Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/em_dissociation/src/G4EMDissociation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/em_dissociation/src/G4EMDissociation.cc (Version 11.3.0) and /processes/hadronic/models/em_dissociation/src/G4EMDissociation.cc (Version 10.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // *                                               20 // *                                                                  *
 21 // * Parts of this code which have been  devel     21 // * Parts of this code which have been  developed by QinetiQ Ltd     *
 22 // * under contract to the European Space Agen     22 // * under contract to the European Space Agency (ESA) are the        *
 23 // * intellectual property of ESA. Rights to u     23 // * intellectual property of ESA. Rights to use, copy, modify and    *
 24 // * redistribute this software for general pu     24 // * redistribute this software for general public use are granted    *
 25 // * in compliance with any licensing, distrib     25 // * in compliance with any licensing, distribution and development   *
 26 // * policy adopted by the Geant4 Collaboratio     26 // * policy adopted by the Geant4 Collaboration. This code has been   *
 27 // * written by QinetiQ Ltd for the European S     27 // * written by QinetiQ Ltd for the European Space Agency, under ESA  *
 28 // * contract 17191/03/NL/LvH (Aurora Programm     28 // * contract 17191/03/NL/LvH (Aurora Programme).                     *
 29 // *                                               29 // *                                                                  *
 30 // * By using,  copying,  modifying or  distri     30 // * By using,  copying,  modifying or  distributing the software (or *
 31 // * any work based  on the software)  you  ag     31 // * any work based  on the software)  you  agree  to acknowledge its *
 32 // * use  in  resulting  scientific  publicati     32 // * use  in  resulting  scientific  publications,  and indicate your *
 33 // * acceptance of all terms of the Geant4 Sof     33 // * acceptance of all terms of the Geant4 Software license.          *
 34 // *******************************************     34 // ********************************************************************
 35 //                                                 35 //
 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 37 //                                                 37 //
 38 // MODULE:    G4EMDissociation.cc                  38 // MODULE:    G4EMDissociation.cc
 39 //                                                 39 //
 40 // Version:   B.1                                  40 // Version:   B.1
 41 // Date:    15/04/04                               41 // Date:    15/04/04
 42 // Author:    P R Truscott                         42 // Author:    P R Truscott
 43 // Organisation:  QinetiQ Ltd, UK                  43 // Organisation:  QinetiQ Ltd, UK
 44 // Customer:    ESA/ESTEC, NOORDWIJK               44 // Customer:    ESA/ESTEC, NOORDWIJK
 45 // Contract:    17191/03/NL/LvH                    45 // Contract:    17191/03/NL/LvH
 46 //                                                 46 //
 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 48 //                                                 48 //
 49 // CHANGE HISTORY                                  49 // CHANGE HISTORY
 50 // --------------                                  50 // --------------
 51 //                                                 51 //
 52 // 17 October 2003, P R Truscott, QinetiQ Ltd,     52 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK
 53 // Created.                                        53 // Created.
