Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * 18 // * * 21 // * Parts of this code which have been devel 19 // * Parts of this code which have been developed by QinetiQ Ltd * 22 // * under contract to the European Space Agen << 20 // * under contract to the European Space Agency (ESA) are the * 23 // * intellectual property of ESA. Rights to u 21 // * intellectual property of ESA. Rights to use, copy, modify and * 24 // * redistribute this software for general pu 22 // * redistribute this software for general public use are granted * 25 // * in compliance with any licensing, distrib 23 // * in compliance with any licensing, distribution and development * 26 // * policy adopted by the Geant4 Collaboratio 24 // * policy adopted by the Geant4 Collaboration. This code has been * 27 // * written by QinetiQ Ltd for the European S 25 // * written by QinetiQ Ltd for the European Space Agency, under ESA * 28 // * contract 17191/03/NL/LvH (Aurora Programm << 26 // * contract 17191/03/NL/LvH (Aurora Programme). * 29 // * 27 // * * 30 // * By using, copying, modifying or distri << 28 // * By copying, distributing or modifying the Program (or any work * 31 // * any work based on the software) you ag << 29 // * based on the Program) you indicate your acceptance of this * 32 // * use in resulting scientific publicati << 30 // * statement, and all its terms. * 33 // * acceptance of all terms of the Geant4 Sof << 34 // ******************************************* 31 // ******************************************************************** 35 // 32 // 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 33 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 // 34 // 38 // MODULE: G4EMDissociation.cc 35 // MODULE: G4EMDissociation.cc 39 // 36 // 40 // Version: B.1 37 // Version: B.1 41 // Date: 15/04/04 38 // Date: 15/04/04 42 // Author: P R Truscott 39 // Author: P R Truscott 43 // Organisation: QinetiQ Ltd, UK 40 // Organisation: QinetiQ Ltd, UK 44 // Customer: ESA/ESTEC, NOORDWIJK 41 // Customer: ESA/ESTEC, NOORDWIJK 45 // Contract: 17191/03/NL/LvH 42 // Contract: 17191/03/NL/LvH 46 // 43 // 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 44 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 48 // 45 // 49 // CHANGE HISTORY 46 // CHANGE HISTORY 50 // -------------- 47 // -------------- 51 // 48 // 52 // 17 October 2003, P R Truscott, QinetiQ Ltd, 49 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK 53 // Created. 50 // Created. 54 // 51 // 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U 52 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK 56 // Beta release 53 // Beta release 57 // 54 // 58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 55 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59 ////////////////////////////////////////////// 56 //////////////////////////////////////////////////////////////////////////////// 60 // 57 // 61 #include "G4EMDissociation.hh" 58 #include "G4EMDissociation.hh" 62 #include "G4PhysicalConstants.hh" << 59 #include "G4Evaporation.hh" 63 #include "G4SystemOfUnits.hh" << 60 #include "G4FermiBreakUp.hh" >> 61 #include "G4StatMF.hh" 64 #include "G4ParticleDefinition.hh" 62 #include "G4ParticleDefinition.hh" 65 #include "G4LorentzVector.hh" 63 #include "G4LorentzVector.hh" 66 #include "G4PhysicsFreeVector.hh" 64 #include "G4PhysicsFreeVector.hh" 67 #include "G4EMDissociationCrossSection.hh" 65 #include "G4EMDissociationCrossSection.hh" 68 #include "G4Proton.hh" 66 #include "G4Proton.hh" 