Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/im_r_matrix/src/G4XAnnihilationChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/im_r_matrix/src/G4XAnnihilationChannel.cc (Version 11.3.0) and /processes/hadronic/models/im_r_matrix/src/G4XAnnihilationChannel.cc (Version 7.1.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 #include "globals.hh"                              23 #include "globals.hh"
 27 #include "G4ios.hh"                                24 #include "G4ios.hh"
 28 #include "G4PhysicalConstants.hh"              << 
 29 #include "G4XAnnihilationChannel.hh"               25 #include "G4XAnnihilationChannel.hh"
 30 #include "G4KineticTrack.hh"                       26 #include "G4KineticTrack.hh"
 31 #include "G4ParticleDefinition.hh"                 27 #include "G4ParticleDefinition.hh"
 32 #include "G4ResonanceWidth.hh"                     28 #include "G4ResonanceWidth.hh"
 33 #include "G4ResonancePartialWidth.hh"              29 #include "G4ResonancePartialWidth.hh"
 34 #include "G4PhysicsVector.hh"                      30 #include "G4PhysicsVector.hh"
 35 #include "G4PartialWidthTable.hh"                  31 #include "G4PartialWidthTable.hh"
 36                                                    32 
 37 G4XAnnihilationChannel::G4XAnnihilationChannel     33 G4XAnnihilationChannel::G4XAnnihilationChannel(): resonance(0)
 38 {                                              <<  34 { }
 39   // As a first approximation the model is ass << 
 40     // the entire energy range                 << 
 41     lowLimit = 0.;                             << 
 42     highLimit = DBL_MAX;                       << 
 43     widthTable = 0;                            << 
 44     partWidthTable = 0;                        << 
 45 }                                              << 
 46                                                    35 
 47 G4XAnnihilationChannel::G4XAnnihilationChannel     36 G4XAnnihilationChannel::G4XAnnihilationChannel(const G4ParticleDefinition* resDefinition,
 48                  const G4ResonanceWidth& resWi     37                  const G4ResonanceWidth& resWidths,
 49                  const G4ResonancePartialWidth     38                  const G4ResonancePartialWidth& resPartWidths,
 50                  const G4String& partWidthLabe     39                  const G4String& partWidthLabel) 
 51   : resonance(resDefinition)                       40   : resonance(resDefinition)
 52 {                                                  41 { 
 53   // Get the tabulated mass-dependent widths f     42   // Get the tabulated mass-dependent widths for the resonance
 54   G4String resName = resonance->GetParticleNam     43   G4String resName = resonance->GetParticleName();
 55   // cout << "HPW "<<resName<<endl;                44   // cout << "HPW "<<resName<<endl;
 56   G4String shortName = theNames.ShortName(resN     45   G4String shortName = theNames.ShortName(resName);
 57   // cout << "HPW "<<shortName<<endl;              46   // cout << "HPW "<<shortName<<endl;
 58   // cout << "HPW "<<partWidthLabel<<endl;         47   // cout << "HPW "<<partWidthLabel<<endl;
 59                                                    48 
 60   widthTable = resWidths.MassDependentWidth(sh     49   widthTable = resWidths.MassDependentWidth(shortName);
 61   partWidthTable = resPartWidths.MassDependent     50   partWidthTable = resPartWidths.MassDependentWidth(partWidthLabel);
 62                                                    51 
 63   // As a first approximation the model is ass     52   // As a first approximation the model is assumed to be valid over 
 64   // the entire energy range                       53   // the entire energy range
 65   lowLimit = 0.;                                   54   lowLimit = 0.;
 66   highLimit = DBL_MAX;                             55   highLimit = DBL_MAX;
 67 }                                                  56 }
 68                                                    57 
 69                                                    58 
 70 G4XAnnihilationChannel::~G4XAnnihilationChanne     59 G4XAnnihilationChannel::~G4XAnnihilationChannel()
 71 {                                                  60 {
 72   if (widthTable) delete widthTable;           <<  61   delete widthTable;
 73   widthTable = 0;                                  62   widthTable = 0;
 74   if (partWidthTable) delete partWidthTable;   <<  63   delete partWidthTable;
 75   partWidthTable = 0;                              64   partWidthTable = 0;
 76  }                                                 65  }
