Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 #include "globals.hh" 26 #include "globals.hh" 27 #include "G4ios.hh" 27 #include "G4ios.hh" 28 #include "G4PhysicalConstants.hh" << 29 #include "G4XAnnihilationChannel.hh" 28 #include "G4XAnnihilationChannel.hh" 30 #include "G4KineticTrack.hh" 29 #include "G4KineticTrack.hh" 31 #include "G4ParticleDefinition.hh" 30 #include "G4ParticleDefinition.hh" 32 #include "G4ResonanceWidth.hh" 31 #include "G4ResonanceWidth.hh" 33 #include "G4ResonancePartialWidth.hh" 32 #include "G4ResonancePartialWidth.hh" 34 #include "G4PhysicsVector.hh" 33 #include "G4PhysicsVector.hh" 35 #include "G4PartialWidthTable.hh" 34 #include "G4PartialWidthTable.hh" 36 35 37 G4XAnnihilationChannel::G4XAnnihilationChannel 36 G4XAnnihilationChannel::G4XAnnihilationChannel(): resonance(0) 38 { << 37 { } 39 // As a first approximation the model is ass << 40 // the entire energy range << 41 lowLimit = 0.; << 42 highLimit = DBL_MAX; << 43 widthTable = 0; << 44 partWidthTable = 0; << 45 } << 46 38 47 G4XAnnihilationChannel::G4XAnnihilationChannel 39 G4XAnnihilationChannel::G4XAnnihilationChannel(const G4ParticleDefinition* resDefinition, 48 const G4ResonanceWidth& resWi 40 const G4ResonanceWidth& resWidths, 49 const G4ResonancePartialWidth 41 const G4ResonancePartialWidth& resPartWidths, 50 const G4String& partWidthLabe 42 const G4String& partWidthLabel) 51 : resonance(resDefinition) 43 : resonance(resDefinition) 52 { 44 { 53 // Get the tabulated mass-dependent widths f 45 // Get the tabulated mass-dependent widths for the resonance 54 G4String resName = resonance->GetParticleNam 46 G4String resName = resonance->GetParticleName(); 55 // cout << "HPW "<<resName<<endl; 47 // cout << "HPW "<<resName<<endl; 56 G4String shortName = theNames.ShortName(resN 48 G4String shortName = theNames.ShortName(resName); 57 // cout << "HPW "<<shortName<<endl; 49 // cout << "HPW "<<shortName<<endl; 58 // cout << "HPW "<<partWidthLabel<<endl; 50 // cout << "HPW "<<partWidthLabel<<endl; 59 51 60 widthTable = resWidths.MassDependentWidth(sh 52 widthTable = resWidths.MassDependentWidth(shortName); 61 partWidthTable = resPartWidths.MassDependent 53 partWidthTable = resPartWidths.MassDependentWidth(partWidthLabel); 62 54 63 // As a first approximation the model is ass 55 // As a first approximation the model is assumed to be valid over 64 // the entire energy range 56 // the entire energy range 65 lowLimit = 0.; 57 lowLimit = 0.; 66 highLimit = DBL_MAX; 58 highLimit = DBL_MAX; 67 } 59 } 68 60 69 61 70 G4XAnnihilationChannel::~G4XAnnihilationChanne 62 G4XAnnihilationChannel::~G4XAnnihilationChannel() 71 { 63 { 72 if (widthTable) delete widthTable; << 64 delete widthTable; 73 widthTable = 0; 65 widthTable = 0; 74 if (partWidthTable) delete partWidthTable; << 66 delete partWidthTable; 75 partWidthTable = 0; 67 partWidthTable = 0; 76 } 68 } 77 69 78 70 79 G4bool G4XAnnihilationChannel::operator==(cons 71 G4bool G4XAnnihilationChannel::operator==(const G4XAnnihilationChannel &right) const 80 { 72 { 81 return (this == (G4XAnnihilationChannel *) & 73 return (this == (G4XAnnihilationChannel *) &right); 82 } 74 } 83 75 84 76 85 G4bool G4XAnnihilationChannel::operator!=(cons 77 G4bool G4XAnnihilationChannel::operator!