Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/parton_string/diffraction/src/G4ElasticHNScattering.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/parton_string/diffraction/src/G4ElasticHNScattering.cc (Version 11.3.0) and /processes/hadronic/models/parton_string/diffraction/src/G4ElasticHNScattering.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4ElasticHNScattering.cc 74627 2013-10-17 07:04:38Z gcosmo $
 27 //                                                 28 //
 28                                                    29 
 29 // -------------------------------------------     30 // ------------------------------------------------------------
 30 //      GEANT 4 class implemetation file           31 //      GEANT 4 class implemetation file
 31 //                                                 32 //
 32 //      ---------------- G4ElasticHNScattering     33 //      ---------------- G4ElasticHNScattering --------------
 33 //                   by V. Uzhinsky, March 200     34 //                   by V. Uzhinsky, March 2008.
 34 //             elastic scattering used by Frit     35 //             elastic scattering used by Fritiof model
 35 //                 Take a projectile and a tar     36 //                 Take a projectile and a target
 36 //                 scatter the projectile and      37 //                 scatter the projectile and target
 37 // -------------------------------------------     38 // ---------------------------------------------------------------------
 38                                                    39 
 39 #include "globals.hh"                              40 #include "globals.hh"
 40 #include "Randomize.hh"                            41 #include "Randomize.hh"
 41 #include "G4PhysicalConstants.hh"                  42 #include "G4PhysicalConstants.hh"
 42 #include "G4SystemOfUnits.hh"                  << 
 43                                                    43 
 44 #include "G4ElasticHNScattering.hh"                44 #include "G4ElasticHNScattering.hh"
 45 #include "G4LorentzRotation.hh"                    45 #include "G4LorentzRotation.hh"
 46 #include "G4ThreeVector.hh"                        46 #include "G4ThreeVector.hh"
 47 #include "G4ParticleDefinition.hh"                 47 #include "G4ParticleDefinition.hh"
 48 #include "G4VSplitableHadron.hh"                   48 #include "G4VSplitableHadron.hh"
 49 #include "G4ExcitedString.hh"                      49 #include "G4ExcitedString.hh"
 50 #include "G4FTFParameters.hh"                      50 #include "G4FTFParameters.hh"
                                                   >>  51 //#include "G4ios.hh"
 51                                                    52 
 52 #include "G4SampleResonance.hh"                << 
 53                                                << 
 54 #include "G4Exp.hh"                            << 
 55 #include "G4Log.hh"                            << 
 56                                                    53 
 57 //============================================     54 //============================================================================
 58                                                    55 
 59 G4ElasticHNScattering::G4ElasticHNScattering()     56 G4ElasticHNScattering::G4ElasticHNScattering() {}
 60                                                    57 
 61                                                    58 
 62 //============================================     59 //============================================================================
 63                                                    60 
 64 G4bool G4ElasticHNScattering::ElasticScatterin     61 G4bool G4ElasticHNScattering::ElasticScattering( G4VSplitableHadron* projectile, 
 65                                                    62                                                  G4VSplitableHadron* target,
 66                                                    63                                                  G4FTFParameters* theParameters ) const {
 67   projectile->IncrementCollisionCount( 1 );        64   projectile->IncrementCollisionCount( 1 );
 68   target->IncrementCollisionCount( 1 );            65   target->IncrementCollisionCount( 1 );
 69                                                    66 
 70   if ( projectile->Get4Momentum().z() < 0.0 )  << 
 71                                                << 
 72   // Projectile parameters                         67   // Projectile parameters
 73   G4LorentzVector Pprojectile = projectile->Ge     68   G4LorentzVector Pprojectile = projectile->Get4Momentum();
 74   G4double M0projectile = Pprojectile.mag();   <<  69   if ( Pprojectile.z() < 0.0 ) return false;
                                                   >>  70   G4bool PutOnMassShell( false );
                                                   >>  71   G4double M0projectile = Pprojectile.mag();       
                                                   >>  72   if ( M0projectile < projectile->GetDefinition()->GetPDGMass() ) {