 54 //                                                 54 //
 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U     55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
 56 // Beta release                                    56 // Beta release
 57 //                                                 57 //
 58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 59 //////////////////////////////////////////////     59 ////////////////////////////////////////////////////////////////////////////////
 60 //                                                 60 //
 61 #include "G4EMDissociation.hh"                     61 #include "G4EMDissociation.hh"
 62 #include "G4PhysicalConstants.hh"                  62 #include "G4PhysicalConstants.hh"
 63 #include "G4SystemOfUnits.hh"                      63 #include "G4SystemOfUnits.hh"
 64 #include "G4ParticleDefinition.hh"                 64 #include "G4ParticleDefinition.hh"
 65 #include "G4LorentzVector.hh"                      65 #include "G4LorentzVector.hh"
 66 #include "G4PhysicsFreeVector.hh"                  66 #include "G4PhysicsFreeVector.hh"
 67 #include "G4EMDissociationCrossSection.hh"         67 #include "G4EMDissociationCrossSection.hh"
 68 #include "G4Proton.hh"                             68 #include "G4Proton.hh"
 69 #include "G4Neutron.hh"                            69 #include "G4Neutron.hh"
 70 #include "G4IonTable.hh"                           70 #include "G4IonTable.hh"
 71 #include "G4DecayProducts.hh"                      71 #include "G4DecayProducts.hh"
 72 #include "G4DynamicParticle.hh"                    72 #include "G4DynamicParticle.hh"
 73 #include "G4Fragment.hh"                           73 #include "G4Fragment.hh"
 74 #include "G4ReactionProductVector.hh"              74 #include "G4ReactionProductVector.hh"
 75 #include "Randomize.hh"                            75 #include "Randomize.hh"
 76 #include "globals.hh"                              76 #include "globals.hh"
 77 #include "G4PhysicsModelCatalog.hh"            << 
 78                                                    77 
 79 G4EMDissociation::G4EMDissociation() :         <<  78 G4EMDissociation::G4EMDissociation():G4HadronicInteraction("EMDissociation") {
 80   G4HadronicInteraction("EMDissociation"),     <<  79 
 81   secID_projectileDissociation(-1), secID_targ << 
 82 {                                              << 
 83   // Send message to stdout to advise that the     80   // Send message to stdout to advise that the G4EMDissociation model is being
 84   // used.                                         81   // used.
 85   PrintWelcomeMessage();                           82   PrintWelcomeMessage();
 86                                                    83 
 87   // No de-excitation handler has been supplie     84   // No de-excitation handler has been supplied - define the default handler.
 88   theExcitationHandler            = new G4Exci     85   theExcitationHandler            = new G4ExcitationHandler;
 89   theExcitationHandler->SetMinEForMultiFrag(5.     86   theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
 90   handlerDefinedInternally = true;                 87   handlerDefinedInternally = true;
 91                                                    88 
 92   // This EM dissociation model needs access t     89   // This EM dissociation model needs access to the cross-sections held in
 93   // G4EMDissociationCrossSection.                 90   // G4EMDissociationCrossSection.
 94   dissociationCrossSection = new G4EMDissociat     91   dissociationCrossSection = new G4EMDissociationCrossSection;
 95   thePhotonSpectrum = new G4EMDissociationSpec     92   thePhotonSpectrum = new G4EMDissociationSpectrum;
 96                                                    93 
 97   // Set the minimum and maximum range for the     94   // Set the minimum and maximum range for the model (despite nomanclature, this
 98   // is in energy per nucleon number).             95   // is in energy per nucleon number).    
 99   SetMinEnergy(100.0*MeV);                         96   SetMinEnergy(100.0*MeV);
100   SetMaxEnergy(500.0*GeV);                         97   SetMaxEnergy(500.0*GeV);
101                                                    98 
102   // Set the default verbose level to 0 - no o     99   // Set the default verbose level to 0 - no output.
103   verboseLevel = 0;                               100   verboseLevel = 0;
104                                                << 
105   // Creator model ID for the secondaries crea << 
106   secID_projectileDissociation = G4PhysicsMode << 
107   secID_targetDissociation     = G4PhysicsMode << 
108 }                                                 101 }
109                                                   102 
110 G4EMDissociation::G4EMDissociation (G4Excitati << 103 G4EMDissociation::G4EMDissociation (G4ExcitationHandler *aExcitationHandler)
111   G4HadronicInteraction("EMDissociation"),     << 
112   secID_projectileDissociation(-1), secID_targ << 
113 {                                                 104 {
114   // Send message to stdout to advise that the    105   // Send message to stdout to advise that the G4EMDissociation model is being
115   // used.                                        106   // used.
116   PrintWelcomeMessage();                          107   PrintWelcomeMessage();
117                                                   108   
118   theExcitationHandler     = aExcitationHandle    109   theExcitationHandler     = aExcitationHandler;
119   handlerDefinedInternally = false;               110   handlerDefinedInternally = false;
120                                                   111 
121   // This EM dissociation model needs access t    112   // This EM dissociation model needs access to the cross-sections held in
122   // G4EMDissociationCrossSection.                113   // G4EMDissociationCrossSection.