69 #include "G4Neutron.hh" 67 #include "G4Neutron.hh" >> 68 #include "G4ParticleTable.hh" 70 #include "G4IonTable.hh" 69 #include "G4IonTable.hh" >> 70 #include "G4GeneralPhaseSpaceDecay.hh" 71 #include "G4DecayProducts.hh" 71 #include "G4DecayProducts.hh" 72 #include "G4DynamicParticle.hh" 72 #include "G4DynamicParticle.hh" 73 #include "G4Fragment.hh" 73 #include "G4Fragment.hh" 74 #include "G4ReactionProductVector.hh" 74 #include "G4ReactionProductVector.hh" 75 #include "Randomize.hh" 75 #include "Randomize.hh" 76 #include "globals.hh" 76 #include "globals.hh" 77 #include "G4PhysicsModelCatalog.hh" << 77 //////////////////////////////////////////////////////////////////////////////// 78 << 78 // 79 G4EMDissociation::G4EMDissociation() : << 79 G4EMDissociation::G4EMDissociation () 80 G4HadronicInteraction("EMDissociation"), << 80 { 81 secID_projectileDissociation(-1), secID_targ << 81 // 82 { << 82 // 83 // Send message to stdout to advise that the << 83 // Send message to stdout to advise that the G4EMDissociation model is being 84 // used. << 84 // used. >> 85 // 85 PrintWelcomeMessage(); 86 PrintWelcomeMessage(); 86 << 87 // 87 // No de-excitation handler has been supplie << 88 // 88 theExcitationHandler = new G4Exci << 89 // No de-excitation handler has been supplied - define the default handler. >> 90 // >> 91 theExcitationHandler = new G4ExcitationHandler; >> 92 G4Evaporation * theEvaporation = new G4Evaporation; >> 93 G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp; >> 94 G4StatMF * theMF = new G4StatMF; >> 95 theExcitationHandler->SetEvaporation(theEvaporation); >> 96 theExcitationHandler->SetFermiModel(theFermiBreakUp); >> 97 theExcitationHandler->SetMultiFragmentation(theMF); >> 98 theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6); 89 theExcitationHandler->SetMinEForMultiFrag(5. 99 theExcitationHandler->SetMinEForMultiFrag(5.0*MeV); 90 handlerDefinedInternally = true; 100 handlerDefinedInternally = true; 91 << 101 // 92 // This EM dissociation model needs access t << 102 // 93 // G4EMDissociationCrossSection. << 103 // This EM dissociation model needs access to the cross-sections held in >> 104 // G4EMDissociationCrossSection. >> 105 // 94 dissociationCrossSection = new G4EMDissociat 106 dissociationCrossSection = new G4EMDissociationCrossSection; 95 thePhotonSpectrum = new G4EMDissociationSpec 107 thePhotonSpectrum = new G4EMDissociationSpectrum; 96 << 108 // 97 // Set the minimum and maximum range for the << 109 // 98 // is in energy per nucleon number). << 110 // Set the minimum and maximum range for the model (despite nomanclature, this >> 111 // is in energy per nucleon number). >> 112 // 99 SetMinEnergy(100.0*MeV); 113 SetMinEnergy(100.0*MeV); 100 SetMaxEnergy(500.0*GeV); 114 SetMaxEnergy(500.0*GeV); 101 << 115 // 102 // Set the default verbose level to 0 - no o << 116 // >> 117 // Set the default verbose level to 0 - no output. >> 118 // 103 verboseLevel = 0; 119 verboseLevel = 0; 104 << 105 // Creator model ID for the secondaries crea << 106 secID_projectileDissociation = G4PhysicsMode << 107 secID_targetDissociation = G4PhysicsMode << 108 } 120 } 109 << 121 //////////////////////////////////////////////////////////////////////////////// 110 G4EMDissociation::G4EMDissociation (G4Excitati << 122 // 111 G4HadronicInteraction("EMDissociation"), << 123 G4EMDissociation::G4EMDissociation (G4ExcitationHandler *aExcitationHandler) 112 secID_projectileDissociation(-1), secID_targ << 113 { 124 { 114 // Send message