                                                   >>  73     PutOnMassShell = true;
                                                   >>  74     M0projectile = projectile->GetDefinition()->GetPDGMass();
                                                   >>  75   }
 75   G4double M0projectile2 = M0projectile * M0pr     76   G4double M0projectile2 = M0projectile * M0projectile;
                                                   >>  77   G4double AveragePt2 = theParameters->GetAvaragePt2ofElasticScattering();
 76                                                    78 
 77   // Target parameters                             79   // Target parameters
 78   G4LorentzVector Ptarget = target->Get4Moment     80   G4LorentzVector Ptarget = target->Get4Momentum();
 79   G4double M0target = Ptarget.mag();               81   G4double M0target = Ptarget.mag();
 80   G4double M0target2 = M0target * M0target;    <<  82   if ( M0target < target->GetDefinition()->GetPDGMass() ) {
 81                                                <<  83     PutOnMassShell = true;
 82   G4double AveragePt2 = theParameters->GetAvar <<  84     M0target = target->GetDefinition()->GetPDGMass();
                                                   >>  85   }   
                                                   >>  86   G4double M0target2 = M0target * M0target;                      
 83                                                    87 
 84   // Transform momenta to cms and then rotate      88   // Transform momenta to cms and then rotate parallel to z axis;
 85   G4LorentzVector Psum;                            89   G4LorentzVector Psum;
 86   Psum = Pprojectile + Ptarget;                    90   Psum = Pprojectile + Ptarget;
 87   G4LorentzRotation toCms( -1*Psum.boostVector     91   G4LorentzRotation toCms( -1*Psum.boostVector() );
 88   G4LorentzVector Ptmp = toCms*Pprojectile;        92   G4LorentzVector Ptmp = toCms*Pprojectile;
 89   if ( Ptmp.pz() <= 0.0 ) return false;            93   if ( Ptmp.pz() <= 0.0 ) return false;                                 
 90   //"String" moving backwards in  CMS, abort c <<  94   // "String" moving backwards in  CMS, abort collision !
 91   //G4cout << " abort Collision! " << G4endl;      95   //G4cout << " abort Collision! " << G4endl;
 92   toCms.rotateZ( -1*Ptmp.phi() );                  96   toCms.rotateZ( -1*Ptmp.phi() );
 93   toCms.rotateY( -1*Ptmp.theta() );                97   toCms.rotateY( -1*Ptmp.theta() );
 94   G4LorentzRotation toLab( toCms.inverse() );      98   G4LorentzRotation toLab( toCms.inverse() );
 95   Pprojectile.transform( toCms );                  99   Pprojectile.transform( toCms );
 96   Ptarget.transform( toCms );                     100   Ptarget.transform( toCms );
 97                                                   101 
                                                   >> 102   // Putting on mass-on-shell, if needed
 98   G4double PZcms2, PZcms;                         103   G4double PZcms2, PZcms;                                          
 99   G4double S = Psum.mag2();                       104   G4double S = Psum.mag2();                                          
100   G4double SqrtS = std::sqrt( S );                105   G4double SqrtS = std::sqrt( S );
101   if ( SqrtS < M0projectile + M0target ) retur    106   if ( SqrtS < M0projectile + M0target ) return false;
102                                                   107 
103   PZcms2 = ( S*S + sqr( M0projectile2 ) + sqr(    108   PZcms2 = ( S*S + sqr( M0projectile2 ) + sqr( M0target2 )
104              - 2*S*M0projectile2 - 2*S*M0targe    109              - 2*S*M0projectile2 - 2*S*M0target2 - 2*M0projectile2*M0target2 ) / 4.0 / S;
105                                                   110 
106   PZcms = ( PZcms2 > 0.0 ? std::sqrt( PZcms2 ) << 111   if ( PZcms2 < 0.0 ) {  // It can be in an interaction with off-shell nuclear nucleon
                                                   >> 112     if ( M0projectile > projectile->GetDefinition()->GetPDGMass() ) { 
                                                   >> 113       // An attempt to de-excite the projectile
                                                   >> 114       // It is assumed that the target is in the ground state
                                                   >> 115       M0projectile = projectile->GetDefinition()->GetPDGMass();
                                                   >> 116       M0projectile2 = M0projectile * M0projectile;
                                                   >> 117       PZcms2= ( S*S + sqr( M0projectile2 ) + sqr( M0target2 )
                                                   >> 118                 - 2*S*M0projectile2 - 2*S*M0target2 - 2*M0projectile2*M0target2 ) / 4.0 / S;
                                                   >> 119       if ( PZcms2 < 0.0 ) { return false; }  // Nonsuccesful attempt to de-excitate the projectile
                                                   >> 120     } else {                                  
                                                   >> 121       return false; // The projectile was not excited, but the energy was too low to put
