Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4FTFAnnihilation.cc 81880 2014-06-06 12:50:36Z gcosmo $ 27 // 28 // 28 29 29 // ------------------------------------------- 30 // ------------------------------------------------------------ 30 // GEANT 4 class implemetation file 31 // GEANT 4 class implemetation file 31 // 32 // 32 // ---------------- G4FTFAnnihilation --- 33 // ---------------- G4FTFAnnihilation -------------- 33 // by V. Uzhinsky, Spring 2011. << 34 // by Gunter Folger, October 1998. 34 // Take a projectile and a targ << 35 // diffractive Excitation used by strings models 35 // make annihilation or re-orangement o << 36 // Take a projectile and a target 36 // Ideas of Quark-Gluon-String model my A. << 37 // excite the projectile and target 37 // are implemented. << 38 // Essential changed by V. Uzhinsky in November - December 2006 >> 39 // in order to put it in a correspondence with original FRITIOF >> 40 // model. Variant of FRITIOF with nucleon de-excitation is implemented. >> 41 // Other changes by V.Uzhinsky in May 2007 were introduced to fit >> 42 // meson-nucleon interactions. Additional changes by V. Uzhinsky >> 43 // were introduced in December 2006. They treat diffraction dissociation >> 44 // processes more exactly. 38 // ------------------------------------------- 45 // --------------------------------------------------------------------- 39 46 40 #include "globals.hh" 47 #include "globals.hh" 41 #include "Randomize.hh" 48 #include "Randomize.hh" 42 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 43 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" 44 51 45 #include "G4DiffractiveSplitableHadron.hh" 52 #include "G4DiffractiveSplitableHadron.hh" 46 #include "G4DiffractiveExcitation.hh" 53 #include "G4DiffractiveExcitation.hh" 47 #include "G4FTFParameters.hh" 54 #include "G4FTFParameters.hh" 48 #include "G4ElasticHNScattering.hh" 55 #include "G4ElasticHNScattering.hh" 49 #include "G4FTFAnnihilation.hh" 56 #include "G4FTFAnnihilation.hh" 50 57 51 #include "G4LorentzRotation.hh" 58 #include "G4LorentzRotation.hh" 52 #include "G4RotationMatrix.hh" 59 #include "G4RotationMatrix.hh" 53 #include "G4ThreeVector.hh" 60 #include "G4ThreeVector.hh" 54 #include "G4ParticleDefinition.hh" 61 #include "G4ParticleDefinition.hh" 55 #include "G4VSplitableHadron.hh" 62 #include "G4VSplitableHadron.hh" 56 #include "G4ExcitedString.hh" 63 #include "G4ExcitedString.hh" 57 #include "G4ParticleTable.hh" 64 #include "G4ParticleTable.hh" 58 #include "G4Neutron.hh" 65 #include "G4Neutron.hh" 59 #include "G4ParticleDefinition.hh" 66 #include "G4ParticleDefinition.hh" 60 67 61 #include "G4Exp.hh" << 68 //#include "G4ios.hh" 62 #include "G4Log.hh" << 63 #include "G4Pow.hh" << 64 << 65 //#include "UZHI_diffraction.hh" 69 //#include "UZHI_diffraction.hh" 66 70 67 #include "G4ParticleTable.hh" << 68 71 69 //============================================ 72 //============================================================================ 70 73 71 //#define debugFTFannih 74 //#define debugFTFannih 72 75 73 76 74 //============================================ 77 //============================================================================ 75 78 76 G4FTFAnnihilation::G4FTFAnnihilation() {} 79 G4FTFAnnihilation::G4FTFAnnihilation() {} 77 80 78 81 79 //============================================ 82 //============================================================================ 80 83 81 G4FTFAnnihilation::~G4FTFAnnihilation() {} 84 G4FTFAnnihilation::~G4FTFAnnihilation() {} 82 85 83 86 84 //============================================ 87 //============================================================================ 85 88 86 G4bool G4FTFAnnihilation::Annihilate( G4VSplit 89 G4bool G4FTFAnnihilation::Annihilate( G4VSplitableHadron* projectile, 87 G4VSplit 90 G4VSplitableHadron* target, 88 G4VSplit 91 G4VSplitableHadron*& AdditionalString, 89 G4FTFPar 92 G4FTFParameters* theParameters ) const { 90 93 91 #ifdef debugFTFannih 94 #ifdef debugFTFannih 92 G4cout << "---------------------------- Anni 95 G4cout << "---------------------------- Annihilation----------------" << G4endl; 93 #endif 96 #endif 94 97 95 CommonVariables common; << 96 << 97 // Projectile parameters 98 // Projectile parameters 98 common.Pprojectile = projectile->Get4Momentu << 99 G4LorentzVector Pprojectile = projectile->Get4Momentum(); 99 G4int ProjectilePDGcode = projectile->GetDef 100 G4int ProjectilePDGcode = projectile->GetDefinition()->GetPDGEncoding(); 100 if ( ProjectilePDGcode > 0 ) { 101 if ( ProjectilePDGcode > 0 ) { 101 target->SetStatus( 3 ); << 102 target->SetStatus( 2 ); 102 return false; 103 return false; 103 } 104 } 104 G4double M0projectile2 = common.Pprojectile. << 105 //G4double M0projectile = Pprojectile.mag(); >> 106 //G4double M0projectile2 = projectile->GetDefinition()->GetPDGMass() * >> 107 // projectile->GetDefinition()->GetPDGMass(); >> 108 G4double M0projectile2 = Pprojectile.mag2(); 105 109 106 // Target parameters 110 // Target parameters 107 G4int TargetPDGcode = target->GetDefinition( 111 G4int TargetPDGcode = target->GetDefinition()->GetPDGEncoding(); 108 common.Ptarget = target->Get4Momentum(); << 112 G4LorentzVector Ptarget = target->Get4Momentum(); 109 G4double M0target2 = common.Ptarget.mag2(); << 113 //G4double M0target = Ptarget.mag(); >> 114 //G4double M0target2 = target->GetDefinition()->GetPDGMass() * >> 115 // target->GetDefinition()->GetPDGMass(); >> 116 G4double M0target2 = Ptarget.mag2(); 110 117 111 #ifdef debugFTFannih 118 #ifdef debugFTFannih 112 G4cout << "PDG codes " << ProjectilePDGcode 119 G4cout << "PDG codes " << ProjectilePDGcode << " " << TargetPDGcode << G4endl 113 << "Pprojec " << common.Pprojectile < << 120 << "Pprojec " << Pprojectile << " " << Pprojectile.mag() << G4endl 114 << "Ptarget " << common.Ptarget << << 121 << "Ptarget " << Ptarget << " " << Ptarget.mag() << G4endl 115 << "M0 proj target " << std::sqrt( M0 122 << "M0 proj target " << std::sqrt( M0projectile2 ) 116 << " " << std::sqrt( M0target2 ) << G 123 << " " << std::sqrt( M0target2 ) << G4endl; 117 #endif 124 #endif 118 125 >> 126 G4double AveragePt2 = theParameters->GetAveragePt2(); >> 127 119 // Kinematical properties of the interaction 128 // Kinematical properties of the interactions 120 G4LorentzVector Psum = common.Pprojectile + << 129 G4LorentzVector Psum; // 4-momentum in CMS 121 common.S = Psum.mag2(); << 130 Psum = Pprojectile + Ptarget; 122 common.SqrtS = std::sqrt( common.S ); << 131 G4double S = Psum.mag2(); >> 132 123 #ifdef debugFTFannih 133 #ifdef debugFTFannih 124 G4cout << "Psum SqrtS S " << Psum << " " << << 134 G4cout << "Psum SqrtS S " << Psum << " " << std::sqrt( S ) << " " << S << G4endl; 125 #endif 135 #endif 126 136 127 // Transform momenta to cms and then rotate 137 // Transform momenta to cms and then rotate parallel to z axis 128 G4LorentzRotation toCms( -1*Psum.boostVector 138 G4LorentzRotation toCms( -1*Psum.boostVector() ); 129 G4LorentzVector Ptmp( toCms*common.Pprojecti << 139 G4LorentzVector Ptmp = toCms*Pprojectile; 130 toCms.rotateZ( -1*Ptmp.phi() ); 140 toCms.rotateZ( -1*Ptmp.phi() ); 131 toCms.rotateY( -1*Ptmp.theta() ); 141 toCms.rotateY( -1*Ptmp.theta() ); 132 common.toLab = toCms.inverse(); << 142 G4LorentzRotation toLab( toCms.inverse() ); 133 << 134 if ( G4UniformRand() <= G4Pow::GetInstance() << 135 common.RotateStrings = true; << 136 common.RandomRotation.rotateZ( 2.0*pi*G4Un << 137 common.RandomRotation.rotateY( std::acos( << 138 common.RandomRotation.rotateZ( 2.0*pi*G4Un << 139 } << 140 143 >> 144 G4double SqrtS = std::sqrt( S ); >> 145 G4double maxPtSquare; >> 146 G4double X_a( 0.0 ), X_b( 0.0 ), X_c( 0.0 ), X_d( 0.0 ); 141 G4double MesonProdThreshold = projectile->Ge 147 G4double MesonProdThreshold = projectile->GetDefinition()->GetPDGMass() + 142 target->GetDef 148 target->GetDefinition()->GetPDGMass() + 143 ( 2.0*140.0 + 149 ( 2.0*140.0 + 16.0 )*MeV; // 2 Mpi + DeltaE 144 G4double Prel2 = sqr(common.S) + sqr(M0proje << 150 G4double Prel2 = S*S + M0projectile2*M0projectile2 + M0target2*M0target2 - 145 - 2.0*( common.S*(M0project << 151 2.0*S*M0projectile2 - 2.0*S*M0target2 - 2.0*M0projectile2*M0target2; 146 Prel2 /= common.S; << 152 Prel2 /= S; 147 G4double X_a = 0.0, X_b = 0.0, X_c = 0.0, X_ << 153 //G4cout << "Prel2 " << Prel2 << G4endl; 148 if ( Prel2 <= 0.0 ) { << 154 if ( Prel2 <= 0.0 ) { // *MeV*MeV 1600. 149 // Annihilation at rest! Values are copied 155 // Annihilation at rest! Values are copied from Parameters 150 X_a = 625.1; // mb // 3-shirt diagram << 156 X_a = 625.1; // mb // 3-shirt diagram 151 X_b = 0.0; // mb // anti-quark-quark << 157 X_b = 0.0; // 9.780 12 Dec. 2012; // mb // anti-quark-quark annihilation 152 X_c = 49.989; // mb // 2 Q-Qbar string << 158 X_c = 49.989; // mb 153 X_d = 6.614; // mb // One Q-Qbar strin << 159 X_d = 6.614; // mb >> 160 154 #ifdef debugFTFannih 161 #ifdef debugFTFannih 155 G4cout << "Annih at Rest X a b c d " << X_ 162 G4cout << "Annih at Rest X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d 156 << G4endl; 163 << G4endl; 157 #endif 164 #endif >> 165 158 } else { // Annihilation in flight! 