Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // Physics model class G4NeutronRadCaptureHP 28 // derived from G4NeutronRadCapture 29 // 30 // Created: 02 October 2023 31 // Author V.Ivanchenko 32 // 33 // 34 35 #include "G4NeutronRadCaptureHP.hh" 36 #include "G4HadronicInteractionRegistry.hh" 37 #include "G4SystemOfUnits.hh" 38 #include "G4ParticleDefinition.hh" 39 #include "G4Fragment.hh" 40 #include "G4FragmentVector.hh" 41 #include "G4NucleiProperties.hh" 42 #include "G4VPreCompoundModel.hh" 43 #include "G4ExcitationHandler.hh" 44 #include "G4VEvaporationChannel.hh" 45 #include "G4PhotonEvaporation.hh" 46 #include "G4DynamicParticle.hh" 47 #include "G4ParticleTable.hh" 48 #include "G4ParticleHPManager.hh" 49 #include "G4IonTable.hh" 50 #include "G4Electron.hh" 51 #include "G4Deuteron.hh" 52 #include "G4Triton.hh" 53 #include "G4He3.hh" 54 #include "G4Alpha.hh" 55 #include "Randomize.hh" 56 #include "G4RandomDirection.hh" 57 #include "G4HadronicParameters.hh" 58 #include "G4PhysicsModelCatalog.hh" 59 60 G4NeutronRadCaptureHP::G4NeutronRadCaptureHP() 61 : G4HadronicInteraction("nRadCaptureHP"), 62 electron(G4Electron::Electron()), 63 fManagerHP(G4ParticleHPManager::GetInstanc 64 lowestEnergyLimit(1.0e-11*CLHEP::eV), 65 minExcitation(0.1*CLHEP::keV), 66 emax(20*CLHEP::MeV), 67 emaxT(fManagerHP->GetMaxEnergyDoppler()), 68 lab4mom(0.,0.,0.,0.) 69 { 70 SetMaxEnergy( G4HadronicParameters::Instance 71 theTableOfIons = G4ParticleTable::GetParticl 72 } 73 74 G4NeutronRadCaptureHP::~G4NeutronRadCaptureHP( 75 { 76 if (fLocalPE) { delete photonEvaporation; } 77 } 78 79 void G4NeutronRadCaptureHP::BuildPhysicsTable( 80 { 81 if (photonEvaporation != nullptr) { return; 82 G4HadronicInteraction* p = 83 G4HadronicInteractionRegistry::Instance()- 84 if (nullptr != p) { 85 auto handler = 86 (static_cast<G4VPreCompoundModel*>(p))-> 87 if (nullptr != handler) 88 photonEvaporation = handler->GetPhotonEv 89 } 90 G4DeexPrecoParameters* param = 91 G4NuclearLevelData::GetInstance()->GetPara 92 minExcitation = param->GetMinExcitation(); 93 icID = G4PhysicsModelCatalog::GetModelID("mo 94 secID = G4PhysicsModelCatalog::GetModelID("m 95 if (nullptr == photonEvaporation) { 96 photonEvaporation = new G4PhotonEvaporatio 97 fLocalPE = true; 98 } 99 photonEvaporation->Initialise(); 100 photonEvaporation->SetICM(true); 101 } 102 103 G4HadFinalState* G4NeutronRadCaptureHP::ApplyY 104 const G4HadProjectile& aTrack, G4Nucleus& 105 { 106 theParticleChange.Clear(); 107 G4double ekin = aTrack.GetKineticEnergy(); 108 if (ekin > emax) { 109 return &theParticleChange; 110 } 111 112 theParticleChange.SetStatusChange(stopAndKil 113 G4double T = aTrack.GetMaterial()->GetTemper 114 115 G4int A = theNucleus.GetA_asInt(); 116 G4int Z = theNucleus.GetZ_asInt(); 117 118 G4double time = aTrack.GetGlobalTime(); 119 120 // Create initial state 121 G4double mass = G4NucleiProperties::GetNucle 122 123 // no Doppler broading 124 G4double factT = T/CLHEP::STP_Temperature; 125 126 if (ekin >= emaxT*factT || fManagerHP->GetNe 127 lab4mom.set(0.,0.,0.,mass); 128 } else { 129 G4double lambda = 1.0/(CLHEP::k_Boltzmann* 130 G4double erand = G4RandGamma::shoot(2.0, l 131 auto mom = G4RandomDirection()*std::sqrt(2 132 lab4mom.set(mom.x(), mom.y(), mom.z(), mas 133 } 134 135 lab4mom += aTrack.Get4Momentum(); 136 137 G4double M = lab4mom.mag(); 138 ++A; 139 mass = G4NucleiProperties::GetNuclearMass(A, 140 //G4cout << "Capture