to stdout to advise that the << 125 // 115 // used. << 126 // >> 127 // Send message to stdout to advise that the G4EMDissociation model is being >> 128 // used. >> 129 // 116 PrintWelcomeMessage(); 130 PrintWelcomeMessage(); 117 131 118 theExcitationHandler = aExcitationHandle 132 theExcitationHandler = aExcitationHandler; 119 handlerDefinedInternally = false; 133 handlerDefinedInternally = false; 120 << 134 // 121 // This EM dissociation model needs access t << 135 // 122 // G4EMDissociationCrossSection. << 136 // This EM dissociation model needs access to the cross-sections held in >> 137 // G4EMDissociationCrossSection. >> 138 // 123 dissociationCrossSection = new G4EMDissociat 139 dissociationCrossSection = new G4EMDissociationCrossSection; 124 thePhotonSpectrum = new G4EMDissociationSpec 140 thePhotonSpectrum = new G4EMDissociationSpectrum; 125 << 141 // 126 // Set the minimum and maximum range for the << 142 // 127 // is in energy per nucleon number) << 143 // Set the minimum and maximum range for the model (despite nomanclature, this >> 144 // is in energy per nucleon number). >> 145 // 128 SetMinEnergy(100.0*MeV); 146 SetMinEnergy(100.0*MeV); 129 SetMaxEnergy(500.0*GeV); 147 SetMaxEnergy(500.0*GeV); >> 148 // >> 149 // >> 150 // Set the default verbose level to 0 - no output. >> 151 // 130 verboseLevel = 0; 152 verboseLevel = 0; 131 << 132 // Creator model ID for the secondaries crea << 133 secID_projectileDissociation = G4PhysicsMode << 134 secID_targetDissociation = G4PhysicsMode << 135 } 153 } 136 << 154 //////////////////////////////////////////////////////////////////////////////// 137 << 155 // 138 G4EMDissociation::~G4EMDissociation() { << 156 G4EMDissociation::~G4EMDissociation () >> 157 { 139 if (handlerDefinedInternally) delete theExci 158 if (handlerDefinedInternally) delete theExcitationHandler; 140 // delete dissociationCrossSection; << 159 delete dissociationCrossSection; 141 // Cross section deleted by G4CrossSectionRe << 142 // Bug reported by Gong Ding in Bug Report # << 143 delete thePhotonSpectrum; 160 delete thePhotonSpectrum; 144 } 161 } 145 << 162 //////////////////////////////////////////////////////////////////////////////// 146 << 163 // 147 G4HadFinalState *G4EMDissociation::ApplyYourse 164 G4HadFinalState *G4EMDissociation::ApplyYourself 148 (const G4HadProjectile &theTrack, G4Nucleus 165 (const G4HadProjectile &theTrack, G4Nucleus &theTarget) 149 { 166 { 150 // The secondaries will be returned in G4Had << 167 // 151 // initialise this. << 168 // 152 << 169 // The secondaries will be returned in G4HadFinalState &theParticleChange - >> 170 // initialise this. >> 171 // 153 theParticleChange.Clear(); 172 theParticleChange.Clear(); 154 theParticleChange.SetStatusChange(stopAndKil 173 theParticleChange.SetStatusChange(stopAndKill); 155 << 174 // 156 // Get relevant information about the projec << 175 // 157 // energy/nuc, momentum, velocity, Lorentz f << 176 // Get relevant information about the projectile and target (A, Z) and 158 // projectile. << 177 // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the 159 << 178 // projectile. >> 179 // 160 const G4ParticleDefinition *definitionP = th 180 const G4ParticleDefinition *definitionP = theTrack.GetDefinition(); 161 const G4double AP = definitionP->GetBaryonN 181 const G4double AP = definitionP->GetBaryonNumber(); 162 const G4double ZP = definitionP->GetPDGChar 182 const G4double ZP = definitionP->GetPDGCharge(); 163 G4LorentzVector pP = theTrack.Get4Momentum() 