166 } else { // Annihilation in flight! 159 G4double FlowF = 1.0 / std::sqrt( Prel2 )* 167 G4double FlowF = 1.0 / std::sqrt( Prel2 )*GeV; >> 168 160 // Process cross sections 169 // Process cross sections 161 X_a = 25.0*FlowF; // mb 3-shirt diagram 170 X_a = 25.0*FlowF; // mb 3-shirt diagram 162 if ( common.SqrtS < MesonProdThreshold ) { << 171 if ( SqrtS < MesonProdThreshold ) { 163 X_b = 3.13 + 140.0*G4Pow::GetInstance()- << 172 X_b = 3.13 + 140.0*std::pow( ( MesonProdThreshold - SqrtS )/GeV, 2.5 ); 164 } else { 173 } else { 165 X_b = 6.8*GeV / common.SqrtS; // mb ant << 174 X_b = 6.8*GeV / SqrtS; // mb anti-quark-quark annihilation 166 } 175 } 167 if ( projectile->GetDefinition()->GetPDGMa 176 if ( projectile->GetDefinition()->GetPDGMass() + target->GetDefinition()->GetPDGMass() 168 > common.SqrtS ) { << 177 > SqrtS ) { 169 X_b = 0.0; 178 X_b = 0.0; 170 } 179 } 171 // This can be in an interaction of low en 180 // This can be in an interaction of low energy anti-baryon with off-shell nuclear nucleon 172 X_c = 2.0 * FlowF * sqr( projectile->GetDe 181 X_c = 2.0 * FlowF * sqr( projectile->GetDefinition()->GetPDGMass() + 173 target->GetDefini << 182 target->GetDefinition()->GetPDGMass() ) / S; // mb re-arrangement of 174 << 183 // 2 quarks and 2 anti-quarks 175 X_d = 23.3*GeV*GeV / common.S; // mb anti- << 184 X_d = 23.3*GeV*GeV / S; // mb anti-quark-quark string creation >> 185 176 #ifdef debugFTFannih 186 #ifdef debugFTFannih 177 G4cout << "Annih in Flight X a b c d " << 187 G4cout << "Annih in Flight X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d 178 << G4endl << "SqrtS MesonProdThresh << 188 << G4endl << "SqrtS MesonProdThreshold " << SqrtS << " " << MesonProdThreshold 179 << G4endl; 189 << G4endl; 180 #endif 190 #endif >> 191 181 } 192 } 182 193 183 G4bool isUnknown = false; << 194 if ( ProjectilePDGcode == -2212 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 184 if ( TargetPDGcode == 2212 || TargetPDGcod << 195 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // Pbar P 185 if ( ProjectilePDGcode == -2212 || << 196 } else if ( ProjectilePDGcode == -2212 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 186 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // << 197 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // Pbar N 187 } else if ( ProjectilePDGcode == -2112 || << 198 } else if ( ProjectilePDGcode == -2112 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 188 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // << 199 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // NeutrBar P 189 } else if ( ProjectilePDGcode == -3122 ) { << 200 } else if ( ProjectilePDGcode == -2112 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 190 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 201 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // NeutrBar N 191 } else if ( ProjectilePDGcode == -3112 ) { << 202 } else if ( ProjectilePDGcode == -3122 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 192 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 203 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // LambdaBar P 193 } else if ( ProjectilePDGcode == -3212 ) { << 204 } else if ( ProjectilePDGcode == -3122 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 194 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 205 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // LambdaBar N 195 } else if ( ProjectilePDGcode == -3222 ) { << 206 } else if ( ProjectilePDGcode == -3112 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 196 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // << 207 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Sigma-Bar P 197 } else if ( ProjectilePDGcode == -3312 ) { << 208 } else if ( ProjectilePDGcode == -3112 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 198 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // << 209 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // Sigma-Bar N 199 } else if ( ProjectilePDGcode == -3322 ) { << 210 } else if ( ProjectilePDGcode == -3212 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 200 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 211 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // Sigma0Bar P 201 } else if ( ProjectilePDGcode == -3334 ) { << 212 } else if ( ProjectilePDGcode == -3212 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 202 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // << 213 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // Sigma0Bar N 203 } else { << 214 } else if ( ProjectilePDGcode == -3222 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 204 isUnknown = true; << 215 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // Sigma+Bar P 205 } << 216 } else if ( ProjectilePDGcode == -3222 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 206 } else if ( TargetPDGcode == 2112 || Targe << 217 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Sigma+Bar N 207 if ( ProjectilePDGcode == -2212 || << 218 } else if ( ProjectilePDGcode == -3312 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 208 X_b *= 4.0; X_c *= 4.0; X_d *= 4.0; // << 219 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // Xi-Bar P 209 } else if ( ProjectilePDGcode == -2112 || << 220 } else if ( ProjectilePDGcode == -3312 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 210 X_b *= 5.0; X_c *= 5.0; X_d *= 6.0; // << 221 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Xi-Bar N 211 } else if ( ProjectilePDGcode == -3122 ) { << 222 } else if ( ProjectilePDGcode == -3322 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 212 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 223 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // Xi0Bar P 213 } else if ( ProjectilePDGcode == -3112 ) { << 224 } else if ( ProjectilePDGcode == -3322 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 214 X_b *= 4.0; X_c *= 4.0; X_d *= 2.0; // << 225 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // Xi0Bar N 215 } else if ( ProjectilePDGcode == -3212 ) { << 226 } else if ( ProjectilePDGcode == -3334 && ( TargetPDGcode == 2212 || TargetPDGcode == 2214 ) ) { 216 X_b *= 3.0; X_c *= 3.0; X_d *= 2.0; // << 227 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // Omega-Bar P 217 } else if ( ProjectilePDGcode == -3222 ) { << 228 } else if ( ProjectilePDGcode == -3334 && ( TargetPDGcode == 2112 || TargetPDGcode == 2114 ) ) { 218 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 229 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // Omega-Bar N 219 } else if ( ProjectilePDGcode == -3312 ) { << 220 X_b *= 2.0; X_c *= 2.0; X_d *= 0.0; // << 221 } else if ( ProjectilePDGcode == -3322 ) { << 222 X_b *= 1.0; X_c *= 1.0; X_d *= 0.0; // << 223 } else if ( ProjectilePDGcode == -3334 ) { << 224 X_b *= 0.0; X_c *= 0.0; X_d *= 0.0; // << 225 } else { << 226 isUnknown = true; << 227 } << 228 } else { 230 } else { 229 isUnknown = true; << 230 } << 231 if ( isUnknown ) { << 232 G4cout << "Unknown anti-baryon for FTF ann 231 G4cout << "Unknown anti-baryon for FTF annihilation: PDGcodes - " 233 << ProjectilePDGcode << " " << Targ 232 << ProjectilePDGcode << " " << TargetPDGcode << G4endl; 234 } 233 } 235 234 236 #ifdef debugFTFannih 235 #ifdef debugFTFannih 237 G4cout << "Annih Actual X a b c d " << X_a < 236 G4cout << "Annih Actual X a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d << G4endl; 238 #endif 237 #endif 239 238 240 G4double Xannihilation = X_a + X_b + X_c + X 239 G4double Xannihilation = X_a + X_b + X_c + X_d; 241 240 242 // Projectile unpacking 241 // Projectile unpacking 243 UnpackBaryon( ProjectilePDGcode, common.AQ[0 << 242 G4int AQ[3]; >> 243 UnpackBaryon( ProjectilePDGcode, AQ[0], AQ[1], AQ[2] ); 244 244 245 // Target unpacking 245 // Target unpacking 246 UnpackBaryon( TargetPDGcode, common.Q[0], co << 246 G4int Q[3]; >> 247 UnpackBaryon( TargetPDGcode, Q[0], Q[1], Q[2] ); 247 248 248 G4double Ksi = G4UniformRand(); 249 G4double Ksi = G4UniformRand(); 249 250 250 if ( Ksi < X_a / Xannihilation ) { 251 if ( Ksi < X_a / Xannihilation ) { 251 return Create3QuarkAntiQuarkStrings( proje << 252 } << 253 << 254 G4int resultCode = 99; << 255 if ( Ksi < (X_a + X_b) / Xannihilation ) { << 256 resultCode = Create1DiquarkAntiDiquarkStri << 257 if ( resultCode == 0 ) { << 258 return true; << 259 } else if ( resultCode == 99 ) { << 260 return false; << 261 } << 262 } << 263 << 264 if ( Ksi < ( X_a + X_b + X_c ) / Xannihilati << 265 resultCode = Create2QuarkAntiQuarkStrings( << 266 if ( resultCode == 0 ) { << 267 return true; << 268 } else if ( resultCode == 99 ) { << 269 return false; << 270 } << 271 } << 272 252 273 if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xanni << 253 // Simulation of 3 anti-quark-quark strings creation 274 return Create1QuarkAntiQuarkString( projec << 254 // Sampling of anti-quark order in projectile 275 } << 276 << 277 return true; << 278 } << 279 255 >> 256 #ifdef debugFTFannih >> 257 G4cout << "Process a, 3 shirt diagram" << G4endl; >> 258 #endif 280 259 281 //-------------------------------------------- << 260 G4int SampledCase = G4RandFlat::shootInt( G4long( 