 77                                                    66 
 78                                                    67 
 79 G4bool G4XAnnihilationChannel::operator==(cons     68 G4bool G4XAnnihilationChannel::operator==(const G4XAnnihilationChannel &right) const
 80 {                                                  69 {
 81   return (this == (G4XAnnihilationChannel *) &     70   return (this == (G4XAnnihilationChannel *) &right);
 82 }                                                  71 }
 83                                                    72 
 84                                                    73 
 85 G4bool G4XAnnihilationChannel::operator!=(cons     74 G4bool G4XAnnihilationChannel::operator!=(const G4XAnnihilationChannel &right) const
 86 {                                                  75 {
 87   return (this != (G4XAnnihilationChannel *) &     76   return (this != (G4XAnnihilationChannel *) &right);
 88 }                                                  77 }
 89                                                    78 
 90                                                    79 
 91 G4double G4XAnnihilationChannel::CrossSection(     80 G4double G4XAnnihilationChannel::CrossSection(const G4KineticTrack& trk1, 
 92                 const G4KineticTrack& trk2) co     81                 const G4KineticTrack& trk2) const
 93 {                                                  82 {
 94   G4double sigma = 0.;                             83   G4double sigma = 0.;
 95   G4double eCM = (trk1.Get4Momentum() + trk2.G     84   G4double eCM = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
 96                                                    85 
 97   const G4ParticleDefinition* def1 = trk1.GetD <<  86   G4ParticleDefinition* def1 = trk1.GetDefinition();
 98   const G4ParticleDefinition* def2 = trk2.GetD <<  87   G4ParticleDefinition* def2 = trk2.GetDefinition();
 99                                                    88 
100   G4int J1 = def1->GetPDGiSpin();                  89   G4int J1 = def1->GetPDGiSpin();
101   G4int J2 = def2->GetPDGiSpin();                  90   G4int J2 = def2->GetPDGiSpin();
102   G4double m_1 = def1->GetPDGMass();           <<  91   G4double m1 = def1->GetPDGMass();
103   G4double m_2 = def2->GetPDGMass();           <<  92   G4double m2 = def2->GetPDGMass();
104                                                    93 
105   G4int JRes = resonance->GetPDGiSpin();           94   G4int JRes = resonance->GetPDGiSpin();
106   G4double mRes = resonance->GetPDGMass();         95   G4double mRes = resonance->GetPDGMass();
107                                                    96 
108   G4double branch = Branch(trk1,trk2);             97   G4double branch = Branch(trk1,trk2);
109   G4double width = VariableWidth(trk1,trk2);       98   G4double width = VariableWidth(trk1,trk2);
110   G4double cleb = NormalizedClebsch(trk1,trk2)     99   G4double cleb = NormalizedClebsch(trk1,trk2);
111                                                   100 
112   G4double S = eCM * eCM;                      << 101   G4double s = eCM * eCM;
113   if (S == 0.) throw G4HadronicException(__FIL << 102   if (s == 0.) throw G4HadronicException(__FILE__, __LINE__, "G4XAnnihilationChannel::CrossSection - eCM = 0");
114                                                   103 
115   G4double pCM = std::sqrt((S-(m_1+m_2)*(m_1+m << 104   G4double pCM = std::sqrt((s-(m1+m2)*(m1+m2))*(s-(m1-m2)*(m1-m2))/(4.*s));
116                                                   105 
117   sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1    106   sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1) ) 
118       * pi / (pCM * pCM) * branch * width * wi    107       * pi / (pCM * pCM) * branch * width * width / 
119       ( (eCM - mRes) * (eCM - mRes) + width *     108       ( (eCM - mRes) * (eCM - mRes) + width * width / 4.0) * cleb * hbarc_squared);
120                                                   109 
121 //   G4cout << "SS " << branch<<" "<<sigma<<"     110 //   G4cout << "SS " << branch<<" "<<sigma<<" "
122 //          << J1 <<" "                           111 //          << J1 <<" "
123 //   <<J2<<" "                                    112 //   <<J2<<" "
124 //   <<m1<<" "                                    113 //   <<m1<<" "
125 //   <<m2<<" "                                    114 //   <<m2<<" "
126 //   <<JRes<<" "                                  115 //   <<JRes<<" "
127 //   <<mRes<<" "                                  116 //   <<mRes<<" "
128 //   <<wRes<<" "                                  117 //   <<wRes<<" "
