { << 983 G4int SampledCase = (G4int)G4RandFlat::sho << 984 LeftAQ = common.AQ[ CandAQ[SampledCase] ]; << 985 LeftQ = common.Q[ CandQ[SampledCase] ]; << 986 << 987 // Set the string properties << 988 projectile->SetFirstParton( LeftQ ); << 989 projectile->SetSecondParton( LeftAQ ); << 990 projectile->SetStatus( 0 ); << 991 G4int aAQ = std::abs( LeftAQ ), aQ = std:: << 992 G4int NewCode = 0; << 993 G4double aKsi = G4UniformRand(); << 994 // The string can have the quantum number << 995 // of the PDG code is, respectively, 1 and << 996 if ( aAQ == aQ ) { << 997 if ( aAQ != 3 ) { << 998 NewCode = 111; // Pi0-meson << 999 if ( aKsi < 0.5 ) { << 1000 NewCode = 221; // Eta -meson << 1001 if ( aKsi < 0.25 ) { << 1002 NewCode = 331; // Eta'-meson << 1003 } << 1004 } << 1005 } else { << 1006 NewCode = 221; // Eta -meson << 1007 if ( aKsi < 0.5 ) { << 1008 NewCode = 331; // Eta'-meson << 1009 } << 1010 } << 1011 } else { << 1012 if ( aAQ > aQ ) { << 1013 NewCode = aAQ*100 + aQ*10 + 1; NewCod << 1014 } else { << 1015 NewCode = aQ*100 + aAQ*10 + 1; NewCod << 1016 } << 1017 } << 1018 << 1019 G4ParticleDefinition* TestParticle = G4Pa << 1020 if ( ! TestParticle ) return false; << 1021 projectile->SetDefinition( TestParticle ) << 1022 theParameters->SetProjMinDiffMass( 0.5 ); << 1023 theParameters->SetProjMinNonDiffMass( 0.5 << 1024 << 1025 target->SetStatus( 4 ); // The target nu << 1026 common.Pprojectile.setPx( 0.0 ); << 1027 common.Pprojectile.setPy( 0.0 ); << 1028 common.Pprojectile.setPz( 0.0 ); << 1029 common.Pprojectile.setE( common.SqrtS ); << 1030 << 1031 common.Pprojectile.transform( common.toLa << 1032 909 1033 G4LorentzVector Pquark = G4LorentzVector << 910 if ( CandidatsN != 0 ) { 1034 G4LorentzVector Paquark = G4LorentzVector << 911 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); 1035 << 912 LeftAQ = AQ[ CandAQ[SampledCase] ]; 1036 if ( common.RotateStrings ) { << 913 LeftQ = Q[ CandQ[SampledCase] ]; 1037 Pquark *= common.RandomRotation; Paquar << 914 //G4cout << "Left Aq Q " << LeftAQ << " " << LeftQ << G4endl; 1038 } << 915 1039 Pquark.transform(common.toLab); projecti << 916 // Set the string properties 1040 Paquark.transform(common.toLab); projecti << 917 projectile->SplitUp(); 1041 << 918 //projectile->SetFirstParton( LeftAQ ); 1042 projectile->Splitting(); << 919 //projectile->SetSecondParton( LeftQ ); >> 920 projectile->SetFirstParton( LeftQ ); >> 921 projectile->SetSecondParton( LeftAQ ); >> 922 projectile->SetStatus( 0 ); >> 923 target->SetStatus( 4 ); // The target nucleon has annihilated 3->4 Uzhi Oct 2014 >> 924 Pprojectile.setPx( 0.0 ); >> 925 Pprojectile.setPy( 0.0 ); >> 926 Pprojectile.setPz( 0.0 ); >> 927 Pprojectile.setE( SqrtS ); >> 928 Pprojectile.transform( toLab ); >> 929 >> 930 // Calculation of the creation time >> 931 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 932 projectile->SetPosition( target->GetPosition() ); >> 933 // Creation time and position of target nucleon were determined in >> 934 // ReggeonCascade() of G4FTFModel 1043 935 1044 // Calculation of the creation time << 936 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; 1045 // Creation time and position of target n << 937 projectile->Set4Momentum( Pprojectile ); 1046 projectile->SetTimeOfCreation( target->Ge << 1047 projectile->SetPosition( target->GetPosit << 1048 projectile->Set4Momentum( common.Pproject << 1049 938 1050 projectile->IncrementCollisionCount( 1 ); << 939 projectile->IncrementCollisionCount( 1 ); 1051 target->IncrementCollisionCount( 1 ); << 940 target->IncrementCollisionCount( 1 ); >> 941 return true; >> 942 } 1052 943 1053 return true; << 944 } // End of if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xannihilation ) 1054 } // End of if ( CandidatsN != 0 ) << 1055 945 >> 946 //G4cout << "Pr Y " << Pprojectile.rapidity() << " Tr Y " << Ptarget.rapidity() << G4endl; 1056 return true; 947 return true; 1057 } 948 } 1058 949 1059 950 1060 //=========================================== 951 //============================================================================ 1061 952 1062 G4double G4FTFAnnihilation::ChooseX( G4double 953 G4double G4FTFAnnihilation::ChooseX( G4double /* Alpha */, G4double /* Beta */ ) const { 1063 // If for sampling Xs other values of Alfa 954 // If for sampling Xs other values of Alfa and Beta instead of 0.5 will be 1064 // chosen the method will be implemented 955 // chosen the method will be implemented 1065 //G4double tmp = Alpha*Beta; 956 //G4double tmp = Alpha*Beta; 1066 //tmp *= 1.0; 957 //tmp *= 1.0; 1067 return 0.5; 958 return 0.5; 1068 } 959 } 1069 960 1070 961 >> 962 1071 //=========================================== 963 //============================================================================ 1072 964 1073 G4ThreeVector G4FTFAnnihilation::GaussianPt( 965 G4ThreeVector G4FTFAnnihilation::GaussianPt( G4double AveragePt2, G4double maxPtSquare ) const { 1074 // @@ this method is used in FTFModel as w 966 // @@ this method is used in FTFModel as well. Should go somewhere common! 1075 G4double Pt2 = 0.0; << 967 G4double Pt2( 0.0 ); 1076 if ( AveragePt2 <= 0.0 ) { 968 if ( AveragePt2 <= 0.0 ) { 1077 Pt2 = 0.0; 969 Pt2 = 0.0; 1078 } else { 970 } else { 1079 Pt2 = -AveragePt2 * G4Log( 1.0 + G4Unifor 971 Pt2 = -AveragePt2 * G4Log( 1.0 + G4UniformRand() * 1080 ( G4E 972 ( G4Exp( -maxPtSquare/AveragePt2 ) -1.0 ) ); 1081 } 973 } 1082 G4double Pt = std::sqrt( Pt2 ); 974 G4double Pt = std::sqrt( Pt2 ); 1083 G4double phi = G4UniformRand() * twopi; 975 G4double phi = G4UniformRand() * twopi; 1084 return G4ThreeVector ( Pt*std::cos( phi ), 976 return G4ThreeVector ( Pt*std::cos( phi ), Pt*std::sin( phi ), 0.0 ); 1085 } 977 } 1086 978 1087 979 1088 //=========================================== 980 //============================================================================ 1089 981 1090 void G4FTFAnnihilation::UnpackBaryon( G4int I 982 void G4FTFAnnihilation::UnpackBaryon( G4int IdPDG, G4int& Q1, G4int& Q2, G4int& Q3 ) const { 1091 G4int AbsId = std::abs( IdPDG ); 983 G4int AbsId = std::abs( IdPDG ); 1092 Q1 = AbsId / 1000; 984 Q1 = AbsId / 1000; 1093 Q2 = ( AbsId % 1000 ) / 100; 985 Q2 = ( AbsId % 1000 ) / 100; 1094 Q3 = ( AbsId % 100 ) / 10; 986 Q3 = ( AbsId % 100 ) / 10; 1095 if ( IdPDG < 0 ) { Q1 = -Q1; Q2 = -Q2; Q3 = 987 if ( IdPDG < 0 ) { Q1 = -Q1; Q2 = -Q2; Q3 = -Q3; } // Anti-baryon 1096 return; 988 return; 1097 } 989 } 1098 990 1099 991 1100 //=========================================== 992 //============================================================================ 1101 993 1102 G4FTFAnnihilation::G4FTFAnnihilation( const G 994 G4FTFAnnihilation::G4FTFAnnihilation( const G4FTFAnnihilation& ) { 1103 throw G4HadronicException( __FILE__, __LINE 995 throw G4HadronicException( __FILE__, __LINE__, 1104 "G4FTFAnnihilati << 996 "G4FTFAnnihilation copy contructor not meant to be called" ); 1105 } 997 } 1106 998 1107 999 1108 //=========================================== 1000 //============================================================================ 1109 1001 1110 const G4FTFAnnihilation & G4FTFAnnihilation:: 1002 const G4FTFAnnihilation & G4FTFAnnihilation::operator=( const G4FTFAnnihilation& ) { 1111 throw G4HadronicException( __FILE__, __LINE 1003 throw G4HadronicException( __FILE__, __LINE__, 1112 "G4FTFAnnihilati 1004 "G4FTFAnnihilation = operator not meant to be called" ); 1113 } 1005 } 1114 1006 1115 1007 1116 //=========================================== 1008 //============================================================================ 1117 1009 1118 G4bool G4FTFAnnihilation::operator==( const G << 1010 int G4FTFAnnihilation::operator==( const G4FTFAnnihilation& ) const { 1119 throw G4HadronicException( __FILE__, __LINE 1011 throw G4HadronicException( __FILE__, __LINE__, 1120 "G4FTFAnnihilati 1012 "G4FTFAnnihilation == operator not meant to be called" ); 1121 } 1013 } 1122 1014 1123 1015 1124 //=========================================== 1016 //============================================================================ 1125 1017 1126 G4bool G4FTFAnnihilation::operator!=( const G << 1018 int G4FTFAnnihilation::operator!=( const G4FTFAnnihilation& ) const { 1127 throw G4HadronicException( __FILE__, __LINE 1019 throw G4HadronicException( __FILE__, __LINE__, 1128 "G4DiffractiveEx 1020 "G4DiffractiveExcitation != operator not meant to be called" ); 1129 } 1021 } 1130 1022