=(const G4XAnnihilationChannel &right) const 86 { 78 { 87 return (this != (G4XAnnihilationChannel *) & 79 return (this != (G4XAnnihilationChannel *) &right); 88 } 80 } 89 81 90 82 91 G4double G4XAnnihilationChannel::CrossSection( 83 G4double G4XAnnihilationChannel::CrossSection(const G4KineticTrack& trk1, 92 const G4KineticTrack& trk2) co 84 const G4KineticTrack& trk2) const 93 { 85 { 94 G4double sigma = 0.; 86 G4double sigma = 0.; 95 G4double eCM = (trk1.Get4Momentum() + trk2.G 87 G4double eCM = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag(); 96 88 97 const G4ParticleDefinition* def1 = trk1.GetD << 89 G4ParticleDefinition* def1 = trk1.GetDefinition(); 98 const G4ParticleDefinition* def2 = trk2.GetD << 90 G4ParticleDefinition* def2 = trk2.GetDefinition(); 99 91 100 G4int J1 = def1->GetPDGiSpin(); 92 G4int J1 = def1->GetPDGiSpin(); 101 G4int J2 = def2->GetPDGiSpin(); 93 G4int J2 = def2->GetPDGiSpin(); 102 G4double m_1 = def1->GetPDGMass(); << 94 G4double m1 = def1->GetPDGMass(); 103 G4double m_2 = def2->GetPDGMass(); << 95 G4double m2 = def2->GetPDGMass(); 104 96 105 G4int JRes = resonance->GetPDGiSpin(); 97 G4int JRes = resonance->GetPDGiSpin(); 106 G4double mRes = resonance->GetPDGMass(); 98 G4double mRes = resonance->GetPDGMass(); 107 99 108 G4double branch = Branch(trk1,trk2); 100 G4double branch = Branch(trk1,trk2); 109 G4double width = VariableWidth(trk1,trk2); 101 G4double width = VariableWidth(trk1,trk2); 110 G4double cleb = NormalizedClebsch(trk1,trk2) 102 G4double cleb = NormalizedClebsch(trk1,trk2); 111 103 112 G4double S = eCM * eCM; << 104 G4double s = eCM * eCM; 113 if (S == 0.) throw G4HadronicException(__FIL << 105 if (s == 0.) throw G4HadronicException(__FILE__, __LINE__, "G4XAnnihilationChannel::CrossSection - eCM = 0"); 114 106 115 G4double pCM = std::sqrt((S-(m_1+m_2)*(m_1+m << 107 G4double pCM = std::sqrt((s-(m1+m2)*(m1+m2))*(s-(m1-m2)*(m1-m2))/(4.*s)); 116 108 117 sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1 109 sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1) ) 118 * pi / (pCM * pCM) * branch * width * wi 110 * pi / (pCM * pCM) * branch * width * width / 119 ( (eCM - mRes) * (eCM - mRes) + width * 111 ( (eCM - mRes) * (eCM - mRes) + width * width / 4.0) * cleb * hbarc_squared); 120 112 121 // G4cout << "SS " << branch<<" "<<sigma<<" 113 // G4cout << "SS " << branch<<" "<<sigma<<" " 122 // << J1 <<" " 114 // << J1 <<" " 123 // <<J2<<" " 115 // <<J2<<" " 124 // <<m1<<" " 116 // <<m1<<" " 125 // <<m2<<" " 117 // <<m2<<" " 126 // <<JRes<<" " 118 // <<JRes<<" " 127 // <<mRes<<" " 119 // <<mRes<<" " 128 // <<wRes<<" " 120 // <<wRes<<" " 129 // <<width<<" " 121 // <<width<<" " 130 // <<cleb<<" " 122 // <<cleb<<" " 131 // <<G4endl; 123 // <<G4endl; 132 return sigma; 124 return sigma; 133 } 125 } 134 126 135 127 136 G4String G4XAnnihilationChannel::Name() const 128 G4String G4XAnnihilationChannel::Name() const 137 { 129 { 138 G4String name("XAnnihilationChannelCrossSect 130 G4String name("XAnnihilationChannelCrossSection"); 139 return name; 131 return name; 140 } 132 } 141 133 142 134 143 135 144 G4bool G4XAnnihilationChannel::IsValid(G4doubl 136 G4bool G4XAnnihilationChannel::IsValid(G4double e) const 145 { 137 { 146 G4bool answer = InLimits(e,lowLimit,highLimi 138 G4bool answer = InLimits(e,lowLimit,highLimit); 147 139 148 return answer; 140 return answer; 149 } 141 } 150 142 151 143 152 G4double G4XAnnihilationChannel::Branch(const 144 G4double G4XAnnihilationChannel::Branch(const G4KineticTrack& trk1, 153 const 145 const G4KineticTrack& trk2) const 154 { 146 { 155 G4double w=VariableWidth(trk1,trk2); 147 G4double w=VariableWidth(trk1,trk2); 156 if(w==0) return 0; 148 if(w==0) return 0; 157 return VariablePartialWidth(trk1,trk2) / Var 149 return VariablePartialWidth(trk1,trk2) / VariableWidth(trk1,trk2); 158 } 150 } 159 151 160 G4double G4XAnnihilationChannel::VariableWidth 152 G4double G4XAnnihilationChannel::VariableWidth(const G4KineticTrack& trk1, 161 153 const G4KineticTrack& trk2) const 162 { 154 { 163 // actual production width of resonance, dep 155 // actual production width of resonance, depending on available energy. 