6 ) ); 282 261 283 G4bool G4FTFAnnihilation:: << 262 G4int Tmp1( 0 ), Tmp2( 0 ); 284 Create3QuarkAntiQuarkStrings( G4VSplitableHadr << 263 if ( SampledCase == 0 ) { 285 G4VSplitableHadr << 264 } else if ( SampledCase == 1 ) { 286 G4VSplitableHadr << 265 Tmp1 = AQ[1]; AQ[1] = AQ[2]; AQ[2] = Tmp1; 287 G4FTFParameters* << 266 } else if ( SampledCase == 2 ) { 288 G4FTFAnnihilatio << 267 Tmp1 = AQ[0]; AQ[0] = AQ[1]; AQ[1] = Tmp1; 289 // Simulation of 3 anti-quark - quark string << 268 } else if ( SampledCase == 3 ) { >> 269 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = AQ[2]; AQ[1] = Tmp1; AQ[2] = Tmp2; >> 270 } else if ( SampledCase == 4 ) { >> 271 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = Tmp2; AQ[1] = AQ[2]; AQ[2] = Tmp1; >> 272 } else if ( SampledCase == 5 ) { >> 273 Tmp1 = AQ[0]; Tmp2 = AQ[1]; AQ[0] = AQ[2]; AQ[1] = Tmp2; AQ[2] = Tmp1; >> 274 } 290 275 291 #ifdef debugFTFannih << 276 // Set the string properties 292 G4cout << "Process a, 3 shirt diagram" << G4 << 293 #endif << 294 277 295 // Sampling kinematical properties of quark. << 278 //G4cout << "String 1 " << AQ[0] << " " << Q[0] << G4endl; >> 279 projectile->SplitUp(); >> 280 projectile->SetFirstParton( AQ[0] ); >> 281 projectile->SetSecondParton( Q[0] ); >> 282 projectile->SetStatus( 0 ); 296 283 297 const G4int maxNumberOfLoops = 1000; << 284 //G4cout << "String 2 " << Q[1] << " " << AQ[1] << G4endl; 298 G4double MassQ2 = 0.0; // Simp << 285 target->SplitUp(); 299 // In p << 286 target->SetFirstParton( Q[1] ); 300 G4double Quark_Xs[6]; << 287 target->SetSecondParton( AQ[1] ); 301 G4ThreeVector Quark_Mom[6]; << 288 target->SetStatus( 0 ); 302 << 289 303 G4double Alfa_R = 0.5; << 290 //G4cout << "String 3 " << AQ[2] << " " << Q[2] << G4endl; 304 G4double AveragePt2 = 200.0*200.0, maxPtSqua << 291 AdditionalString = new G4DiffractiveSplitableHadron(); 305 G4double ScaleFactor = 1.0; << 292 AdditionalString->SplitUp(); 306 G4double Alfa = 0.0, Beta = 0.0; << 293 AdditionalString->SetFirstParton( AQ[2] ); 307 << 294 AdditionalString->SetSecondParton( Q[2] ); 308 G4int NumberOfTries = 0, loopCounter = 0; << 295 AdditionalString->SetStatus( 0 ); 309 << 296 //G4cout << G4endl << "*AdditionalString in Annih" << AdditionalString << G4endl; 310 do { << 297 311 // Sampling X's of anti-baryon and baryon << 298 // Sampling kinematical properties 312 G4double x1 = 0.0, x2 = 0.0, x3 = 0.0; << 299 // 1 string AQ[0]-Q[0]// 2 string AQ[1]-Q[1]// 3 string AQ[2]-Q[2] 313 G4double Product = 1.0; << 300 314 for ( G4int iCase = 0; iCase < 2; ++iCase << 301 G4ThreeVector Quark_Mom[6]; >> 302 G4double ModMom2[6]; //ModMom[6] >> 303 >> 304 AveragePt2 = 200.0*200.0; maxPtSquare = S; >> 305 >> 306 G4double SumMt( 0.0 ); >> 307 G4double MassQ2 = 0.0; // 100.0*100.0*MeV*MeV; >> 308 G4int NumberOfTries( 0 ); >> 309 G4double ScaleFactor( 1.0 ); >> 310 >> 311 do { // while ( SumMt > SqrtS ); >> 312 NumberOfTries++; >> 313 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 314 // At large number of tries it would be better to reduce the values of <Pt^2> >> 315 ScaleFactor /= 2.0; >> 316 AveragePt2 *= ScaleFactor; >> 317 } >> 318 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); >> 319 for ( G4int i = 0; i < 6; i++ ) { >> 320 Quark_Mom [i] = GaussianPt( AveragePt2, maxPtSquare ); >> 321 PtSum += Quark_Mom[i]; >> 322 } >> 323 PtSum /= 6.0; >> 324 SumMt = 0.0; >> 325 for( G4int i = 0; i < 6; i++ ) { >> 326 Quark_Mom[i] -= PtSum; >> 327 //ModMom[i] = Quark_Mom[i].mag(); >> 328 ModMom2[i] = Quark_Mom[i].mag2(); >> 329 SumMt += std::sqrt( ModMom2[i] + MassQ2 ); >> 330 } >> 331 } while ( SumMt > SqrtS ); >> 332 >> 333 G4double WminusTarget( 0.0 ), WplusProjectile( 0.0 ); >> 334 >> 335 // Closed is variant with sampling of Xs at minimum >> 336 //G4double SumMod_anti = ModMom[0] + ModMom[1] + ModMom[2]; >> 337 //Quark_Mom[0].setZ( ModMom[0]/SumMod_anti ); >> 338 //Quark_Mom[1].setZ( ModMom[1]/SumMod_anti ); >> 339 //Quark_Mom[2].setZ( ModMom[2]/SumMod_anti ); >> 340 //G4double SumMod_bary = ModMom[3] + ModMom[4] + ModMom[5]; >> 341 //Quark_Mom[3].setZ( ModMom[3]/SumMod_bary ); >> 342 //Quark_Mom[4].setZ( ModMom[4]/SumMod_bary ); >> 343 //Quark_Mom[5].setZ( ModMom[5]/SumMod_bary ); >> 344 //G4double Alfa = SumMod_anti*SumMod_anti; >> 345 //G4double Beta = SumMod_bary*SumMod_bary; >> 346 //G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta >> 347 // - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; >> 348 //WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) )/2.0/SqrtS; >> 349 //WplusProjectile = SqrtS - Beta/WminusTarget; >> 350 // Closed is variant with sampling of Xs at minimum >> 351 >> 352 // Sampling X's of anti-baryon >> 353 G4double Alfa_R = 0.5; >> 354 NumberOfTries = 0; >> 355 ScaleFactor = 1.0; >> 356 G4bool Succes( true ); >> 357 >> 358 do { // while ( ! Succes ) >> 359 >> 360 Succes = true; >> 361 NumberOfTries++; >> 362 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 363 // At large number of tries it would be better to reduce the values of Pt's >> 364 ScaleFactor /= 2.0; >> 365 } 315 366 316 G4double r1 = G4UniformRand(), r2 = G4Un << 317 if ( Alfa_R == 1.0 ) { 367 if ( Alfa_R == 1.0 ) { 318 x1 = 1.0 - std::sqrt( r1 ); << 368 G4double Xaq1 = 1.0 - std::sqrt( G4UniformRand() ); 319 x2 = (1.0 - x1) * r2; << 369 G4double Xaq2 = (1.0 - Xaq1) * G4UniformRand(); >> 370 G4double Xaq3 = 1.0 - Xaq1 - Xaq2; >> 371 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); Quark_Mom[2].setZ( Xaq3 ); 320 } else { 372 } else { 321 x1 = sqr( r1 ); << 373 G4double Xaq1 = sqr( G4UniformRand() ); 322 x2 = (1.0 - x1) * sqr( std::sin( pi/2. << 374 G4double Xaq2 = (1.0 - Xaq1)*sqr( std::sin( pi/2.0*G4UniformRand() ) ); >> 375 G4double Xaq3 = 1.0 - Xaq1 - Xaq2; >> 376 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); Quark_Mom[2].setZ( Xaq3 ); 323 } 377 } 324 x3 = 1.0 - x1 - x2; << 325 378 326 G4int index = iCase*3; // 0 for anti-ba << 379 // Sampling X's of baryon 327 Quark_Xs[index] = x1; Quark_Xs[index+1] << 380 if ( Alfa_R == 1.0 ) { 328 Product *= (x1*x2*x3); << 381 G4double Xq1 = 1.0 - std::sqrt( G4UniformRand() ); 329 } << 382 G4double Xq2 = (1.0 - Xq1) * G4UniformRand(); 330 << 383 G4double Xq3 = 1.0 - Xq1 - Xq2; 331 if ( Product == 0.0 ) continue; << 384 Quark_Mom[3].setZ( Xq1 ); Quark_Mom[4].setZ( Xq2 ); Quark_Mom[5].setZ( Xq3 ); >> 385 } else { >> 386 G4double Xq1 = sqr( G4UniformRand() ); >> 387 G4double Xq2 = (1.0 - Xq1) * sqr( std::sin( pi/2.0*G4UniformRand() ) ); >> 388 G4double Xq3 = 1.0 - Xq1 - Xq2; >> 389 Quark_Mom[3].setZ( Xq1 ); Quark_Mom[4].setZ( Xq2 ); Quark_Mom[5].setZ( Xq3 ); >> 390 } 332 391 333 ++NumberOfTries; << 392 G4double Alfa( 0.0 ), Beta( 0.0 ); 334 if ( NumberOfTries == 100*(NumberOfTries/1 << 393 for ( G4int i = 0; i < 3; i++ ) { // For Anti-baryon 335 // After a large number of tries, it is << 394 if ( Quark_Mom[i].getZ() != 0.0 ) { 336 ScaleFactor /= 2.0; << 395 Alfa += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); 337 AveragePt2 *= ScaleFactor; << 396 } else { 338 } << 397 Succes = false; >> 398 } >> 399 } >> 400 for ( G4int i = 3; i < 6; i++ ) { // For baryon >> 401 if ( Quark_Mom[i].getZ() != 0.0 ) { >> 402 Beta += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); >> 403 } else { >> 404 Succes = false; >> 405 } >> 406 } 339 407 340 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); << 408 if ( ! Succes ) continue; 341 for ( G4int i = 0; i < 6; ++i ) { << 342 Quark_Mom [i] = GaussianPt( AveragePt2, << 343 PtSum += Quark_Mom[i]; << 344 } << 345 409 346 PtSum /= 6.0; << 410 if ( std::sqrt( Alfa ) + std::sqrt( Beta ) > SqrtS ) { 347 Alfa = 0.0; Beta = 0.0; << 411 Succes = false; >> 412 continue; >> 413 } >> 414 >> 415 G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta >> 416 - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; >> 417 >> 418 WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) ) / 2.0 / SqrtS; >> 419 WplusProjectile = SqrtS - Beta/WminusTarget; >> 420 >> 421 } while ( ! Succes ); >> 422 >> 423 G4double SqrtScaleF = std::sqrt( ScaleFactor ); >> 424 for ( G4int i = 0; i < 3; i++ ) { >> 425 G4double Pz = WplusProjectile * Quark_Mom[i].getZ() / 2.0 - >> 426 ( ScaleFactor * ModMom2[i] + MassQ2 ) / >> 427 ( 2.0 * WplusProjectile * Quark_Mom[i].getZ() ); >> 428 Quark_Mom[i].setZ( Pz ); >> 429 if ( ScaleFactor != 1.0 ) { >> 430 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 431 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 432 } >> 433 } >> 434 for ( G4int i = 3; i < 6; i++ ) { >> 435 G4double Pz = -WminusTarget * Quark_Mom[i].getZ() / 2.0 + >> 436 ( ScaleFactor * ModMom2[i] + MassQ2 ) / >> 437 ( 2.0 * WminusTarget * Quark_Mom[i].getZ() ); >> 438 Quark_Mom[i].setZ( Pz ); >> 439 if ( ScaleFactor != 1.0 ) { >> 440 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 441 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 442 } >> 443 } >> 444 //G4cout << "Sum AQ " << Quark_Mom[0] + Quark_Mom[1] + Quark_Mom[2] << G4endl >> 445 // << "Sum Q " << Quark_Mom[3] + Quark_Mom[4] + Quark_Mom[5] << G4endl; >> 446 >> 447 G4ThreeVector tmp = Quark_Mom[0] + Quark_Mom[3]; >> 448 G4LorentzVector Pstring1( tmp, std::sqrt( Quark_Mom[0].mag2() + MassQ2 ) + >> 449 std::sqrt( Quark_Mom[3].mag2() + MassQ2 ) ); >> 450 G4double Ystring1 = Pstring1.rapidity(); >> 451 >> 452 //G4cout << "Mom 1 string " << G4endl << Quark_Mom[0] << G4endl << Quark_Mom[3] << G4endl >> 453 // << tmp << " " << tmp.mag() << G4endl; >> 454 //G4cout << "1 str " << Pstring1 << " " << Pstring1.mag() << " " << Ystring1 << G4endl; >> 455 >> 456 tmp = Quark_Mom[1] + Quark_Mom[4]; >> 457 G4LorentzVector Pstring2( tmp, std::sqrt( Quark_Mom[1].mag2() + MassQ2 ) + >> 458 std::sqrt( Quark_Mom[4].mag2() + MassQ2 ) ); >> 459 G4double Ystring2 = Pstring2.rapidity(); >> 460 >> 461 //G4cout << "Mom 2 string " << G4endl << Quark_Mom[1] << G4endl << Quark_Mom[4] << G4endl >> 462 // << tmp << " " << tmp.mag() << G4endl; >> 463 //G4cout << "2 str " << Pstring2 << " " << Pstring2.mag() << " " << Ystring2 << G4endl; >> 464 >> 465 tmp = Quark_Mom[2] + Quark_Mom[5]; >> 466 G4LorentzVector Pstring3( tmp, std::sqrt( Quark_Mom[2].mag2() + MassQ2 ) + >> 467 std::sqrt( Quark_Mom[5].mag2() + MassQ2 ) ); >> 468 G4double Ystring3 = Pstring3.rapidity(); >> 469 >> 470 //G4cout << "Mom 3 string " << G4endl << Quark_Mom[2] << G4endl << Quark_Mom[5] << G4endl >> 471 // << tmp << " " << tmp.mag() << G4endl; >> 472 //G4cout << "3 str " << Pstring3 << " " << Pstring3.mag() << " " << Ystring3 << G4endl >> 473 // << "SumE " << Pstring1.e() + Pstring2.e() + Pstring3.e() << G4endl >> 474 // << Pstring1.mag() << " " <<Pstring2.mag() << " " << Pstring3.mag() << G4endl; >> 475 //G4int Uzhi; G4cin >> Uzhi; >> 476 >> 477 G4LorentzVector LeftString( 0.0, 0.0, 0.0, 0.0 ); >> 478 if ( Ystring1 > Ystring2 && Ystring2 > Ystring3 ) { >> 479 Pprojectile = Pstring1; >> 480 LeftString = Pstring2; >> 481 Ptarget = Pstring3; >> 482 } >> 483 if ( Ystring1 > Ystring3 && Ystring3 > Ystring2 ) { >> 484 Pprojectile = Pstring1; >> 485 LeftString = Pstring3; >> 486 Ptarget = Pstring2; >> 487 } >> 488 >> 489 if ( Ystring2 > Ystring1 && Ystring1 > Ystring3 ) { >> 490 Pprojectile = Pstring2; >> 491 LeftString = Pstring1; >> 492 Ptarget = Pstring3; >> 493 } >> 494 if ( Ystring2 > Ystring3 && Ystring3 > Ystring1 ) { >> 495 Pprojectile = Pstring2; >> 496 LeftString = Pstring3; >> 497 Ptarget = Pstring1; >> 498 } >> 499 >> 500 if ( Ystring3 > Ystring1 && Ystring1 > Ystring2 ) { >> 501 Pprojectile = Pstring3; >> 502 LeftString = Pstring1; >> 503 Ptarget = Pstring2; >> 504 } >> 505 if ( Ystring3 > Ystring2 && Ystring2 > Ystring1 ) { >> 506 Pprojectile = Pstring3; >> 507 LeftString = Pstring2; >> 508 Ptarget = Pstring1; >> 509 } >> 510 //G4cout << "SumP " << Pprojectile + LeftString + Ptarget << " " << SqrtS << G4endl; >> 511 >> 512 Pprojectile.transform( toLab ); >> 513 LeftString.transform( toLab ); >> 514 Ptarget.transform( toLab ); >> 515 //G4cout << "SumP " << Pprojectile + LeftString + Ptarget << " " << SqrtS << G4endl; 348 516 349 for ( G4int i = 0; i < 6; ++i ) { // Loop << 517 // Calculation of the creation time 350 Quark_Mom[i] -= PtSum; << 518 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 519 projectile->SetPosition( target->GetPosition() ); >> 520 AdditionalString->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 521 AdditionalString->SetPosition( target->GetPosition() ); >> 522 // Creation time and position of target nucleon were determined in >> 523 // ReggeonCascade() of G4FTFModel >> 524 >> 525 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; >> 526 projectile->Set4Momentum( Pprojectile ); >> 527 AdditionalString->Set4Momentum( LeftString ); >> 528 target->Set4Momentum( Ptarget ); >> 529 projectile->IncrementCollisionCount( 1 ); >> 530 AdditionalString->IncrementCollisionCount( 1 ); >> 531 target->IncrementCollisionCount( 1 ); 351 532 352 G4double val = ( Quark_Mom[i].mag2() + M << 533 return true; 353 if ( i < 3 ) { // anti-baryon << 354 Alfa += val; << 355 } else { // baryon (iCase == 1) << 356 Beta += val; << 357 } << 358 } << 359 534 360 } while ( ( std::sqrt( Alfa ) + std::sqrt( B << 535 } // End of if ( Ksi < X_a / Xannihilation ) 361 ++loopCounter < maxNumberOfLoops ) << 362 536 363 if ( loopCounter >= maxNumberOfLoops ) { << 537 // Simulation of anti-diquark-diquark string creation 364 return false; << 365 } << 366 538 367 G4double DecayMomentum2 = sqr(common.S) + sq << 539 if ( Ksi < (X_a + X_b) / Xannihilation ) { 368 - 2.0*( common.S*( << 369 540 370 G4double WminusTarget = 0.0, WplusProjectile << 541 #ifdef debugFTFannih 371 WminusTarget = ( common.S - Alfa + Beta + st << 542 G4cout << "Process b, quark - anti-quark annihilation, di-q - anti-di-q string" << G4endl; 372 WplusProjectile = common.SqrtS - Beta/Wminus << 543 #endif 373 << 374 for ( G4int iCase = 0; iCase < 2; ++iCase ) << 375 G4int index = iCase*3; // << 376 G4double w = WplusProjectile; // << 377 if ( iCase == 1 ) w = - WminusTarget; // << 378 for ( G4int i = 0; i < 3; ++i ) { << 379 G4double Pz = w * Quark_Xs[index+i] / 2. << 380 ( Quark_Mom[index+i].mag2( << 381 ( 2.0 * w * Quark_Xs[index << 382 Quark_Mom[index+i].setZ( Pz ); << 383 } << 384 } << 385 544 386 // Sampling of anti-quark order in projectil << 545 G4int CandidatsN( 0 ), CandAQ[9][2], CandQ[9][2]; 387 G4int SampledCase = (G4int)G4RandFlat::shoot << 546 G4int LeftAQ1( 0 ), LeftAQ2( 0 ), LeftQ1( 0 ), LeftQ2( 0 ); 388 G4int Tmp1 = 0, Tmp2 = 0; << 389 switch ( SampledCase ) { << 390 case 1 : Tmp1 = common.AQ[1]; common.AQ[1] << 391 case 2 : Tmp1 = common.AQ[0]; common.AQ[0] << 392 case 3 : Tmp1 = common.AQ[0]; Tmp2 << 393 common.AQ[1] = Tmp1; comm << 394 case 4 : Tmp1 = common.AQ[0]; Tmp2 << 395 common.AQ[1] = common.AQ[2]; comm << 396 case 5 : Tmp1 = common.AQ[0]; Tmp2 << 397 common.AQ[1] = Tmp2; comm << 398 } << 399 547 400 // Set the string properties << 548 for ( G4int iAQ = 0; iAQ < 3; iAQ++ ) { 401 // An anti quark - quark pair can have the q << 549 for ( G4int iQ = 0; iQ < 3; iQ++ ) { 402 // or a vector meson: the last digit of the << 550 if ( -AQ[iAQ] == Q[iQ] ) { 403 // For simplicity only scalar is considered << 551 if ( iAQ == 0 ) { CandAQ[CandidatsN][0] = 1; CandAQ[CandidatsN][1] = 2; } 404 G4int NewCode = 0, antiQuark = 0, quark = 0; << 552 if ( iAQ == 1 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 2; } 405 G4ParticleDefinition* TestParticle = nullptr << 553 if ( iAQ == 2 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 1; } 406 for ( G4int iString = 0; iString < 3; ++iStr << 554 if ( iQ == 0 ) { CandQ[CandidatsN][0] = 1; CandQ[CandidatsN][1] = 2; } 407 if ( iString == 0 ) { << 555 if ( iQ == 1 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 2; } 408 antiQuark = common.AQ[0]; quark = commo << 556 if ( iQ == 2 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 1; } 409 projectile->SetFirstParton( antiQuark ); << 557 CandidatsN++; 410 projectile->SetSecondParton( quark ); << 411 projectile->SetStatus( 0 ); << 412 } else if ( iString == 1 ) { << 413 quark = common.Q[1]; antiQuark = common << 414 target->SetFirstParton( quark ); << 415 target->SetSecondParton( antiQuark ); << 416 target->SetStatus( 0 ); << 417 } else { // iString == 2 << 418 antiQuark = common.AQ[2]; quark = commo << 419 } << 420 G4int absAntiQuark = std::abs( antiQuark ) << 421 G4double aKsi = G4UniformRand(); << 422 if ( absAntiQuark == absQuark ) { << 423 if ( absAntiQuark != 3 ) { // Not yet c << 424 NewCode = 111; // Pi0-meson << 425 if ( aKsi < 0.5 ) { << 426 NewCode = 221; // Eta -meso << 427 if ( aKsi < 0.25 ) { << 428 NewCode = 331; // Eta'-meso << 429 } << 430 } << 431 } else { << 432 NewCode = 221; // Eta -meso << 433 if ( aKsi < 0.5 ) { << 434 NewCode = 331; // Eta'-meso << 435 } 558 } 436 } 559 } 437 } else { // Vector mesons - rho, omega, p << 438 if ( absAntiQuark > absQuark ) { << 439 NewCode = absAntiQuark*100 + absQuark* << 440 } else { << 441 NewCode = absQuark*100 + absAntiQuark* << 442 } << 443 } << 444 if ( iString == 2 ) AdditionalString = new << 445 TestParticle = G4ParticleTable::GetParticl << 446 if ( ! TestParticle ) return false; << 447 if ( iString == 0 ) { << 448 projectile->SetDefinition( TestParticle << 449 theParameters->SetProjMinDiffMass( 0.5 ) << 450 theParameters->SetProjMinNonDiffMass( 0. << 451 } else if ( iString == 1 ) { << 452 target->SetDefinition( TestParticle ); << 453 theParameters->SetTarMinDiffMass( 0.5 ); << 454 theParameters->SetTarMinNonDiffMass( 0.5 << 455 } else { // iString == 2 << 456 AdditionalString->SetDefinition( TestPar << 457 AdditionalString->SetFirstParton( common << 458 AdditionalString->SetSecondParton( commo << 459 AdditionalString->SetStatus( 0 ); << 460 } 560 } 461 } // End of the for loop over the 3 string << 561 //G4cout << "CandidatsN " << CandidatsN << G4endl; 462 << 463 // 1st string AQ[0]-Q[0], 2nd string AQ[1]-Q << 464 562 465 G4LorentzVector Pstring1, Pstring2, Pstring3 << 563 if ( CandidatsN != 0 ) { 466 G4int QuarkOrder[3] = { 0 }; << 564 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); 467 G4double YstringMax = 0.0, YstringMin = 0.0; << 565 LeftAQ1 = AQ[ CandAQ[SampledCase][0] ]; 468 for ( G4int i = 0; i < 3; ++i ) { << 566 LeftAQ2 = AQ[ CandAQ[SampledCase][1] ]; 469 G4ThreeVector tmp = Quark_Mom[i] + Quark_M << 567 LeftQ1 = Q[ CandQ[SampledCase][0] ]; 470 G4LorentzVector