123   dissociationCrossSection = new G4EMDissociat    114   dissociationCrossSection = new G4EMDissociationCrossSection;
124   thePhotonSpectrum = new G4EMDissociationSpec    115   thePhotonSpectrum = new G4EMDissociationSpectrum;
125                                                   116 
126   // Set the minimum and maximum range for the    117   // Set the minimum and maximum range for the model (despite nomanclature, this
127   // is in energy per nucleon number)             118   // is in energy per nucleon number)    
128   SetMinEnergy(100.0*MeV);                        119   SetMinEnergy(100.0*MeV);
129   SetMaxEnergy(500.0*GeV);                        120   SetMaxEnergy(500.0*GeV);
130   verboseLevel = 0;                               121   verboseLevel = 0;
131                                                << 
132   // Creator model ID for the secondaries crea << 
133   secID_projectileDissociation = G4PhysicsMode << 
134   secID_targetDissociation     = G4PhysicsMode << 
135 }                                                 122 }
136                                                   123 
137                                                   124 
138 G4EMDissociation::~G4EMDissociation() {           125 G4EMDissociation::~G4EMDissociation() {
139   if (handlerDefinedInternally) delete theExci    126   if (handlerDefinedInternally) delete theExcitationHandler;
140   // delete dissociationCrossSection;             127   // delete dissociationCrossSection;
141   // Cross section deleted by G4CrossSectionRe    128   // Cross section deleted by G4CrossSectionRegistry; don't do it here
142   // Bug reported by Gong Ding in Bug Report #    129   // Bug reported by Gong Ding in Bug Report #1339
143   delete thePhotonSpectrum;                       130   delete thePhotonSpectrum;
144 }                                                 131 }
145                                                   132 
146                                                   133 
147 G4HadFinalState *G4EMDissociation::ApplyYourse    134 G4HadFinalState *G4EMDissociation::ApplyYourself
148   (const G4HadProjectile &theTrack, G4Nucleus     135   (const G4HadProjectile &theTrack, G4Nucleus &theTarget)
149 {                                                 136 {
150   // The secondaries will be returned in G4Had    137   // The secondaries will be returned in G4HadFinalState &theParticleChange -
151   // initialise this.                             138   // initialise this.
152                                                   139 
153   theParticleChange.Clear();                      140   theParticleChange.Clear();
154   theParticleChange.SetStatusChange(stopAndKil    141   theParticleChange.SetStatusChange(stopAndKill);
155                                                   142 
156   // Get relevant information about the projec    143   // Get relevant information about the projectile and target (A, Z) and
157   // energy/nuc, momentum, velocity, Lorentz f    144   // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the
158   // projectile.                                  145   // projectile.
159                                                   146 
160   const G4ParticleDefinition *definitionP = th    147   const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
161   const G4double AP  = definitionP->GetBaryonN    148   const G4double AP  = definitionP->GetBaryonNumber();
162   const G4double ZP  = definitionP->GetPDGChar    149   const G4double ZP  = definitionP->GetPDGCharge();
163   G4LorentzVector pP = theTrack.Get4Momentum()    150   G4LorentzVector pP = theTrack.Get4Momentum();
164   G4double E         = theTrack.GetKineticEner    151   G4double E         = theTrack.GetKineticEnergy()/AP;
165   G4double MP        = theTrack.GetTotalEnergy    152   G4double MP        = theTrack.GetTotalEnergy() - E*AP;
166   G4double b         = pP.beta();                 153   G4double b         = pP.beta();
167   G4double AT        = theTarget.GetA_asInt();    154   G4double AT        = theTarget.GetA_asInt();
168   G4double ZT        = theTarget.GetZ_asInt();    155   G4double ZT        = theTarget.GetZ_asInt();
169   G4double MT        = G4NucleiProperties::Get    156   G4double MT        = G4NucleiProperties::GetNuclearMass(AT,ZT);
170                                                   157 
171   // Depending upon the verbosity level, outpu    158   // Depending upon the verbosity level, output the initial information on the
172   // projectile and target                        159   // projectile and target
173   if (verboseLevel >= 2) {                        160   if (verboseLevel >= 2) {
174     G4cout.precision(6);                          161     G4cout.precision(6);