164 156 165 G4double width = resonance->GetPDGWidth(); 157 G4double width = resonance->GetPDGWidth(); 166 G4bool dummy = false; 158 G4bool dummy = false; 167 G4double sqrtS = (trk1.Get4Momentum() + trk2 159 G4double sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag(); 168 if (widthTable != 0) 160 if (widthTable != 0) 169 { 161 { 170 width = widthTable->GetValue(sqrtS,dummy 162 width = widthTable->GetValue(sqrtS,dummy); 171 } 163 } 172 return width; 164 return width; 173 } 165 } 174 166 175 167 176 G4double G4XAnnihilationChannel::VariableParti 168 G4double G4XAnnihilationChannel::VariablePartialWidth(const G4KineticTrack& trk1, 177 169 const G4KineticTrack& trk2) const 178 { 170 { 179 // Calculate mass dependent partial width of 171 // Calculate mass dependent partial width of resonance, 180 // based on UrQMD tabulations 172 // based on UrQMD tabulations 181 173 182 G4double width(0); 174 G4double width(0); 183 175 184 if (partWidthTable != 0) 176 if (partWidthTable != 0) 185 { 177 { 186 G4double sqrtS = 0; 178 G4double sqrtS = 0; 187 G4bool dummy = false; 179 G4bool dummy = false; 188 sqrtS = (trk1.Get4Momentum() + trk2.Get4Mo 180 sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag(); 189 width = partWidthTable->GetValue(sqrtS,dum 181 width = partWidthTable->GetValue(sqrtS,dummy); 190 } 182 } 191 else 183 else 192 { 184 { 193 width = resonance->GetPDGWidth(); 185 width = resonance->GetPDGWidth(); 194 } 186 } 195 return width; 187 return width; 196 } 188 } 197 189 198 190 199 G4double G4XAnnihilationChannel::NormalizedCle 191 G4double G4XAnnihilationChannel::NormalizedClebsch(const G4KineticTrack& trk1, 200 192 const G4KineticTrack& trk2) const 201 { 193 { 202 G4double cleb = 0.; 194 G4double cleb = 0.; 203 const G4ParticleDefinition* def1 = trk1.GetD << 195 G4ParticleDefinition* def1 = trk1.GetDefinition(); 204 const G4ParticleDefinition* def2 = trk2.GetD << 196 G4ParticleDefinition* def2 = trk2.GetDefinition(); 205 197 206 G4int iso31 = def1->GetPDGiIsospin3(); 198 G4int iso31 = def1->GetPDGiIsospin3(); 207 G4int iso32 = def2->GetPDGiIsospin3(); 199 G4int iso32 = def2->GetPDGiIsospin3(); 208 G4int iso3 = iso31 + iso32; 200 G4int iso3 = iso31 + iso32; 209 G4int iso1 = def1->GetPDGiIsospin(); 201 G4int iso1 = def1->GetPDGiIsospin(); 210 G4int iso2 = def2->GetPDGiIsospin(); 202 G4int iso2 = def2->GetPDGiIsospin(); 211 203 212 G4int isoRes = resonance->GetPDGiIsospin(); 204 G4int isoRes = resonance->GetPDGiIsospin(); 213 205 214 if (isoRes < iso3) return 0.; 206 if (isoRes < iso3) return 0.; 215 if ((iso1*iso2) == 0) return 1.; 207 if ((iso1*iso2) == 0) return 1.; 216 208 217 cleb = clebsch.NormalizedClebschGordan(isoRe 209 cleb = clebsch.NormalizedClebschGordan(isoRes,iso3,iso1,iso2,iso31,iso32); 218 210 219 // Special case: particle-antiparticle, char 211 // Special case: particle-antiparticle, charge-conjugated states have the same weight 220 G4String type1 = def1->GetParticleType(); 212 G4String type1 = def1->GetParticleType(); 221 G4String type2 = def2->GetParticleType(); 213 G4String type2 = def2->GetParticleType(); 222 G4int anti = def1->GetPDGEncoding() * def2-> 214 G4int anti = def1->GetPDGEncoding() * def2->GetPDGEncoding(); 223 G4int strangeness = resonance->GetQuarkConte 215 G4int strangeness = resonance->GetQuarkContent(3) + resonance->GetAntiQuarkContent(3); 224 if ( ((type1 == "baryon" && type2 == "baryon 216 if ( ((type1 == "baryon" && type2 == "baryon") ||(type1 == "meson" && type2 == "meson")) && 225 anti < 0 && strangeness == 0) 217 anti < 0 && strangeness == 0) 226 { 218 { 227 if (def1->GetPDGEncoding() != -(def2->Ge 219 if (def1->GetPDGEncoding() != -(def2->GetPDGEncoding())) cleb = 0.5 * cleb; 228 } 220 } 229 221 230 return cleb; 222 return cleb; 231 } 223 } 232 224 233 225 234 226 235 227 236 228 237 229