Pstring( tmp, std::sqrt( Q << 568 LeftQ2 = Q[ CandQ[SampledCase][1] ]; 471 std::sqrt( Q << 569 472 // Add protection for rapidity = 0.5*ln( << 570 // Build anti-diquark and diquark 473 G4double Ystring = 0.0; << 571 G4int Anti_DQ( 0 ), DQ( 0 ); 474 if ( Pstring.e() > 1.0e-30 ) { << 572 if ( std::abs( LeftAQ1 ) > std::abs( LeftAQ2 ) ) { 475 if ( Pstring.e() + Pstring.pz() < 1.0e-3 << 573 Anti_DQ = 1000*LeftAQ1 + 100*LeftAQ2 - 3; // 1 476 Ystring = -1.0e30; // A very large n << 477 if ( Pstring.e() - Pstring.pz() < 1.0e << 478 Ystring = 1.0e30; // A very large p << 479 } else { // Normal case << 480 Ystring = Pstring.rapidity(); << 481 } << 482 } << 483 } << 484 // Keep ordering in rapidity: "1" highest, << 485 if ( i == 0 ) { << 486 Pstring1 = Pstring; YstringMax = Yst << 487 QuarkOrder[0] = 0; << 488 } else if ( i == 1 ) { << 489 if ( Ystring > YstringMax ) { << 490 Pstring2 = Pstring1; YstringMin = Yst << 491 Pstring1 = Pstring; YstringMax = Yst << 492 QuarkOrder[0] = 1; QuarkOrder[1] = 0; << 493 } else { 574 } else { 494 Pstring2 = Pstring; YstringMin = Yst << 575 Anti_DQ = 1000*LeftAQ2 + 100*LeftAQ1 - 3; // 1 495 QuarkOrder[1] = 1; << 496 } 576 } 497 } else { // i == 2 << 577 //if ( G4UniformRand() > 0.5 ) Anti_DQ -= 2; 498 if ( Ystring > YstringMax ) { << 578 if ( std::abs( LeftQ1 ) > std::abs( LeftQ2 ) ) { 499 Pstring3 = Pstring2; << 579 DQ = 1000*LeftQ1 + 100*LeftQ2 + 3; // 1 500 Pstring2 = Pstring1; << 501 Pstring1 = Pstring; << 502 QuarkOrder[1] = QuarkOrder[0]; << 503 QuarkOrder[2] = QuarkOrder[1]; << 504 QuarkOrder[0] = 2; << 505 } else if ( Ystring > YstringMin ) { << 506 Pstring3 = Pstring2; << 507 Pstring2 = Pstring; << 508 } else { 580 } else { 509 Pstring3 = Pstring; << 581 DQ = 1000*LeftQ2 + 100*LeftQ1 + 3; // 1 510 QuarkOrder[2] = 2; << 511 } 582 } 512 } << 583 // if ( G4UniformRand() > 0.5 ) DQ += 2; 513 } << 514 << 515 G4LorentzVector Quark_4Mom[6]; << 516 for ( G4int i = 0; i < 6; ++i ) { << 517 Quark_4Mom[i] = G4LorentzVector( Quark_Mom << 518 if ( common.RotateStrings ) Quark_4Mom[i] << 519 Quark_4Mom[i].transform( common.toLab ); << 520 } << 521 << 522 projectile->Splitting(); << 523 projectile->GetNextAntiParton()->Set4Momentu << 524 projectile->GetNextParton()->Set4Momentum( Q << 525 << 526 target->Splitting(); << 527 target->GetNextParton()->Set4Momentum( Quark << 528 target->GetNextAntiParton()->Set4Momentum( Q << 529 << 530 AdditionalString->Splitting(); << 531 AdditionalString->GetNextAntiParton()->Set4M << 532 AdditionalString->GetNextParton()->Set4Momen << 533 << 534 common.Pprojectile = Pstring1; // << 535 common.Ptarget = Pstring3; // << 536 G4LorentzVector LeftString( Pstring2 ); // << 537 << 538 if ( common.RotateStrings ) { << 539 common.Pprojectile *= common.RandomRotatio << 540 common.Ptarget *= common.RandomRotatio << 541 LeftString *= common.RandomRotatio << 542 } << 543 << 544 common.Pprojectile.transform( common.toLab ) << 545 common.Ptarget.transform( common.toLab ); << 546 LeftString.transform( common.toLab ); << 547 << 548 // Calculation of the creation time << 549 // Creation time and position of target nucl << 550 projectile->SetTimeOfCreation( target->GetTi << 551 projectile->SetPosition( target->GetPosition << 552 AdditionalString->SetTimeOfCreation( target- << 553 AdditionalString->SetPosition( target->GetPo << 554 << 555 projectile->Set4Momentum( common.Pprojectile << 556 AdditionalString->Set4Momentum( LeftString ) << 557 target->Set4Momentum( common.Ptarget ); << 558 << 559 projectile->IncrementCollisionCount( 1 ); << 560 AdditionalString->IncrementCollisionCount( 1 << 561 target->IncrementCollisionCount( 1 ); << 562 << 563 return true; << 564 } << 565 << 566 << 567 //-------------------------------------------- << 568 << 569 G4int G4FTFAnnihilation:: << 570 Create1DiquarkAntiDiquarkString( G4VSplitableH << 571 G4VSplitableH << 572 G4FTFAnnihila << 573 // Simulation of anti-diquark-diquark string << 574 // This method returns an integer code - ins << 575 // "0" : successfully ended and nothing el << 576 // "1" : successfully completed, but the w << 577 // "99" : unsuccessfully ended, nothing els << 578 584 579 #ifdef debugFTFannih << 585 // Set the string properties 580 G4cout << "Process b, quark - anti-quark ann << 586 //G4cout << "Left ADiQ DiQ " << Anti_DQ << " " << DQ << G4endl; 581 #endif << 587 projectile->SplitUp(); >> 588 //projectile->SetFirstParton( Anti_DQ ); >> 589 //projectile->SetSecondParton( DQ ); >> 590 projectile->SetFirstParton( DQ ); >> 591 projectile->SetSecondParton( Anti_DQ ); >> 592 projectile->SetStatus( 0 ); >> 593 target->SetStatus( 3 ); // The target nucleon has annihilated >> 594 Pprojectile.setPx( 0.0 ); // VU Mar1 >> 595 Pprojectile.setPy( 0.0 ); // VU Mar1 >> 596 Pprojectile.setPz( 0.0 ); >> 597 Pprojectile.setE( SqrtS ); >> 598 Pprojectile.transform( toLab ); >> 599 >> 600 // Calculation of the creation time >> 601 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 602 projectile->SetPosition( target->GetPosition() ); >> 603 // Creation time and position of target nucleon were determined in >> 604 // ReggeonCascade() of G4FTFModel >> 605 >> 606 //G4cout << "Mproj " << Pprojectile.mag() << G4endl >> 607 // << "Mtarg " << Ptarget.mag() << G4endl; >> 608 projectile->Set4Momentum( Pprojectile ); 582 609 583 G4int CandidatsN = 0, CandAQ[9][2] = {}, Can << 610 projectile->IncrementCollisionCount( 1 ); 584 for ( G4int iAQ = 0; iAQ < 3; ++iAQ ) { // << 611 target->IncrementCollisionCount( 1 ); 585 for ( G4int iQ = 0; iQ < 3; ++iQ ) { // << 586 if ( -common.AQ[iAQ] == common.Q[iQ] ) { << 587 // Here "0", "1", "2" means, respectiv << 588 // of the (anti-baryon) projectile or << 589 if ( iAQ == 0 ) { CandAQ[CandidatsN][0 << 590 if ( iAQ == 1 ) { CandAQ[CandidatsN][0 << 591 if ( iAQ == 2 ) { CandAQ[CandidatsN][0 << 592 if ( iQ == 0 ) { CandQ[CandidatsN][0] << 593 if ( iQ == 1 ) { CandQ[CandidatsN][0] << 594 if ( iQ == 2 ) { CandQ[CandidatsN][0] << 595 ++CandidatsN; << 596 } << 597 } << 598 } << 599 612 600 // Remaining two (anti-)quarks that form the << 613 return true; 601 G4int LeftAQ1 = 0, LeftAQ2 = 0, LeftQ1 = 0, << 602 if ( CandidatsN != 0 ) { << 603 G4int SampledCase = (G4int)G4RandFlat::sho << 604 LeftAQ1 = common.AQ[ CandAQ[SampledCase][0 << 605 LeftAQ2 = common.AQ[ CandAQ[SampledCase][1 << 606 LeftQ1 = common.Q[ CandQ[SampledCase][0] << 607 LeftQ2 = common.Q[ CandQ[SampledCase][1] << 608 << 609 // Build anti-diquark and diquark : the la << 610 // of anti-quark - anti-quark and quark - << 611 // or quarks are different. For simplicity << 612 G4int Anti_DQ = 0, DQ = 0; << 613 if ( std::abs( LeftAQ1 ) > std::abs( LeftA << 614 Anti_DQ = 1000*LeftAQ1 + 100*LeftAQ2 - 3 << 615 } else { << 616 Anti_DQ = 1000*LeftAQ2 + 100*LeftAQ1 - 3 << 617 } << 618 if ( std::abs( LeftQ1 ) > std::abs( LeftQ2 << 619 DQ = 1000*LeftQ1 + 100*LeftQ2 + 3; << 620 } else { << 621 DQ = 1000*LeftQ2 + 100*LeftQ1 + 3; << 622 } << 623 << 624 // Set the string properties << 625 projectile->SetFirstParton( DQ ); << 626 projectile->SetSecondParton( Anti_DQ ); << 627 << 628 // It is assumed that quark and di-quark m << 629 G4LorentzVector Pquark = G4LorentzVector( << 630 G4LorentzVector Paquark = G4LorentzVector( << 631 << 632 if ( common.RotateStrings ) { << 633 Pquark *= common.RandomRotation; << 634 Paquark *= common.RandomRotation; << 635 } 614 } 636 615 637 Pquark.transform( common.toLab ); << 616 } // End of if ( Ksi < (X_a + X_b) / Xannihilation ) 638 Paquark.transform( common.toLab ); << 639 << 640 projectile->GetNextParton()->Set4Momentum( << 641 projectile->GetNextAntiParton()->Set4Momen << 642 << 643 projectile->Splitting(); << 644 << 645 projectile->SetStatus( 0 ); << 646 target->SetStatus( 4 ); // The target nuc << 647 common.Pprojectile.setPx( 0.0 ); << 648 common.Pprojectile.setPy( 0.0 ); << 649 common.Pprojectile.setPz( 0.0 ); << 650 common.Pprojectile.setE( common.SqrtS ); << 651 common.Pprojectile.transform( common.toLab << 652 << 653 // Calculation of the creation time << 654 // Creation time and position of target nu << 655 projectile->SetTimeOfCreation( target->Get << 656 projectile->SetPosition( target->GetPositi << 657 projectile->Set4Momentum( common.Pprojecti << 658 << 659 projectile->IncrementCollisionCount( 1 ); << 660 target->IncrementCollisionCount( 1 ); << 661 << 662 return 0; // Completed successfully: noth << 663 } // End of if ( CandidatsN != 0 ) << 664 << 665 // If we allow the string to interact with o << 666 // set up MinDiffrMass in Parameters, and as << 667 << 668 return 1; // Successfully ended, but the wo << 669 } << 670 617 >> 618 if ( Ksi < ( X_a + X_b + X_c ) / Xannihilation ) { 671 619 672 //-------------------------------------------- << 620 // Simulation of 2 anti-quark-quark strings creation 673 621 674 G4int G4FTFAnnihilation:: << 622 #ifdef debugFTFannih 675 Create2QuarkAntiQuarkStrings( G4VSplitableHadr << 623 G4cout << "Process c, quark - anti-quark and string junctions annihilation, 2 strings left." 676 G4VSplitableHadr << 624 << G4endl; 677 G4FTFParameters* << 625 #endif 678 G4FTFAnnihilatio << 679 // Simulation of 2 anti-quark-quark strings << 680 // This method returns an integer code - ins << 681 // "0" : successfully ended and nothing el << 682 // "1" : successfully completed, but the w << 683 // "99" : unsuccessfully ended, nothing els << 684 626 685 #ifdef debugFTFannih << 627 G4int CandidatsN( 0 ), CandAQ[9][2], CandQ[9][2]; 686 G4cout << "Process c, quark - anti-quark and << 628 G4int LeftAQ1( 0 ), LeftAQ2( 0 ), LeftQ1( 0 ), LeftQ2( 0 ); 687 << G4endl; << 688 #endif << 689 629 690 // Sampling kinematical properties: 1st stri << 630 for ( G4int iAQ = 0; iAQ < 3; iAQ++ ) { 691 G4ThreeVector Quark_Mom[4]; << 631 for ( G4int iQ = 0; iQ < 3; iQ++ ) { 692 G4double Quark_Xs[4]; << 632 if ( -AQ[iAQ] == Q[iQ] ) { 693 G4double AveragePt2 = 200.0*200.0, maxPtSqua << 633 if ( iAQ == 0 ) { CandAQ[CandidatsN][0] = 1; CandAQ[CandidatsN][1] = 2; } 694 G4int NumberOfTries = 0, loopCounter = 0; << 634 if ( iAQ == 1 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 2; } 695 const G4int maxNumberOfLoops = 1000; << 635 if ( iAQ == 2 ) { CandAQ[CandidatsN][0] = 0; CandAQ[CandidatsN][1] = 1; } 696 G4double Alfa = 0.0, Beta = 0.0; << 636 if ( iQ == 0 ) { CandQ[CandidatsN][0] = 1; CandQ[CandidatsN][1] = 2; } 697 G4double WminusTarget = 0.0, WplusProjectile << 637 if ( iQ == 1 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 2; } 698 do { << 638 if ( iQ == 2 ) { CandQ[CandidatsN][0] = 0; CandQ[CandidatsN][1] = 1; } 699 // Sampling X's of the 2 quarks and 2 anti << 639 CandidatsN++; 700 << 701 G4double Product = 1.0; << 702 for ( G4int iCase = 0; iCase < 2; ++iCase << 703 G4double x = 0.0, r = G4UniformRand(); << 704 if ( Alfa_R == 1.0 ) { << 705 if ( iCase == 0 ) { // first string << 706 x = std::sqrt( r ); << 707 } else { // second string << 708 x = 1.0 - std::sqrt( r ); << 709 } 640 } 710 } else { << 711 x = sqr( std::sin( pi/2.0*r ) ); << 712 } 641 } 713 G4int index = iCase*2; // 0 for the fir << 714 Quark_Xs[index] = x ; Quark_Xs[index+1] << 715 Product *= x*(1.0-x); << 716 } 642 } >> 643 //G4cout << "CandidatsN " << CandidatsN << G4endl; 717 644 718 if ( Product == 0.0 ) continue; << 645 if ( CandidatsN != 0 ) { 719 << 646 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); 720 ++NumberOfTries; << 647 LeftAQ1 = AQ[ CandAQ[SampledCase][0] ]; 721 if ( NumberOfTries == 100*(NumberOfTries/1 << 648 LeftAQ2 = AQ[ CandAQ[SampledCase][1] ]; 722 // After a large number of tries, it is << 649 if ( G4UniformRand() < 0.5 ) { 723 ScaleFactor /= 2.0; << 650 LeftQ1 = Q[ CandQ[SampledCase][0] ]; 724 AveragePt2 *= ScaleFactor; << 651 LeftQ2 = Q[ CandQ[SampledCase][1] ]; 725 } << 652 } else { 726 << 653 LeftQ2 = Q[ CandQ[SampledCase][0] ]; 727 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); << 654 LeftQ1 = Q[ CandQ[SampledCase][1] ]; 728 for( G4int i = 0; i < 4; ++i ) { << 655 } 729 Quark_Mom[i] = GaussianPt( AveragePt2, m << 730 PtSum += Quark_Mom[i]; << 731 } << 732 << 733 PtSum /= 4.0; << 734 for ( G4int i = 0; i < 4; ++i ) { << 735 Quark_Mom[i] -= PtSum; << 736 } << 737 656 738 Alfa = 0.0; Beta = 0.0; << 657 // Set the string properties 739 for ( G4int iCase = 0; iCase < 2; ++iCase << 658 //G4cout << "String 1 " << LeftAQ1 << " " << LeftQ1 << G4endl; 740 G4int index = iCase * 2; << 659 projectile->SplitUp(); 741 for ( G4int i = 0; i < 2; ++i ) { << 660 projectile->SetFirstParton( LeftAQ1 ); 742 G4double val = ( Quark_Mom[index+i]. << 661 projectile->SetSecondParton( LeftQ1 ); 743 if ( iCase == 0 ) { // first string << 662 projectile->SetStatus( 0 ); 744 Alfa += val; << 663 //G4cout << "String 2 " << LeftAQ2 << " " << LeftQ2 << G4endl; 745 } else { // second strin << 664 target->SplitUp(); 746 Beta += val; << 665 target->SetFirstParton( LeftQ2 ); 747 } << 666 target->SetSecondParton( LeftAQ2 ); 748 } << 667 target->SetStatus( 0 ); 749 } << 750 668 751 } while ( ( std::sqrt( Alfa ) + std::sqrt( B << 669 // Sampling kinematical properties 752 ++loopCounter < maxNumberOfLoops ) << 670 // 1 string LeftAQ1-LeftQ1// 2 string LeftAQ2-LeftQ2 >> 671 G4ThreeVector Quark_Mom[4]; >> 672 G4double ModMom2[4]; //ModMom[4], >> 673 >> 674 AveragePt2 = 200.0*200.0; maxPtSquare = S; >> 675 >> 676 G4double SumMt( 0.0 ); >> 677 G4double MassQ2 = 0.0; //100.0*100.0*MeV*MeV; >> 678 G4int NumberOfTries( 0 ); >> 679 G4double ScaleFactor( 1.0 ); >> 680 >> 681 do { >> 682 NumberOfTries++; >> 683 if ( NumberOfTries == 100*(NumberOfTries/100) ) { >> 684 // At large number of tries it would be better to reduce the values of <Pt^2> >> 685 ScaleFactor /= 2.0; >> 686 AveragePt2 *= ScaleFactor; >> 687 } >> 688 G4ThreeVector PtSum( 0.0, 0.0, 0.0 ); >> 689 for( G4int i = 0; i < 4; i++ ) { >> 690 Quark_Mom[i] = GaussianPt( AveragePt2, maxPtSquare ); >> 691 PtSum += Quark_Mom[i]; >> 692 } >> 693 PtSum /= 4.0; >> 694 SumMt = 0.0; >> 695 for ( G4int i = 0; i < 4; i++ ) { >> 696 Quark_Mom[i] -= PtSum; >> 697 //ModMom[i] = Quark_Mom[i].mag(); >> 698 ModMom2[i] = Quark_Mom[i].mag2(); >> 699 SumMt += std::sqrt( ModMom2[i] + MassQ2 ); >> 700 } >> 701 } while ( SumMt > SqrtS ); 753 702 754 if ( loopCounter >= maxNumberOfLoops ) { << 703 G4double WminusTarget( 0.0 ), WplusProjectile( 0.0 ); 755 return 99; // unsuccessfully ended, nothi << 756 } << 757 704 758 G4double DecayMomentum2 = sqr(common.S) + sq << 705 // Sampling X's of anti-baryon 759 - 2.0*( common.S*( << 706 G4double Alfa_R = 0.5; 760 WminusTarget = ( common.S - Alfa + Beta + st << 707 NumberOfTries = 0; 761 WplusProjectile = common.SqrtS - Beta/Wminus << 708 ScaleFactor = 1.0; 762 << 709 G4bool Succes( true ); 763 for ( G4int iCase = 0; iCase < 2; ++iCase ) << 710 764 G4int index = iCase*2; // 0 for the first << 711 do { 765 for ( G4int i = 0; i < 2; ++i ) { << 712 766 G4double w = WplusProjectile; / << 713 Succes = true; 767 if ( iCase == 1 ) w = - WminusTarget; / << 714 NumberOfTries++; 768 G4double Pz = w * Quark_Xs[index+i] / 2. << 715 if ( NumberOfTries == 100*(NumberOfTries/100) ) { 769 - ( Quark_Mom[index+i].mag << 716 // At large number of tries it would be better to reduce the values of Pt's 770 ( 2.0 * w * Quark_Xs[ind << 717 ScaleFactor /= 2.0; 771 Quark_Mom[index+i].setZ( Pz ); << 718 } 772 } << 773 } << 774 719 775 G4int CandidatsN = 0, CandAQ[9][2] = {}, Can << 720 if ( Alfa_R == 1.0 ) { 776 G4int LeftAQ1 = 0, LeftAQ2 = 0, LeftQ1 = 0, << 721 G4double Xaq1 = std::sqrt( G4UniformRand() ); 777 for ( G4int iAQ = 0; iAQ < 3; ++iAQ ) { // << 722 G4double Xaq2 = 1.0 - Xaq1; 778 for ( G4int iQ = 0; iQ < 3; ++iQ ) { // << 723 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); 779 if ( -common.AQ[iAQ] == common.Q[iQ] ) { << 724 } else { 780 // Here "0", "1", "2" means, respectiv << 725 G4double Xaq1 = sqr( std::sin( pi/2.0*G4UniformRand() ) ); 781 // of the (anti-baryon) projectile or << 726 G4double Xaq2 = 1.0 - Xaq1; 782 if ( iAQ == 0 ) { CandAQ[CandidatsN][0 << 727 Quark_Mom[0].setZ( Xaq1 ); Quark_Mom[1].setZ( Xaq2 ); 783 if ( iAQ == 1 ) { CandAQ[CandidatsN][0 << 728 } 784 if ( iAQ == 2 ) { CandAQ[CandidatsN][0 << 785 if ( iQ == 0 ) { CandQ[CandidatsN][0] << 786 if ( iQ == 1 ) { CandQ[CandidatsN][0] << 787 if ( iQ == 2 ) { CandQ[CandidatsN][0] << 788 ++CandidatsN; << 789 } << 790 } << 791 } << 792 729 793 if ( CandidatsN != 0 ) { << 730 // Sampling X's of baryon ------------ 794 G4int SampledCase = (G4int)G4RandFlat::sho << 731 if ( Alfa_R == 1.0 ) { 795 LeftAQ1 = common.AQ[ CandAQ[SampledCase][0 << 732 G4double Xq1 = 1.0 - std::sqrt( G4UniformRand() ); 796 LeftAQ2 = common.AQ[ CandAQ[SampledCase][1 << 733 G4double Xq2 = 1.0 - Xq1; 797 if ( G4UniformRand() < 0.5 ) { << 734 Quark_Mom[2].setZ( Xq1 ); Quark_Mom[3].setZ( Xq2 ); 798 LeftQ1 = common.Q[ CandQ[SampledCase][0] << 735 } else { 799 LeftQ2 = common.Q[ CandQ[SampledCase][1] << 736 G4double Xq1 = sqr( std::sin( pi/2.0*G4UniformRand() ) ); 800 } else { << 737 G4double Xq2 = 1.0 - Xq1; 801 LeftQ2 = common.Q[ CandQ[SampledCase][0] << 738 Quark_Mom[2].setZ( Xq1 ); Quark_Mom[3].setZ( Xq2 ); 802 LeftQ1 = common.Q[ CandQ[SampledCase][1] << 739 } 803 } << 804 740 805 // Set the string properties << 741 G4double Alfa( 0.0 ), Beta( 0.0 ); 806 // An anti quark - quark pair can have the << 742 for ( G4int i = 0; i < 2; i++ ) { // For Anti-baryon 807 // or a vector meson: the last digit of th << 743 if ( Quark_Mom[i].getZ() != 0.0 ) { 808 // For simplicity only scalar is considere << 744 Alfa += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); 809 G4int NewCode = 0, antiQuark = 0, quark = << 745 } else { 810 G4ParticleDefinition* TestParticle = nullp << 746 Succes = false; 811 for ( G4int iString = 0; iString < 2; ++iS << 812 if ( iString == 0 ) { << 813 antiQuark = LeftAQ1; quark = LeftQ1; << 814 projectile->SetFirstParton( antiQuark << 815 projectile->SetSecondParton( quark ); << 816 projectile->SetStatus( 0 ); << 817 } else { // iString == 1 << 818 quark = LeftQ2; antiQuark = LeftAQ2; << 819 target->SetFirstParton( quark ); << 820 target->SetSecondParton( antiQuark ); << 821 target->SetStatus( 0 ); << 822 } << 823 G4int absAntiQuark = std::abs( antiQuark << 824 G4double aKsi = G4UniformRand(); << 825 if ( absAntiQuark == absQuark ) { << 826 if ( absAntiQuark != 3 ) { << 827 NewCode = 111; // Pi0-meson << 828 if ( aKsi < 0.5 ) { << 829 NewCode = 221; // Eta -meso << 830 if ( aKsi < 0.25 ) { << 831 NewCode = 331; // Eta'-meso << 832 } << 833 } 747 } 834 } else { << 748 } 835 NewCode = 221; // Eta -meso << 749 for ( G4int i = 2; i < 4; i++ ) { // For baryon 836 if ( aKsi < 0.5 ) { << 750 if ( Quark_Mom[i].getZ() != 0.0 ) { 837 NewCode = 331; // Eta'-meso << 751 Beta += ( ScaleFactor * ModMom2[i] + MassQ2 ) / Quark_Mom[i].getZ(); >> 752 } else { >> 753 Succes = false; 838 } 754 } >> 755 } >> 756 >> 757 if ( ! Succes ) continue; >> 758 >> 759 if ( std::sqrt( Alfa ) + std::sqrt( Beta ) > SqrtS ) { >> 760 Succes = false; >> 761 continue; 839 } 762 } 840 } else { << 841 if ( absAntiQuark > absQuark ) { << 842 NewCode = absAntiQuark*100 + absQuar << 843 } else { << 844 NewCode = absQuark*100 + absAntiQuar << 845 } << 846 } << 847 TestParticle = G4ParticleTable::GetParti << 848 if ( ! TestParticle ) return 99; // uns << 849 if ( iString == 0 ) { << 850 projectile->SetDefinition( TestParticl << 851 theParameters->SetProjMinDiffMass( 0.5 << 852 theParameters->SetProjMinNonDiffMass( << 853 } else { // iString == 1 << 854 target->SetDefinition( TestParticle ); << 855 theParameters->SetTarMinDiffMass( 0.5 << 856 theParameters->SetTarMinNonDiffMass( 0 << 857 } << 858 } // End of loop over the 2 string cases << 859 763 860 G4int QuarkOrder[2]; << 764 G4double DecayMomentum2 = S*S + Alfa*Alfa + Beta*Beta 861 G4LorentzVector Pstring1, Pstring2; << 765 - 2.0*S*Alfa - 2.0*S*Beta - 2.0*Alfa*Beta; 862 G4double Ystring1 = 0.0, Ystring2 = 0.0; << 766 WminusTarget = ( S - Alfa + Beta + std::sqrt( DecayMomentum2 ) ) / 2.0 / SqrtS; 863 << 767 WplusProjectile = SqrtS - Beta/WminusTarget; 864 for ( G4int iCase = 0; iCase < 2; ++iCase << 768 865 G4ThreeVector tmp = Quark_Mom[iCase] + Q << 769 } while ( ! Succes ); 866 G4LorentzVector Pstring( tmp, std::sqrt( << 770 867 std::sqrt( << 771 G4double SqrtScaleF = std::sqrt( ScaleFactor ); 868 // Add protection for rapidity = 0.5*ln << 772 869 G4double Ystring = 0.0; << 773 for ( G4int i = 0; i < 2; i++ ) { 870 if ( Pstring.e() > 1.0e-30 ) { << 774 G4double Pz = WplusProjectile * Quark_Mom[i].getZ() / 2.0 - 871 if ( Pstring.e() + Pstring.pz() < 1.0e << 775 ( ScaleFactor * ModMom2[i] + MassQ2 ) / 872 Ystring = -1.0e30; // A very large << 776 ( 2.0 * WplusProjectile * Quark_Mom[i].getZ() ); 873 if ( Pstring.e() - Pstring.pz() < 1. << 777 Quark_Mom[i].setZ( Pz ); 874 Ystring = 1.0e30; // A very large << 778 if ( ScaleFactor != 1.0 ) { 875 } else { // Normal case << 779 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); 876 Ystring = Pstring.rapidity(); << 780 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); 877 } << 878 } 781 } >> 782 //G4cout << "Anti Q " << i << " " << Quark_Mom[i] << G4endl; 879 } 783 } 880 if ( iCase == 0 ) { // For the first st << 784 for ( G4int i = 2; i < 4; i++ ) { 881 Pstring1 = Pstring; Ystring1 = Ystring << 785 G4double Pz = -WminusTarget * Quark_Mom[i].getZ() / 2.0 + 882 } else { // For the second s << 786 ( ScaleFactor * ModMom2[i] + MassQ2 ) / 883 Pstring2 = Pstring; Ystring2 = Ystring << 787 ( 2.0 * WminusTarget * Quark_Mom[i].getZ() ); >> 788 Quark_Mom[i].setZ( Pz ); >> 789 if ( ScaleFactor != 1.0 ) { >> 790 Quark_Mom[i].setX( SqrtScaleF * Quark_Mom[i].getX() ); >> 791 Quark_Mom[i].setY( SqrtScaleF * Quark_Mom[i].getY() ); >> 792 } >> 793 //G4cout << "Bary Q " << i << " " << Quark_Mom[i] << G4endl; 884 } 794 } 885 } << 795 //G4cout << "Sum AQ " << Quark_Mom[0] + Quark_Mom[1] << G4endl 886 if ( Ystring1 > Ystring2 ) { << 796 // << "Sum Q " << Quark_Mom[2] + Quark_Mom[3] << G4endl; 887 common.Pprojectile = Pstring1; common.P << 888 QuarkOrder[0] = 0; QuarkOrder[1] = 1; << 889 } else { << 890 common.Pprojectile = Pstring2; common.P << 891 QuarkOrder[0] = 1; QuarkOrder[1] = 0; << 892 } << 893 << 894 if ( common.RotateStrings ) { << 895 common.Pprojectile *= common.RandomRotat << 896 common.Ptarget *= common.RandomRotat << 897 } << 898 797 899 common.Pprojectile.transform( common.toLab << 798 G4ThreeVector tmp = Quark_Mom[0] + Quark_Mom[2]; 900 common.Ptarget.transform( common.toLab ); << 799 G4LorentzVector Pstring1( tmp, std::sqrt( Quark_Mom[0].mag2() + MassQ2 ) + 901 << 800 std::sqrt( Quark_Mom[2].mag2() + MassQ2 ) ); 902 G4LorentzVector Quark_4Mom[4]; << 801 G4double Ystring1 = Pstring1.rapidity(); 903 for ( G4int i = 0; i < 4; ++i ) { << 802 904 Quark_4Mom[i] = G4LorentzVector( Quark_M << 803 //G4cout << "Mom 1 string " << G4endl << Quark_Mom[0] << G4endl << Quark_Mom[2] << G4endl 905 if ( common.RotateStrings ) Quark_4Mom[i << 804 // << tmp << " " << tmp.mag() << G4endl; 906 Quark_4Mom[i].transform( common.toLab ); << 805 //G4cout << "1 str " << Pstring1 << " " << Pstring1.mag() << " " << Ystring1 << G4endl; 907 } << 806 >> 807 tmp = Quark_Mom[1] + Quark_Mom[3]; >> 808 G4LorentzVector Pstring2( tmp, std::sqrt( Quark_Mom[1].mag2() + MassQ2 ) + >> 809 std::sqrt( Quark_Mom[3].mag2() + MassQ2 ) ); >> 810 G4double Ystring2 = Pstring2.rapidity(); >> 811 >> 812 //G4cout << "Mom 2 string " << G4endl <<Quark_Mom[1] << G4endl << Quark_Mom[3] << G4endl >> 813 // << tmp << " " << tmp.mag() << G4endl; >> 814 //G4cout << "2 str " << Pstring2 << " " << Pstring2.mag() << " " << Ystring2 << G4endl; >> 815 >> 816 if ( Ystring1 > Ystring2 ) { >> 817 Pprojectile = Pstring1; >> 818 Ptarget = Pstring2; >> 819 } else { >> 820 Pprojectile = Pstring2; >> 821 Ptarget = Pstring1; >> 822 } 908 823 909 projectile->Splitting(); << 824 //G4cout << "SumP CMS " << Pprojectile + Ptarget << " " << SqrtS << G4endl; 910 projectile->GetNextAntiParton()->Set4Momen << 825 Pprojectile.transform( toLab ); 911 projectile->GetNextParton()->Set4Momentum( << 826 Ptarget.transform( toLab ); 912 << 827 //G4cout << " SumP Lab " << Pprojectile + Ptarget << " " << SqrtS << G4endl; 913 target->Splitting(); << 828 914 target->GetNextParton()->Set4Momentum( Qua << 829 // Calculation of the creation time 915 target->GetNextAntiParton()->Set4Momentum( << 830 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 831 projectile->SetPosition( target->GetPosition() ); >> 832 // Creation time and position of target nucleon were determined in >> 833 // ReggeonCascade() of G4FTFModel >> 834 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; >> 835 projectile->Set4Momentum( Pprojectile ); >> 836 target->Set4Momentum( Ptarget ); >> 837 projectile->IncrementCollisionCount( 1 ); >> 838 target->IncrementCollisionCount( 1 ); 916 839 917 // Calculation of the creation time << 840 return true; 918 // Creation time and position of target nu << 919 projectile->SetTimeOfCreation( target->Get << 920 projectile->SetPosition( target->GetPositi << 921 projectile->Set4Momentum( common.Pprojecti << 922 target->Set4Momentum( common.Ptarget ); << 923 << 924 projectile->IncrementCollisionCount( 1 ); << 925 target->IncrementCollisionCount( 1 ); << 926 841 927 return 0; // Completed successfully: noth << 842 } // End of if ( CandidatsN != 0 ) 928 } // End of if ( CandidatsN != 0 ) << 929 843 930 return 1; // Successfully ended, but the wo << 844 } // End of if ( Ksi < ( X_a + X_b + X_c ) / Xannihilation ) 931 } << 932 845 >> 846 // Simulation of anti-quark-quark string creation 933 847 934 //-------------------------------------------- << 848 if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xannihilation ) { 935 849 936 G4bool G4FTFAnnihilation:: << 850 #ifdef debugFTFannih 937 Create1QuarkAntiQuarkString( G4VSplitableHadro << 851 G4cout << "Process d, only 1 quark - anti-quark string" << G4endl; 938 G4VSplitableHadro << 852 #endif 939 G4FTFParameters* << 940 G4FTFAnnihilation << 941 // Simulation of anti-quark - quark string c << 942 853 943 #ifdef debugFTFannih << 854 G4int CandidatsN( 0 ), CandAQ[36], CandQ[36]; 944 G4cout << "Process d, only 1 quark - anti-qu << 855 G4int LeftAQ( 0 ), LeftQ( 0 ); 945 #endif << 946 856 947 // Determine the set of candidates anti-quar << 857 for ( G4int iAQ1 = 0; iAQ1 < 3; iAQ1++ ) { 948 // Here "0", "1", "2" means, respectively, " << 858 for ( G4int iAQ2 = 0; iAQ2 < 3; iAQ2++ ) { 949 // of the (anti-baryon) projectile or (nucle << 859 if ( iAQ1 != iAQ2 ) { 950 G4int CandidatsN = 0, CandAQ[36], CandQ[36]; << 860 for ( G4int iQ1 = 0; iQ1 < 3; iQ1++ ) { 951 G4int LeftAQ = 0, LeftQ = 0; << 861 for ( G4int iQ2 = 0; iQ2 < 3; iQ2++ ) { 952 for ( G4int iAQ1 = 0; iAQ1 < 3; ++iAQ1 ) { << 862 if ( iQ1 != iQ2 ) { 953 for ( G4int iAQ2 = 0; iAQ2 < 3; ++iAQ2 ) { << 863 if ( -AQ[iAQ1] == Q[iQ1] && -AQ[iAQ2] == Q[iQ2] ) { 954 if ( iAQ1 != iAQ2 ) { << 864 if ( iAQ1 == 0 && iAQ2 == 1 ) { CandAQ[CandidatsN] = 2; } 955 for ( G4int iQ1 = 0; iQ1 < 3; ++iQ1 ) << 865 if ( iAQ1 == 1 && iAQ2 == 0 ) { CandAQ[CandidatsN] = 2; } 956 for ( G4int iQ2 = 0; iQ2 < 3; ++iQ2 << 866 957 if ( iQ1 != iQ2 ) { << 867 if ( iAQ1 == 0 && iAQ2 == 2 ) { CandAQ[CandidatsN] = 1; } 958 if ( -common.AQ[iAQ1] == common. << 868 if ( iAQ1 == 2 && iAQ2 == 0 ) { CandAQ[CandidatsN] = 1; } 959 if ( ( iAQ1 == 0 && i << 869 960 CandAQ[CandidatsN] = 2; << 870 if ( iAQ1 == 1 && iAQ2 == 2 ) { CandAQ[CandidatsN] = 0; } 961 } else if ( ( iAQ1 == 0 && i << 871 if ( iAQ1 == 2 && iAQ2 == 1 ) { CandAQ[CandidatsN] = 0; } 962 CandAQ[CandidatsN] = 1; << 872 963 } else if ( ( iAQ1 == 1 && i << 873 if ( iQ1 == 0 && iQ2 == 1 ) { CandQ[CandidatsN] = 2; } 964 CandAQ[CandidatsN] = 0; << 874 if ( iQ1 == 1 && iQ2 == 0 ) { CandQ[CandidatsN] = 2; } 965 } << 875 966 if ( ( iQ1 == 0 && << 876 if ( iQ1 == 0 && iQ2 == 2 ) { CandQ[CandidatsN] = 1; } 967 CandQ[CandidatsN] = 2; << 877 if ( iQ1 == 2 && iQ2 == 0 ) { CandQ[CandidatsN] = 1; } 968 } else if ( ( iQ1 == 0 && << 878 969 CandQ[CandidatsN] = 1; << 879 if ( iQ1 == 1 && iQ2 == 2 ) { CandQ[CandidatsN] = 0; } 970 } else if ( ( iQ1 == 1 && << 880 if ( iQ1 == 2 && iQ2 == 1 ) { CandQ[CandidatsN] = 0; } 971 CandQ[CandidatsN] = 0; << 881 CandidatsN++; 972 } 882 } 973 ++CandidatsN; << 974 } 883 } 975 } 884 } 976 } 885 } 977 } 886 } 978 } 887 } 979 } 888 } 980 } << 981 << 982 if ( CandidatsN != 0 ) { << 983 G4int SampledCase = (G4int)G4RandFlat::sho << 984 LeftAQ = common.AQ[ CandAQ[SampledCase] ]; << 985 LeftQ = common.Q[ CandQ[SampledCase] ]; << 986 << 987 // Set the string properties << 988 projectile->SetFirstParton( LeftQ ); << 989 projectile->SetSecondParton( LeftAQ ); << 990 projectile->SetStatus( 0 ); << 991 G4int aAQ = std::abs( LeftAQ ), aQ = std:: << 992 G4int NewCode = 0; << 993 G4double aKsi = G4UniformRand(); << 994 // The string can have the quantum number << 995 // of the PDG code is, respectively, 1 and << 996 if ( aAQ == aQ ) { << 997 if ( aAQ != 3 ) { << 998 NewCode = 111; // Pi0-meson << 999 if ( aKsi < 0.5 ) { << 1000 NewCode = 221; // Eta -meson << 1001 if ( aKsi < 0.25 ) { << 1002 NewCode = 331; // Eta'-meson << 1003 } << 1004 } << 1005 } else { << 1006 NewCode = 221; // Eta -meson << 1007 if ( aKsi < 0.5 ) { << 1008 NewCode = 331; // Eta'-meson << 1009 } << 1010 } << 1011 } else { << 1012 if ( aAQ > aQ ) { << 1013 NewCode = aAQ*100 + aQ*10 + 1; NewCod << 1014 } else { << 1015 NewCode = aQ*100 + aAQ*10 + 1; NewCod << 1016 } << 1017 } << 1018 << 1019 G4ParticleDefinition* TestParticle = G4Pa << 1020 if ( ! TestParticle ) return false; << 1021 projectile->SetDefinition( TestParticle ) << 1022 theParameters->SetProjMinDiffMass( 0.5 ); << 1023 theParameters->SetProjMinNonDiffMass( 0.5 << 1024 << 1025 target->SetStatus( 4 ); // The target nu << 1026 common.Pprojectile.setPx( 0.0 ); << 1027 common.Pprojectile.setPy( 0.0 ); << 1028 common.Pprojectile.setPz( 0.0 ); << 1029 common.Pprojectile.setE( common.SqrtS ); << 1030 << 1031 common.Pprojectile.transform( common.toLa << 1032 889 1033 G4LorentzVector Pquark = G4LorentzVector << 890 if ( CandidatsN != 0 ) { 1034 G4LorentzVector Paquark = G4LorentzVector << 891 G4int SampledCase = G4RandFlat::shootInt( G4long( CandidatsN ) ); 1035 << 892 LeftAQ = AQ[ CandAQ[SampledCase] ]; 1036 if ( common.RotateStrings ) { << 893 LeftQ = Q[ CandQ[SampledCase] ]; 1037 Pquark *= common.RandomRotation; Paquar << 894 //G4cout << "Left Aq Q " << LeftAQ << " " << LeftQ << G4endl; 1038 } << 895 1039 Pquark.transform(common.toLab); projecti << 896 // Set the string properties 1040 Paquark.transform(common.toLab); projecti << 897 projectile->SplitUp(); 1041 << 898 //projectile->SetFirstParton( LeftAQ ); 1042 projectile->Splitting(); << 899 //projectile->SetSecondParton( LeftQ ); >> 900 projectile->SetFirstParton( LeftQ ); >> 901 projectile->SetSecondParton( LeftAQ ); >> 902 projectile->SetStatus( 0 ); >> 903 target->SetStatus( 3 ); // The target nucleon has annihilated >> 904 Pprojectile.setPx( 0.0 ); // VU Mar1 >> 905 Pprojectile.setPy( 0.0 ); // Vu Mar1 >> 906 Pprojectile.setPz( 0.0 ); >> 907 Pprojectile.setE( SqrtS ); >> 908 Pprojectile.transform( toLab ); >> 909 >> 910 // Calculation of the creation time >> 911 projectile->SetTimeOfCreation( target->GetTimeOfCreation() ); >> 912 projectile->SetPosition( target->GetPosition() ); >> 913 // Creation time and position of target nucleon were determined in >> 914 // ReggeonCascade() of G4FTFModel 1043 915 1044 // Calculation of the creation time << 916 //G4cout << "Mproj " << Pprojectile.mag() << G4endl << "Mtarg " << Ptarget.mag() << G4endl; 1045 // Creation time and position of target n << 917 projectile->Set4Momentum( Pprojectile ); 1046 projectile->SetTimeOfCreation( target->Ge << 1047 projectile->SetPosition( target->GetPosit << 1048 projectile->Set4Momentum( common.Pproject << 1049 918 1050 projectile->IncrementCollisionCount( 1 ); << 919 projectile->IncrementCollisionCount( 1 ); 1051 target->IncrementCollisionCount( 1 ); << 920 target->IncrementCollisionCount( 1 ); >> 921 return true; >> 922 } 1052 923 1053 return true; << 924 } // End of if ( Ksi < ( X_a + X_b + X_c + X_d ) / Xannihilation ) 1054 } // End of if ( CandidatsN != 0 ) << 1055 925 >> 926 //G4cout << "Pr Y " << Pprojectile.rapidity() << " Tr Y " << Ptarget.rapidity() << G4endl; 1056 return true; 927 return true; 1057 } 928 } 1058 929 1059 930 1060 //=========================================== 931 //============================================================================ 1061 932 1062 G4double G4FTFAnnihilation::ChooseX( G4double 933 G4double G4FTFAnnihilation::ChooseX( G4double /* Alpha */, G4double /* Beta */ ) const { 1063 // If for sampling Xs other values of Alfa 934 // If for sampling Xs other values of Alfa and Beta instead of 0.5 will be 1064 // chosen the method will be implemented 935 // chosen the method will be implemented 1065 //G4double tmp = Alpha*Beta; 936 //G4double tmp = Alpha*Beta; 1066 //tmp *= 1.0; 937 //tmp *= 1.0; 1067 return 0.5; 938 return 0.5; 1068 } 939 } 1069 940 1070 941 >> 942 1071 //=========================================== 943 //============================================================================ 1072 944 1073 G4ThreeVector G4FTFAnnihilation::GaussianPt( 945 G4ThreeVector G4FTFAnnihilation::GaussianPt( G4double AveragePt2, G4double maxPtSquare ) const { 1074 // @@ this method is used in FTFModel as w 946 // @@ this method is used in FTFModel as well. Should go somewhere common! 1075 G4double Pt2 = 0.0; << 947 G4double Pt2( 0.0 ); 1076 if ( AveragePt2 <= 0.0 ) { 948 if ( AveragePt2 <= 0.0 ) { 1077 Pt2 = 0.0; 949 Pt2 = 0.0; 1078 } else { 950 } else { 1079 Pt2 = -AveragePt2 * G4Log( 1.0 + G4Unifor << 951 Pt2 = -AveragePt2 * std::log( 1.0 + G4UniformRand() * 1080 ( G4E << 952 ( std::exp( -maxPtSquare/AveragePt2 ) -1.0 ) ); 1081 } 953 } 1082 G4double Pt = std::sqrt( Pt2 ); 954 G4double Pt = std::sqrt( Pt2 ); 1083 G4double phi = G4UniformRand() * twopi; 955 G4double phi = G4UniformRand() * twopi; 1084 return G4ThreeVector ( Pt*std::cos( phi ), 956 return G4ThreeVector ( Pt*std::cos( phi ), Pt*std::sin( phi ), 0.0 ); 1085 } 957 } 1086 958 1087 959 1088 //=========================================== 960 //============================================================================ 1089 961 1090 void G4FTFAnnihilation::UnpackBaryon( G4int I 962 void G4FTFAnnihilation::UnpackBaryon( G4int IdPDG, G4int& Q1, G4int& Q2, G4int& Q3 ) const { 1091 G4int AbsId = std::abs( IdPDG ); 963 G4int AbsId = std::abs( IdPDG ); 1092 Q1 = AbsId / 1000; 964 Q1 = AbsId / 1000; 1093 Q2 = ( AbsId % 1000 ) / 100; 965 Q2 = ( AbsId % 1000 ) / 100; 1094 Q3 = ( AbsId % 100 ) / 10; 966 Q3 = ( AbsId % 100 ) / 10; 1095 if ( IdPDG < 0 ) { Q1 = -Q1; Q2 = -Q2; Q3 = 967 if ( IdPDG < 0 ) { Q1 = -Q1; Q2 = -Q2; Q3 = -Q3; } // Anti-baryon 1096 return; 968 return; 1097 } 969 } 1098 970 1099 971 1100 //=========================================== 972 //============================================================================ 1101 973 1102 G4FTFAnnihilation::G4FTFAnnihilation( const G 974 G4FTFAnnihilation::G4FTFAnnihilation( const G4FTFAnnihilation& ) { 1103 throw G4HadronicException( __FILE__, __LINE 975 throw G4HadronicException( __FILE__, __LINE__, 1104 "G4FTFAnnihilati << 976 "G4FTFAnnihilation copy contructor not meant to be called" ); 1105 } 977 } 1106 978 1107 979 1108 //=========================================== 980 //============================================================================ 1109 981 1110 const G4FTFAnnihilation & G4FTFAnnihilation:: 982 const G4FTFAnnihilation & G4FTFAnnihilation::operator=( const G4FTFAnnihilation& ) { 1111 throw G4HadronicException( __FILE__, __LINE 983 throw G4HadronicException( __FILE__, __LINE__, 1112 "G4FTFAnnihilati 984 "G4FTFAnnihilation = operator not meant to be called" ); 1113 } 985 } 1114 986 1115 987 1116 //=========================================== 988 //============================================================================ 1117 989 1118 G4bool G4FTFAnnihilation::operator==( const G << 990 int G4FTFAnnihilation::operator==( const G4FTFAnnihilation& ) const { 1119 throw G4HadronicException( __FILE__, __LINE 991 throw G4HadronicException( __FILE__, __LINE__, 1120 "G4FTFAnnihilati 992 "G4FTFAnnihilation == operator not meant to be called" ); 1121 } 993 } 1122 994 1123 995 1124 //=========================================== 996 //============================================================================ 1125 997 1126 G4bool G4FTFAnnihilation::operator!=( const G << 998 int G4FTFAnnihilation::operator!=( const G4FTFAnnihilation& ) const { 1127 throw G4HadronicException( __FILE__, __LINE 999 throw G4HadronicException( __FILE__, __LINE__, 1128 "G4DiffractiveEx 1000 "G4DiffractiveExcitation != operator not meant to be called" ); 1129 } 1001 } 1130 1002