183 G4LorentzVector pP = theTrack.Get4Momentum(); 164 G4double E = theTrack.GetKineticEner 184 G4double E = theTrack.GetKineticEnergy()/AP; 165 G4double MP = theTrack.GetTotalEnergy 185 G4double MP = theTrack.GetTotalEnergy() - E*AP; 166 G4double b = pP.beta(); 186 G4double b = pP.beta(); 167 G4double AT = theTarget.GetA_asInt(); << 187 G4double AT = theTarget.GetN(); 168 G4double ZT = theTarget.GetZ_asInt(); << 188 G4double ZT = theTarget.GetZ(); 169 G4double MT = G4NucleiProperties::Get 189 G4double MT = G4NucleiProperties::GetNuclearMass(AT,ZT); 170 << 190 // 171 // Depending upon the verbosity level, outpu << 191 // 172 // projectile and target << 192 // Depending upon the verbosity level, output the initial information on the 173 if (verboseLevel >= 2) { << 193 // projectile and target. >> 194 // >> 195 if (verboseLevel >= 2) >> 196 { 174 G4cout.precision(6); 197 G4cout.precision(6); 175 G4cout <<"################################ 198 G4cout <<"########################################" 176 <<"################################ 199 <<"########################################" 177 <<G4endl; 200 <<G4endl; 178 G4cout <<"IN G4EMDissociation" <<G4endl; 201 G4cout <<"IN G4EMDissociation" <<G4endl; 179 G4cout <<"Initial projectile A=" <<AP 202 G4cout <<"Initial projectile A=" <<AP 180 <<", Z=" <<ZP 203 <<", Z=" <<ZP 181 <<G4endl; 204 <<G4endl; 182 G4cout <<"Initial target A=" <<AT 205 G4cout <<"Initial target A=" <<AT 183 <<", Z=" <<ZT 206 <<", Z=" <<ZT 184 <<G4endl; 207 <<G4endl; 185 G4cout <<"Projectile momentum and Energy/n 208 G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl; 186 } 209 } 187 << 210 // 188 // Initialise the variables which will be us << 211 // 189 // to boost the secondaries from the interac << 212 // Initialise the variables which will be used with the phase-space decay and 190 << 213 // to boost the secondaries from the interaction. >> 214 // 191 G4ParticleDefinition *typeNucleon = NULL; 215 G4ParticleDefinition *typeNucleon = NULL; 192 G4ParticleDefinition *typeDaughter = NULL; 216 G4ParticleDefinition *typeDaughter = NULL; 193 G4double Eg = 0.0; 217 G4double Eg = 0.0; 194 G4double mass = 0.0; 218 G4double mass = 0.0; 195 G4ThreeVector boost = G4ThreeVector(0.0, 0.0 219 G4ThreeVector boost = G4ThreeVector(0.0, 0.0, 0.0); 196 << 220 // 197 // Determine the cross-sections at the giant << 221 // 198 // resonance energies for the projectile and << 222 // Determine the cross-sections at the giant dipole and giant quadrupole 199 // initially provided in the G4PhysicsFreeVe << 223 // resonance energies for the projectile and then target. The information is 200 // and E2 fields. These are then summed. << 224 // initially provided in the G4PhysicsFreeVector individually for the E1 201 << 225 // and E2 fields. These are then summed. >> 226 // 202 G4double bmin = thePhotonSpectrum->GetCloses 227 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b); 203 G4PhysicsFreeVector *crossSectionP = dissoci 228 G4PhysicsFreeVector *crossSectionP = dissociationCrossSection-> 204 GetCrossSectionForProjectile(AP, ZP, AT, Z 229 GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin); 205 G4PhysicsFreeVector *crossSectionT = dissoci 230 G4PhysicsFreeVector *crossSectionT = dissociationCrossSection-> 206 GetCrossSectionForTarget(AP, ZP, AT, ZT, b 231 GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin); 207 232 208 G4double totCrossSectionP = (*crossSectionP) 233 G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1]; 209 G4double totCrossSectionT = (*crossSectionT) 234 G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1]; 210 << 235 // 211 // Now sample whether the interaction involv << 236 // 212 // or the target. << 237 // Now sample whether the interaction involved EM dissociation of the projectile 213 << 238 // or the target. 