                                                   >> 122                     // the target nucleon on mass-shell
                                                   >> 123     }
                                                   >> 124   }
                                                   >> 125 
                                                   >> 126   PZcms = std::sqrt( PZcms2 );
                                                   >> 127 
                                                   >> 128   if ( PutOnMassShell ) {
                                                   >> 129     if ( Pprojectile.z() > 0.0 ) {
                                                   >> 130       Pprojectile.setPz( PZcms );
                                                   >> 131       Ptarget.setPz( -PZcms );
                                                   >> 132     } else {
                                                   >> 133       Pprojectile.setPz( -PZcms );
                                                   >> 134       Ptarget.setPz( PZcms );
                                                   >> 135     };
                                                   >> 136     Pprojectile.setE( std::sqrt( M0projectile2 + Pprojectile.x() * Pprojectile.x() +
                                                   >> 137                                                  Pprojectile.y() * Pprojectile.y() + PZcms2 ) );
                                                   >> 138     Ptarget.setE( std::sqrt( M0target2 + Ptarget.x() * Ptarget.x() + Ptarget.y() * Ptarget.y() +
                                                   >> 139                              PZcms2 ) );
                                                   >> 140   }
107                                                   141 
108   G4double maxPtSquare = PZcms2;                  142   G4double maxPtSquare = PZcms2;
109                                                   143 
110   // Now we can calculate the transferred Pt      144   // Now we can calculate the transferred Pt
111   G4double Pt2;                                   145   G4double Pt2;                                                    
112   G4double ProjMassT2, ProjMassT;                 146   G4double ProjMassT2, ProjMassT;                                  
113   G4double TargMassT2, TargMassT;                 147   G4double TargMassT2, TargMassT;
114   G4LorentzVector Qmomentum;                      148   G4LorentzVector Qmomentum;
115                                                   149 
116   const G4int maxNumberOfLoops = 1000;         << 
117   G4int loopCounter = 0;                       << 
118   do {                                            150   do {
119     Qmomentum = G4LorentzVector( GaussianPt( A    151     Qmomentum = G4LorentzVector( GaussianPt( AveragePt2, maxPtSquare ), 0.0 );
120     Pt2 = G4ThreeVector( Qmomentum.vect() ).ma    152     Pt2 = G4ThreeVector( Qmomentum.vect() ).mag2();                  
121     ProjMassT2 = M0projectile2 + Pt2;             153     ProjMassT2 = M0projectile2 + Pt2;                           
122     ProjMassT = std::sqrt( ProjMassT2 );          154     ProjMassT = std::sqrt( ProjMassT2 );                            
123     TargMassT2 = M0target2 + Pt2;                 155     TargMassT2 = M0target2 + Pt2;                               
124     TargMassT = std::sqrt( TargMassT2 );          156     TargMassT = std::sqrt( TargMassT2 );                            
125   } while ( ( SqrtS < ProjMassT + TargMassT )  << 157   } while ( SqrtS < ProjMassT + TargMassT );
126             ++loopCounter < maxNumberOfLoops ) << 
127   if ( loopCounter >= maxNumberOfLoops ) {     << 
128     return false;                              << 
129   }                                            << 
130                                                   158 
131   PZcms2 = ( S*S + sqr( ProjMassT2 ) + sqr( Ta    159   PZcms2 = ( S*S + sqr( ProjMassT2 ) + sqr( TargMassT2 )                           
132              - 2.0*S*ProjMassT2 - 2.0*S*TargMa    160              - 2.0*S*ProjMassT2 - 2.0*S*TargMassT2 - 2.0*ProjMassT2*TargMassT2 ) / 4.0 / S;
133                                                   161 
134   if ( PZcms2 < 0.0 ) { PZcms2 = 0.0; };  // t    162   if ( PZcms2 < 0.0 ) { PZcms2 = 0.0; };  // to avoid the exactness problem
135   PZcms = std::sqrt( PZcms2 );                    163   PZcms = std::sqrt( PZcms2 );                                    
136   Pprojectile.setPz( PZcms );                     164   Pprojectile.setPz( PZcms );  
137   Ptarget.setPz( -PZcms );                        165   Ptarget.setPz( -PZcms ); 
138   Pprojectile += Qmomentum;                       166   Pprojectile += Qmomentum;
139   Ptarget     -= Qmomentum;                       167   Ptarget     -= Qmomentum;
140                                                   168 
141   // Transform back and update SplitableHadron    169   // Transform back and update SplitableHadron Participant.