175     G4cout <<"################################    162     G4cout <<"########################################"
176            <<"################################    163            <<"########################################"
177            <<G4endl;                              164            <<G4endl;
178     G4cout <<"IN G4EMDissociation" <<G4endl;      165     G4cout <<"IN G4EMDissociation" <<G4endl;
179     G4cout <<"Initial projectile A=" <<AP         166     G4cout <<"Initial projectile A=" <<AP 
180            <<", Z=" <<ZP                          167            <<", Z=" <<ZP
181            <<G4endl;                              168            <<G4endl; 
182     G4cout <<"Initial target     A=" <<AT         169     G4cout <<"Initial target     A=" <<AT
183            <<", Z=" <<ZT                          170            <<", Z=" <<ZT
184            <<G4endl;                              171            <<G4endl;
185     G4cout <<"Projectile momentum and Energy/n    172     G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
186   }                                               173   }
187                                                   174 
188   // Initialise the variables which will be us    175   // Initialise the variables which will be used with the phase-space decay and
189   // to boost the secondaries from the interac    176   // to boost the secondaries from the interaction.
190                                                   177   
191   G4ParticleDefinition *typeNucleon  = NULL;      178   G4ParticleDefinition *typeNucleon  = NULL;
192   G4ParticleDefinition *typeDaughter = NULL;      179   G4ParticleDefinition *typeDaughter = NULL;
193   G4double Eg                        = 0.0;       180   G4double Eg                        = 0.0;
194   G4double mass                      = 0.0;       181   G4double mass                      = 0.0;
195   G4ThreeVector boost = G4ThreeVector(0.0, 0.0    182   G4ThreeVector boost = G4ThreeVector(0.0, 0.0, 0.0);
196                                                   183 
197   // Determine the cross-sections at the giant    184   // Determine the cross-sections at the giant dipole and giant quadrupole
198   // resonance energies for the projectile and    185   // resonance energies for the projectile and then target.  The information is
199   // initially provided in the G4PhysicsFreeVe    186   // initially provided in the G4PhysicsFreeVector individually for the E1
200   // and E2 fields. These are then summed.        187   // and E2 fields. These are then summed.
201                                                   188 
202   G4double bmin = thePhotonSpectrum->GetCloses    189   G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b);
203   G4PhysicsFreeVector *crossSectionP = dissoci    190   G4PhysicsFreeVector *crossSectionP = dissociationCrossSection->
204     GetCrossSectionForProjectile(AP, ZP, AT, Z    191     GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin);
205   G4PhysicsFreeVector *crossSectionT = dissoci    192   G4PhysicsFreeVector *crossSectionT = dissociationCrossSection->
206     GetCrossSectionForTarget(AP, ZP, AT, ZT, b    193     GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin);
207                                                   194 
208   G4double totCrossSectionP = (*crossSectionP)    195   G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1];
209   G4double totCrossSectionT = (*crossSectionT)    196   G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1];
210                                                   197 
211   // Now sample whether the interaction involv    198   // Now sample whether the interaction involved EM dissociation of the projectile
212   // or the target.                               199   // or the target.
213                                                << 200 
214   G4int secID = -1;  // Creator model ID for t << 
215   if (G4UniformRand() <                           201   if (G4UniformRand() <
216     totCrossSectionP / (totCrossSectionP + tot    202     totCrossSectionP / (totCrossSectionP + totCrossSectionT)) {
217                                                   203 
218     // It was the projectile which underwent E    204     // It was the projectile which underwent EM dissociation.  Define the Lorentz
219     // boost to be applied to the secondaries,    205     // boost to be applied to the secondaries, and sample whether a proton or a
220     // neutron was ejected.  Then determine th    206     // neutron was ejected.  Then determine the energy of the virtual gamma ray
221     // which passed from the target nucleus ..    207     // which passed from the target nucleus ... this will be used to define the
222     // excitation of the projectile.              208     // excitation of the projectile.