214 G4int secID = -1; // Creator model ID for t << 239 // 215 if (G4UniformRand() < 240 if (G4UniformRand() < 216 totCrossSectionP / (totCrossSectionP + tot << 241 totCrossSectionP / (totCrossSectionP + totCrossSectionT)) 217 << 242 { 218 // It was the projectile which underwent E << 243 // 219 // boost to be applied to the secondaries, << 244 // 220 // neutron was ejected. Then determine th << 245 // It was the projectile which underwent EM dissociation. Define the Lorentz 221 // which passed from the target nucleus .. << 246 // boost to be applied to the secondaries, and sample whether a proton or a 222 // excitation of the projectile. << 247 // neutron was ejected. Then determine the energy of the virtual gamma ray 223 << 248 // which passed from the target nucleus ... this will be used to define the 224 secID = secID_projectileDissociation; << 249 // excitation of the projectile. >> 250 // 225 mass = MP; 251 mass = MP; 226 if (G4UniformRand() < dissociationCrossSec 252 if (G4UniformRand() < dissociationCrossSection-> 227 GetWilsonProbabilityForProtonDissociatio 253 GetWilsonProbabilityForProtonDissociation (AP, ZP)) 228 { 254 { 229 if (verboseLevel >= 2) 255 if (verboseLevel >= 2) 230 G4cout <<"Projectile underwent EM diss 256 G4cout <<"Projectile underwent EM dissociation producing a proton" 231 <<G4endl; 257 <<G4endl; 232 typeNucleon = G4Proton::ProtonDefinition 258 typeNucleon = G4Proton::ProtonDefinition(); 233 typeDaughter = G4IonTable::GetIonTable() << 259 typeDaughter = G4ParticleTable::GetParticleTable()-> 234 GetIon((G4int) ZP-1, (G4int) AP-1, 0.0); 260 GetIon((G4int) ZP-1, (G4int) AP-1, 0.0); 235 } 261 } 236 else 262 else 237 { 263 { 238 if (verboseLevel >= 2) 264 if (verboseLevel >= 2) 239 G4cout <<"Projectile underwent EM diss 265 G4cout <<"Projectile underwent EM dissociation producing a neutron" 240 <<G4endl; 266 <<G4endl; 241 typeNucleon = G4Neutron::NeutronDefiniti 267 typeNucleon = G4Neutron::NeutronDefinition(); 242 typeDaughter = G4IonTable::GetIonTable() << 268 typeDaughter = G4ParticleTable::GetParticleTable()-> 243 GetIon((G4int) ZP, (G4int) AP-1, 0.0); 269 GetIon((G4int) ZP, (G4int) AP-1, 0.0); 244 } 270 } 245 if (G4UniformRand() < (*crossSectionP)[0]/ 271 if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP) 246 { 272 { 247 Eg = crossSectionP->GetLowEdgeEnergy(0); 273 Eg = crossSectionP->GetLowEdgeEnergy(0); 248 if (verboseLevel >= 2) 274 if (verboseLevel >= 2) 249 G4cout <<"Transition type was E1" <<G4 275 G4cout <<"Transition type was E1" <<G4endl; 250 } 276 } 251 else 277 else 252 { 278 { 253 Eg = crossSectionP->GetLowEdgeEnergy(1); 279 Eg = crossSectionP->GetLowEdgeEnergy(1); 254 if (verboseLevel >= 2) 280 if (verboseLevel >= 2) 255 G4cout <<"Transition type was E2" <<G4 281 G4cout <<"Transition type was E2" <<G4endl; 256 } 282 } 257 << 283 // 258 // We need to define a Lorentz vector with << 284 // 259 // energy includes the projectile and virt << 285 // We need to define a Lorentz vector with the original momentum, but total 260 // to calculate the boost required for the << 286 // energy includes the projectile and virtual gamma. This is then used 261 << 287 // to calculate the boost required for the secondaries. 