142   Pprojectile.transform( toLab );                 170   Pprojectile.transform( toLab );
143   Ptarget.transform( toLab );                     171   Ptarget.transform( toLab );
144                                                   172 
145   // Calculation of the creation time             173   // Calculation of the creation time
146   projectile->SetTimeOfCreation( target->GetTi    174   projectile->SetTimeOfCreation( target->GetTimeOfCreation() );
147   projectile->SetPosition( target->GetPosition    175   projectile->SetPosition( target->GetPosition() );
148                                                   176 
149   // Creation time and position of target nucl    177   // Creation time and position of target nucleon were determined at
150   // ReggeonCascade() of G4FTFModel               178   // ReggeonCascade() of G4FTFModel
151                                                   179 
152   projectile->Set4Momentum( Pprojectile );        180   projectile->Set4Momentum( Pprojectile );
153   target->Set4Momentum( Ptarget );                181   target->Set4Momentum( Ptarget );
154                                                   182 
155   //projectile->IncrementCollisionCount( 1 );     183   //projectile->IncrementCollisionCount( 1 );
156   //target->IncrementCollisionCount( 1 );         184   //target->IncrementCollisionCount( 1 );
157                                                   185 
158   return true;                                    186   return true;
159 }                                                 187 }
160                                                   188 
161                                                   189 
162 //============================================    190 //============================================================================
163                                                   191 
164 G4ThreeVector G4ElasticHNScattering::GaussianP    192 G4ThreeVector G4ElasticHNScattering::GaussianPt( G4double AveragePt2, 
165                                                   193                                                  G4double maxPtSquare ) const {
166   // @@ this method is used in FTFModel as wel    194   // @@ this method is used in FTFModel as well. Should go somewhere common!
167   G4double Pt2( 0.0 );                            195   G4double Pt2( 0.0 );
168   if ( AveragePt2 <= 0.0 ) {                      196   if ( AveragePt2 <= 0.0 ) {
169     Pt2 = 0.0;                                    197     Pt2 = 0.0;
170   } else {                                        198   } else {
171     Pt2 = -AveragePt2 * G4Log( 1.0 + G4Uniform << 199     Pt2 = -AveragePt2 * std::log( 1.0 + G4UniformRand() * 
                                                   >> 200                                         ( std::exp( -maxPtSquare/AveragePt2 ) -1.0 ) ); 
172   }                                               201   }
173   G4double Pt = ( Pt2 > 0.0 ? std::sqrt( Pt2 ) << 202   G4double Pt = std::sqrt( Pt2 );
174   G4double phi = G4UniformRand() * twopi;         203   G4double phi = G4UniformRand() * twopi;
175   return G4ThreeVector( Pt * std::cos( phi ),     204   return G4ThreeVector( Pt * std::cos( phi ), Pt * std::sin( phi ), 0.0 );    
176 }                                                 205 }
177                                                   206 
178                                                   207 
179 //============================================    208 //============================================================================
180                                                   209 
181 G4ElasticHNScattering::G4ElasticHNScattering(     210 G4ElasticHNScattering::G4ElasticHNScattering( const G4ElasticHNScattering& ) {
182   throw G4HadronicException( __FILE__, __LINE_    211   throw G4HadronicException( __FILE__, __LINE__, 
183                              "G4ElasticHNScatt << 212                              "G4ElasticHNScattering copy contructor not meant to be called" );
184 }                                                 213 }
185                                                   214 
186                                                   215 
187 //============================================    216 //============================================================================
188                                                   217 
189 G4ElasticHNScattering::~G4ElasticHNScattering(    218 G4ElasticHNScattering::~G4ElasticHNScattering() {}
190                                                   219 
191                                                   220 
192 //============================================    221 //============================================================================
193                                                   222 
194 const G4ElasticHNScattering & G4ElasticHNScatt    223 const G4ElasticHNScattering & G4ElasticHNScattering::operator=( const G4ElasticHNScattering& ) {
195   throw G4HadronicException( __FILE__, __LINE_    224   throw G4HadronicException( __FILE__, __LINE__, 
196                              "G4ElasticHNScatt    225                              "G4ElasticHNScattering = operator not meant to be called" );
197 }                                                 226 }
198                                                   227 
199                                                   228 
200 //============================================    229 //============================================================================
201                                                   230 
202 G4bool G4ElasticHNScattering::operator==( cons << 231 int G4ElasticHNScattering::operator==( const G4ElasticHNScattering& ) const {
203  throw G4HadronicException( __FILE__, __LINE__    232  throw G4HadronicException( __FILE__, __LINE__, 
204                             "G4ElasticHNScatte    233                             "G4ElasticHNScattering == operator not meant to be called" );
205 }                                                 234 }
206                                                   235 
207                                                   236 
208 //============================================    237 //============================================================================
209                                                   238 
210 G4bool G4ElasticHNScattering::operator!=( cons << 239 int G4ElasticHNScattering::operator!=( const G4ElasticHNScattering& ) const {
211   throw G4HadronicException( __FILE__, __LINE_    240   throw G4HadronicException( __FILE__, __LINE__, 
212                             "G4ElasticHNScatte    241                             "G4ElasticHNScattering != operator not meant to be called" );
213 }                                                 242 }
214                                                << 
215                                                   243