start: Z= " << Z << " A 141 // << " LabM= " << M << " Mcompound= " << 142 143 // simplified method of 1 gamma emission 144 if (A <= 4) { 145 146 if (verboseLevel > 1) { 147 G4cout << "G4NeutronRadCaptureHP::DoIt: 148 << ekin/MeV << " Eexc(MeV)= " 149 << (M - mass)/MeV 150 << " Z= " << Z << " A= " << A << G4en 151 } 152 if (M - mass > lowestEnergyLimit) { 153 G4ThreeVector bst = lab4mom.boostVector( 154 G4double e1 = (M - mass)*(M + mass)/(2*M 155 G4LorentzVector lv2(e1*G4RandomDirection 156 lv2.boost(bst); 157 if (verboseLevel > 1) { 158 G4cout << "Gamma 4-mom: " << lv2 << " 159 } 160 lab4mom -= lv2; 161 G4HadSecondary* news = 162 new G4HadSecondary(new G4DynamicParticle(G4G 163 news->SetTime(time); 164 news->SetCreatorModelID(secID); 165 theParticleChange.AddSecondary(*news); 166 delete news; 167 } 168 169 const G4ParticleDefinition* theDef = nullp 170 171 if (Z == 1 && A == 2) {theDef = G4Deu 172 else if (Z == 1 && A == 3) {theDef = G4Tri 173 else if (Z == 2 && A == 3) {theDef = G4He3 174 else if (Z == 2 && A == 4) {theDef = G4Alp 175 else { theDef = theTableOfIons->GetIon(Z, 176 177 if (nullptr != theDef) { 178 G4HadSecondary* news = 179 new G4HadSecondary(new G4DynamicPartic 180 news->SetTime(time); 181 news->SetCreatorModelID(secID); 182 theParticleChange.AddSecondary(*news); 183 delete news; 184 } 185 186 // Use photon evaporation 187 } else { 188 189 // protection against wrong kinematic 190 if (M < mass) { 191 G4double etot = std::max(mass, lab4mom.e 192 G4double ptot = std::sqrt((etot - mass)* 193 G4ThreeVector v = lab4mom.vect().unit(); 194 lab4mom.set(v.x()*ptot,v.y()*ptot,v.z()* 195 } 196 197 G4Fragment* aFragment = new G4Fragment(A, 198 199 if (verboseLevel > 1) { 200 G4cout << "G4NeutronRadCaptureHP::ApplyY 201 << G4endl; 202 G4cout << aFragment << G4endl; 203 } 204 205 // 206 // Sample final state 207 // 208 G4FragmentVector* fv = photonEvaporation-> 209 if (nullptr == fv) { fv = new G4FragmentVe 210 fv->push_back(aFragment); 211 212 if (verboseLevel > 1) { 213 G4cout << "G4NeutronRadCaptureHP: " << f 214 << icID << G4endl; 215 } 216 for (auto const & f : *fv) { 217 G4double etot = f->GetMomentum().e(); 218 219 Z = f->GetZ_asInt(); 220 A = f->GetA_asInt(); 221 222 const G4ParticleDefinition* theDef; 223 if (0 == Z && 0 == A) { theDef = f->Get 224 else if (Z == 1 && A == 2) { theDef = G4 225 else if (Z == 1 && A == 3) { theDef = G4 226 else if (Z == 2 && A == 3) { theDef = G4 227 else if (Z == 2 && A == 4) { theDef = G4 228 else { 229 G4double eexc = f->GetExcitationEnergy 230 if (eexc <= minExcitation) { eexc = 0.0; } 231 theDef = theTableOfIons->GetIon(Z, A, eexc, 232 /* 233 G4cout << "### NC Find ion Z= " << Z << " A= 234 << " Eexc(MeV)= " << eexc/MeV << " " 235 << theDef << G4endl; 236 */ 237 } 238 ekin = std::max(0.0, etot - theDef->GetP 239 if (verboseLevel > 1) { 240 G4cout << theDef->GetParticleName() 241 << " Ekin(MeV)= " << ekin/MeV 242 << " p: " << f->GetMomentum().vect() 243 << G4endl; 244 } 245 G4HadSecondary* news = 246 new G4HadSecondary(new G4DynamicPartic 247 248 249 G4double timeF = std::max(f->GetCreation 250 news->SetTime(time + timeF); 251 if (theDef == electron) { 252 news->SetCreatorModelID(icID); 253 } else { 254 news->SetCreatorModelID(secID); 255 } 256 theParticleChange.AddSecondary(*news); 257 delete news; 258 delete f; 259 } 260 delete fv; 261 } 262 //G4cout << "Capture done" << G4endl; 263 return &theParticleChange; 264 } 265 266