262 pP.setE( std::sqrt( pP.vect().mag2() + (ma << 288 // >> 289 pP.setE(pP.e()+Eg); 263 boost = pP.findBoostToCM(); 290 boost = pP.findBoostToCM(); 264 } 291 } 265 else 292 else 266 { 293 { 267 // It was the target which underwent EM di << 294 // 268 // proton or a neutron was ejected. Then << 295 // 269 // gamma ray which passed from the project << 296 // It was the target which underwent EM dissociation. Sample whether a 270 // define the excitation of the target. << 297 // proton or a neutron was ejected. Then determine the energy of the virtual 271 << 298 // gamma ray which passed from the projectile nucleus ... this will be used to 272 secID = secID_targetDissociation; << 299 // define the excitation of the target. >> 300 // 273 mass = MT; 301 mass = MT; 274 if (G4UniformRand() < dissociationCrossSec 302 if (G4UniformRand() < dissociationCrossSection-> 275 GetWilsonProbabilityForProtonDissociatio 303 GetWilsonProbabilityForProtonDissociation (AT, ZT)) 276 { 304 { 277 if (verboseLevel >= 2) 305 if (verboseLevel >= 2) 278 G4cout <<"Target underwent EM dissocia 306 G4cout <<"Target underwent EM dissociation producing a proton" 279 <<G4endl; 307 <<G4endl; 280 typeNucleon = G4Proton::ProtonDefinition 308 typeNucleon = G4Proton::ProtonDefinition(); 281 typeDaughter = G4IonTable::GetIonTable() << 309 typeDaughter = G4ParticleTable::GetParticleTable()-> 282 GetIon((G4int) ZT-1, (G4int) AT-1, 0.0); 310 GetIon((G4int) ZT-1, (G4int) AT-1, 0.0); 283 } 311 } 284 else 312 else 285 { 313 { 286 if (verboseLevel >= 2) 314 if (verboseLevel >= 2) 287 G4cout <<"Target underwent EM dissocia 315 G4cout <<"Target underwent EM dissociation producing a neutron" 288 <<G4endl; 316 <<G4endl; 289 typeNucleon = G4Neutron::NeutronDefiniti 317 typeNucleon = G4Neutron::NeutronDefinition(); 290 typeDaughter = G4IonTable::GetIonTable() << 318 typeDaughter = G4ParticleTable::GetParticleTable()-> 291 GetIon((G4int) ZT, (G4int) AT-1, 0.0); 319 GetIon((G4int) ZT, (G4int) AT-1, 0.0); 292 } 320 } 293 if (G4UniformRand() < (*crossSectionT)[0]/ 321 if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT) 294 { 322 { 295 Eg = crossSectionT->GetLowEdgeEnergy(0); 323 Eg = crossSectionT->GetLowEdgeEnergy(0); 296 if (verboseLevel >= 2) 324 if (verboseLevel >= 2) 297 G4cout <<"Transition type was E1" <<G4 325 G4cout <<"Transition type was E1" <<G4endl; 298 } 326 } 299 else 327 else 300 { 328 { 301 Eg = crossSectionT->GetLowEdgeEnergy(1); 329 Eg = crossSectionT->GetLowEdgeEnergy(1); 302 if (verboseLevel >= 2) 330 if (verboseLevel >= 2) 303 G4cout <<"Transition type was E2" <<G4 331 G4cout <<"Transition type was E2" <<G4endl; 304 } 332 } 305 << 333 // 306 // Add the projectile to theParticleChange << 334 // 307 // not-so-virtual gamma-ray. Not that at << 335 // Add the projectile to theParticleChange, less the energy of the 308 // is transferred between the projectile a << 336 // not-so-virtual gamma-ray. Not that at the moment, no lateral momentum 309 << 337 // is transferred between the projectile and target nuclei. >> 338 // 310 G4ThreeVector v = pP.vect(); 339 G4ThreeVector v = pP.vect(); 311 v.setMag(1.0); 340 v.setMag(1.0); 312 G4DynamicParticle *changedP = new G4Dynami << 341 G4DynamicParticle *changedP = new G4DynamicParticle 313 theParticleChange.AddSecondary (changedP, << 342 (const_cast<G4ParticleDefinition*>(definitionP), v, E*AP-Eg); >> 343 theParticleChange.AddSecondary (changedP); 314 if (verboseLevel >= 2) 344 if (verboseLevel >= 2) 315 { 345 { 316 G4cout <<"Projectile