223                                                   209 
224     secID = secID_projectileDissociation;      << 
225     mass  = MP;                                   210     mass  = MP;
226     if (G4UniformRand() < dissociationCrossSec    211     if (G4UniformRand() < dissociationCrossSection->
227       GetWilsonProbabilityForProtonDissociatio    212       GetWilsonProbabilityForProtonDissociation (AP, ZP))
228     {                                             213     {
229       if (verboseLevel >= 2)                      214       if (verboseLevel >= 2)
230         G4cout <<"Projectile underwent EM diss    215         G4cout <<"Projectile underwent EM dissociation producing a proton"
231                <<G4endl;                          216                <<G4endl;
232       typeNucleon = G4Proton::ProtonDefinition    217       typeNucleon = G4Proton::ProtonDefinition();
233       typeDaughter = G4IonTable::GetIonTable()    218       typeDaughter = G4IonTable::GetIonTable()->
234       GetIon((G4int) ZP-1, (G4int) AP-1, 0.0);    219       GetIon((G4int) ZP-1, (G4int) AP-1, 0.0);
235     }                                             220     }
236     else                                          221     else
237     {                                             222     {
238       if (verboseLevel >= 2)                      223       if (verboseLevel >= 2)
239         G4cout <<"Projectile underwent EM diss    224         G4cout <<"Projectile underwent EM dissociation producing a neutron"
240                <<G4endl;                          225                <<G4endl;
241       typeNucleon = G4Neutron::NeutronDefiniti    226       typeNucleon = G4Neutron::NeutronDefinition();
242       typeDaughter = G4IonTable::GetIonTable()    227       typeDaughter = G4IonTable::GetIonTable()->
243       GetIon((G4int) ZP, (G4int) AP-1, 0.0);      228       GetIon((G4int) ZP, (G4int) AP-1, 0.0);
244     }                                             229     }
245     if (G4UniformRand() < (*crossSectionP)[0]/    230     if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP)
246     {                                             231     {
247       Eg = crossSectionP->GetLowEdgeEnergy(0);    232       Eg = crossSectionP->GetLowEdgeEnergy(0);
248       if (verboseLevel >= 2)                      233       if (verboseLevel >= 2)
249         G4cout <<"Transition type was E1" <<G4    234         G4cout <<"Transition type was E1" <<G4endl;
250     }                                             235     }
251     else                                          236     else
252     {                                             237     {
253       Eg = crossSectionP->GetLowEdgeEnergy(1);    238       Eg = crossSectionP->GetLowEdgeEnergy(1);
254       if (verboseLevel >= 2)                      239       if (verboseLevel >= 2)
255         G4cout <<"Transition type was E2" <<G4    240         G4cout <<"Transition type was E2" <<G4endl;
256     }                                             241     }
257                                                   242 
258     // We need to define a Lorentz vector with    243     // We need to define a Lorentz vector with the original momentum, but total
259     // energy includes the projectile and virt    244     // energy includes the projectile and virtual gamma.  This is then used
260     // to calculate the boost required for the    245     // to calculate the boost required for the secondaries.
261                                                   246 
262     pP.setE( std::sqrt( pP.vect().mag2() + (ma << 247     pP.setE(pP.e()+Eg);
263     boost = pP.findBoostToCM();                   248     boost = pP.findBoostToCM();
264   }                                               249   }
265   else                                            250   else
266   {                                               251   {
267     // It was the target which underwent EM di    252     // It was the target which underwent EM dissociation.  Sample whether a
268     // proton or a neutron was ejected.  Then     253     // proton or a neutron was ejected.  Then determine the energy of the virtual 
269     // gamma ray which passed from the project    254     // gamma ray which passed from the projectile nucleus ... this will be used to
270     // define the excitation of the target.       255     // define the excitation of the target.