129 //   <<width<<" "                                 118 //   <<width<<" "
130 //   <<cleb<<" "                                  119 //   <<cleb<<" "
131 //   <<G4endl;                                    120 //   <<G4endl;
132   return sigma;                                   121   return sigma;
133 }                                                 122 }
134                                                   123 
135                                                   124 
136 G4String G4XAnnihilationChannel::Name() const     125 G4String G4XAnnihilationChannel::Name() const
137 {                                                 126 {
138   G4String name("XAnnihilationChannelCrossSect    127   G4String name("XAnnihilationChannelCrossSection");
139   return name;                                    128   return name;
140 }                                                 129 }
141                                                   130 
142                                                   131 
143                                                   132 
144 G4bool G4XAnnihilationChannel::IsValid(G4doubl    133 G4bool G4XAnnihilationChannel::IsValid(G4double e) const
145 {                                                 134 {
146   G4bool answer = InLimits(e,lowLimit,highLimi    135   G4bool answer = InLimits(e,lowLimit,highLimit);
147                                                   136 
148   return answer;                                  137   return answer;
149 }                                                 138 }
150                                                   139 
151                                                   140 
152 G4double G4XAnnihilationChannel::Branch(const  << 141 const G4double G4XAnnihilationChannel::Branch(const G4KineticTrack& trk1, 
153                                         const  << 142                 const G4KineticTrack& trk2) const
154 {                                                 143 {
155   G4double w=VariableWidth(trk1,trk2);            144   G4double w=VariableWidth(trk1,trk2);
156   if(w==0) return 0;                              145   if(w==0) return 0;
157   return VariablePartialWidth(trk1,trk2) / Var    146   return VariablePartialWidth(trk1,trk2) / VariableWidth(trk1,trk2);
158 }                                                 147 }
159                                                   148 
160 G4double G4XAnnihilationChannel::VariableWidth << 149 const G4double G4XAnnihilationChannel::VariableWidth(const G4KineticTrack& trk1, 
161                                                << 150                  const G4KineticTrack& trk2) const
162 {                                                 151 {
163   // actual production width of resonance, dep    152   // actual production width of resonance, depending on available energy.
164                                                   153 
165   G4double width = resonance->GetPDGWidth();      154   G4double width = resonance->GetPDGWidth();
166   G4bool dummy = false;                           155   G4bool dummy = false;
167   G4double sqrtS = (trk1.Get4Momentum() + trk2    156   G4double sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
168   if (widthTable != 0)                            157   if (widthTable != 0) 
169     {                                             158     {
170       width = widthTable->GetValue(sqrtS,dummy    159       width = widthTable->GetValue(sqrtS,dummy);
171     }                                             160     }
172   return width;                                   161   return width;
173 }                                                 162 }
174                                                   163 
175                                                   164 
176 G4double G4XAnnihilationChannel::VariableParti << 165 const G4double G4XAnnihilationChannel::VariablePartialWidth(const G4KineticTrack& trk1, 
177                                                << 166                   const G4KineticTrack& trk2) const
178 {                                                 167 {
179   // Calculate mass dependent partial width of    168   // Calculate mass dependent partial width of resonance, 
180   // based on UrQMD tabulations                   169   // based on UrQMD tabulations
181                                                   170 
182   G4double width(0);                              171   G4double width(0);
183                                                   172 
184   if (partWidthTable != 0)                        173   if (partWidthTable != 0)