change:" <<G4endl; 346 G4cout <<"Projectile change:" <<G4endl; 317 changedP->DumpInfo(); 347 changedP->DumpInfo(); 318 } 348 } 319 } 349 } 320 << 350 // 321 // Perform a two-body decay based on the res << 351 // 322 // gamma-ray, and the masses of the daughter << 352 // Perform a two-body decay based on the restmass energy of the parent and 323 // the nucles, the angular distribution is s << 353 // gamma-ray, and the masses of the daughters. In the frame of reference of 324 // the nucleon and secondary nucleus are boo << 354 // the nucles, the angular distribution is sampled isotropically, but the 325 // projectile. << 355 // the nucleon and secondary nucleus are boosted if they've come from the 326 << 356 // projectile. >> 357 // 327 G4double e = mass + Eg; 358 G4double e = mass + Eg; 328 G4double mass1 = typeNucleon->GetPDGMass(); << 359 G4double m1 = typeNucleon->GetPDGMass(); 329 G4double mass2 = typeDaughter->GetPDGMass(); << 360 G4double m2 = typeDaughter->GetPDGMass(); 330 G4double pp = (e+mass1+mass2)*(e+mass1-mass2 << 361 G4double pp = (e+m1+m2)*(e+m1-m2)*(e-m1+m2)*(e-m1-m2)/(4.0*e*e); 331 (e-mass1+mass2)*(e-mass1-mass2 << 362 if (pp < 0.0) 332 if (pp < 0.0) { << 363 { 333 pp = 1.0*eV; 364 pp = 1.0*eV; 334 // if (verboseLevel >`= 1) 365 // if (verboseLevel >`= 1) 335 // { 366 // { 336 // G4cout <<"IN G4EMDissociation::ApplyYo 367 // G4cout <<"IN G4EMDissociation::ApplyYoursef" <<G4endl; 337 // G4cout <<"Error in mass of secondaries 368 // G4cout <<"Error in mass of secondaries compared with primary:" <<G4endl; 338 // G4cout <<"Rest mass of primary = 369 // G4cout <<"Rest mass of primary = " <<mass <<" MeV" <<G4endl; 339 // G4cout <<"Virtual gamma energy = 370 // G4cout <<"Virtual gamma energy = " <<Eg <<" MeV" <<G4endl; 340 // G4cout <<"Rest mass of secondary #1 = << 371 // G4cout <<"Rest mass of secondary #1 = " <<m1 <<" MeV" <<G4endl; 341 // G4cout <<"Rest mass of secondary #2 = << 372 // G4cout <<"Rest mass of secondary #2 = " <<m2 <<" MeV" <<G4endl; 342 // } 373 // } 343 } 374 } 344 else 375 else 345 pp = std::sqrt(pp); 376 pp = std::sqrt(pp); 346 G4double costheta = 2.*G4UniformRand()-1.0; 377 G4double costheta = 2.*G4UniformRand()-1.0; 347 G4double sintheta = std::sqrt((1.0 - costhet 378 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta)); 348 G4double phi = 2.0*pi*G4UniformRand()*r 379 G4double phi = 2.0*pi*G4UniformRand()*rad; 349 G4ThreeVector direction(sintheta*std::cos(ph 380 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta); 350 G4DynamicParticle *dynamicNucleon = 381 G4DynamicParticle *dynamicNucleon = 351 new G4DynamicParticle(typeNucleon, directi 382 new G4DynamicParticle(typeNucleon, direction*pp); 352 dynamicNucleon->Set4Momentum(dynamicNucleon- 383 dynamicNucleon->Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost)); 353 G4DynamicParticle *dynamicDaughter = 384 G4DynamicParticle *dynamicDaughter = 354 new G4DynamicParticle(typeDaughter, -direc 385 new G4DynamicParticle(typeDaughter, -direction*pp); 355 dynamicDaughter->Set4Momentum(dynamicDaughte 386 dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost)); 356 << 387 // 357 // The "decay" products have to be transferr << 388 // 358 // Furthermore, the residual nucleus should << 389 // The "decay" products have to be transferred to the G4HadFinalState object. 359 << 390 // Furthermore, the residual nucleus should be de-excited. 