271                                                << 256 
272     secID = secID_targetDissociation;          << 
273     mass = MT;                                    257     mass = MT;
274     if (G4UniformRand() < dissociationCrossSec    258     if (G4UniformRand() < dissociationCrossSection->
275       GetWilsonProbabilityForProtonDissociatio    259       GetWilsonProbabilityForProtonDissociation (AT, ZT))
276     {                                             260     {
277       if (verboseLevel >= 2)                      261       if (verboseLevel >= 2)
278         G4cout <<"Target underwent EM dissocia    262         G4cout <<"Target underwent EM dissociation producing a proton"
279                <<G4endl;                          263                <<G4endl;
280       typeNucleon = G4Proton::ProtonDefinition    264       typeNucleon = G4Proton::ProtonDefinition();
281       typeDaughter = G4IonTable::GetIonTable()    265       typeDaughter = G4IonTable::GetIonTable()->
282       GetIon((G4int) ZT-1, (G4int) AT-1, 0.0);    266       GetIon((G4int) ZT-1, (G4int) AT-1, 0.0);
283     }                                             267     }
284     else                                          268     else
285     {                                             269     {
286       if (verboseLevel >= 2)                      270       if (verboseLevel >= 2)
287         G4cout <<"Target underwent EM dissocia    271         G4cout <<"Target underwent EM dissociation producing a neutron"
288                <<G4endl;                          272                <<G4endl;
289       typeNucleon = G4Neutron::NeutronDefiniti    273       typeNucleon = G4Neutron::NeutronDefinition();
290       typeDaughter = G4IonTable::GetIonTable()    274       typeDaughter = G4IonTable::GetIonTable()->
291       GetIon((G4int) ZT, (G4int) AT-1, 0.0);      275       GetIon((G4int) ZT, (G4int) AT-1, 0.0);
292     }                                             276     }
293     if (G4UniformRand() < (*crossSectionT)[0]/    277     if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT)
294     {                                             278     {
295       Eg = crossSectionT->GetLowEdgeEnergy(0);    279       Eg = crossSectionT->GetLowEdgeEnergy(0);
296       if (verboseLevel >= 2)                      280       if (verboseLevel >= 2)
297         G4cout <<"Transition type was E1" <<G4    281         G4cout <<"Transition type was E1" <<G4endl;
298     }                                             282     }
299     else                                          283     else
300     {                                             284     {
301       Eg = crossSectionT->GetLowEdgeEnergy(1);    285       Eg = crossSectionT->GetLowEdgeEnergy(1);
302       if (verboseLevel >= 2)                      286       if (verboseLevel >= 2)
303         G4cout <<"Transition type was E2" <<G4    287         G4cout <<"Transition type was E2" <<G4endl;
304     }                                             288     }
305                                                   289 
306     // Add the projectile to theParticleChange    290     // Add the projectile to theParticleChange, less the energy of the
307     // not-so-virtual gamma-ray.  Not that at     291     // not-so-virtual gamma-ray.  Not that at the moment, no lateral momentum
308     // is transferred between the projectile a    292     // is transferred between the projectile and target nuclei.
309                                                   293 
310     G4ThreeVector v = pP.vect();                  294     G4ThreeVector v = pP.vect();
311     v.setMag(1.0);                                295     v.setMag(1.0);
312     G4DynamicParticle *changedP = new G4Dynami    296     G4DynamicParticle *changedP = new G4DynamicParticle (definitionP, v, E*AP-Eg);
313     theParticleChange.AddSecondary (changedP,  << 297     theParticleChange.AddSecondary (changedP);
314     if (verboseLevel >= 2)                        298     if (verboseLevel >= 2)
315     {                                             299     {
316       G4cout <<"Projectile change:" <<G4endl;     300       G4cout <<"Projectile change:" <<G4endl;
317       changedP->DumpInfo();                       301       changedP->DumpInfo();
318     }                                             302     }
319   }                                               303   }
320                                                   304 
321   // Perform a two-body decay based on the res    305   // Perform a two-body decay based on the restmass energy of the parent and
322   // gamma-ray, and the masses of the daughter    306   // gamma-ray, and the masses of the daughters. In the frame of reference of
323   // the nucles, the angular distribution is s    307   // the nucles, the angular distribution is sampled isotropically, but the
324   // the nucleon and secondary nucleus are boo    308   // the nucleon and secondary nucleus are boosted if they've come from the
325   // projectile.                                  309   // projectile.