185   {                                               174   {
186     G4double sqrtS = 0;                           175     G4double sqrtS = 0;
187     G4bool dummy = false;                         176     G4bool dummy = false;
188     sqrtS = (trk1.Get4Momentum() + trk2.Get4Mo    177     sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
189     width = partWidthTable->GetValue(sqrtS,dum    178     width = partWidthTable->GetValue(sqrtS,dummy);
190   }                                               179   }
191   else                                            180   else
192   {                                               181   {
193     width = resonance->GetPDGWidth();             182     width = resonance->GetPDGWidth();
194   }                                               183   }
195   return width;                                   184   return width;
196 }                                                 185 }
197                                                   186 
198                                                   187 
199 G4double G4XAnnihilationChannel::NormalizedCle << 188 const G4double G4XAnnihilationChannel::NormalizedClebsch(const G4KineticTrack& trk1, 
200                                                << 189                const G4KineticTrack& trk2) const
201 {                                                 190 {
202   G4double cleb = 0.;                             191   G4double cleb = 0.;
203   const G4ParticleDefinition* def1 = trk1.GetD << 192   G4ParticleDefinition* def1 = trk1.GetDefinition();
204   const G4ParticleDefinition* def2 = trk2.GetD << 193   G4ParticleDefinition* def2 = trk2.GetDefinition();
205                                                   194 
206   G4int iso31 = def1->GetPDGiIsospin3();          195   G4int iso31 = def1->GetPDGiIsospin3();
207   G4int iso32 = def2->GetPDGiIsospin3();          196   G4int iso32 = def2->GetPDGiIsospin3();
208   G4int iso3 = iso31 + iso32;                     197   G4int iso3 = iso31 + iso32;
209   G4int iso1 = def1->GetPDGiIsospin();            198   G4int iso1 = def1->GetPDGiIsospin();
210   G4int iso2 = def2->GetPDGiIsospin();            199   G4int iso2 = def2->GetPDGiIsospin();
211                                                   200 
212   G4int isoRes = resonance->GetPDGiIsospin();     201   G4int isoRes = resonance->GetPDGiIsospin();
213                                                   202   
214   if (isoRes < iso3) return 0.;                   203   if (isoRes < iso3) return 0.;
215   if ((iso1*iso2) == 0) return 1.;                204   if ((iso1*iso2) == 0) return 1.;
216                                                   205 
217   cleb = clebsch.NormalizedClebschGordan(isoRe    206   cleb = clebsch.NormalizedClebschGordan(isoRes,iso3,iso1,iso2,iso31,iso32);
218                                                   207 
219   // Special case: particle-antiparticle, char    208   // Special case: particle-antiparticle, charge-conjugated states have the same weight
220   G4String type1 = def1->GetParticleType();       209   G4String type1 = def1->GetParticleType();
221   G4String type2 = def2->GetParticleType();       210   G4String type2 = def2->GetParticleType();
222   G4int anti = def1->GetPDGEncoding() * def2->    211   G4int anti = def1->GetPDGEncoding() * def2->GetPDGEncoding();
223   G4int strangeness = resonance->GetQuarkConte    212   G4int strangeness = resonance->GetQuarkContent(3) + resonance->GetAntiQuarkContent(3);
224   if ( ((type1 == "baryon" && type2 == "baryon    213   if ( ((type1 == "baryon" && type2 == "baryon") ||(type1 == "meson" && type2 == "meson")) &&
225        anti < 0 && strangeness == 0)              214        anti < 0 && strangeness == 0) 
226     {                                             215     {
227       if (def1->GetPDGEncoding() != -(def2->Ge    216       if (def1->GetPDGEncoding() != -(def2->GetPDGEncoding())) cleb = 0.5 * cleb;
228     }                                             217     }
229                                                   218        
230   return cleb;                                    219   return cleb;
231 }                                                 220 }
232                                                   221 
233                                                   222 
234                                                   223 
235                                                   224 
236                                                   225 
237                                                   226