360 theParticleChange.AddSecondary (dynamicNucle << 391 // 361 if (verboseLevel >= 2) { << 392 theParticleChange.AddSecondary (dynamicNucleon); >> 393 if (verboseLevel >= 2) >> 394 { 362 G4cout <<"Nucleon from the EMD process:" < 395 G4cout <<"Nucleon from the EMD process:" <<G4endl; 363 dynamicNucleon->DumpInfo(); 396 dynamicNucleon->DumpInfo(); 364 } 397 } 365 398 366 G4Fragment* theFragment = new << 399 G4Fragment *theFragment = new 367 G4Fragment(typeDaughter->GetBaryonNumber() << 400 G4Fragment((G4int) typeDaughter->GetBaryonNumber(), 368 G4lrint(typeDaughter->GetPDGCharge()/ << 401 (G4int) typeDaughter->GetPDGCharge(), dynamicDaughter->Get4Momentum()); 369 dynamicDaughter->Get4Momentum()); << 402 if (verboseLevel >= 2) 370 << 403 { 371 if (verboseLevel >= 2) { << 372 G4cout <<"Dynamic properties of the prefra 404 G4cout <<"Dynamic properties of the prefragment:" <<G4endl; 373 G4cout.precision(6); 405 G4cout.precision(6); 374 dynamicDaughter->DumpInfo(); 406 dynamicDaughter->DumpInfo(); 375 G4cout <<"Nuclear properties of the prefra 407 G4cout <<"Nuclear properties of the prefragment:" <<G4endl; 376 G4cout <<theFragment <<G4endl; 408 G4cout <<theFragment <<G4endl; 377 } 409 } 378 << 410 G4ReactionProductVector *products = 379 G4ReactionProductVector* products = << 411 theExcitationHandler->BreakItUp(*theFragment); 380 theExcitationHandler->Br << 381 delete theFragment; 412 delete theFragment; 382 theFragment = NULL; 413 theFragment = NULL; 383 414 384 G4DynamicParticle* secondary = 0; << 385 G4ReactionProductVector::iterator iter; 415 G4ReactionProductVector::iterator iter; 386 for (iter = products->begin(); iter != produ << 416 for (iter = products->begin(); iter != products->end(); ++iter) 387 secondary = new G4DynamicParticle((*iter)- << 417 { 388 (*iter)->GetTotalEnergy(), (*iter)->GetMom << 418 G4DynamicParticle *secondary = 389 theParticleChange.AddSecondary (secondary, << 419 new G4DynamicParticle((*iter)->GetDefinition(), >> 420 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum()); >> 421 theParticleChange.AddSecondary (secondary); 390 } 422 } 391 delete products; << 392 << 393 delete crossSectionP; << 394 delete crossSectionT; << 395 423 396 if (verboseLevel >= 2) 424 if (verboseLevel >= 2) 397 G4cout <<"################################ 425 G4cout <<"########################################" 398 <<"################################ 426 <<"########################################" 399 <<G4endl; 427 <<G4endl; 400 428 401 return &theParticleChange; 429 return &theParticleChange; 402 } 430 } 403 << 431 //////////////////////////////////////////////////////////////////////////////// 404 << 432 // 405 void G4EMDissociation::PrintWelcomeMessage () 433 void G4EMDissociation::PrintWelcomeMessage () 406 { 434 { 407 G4cout <<G4endl; 435 G4cout <<G4endl; 408 G4cout <<" ********************************* 436 G4cout <<" ****************************************************************" 409 <<G4endl; 437 <<G4endl; 410 G4cout <<" EM dissociation model for nuclear 438 G4cout <<" EM dissociation model for nuclear-nuclear interactions activated" 411 <<G4endl; 439 <<G4endl; 412 G4cout <<" (Written by QinetiQ Ltd for the E 440 G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)" 413 <<G4endl; 441 <<G4endl; 414 G4cout <<" ********************************* 442 G4cout <<" ****************************************************************" 415 <<G4endl; 443 <<G4endl; 416 G4cout << G4endl; 444 G4cout << G4endl; 417 445 418 return; 446 return; 419 } 447 } 420 << 448 //////////////////////////////////////////////////////////////////////////////// >> 449 // 421 450