326                                                   310 
327   G4double e  = mass + Eg;                        311   G4double e  = mass + Eg;
328   G4double mass1 = typeNucleon->GetPDGMass();     312   G4double mass1 = typeNucleon->GetPDGMass();
329   G4double mass2 = typeDaughter->GetPDGMass();    313   G4double mass2 = typeDaughter->GetPDGMass();
330   G4double pp = (e+mass1+mass2)*(e+mass1-mass2    314   G4double pp = (e+mass1+mass2)*(e+mass1-mass2)*
331                 (e-mass1+mass2)*(e-mass1-mass2    315                 (e-mass1+mass2)*(e-mass1-mass2)/(4.0*e*e);
332   if (pp < 0.0) {                                 316   if (pp < 0.0) {
333     pp = 1.0*eV;                                  317     pp = 1.0*eV;
334 //    if (verboseLevel >`= 1)                     318 //    if (verboseLevel >`= 1)
335 //    {                                           319 //    {
336 //      G4cout <<"IN G4EMDissociation::ApplyYo    320 //      G4cout <<"IN G4EMDissociation::ApplyYoursef" <<G4endl;
337 //      G4cout <<"Error in mass of secondaries    321 //      G4cout <<"Error in mass of secondaries compared with primary:" <<G4endl;
338 //      G4cout <<"Rest mass of primary      =     322 //      G4cout <<"Rest mass of primary      = " <<mass <<" MeV" <<G4endl;
339 //      G4cout <<"Virtual gamma energy      =     323 //      G4cout <<"Virtual gamma energy      = " <<Eg   <<" MeV" <<G4endl;
340 //      G4cout <<"Rest mass of secondary #1 =     324 //      G4cout <<"Rest mass of secondary #1 = " <<mass1   <<" MeV" <<G4endl;
341 //      G4cout <<"Rest mass of secondary #2 =     325 //      G4cout <<"Rest mass of secondary #2 = " <<mass2   <<" MeV" <<G4endl;
342 //    }                                           326 //    }
343   }                                               327   }
344   else                                            328   else
345     pp = std::sqrt(pp);                           329     pp = std::sqrt(pp);
346   G4double costheta = 2.*G4UniformRand()-1.0;     330   G4double costheta = 2.*G4UniformRand()-1.0;
347   G4double sintheta = std::sqrt((1.0 - costhet    331   G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
348   G4double phi      = 2.0*pi*G4UniformRand()*r    332   G4double phi      = 2.0*pi*G4UniformRand()*rad;
349   G4ThreeVector direction(sintheta*std::cos(ph    333   G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
350   G4DynamicParticle *dynamicNucleon =             334   G4DynamicParticle *dynamicNucleon =
351     new G4DynamicParticle(typeNucleon, directi    335     new G4DynamicParticle(typeNucleon, direction*pp);
352   dynamicNucleon->Set4Momentum(dynamicNucleon-    336   dynamicNucleon->Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost));
353   G4DynamicParticle *dynamicDaughter =            337   G4DynamicParticle *dynamicDaughter =
354     new G4DynamicParticle(typeDaughter, -direc    338     new G4DynamicParticle(typeDaughter, -direction*pp);
355   dynamicDaughter->Set4Momentum(dynamicDaughte    339   dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost));
356                                                   340 
357   // The "decay" products have to be transferr    341   // The "decay" products have to be transferred to the G4HadFinalState object.
358   // Furthermore, the residual nucleus should     342   // Furthermore, the residual nucleus should be de-excited.
359                                                   343 
360   theParticleChange.AddSecondary (dynamicNucle << 344   theParticleChange.AddSecondary (dynamicNucleon);
361   if (verboseLevel >= 2) {                        345   if (verboseLevel >= 2) {
362     G4cout <<"Nucleon from the EMD process:" <    346     G4cout <<"Nucleon from the EMD process:" <<G4endl;
363     dynamicNucleon->DumpInfo();                   347     dynamicNucleon->DumpInfo();
364   }                                               348   }
365                                                   349 
366   G4Fragment* theFragment = new                   350   G4Fragment* theFragment = new
367     G4Fragment(typeDaughter->GetBaryonNumber() << 351     G4Fragment((G4int) typeDaughter->GetBaryonNumber(),
368          G4lrint(typeDaughter->GetPDGCharge()/ << 352     (G4int) typeDaughter->GetPDGCharge(), dynamicDaughter->Get4Momentum());
369          dynamicDaughter->Get4Momentum());     << 
370                                                   353 
371   if (verboseLevel >= 2) {                        354   if (verboseLevel >= 2) {
372     G4cout <<"Dynamic properties of the prefra    355     G4cout <<"Dynamic properties of the prefragment:" <<G4endl;
373     G4cout.precision(6);                          356     G4cout.precision(6);
374     dynamicDaughter->DumpInfo();                  357     dynamicDaughter->DumpInfo();
375     G4cout <<"Nuclear properties of the prefra    358     G4cout <<"Nuclear properties of the prefragment:" <<G4endl;
376     G4cout <<theFragment <<G4endl;                359     G4cout <<theFragment <<G4endl;
377   }                                               360   }
378                                                   361 
379   G4ReactionProductVector* products =             362   G4ReactionProductVector* products =
380                       theExcitationHandler->Br    363                       theExcitationHandler->BreakItUp(*theFragment);
381   delete theFragment;                             364   delete theFragment;
382   theFragment = NULL;                             365   theFragment = NULL;
383                                                   366   
384   G4DynamicParticle* secondary = 0;               367   G4DynamicParticle* secondary = 0;
385   G4ReactionProductVector::iterator iter;         368   G4ReactionProductVector::iterator iter;
386   for (iter = products->begin(); iter != produ    369   for (iter = products->begin(); iter != products->end(); ++iter) {
387     secondary = new G4DynamicParticle((*iter)-    370     secondary = new G4DynamicParticle((*iter)->GetDefinition(),
388     (*iter)->GetTotalEnergy(), (*iter)->GetMom    371     (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
389     theParticleChange.AddSecondary (secondary, << 372     theParticleChange.AddSecondary (secondary);
390   }                                               373   }
391   delete products;                                374   delete products;
392                                                   375 
393   delete crossSectionP;                           376   delete crossSectionP;
394   delete crossSectionT;                           377   delete crossSectionT;
395                                                   378 
396   if (verboseLevel >= 2)                          379   if (verboseLevel >= 2)
397     G4cout <<"################################    380     G4cout <<"########################################"
398            <<"################################    381            <<"########################################"
399            <<G4endl;                              382            <<G4endl;
400                                                   383  
401   return &theParticleChange;                      384   return &theParticleChange;
402 }                                                 385 }
403                                                   386 
404                                                   387 
405 void G4EMDissociation::PrintWelcomeMessage ()     388 void G4EMDissociation::PrintWelcomeMessage ()
406 {                                                 389 {
407   G4cout <<G4endl;                                390   G4cout <<G4endl;
408   G4cout <<" *********************************    391   G4cout <<" ****************************************************************"
409          <<G4endl;                                392          <<G4endl;
410   G4cout <<" EM dissociation model for nuclear    393   G4cout <<" EM dissociation model for nuclear-nuclear interactions activated"
411          <<G4endl;                                394          <<G4endl;
412   G4cout <<" (Written by QinetiQ Ltd for the E    395   G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
413          <<G4endl;                                396          <<G4endl;
414   G4cout <<" *********************************    397   G4cout <<" ****************************************************************"
415          <<G4endl;                                398          <<G4endl;
416   G4cout << G4endl;                               399   G4cout << G4endl;
417                                                   400 
418   return;                                         401   return;
419 }                                                 402 }
420                                                   403 
421                                                   404