Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4StatMFChannel.cc,v 1.10 2008/11/19 14:33:31 vnivanch Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02 $ 27 // 29 // 28 // Hadronic Process: Nuclear De-excitations 30 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 31 // by V. Lara 30 // 32 // 31 // Modified: 33 // Modified: 32 // 25.07.08 I.Pshenichnov (in collaboration wi 34 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 33 // Mishustin (FIAS, Frankfurt, INR, M 35 // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 34 // Moscow, pshenich@fias.uni-frankfur 36 // Moscow, pshenich@fias.uni-frankfurt.de) fixed semi-infinite loop 35 37 36 #include <numeric> << 37 38 38 #include "G4StatMFChannel.hh" 39 #include "G4StatMFChannel.hh" 39 #include "G4PhysicalConstants.hh" << 40 #include "G4HadronicException.hh" 40 #include "G4HadronicException.hh" 41 #include "Randomize.hh" << 41 #include <numeric> 42 #include "G4Pow.hh" << 42 43 #include "G4Exp.hh" << 43 class SumCoulombEnergy : public std::binary_function<G4double,G4double,G4double> 44 #include "G4RandomDirection.hh" << 44 { 45 << 45 public: 46 G4StatMFChannel::G4StatMFChannel() : << 46 SumCoulombEnergy() : total(0.0) {} 47 _NumOfNeutralFragments(0), << 47 G4double operator() (G4double& , G4StatMFFragment*& frag) 48 _NumOfChargedFragments(0) << 48 { 49 { << 49 total += frag->GetCoulombEnergy(); 50 Pos.resize(8); << 50 return total; 51 Vel.resize(8); << 51 } 52 Accel.resize(8); << 52 53 } << 53 G4double GetTotal() { return total; } 54 << 54 public: 55 G4StatMFChannel::~G4StatMFChannel() << 55 G4double total; 56 { << 56 }; 57 if (!_theFragments.empty()) { << 57 58 std::for_each(_theFragments.begin(),_theFr << 58 59 DeleteFragment()); << 59 60 } << 60 >> 61 >> 62 // Copy constructor >> 63 G4StatMFChannel::G4StatMFChannel(const G4StatMFChannel & ) >> 64 { >> 65 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::copy_constructor meant to not be accessable"); >> 66 } >> 67 >> 68 // Operators >> 69 >> 70 G4StatMFChannel & G4StatMFChannel:: >> 71 operator=(const G4StatMFChannel & ) >> 72 { >> 73 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator= meant to not be accessable"); >> 74 return *this; 61 } 75 } 62 76 >> 77 >> 78 G4bool G4StatMFChannel::operator==(const G4StatMFChannel & ) const >> 79 { >> 80 // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator== meant to not be accessable"); >> 81 return false; >> 82 } >> 83 >> 84 >> 85 G4bool G4StatMFChannel::operator!=(const G4StatMFChannel & ) const >> 86 { >> 87 // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator!= meant to not be accessable"); >> 88 return true; >> 89 } >> 90 >> 91 63 G4bool G4StatMFChannel::CheckFragments(void) 92 G4bool G4StatMFChannel::CheckFragments(void) 64 { 93 { 65 std::deque<G4StatMFFragment*>::iterator i; << 94 std::deque<G4StatMFFragment*>::iterator i; 66 for (i = _theFragments.begin(); << 95 for (i = _theFragments.begin(); 67 i != _theFragments.end(); ++i) << 96 i != _theFragments.end(); ++i) 68 { << 97 { 69 G4int A = (*i)->GetA(); << 98 G4int A = static_cast<G4int>((*i)->GetA()); 70 G4int Z = (*i)->GetZ(); << 99 G4int Z = static_cast<G4int>((*i)->GetZ()); 71 if ( (A > 1 && (Z > A || Z <= 0)) || (A= << 100 if ( (A > 1 && (Z > A || Z <= 0)) || (A==1 && Z > A) || A <= 0 ) return false; 72 } 101 } >> 102 73 return true; 103 return true; 74 } 104 } 75 105 76 void G4StatMFChannel::CreateFragment(G4int A, << 106 77 // Create a new fragment. << 107 78 // Fragments are automatically sorted: first c << 108 79 // then neutral ones. << 109 void G4StatMFChannel::CreateFragment(const G4double A, const G4double Z) 80 { << 110 // Create a new fragment. 81 if (Z <= 0.5) { << 111 // Fragments are automatically sorted: first charged fragments, 82 _theFragments.push_back(new G4StatMFFragme << 112 // then neutral ones. 83 _NumOfNeutralFragments++; << 113 { 84 } else { << 114 if (Z <= 0.5) { 85 _theFragments.push_front(new G4StatMFFragm << 115 _theFragments.push_back(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z))); 86 _NumOfChargedFragments++; << 116 _NumOfNeutralFragments++; 87 } << 117 } else { >> 118 _theFragments.push_front(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z))); >> 119 _NumOfChargedFragments++; >> 120 } 88 121 89 return; << 122 return; 90 } 123 } 91 124 >> 125 92 G4double G4StatMFChannel::GetFragmentsCoulombE 126 G4double G4StatMFChannel::GetFragmentsCoulombEnergy(void) 93 { 127 { 94 G4double Coulomb = << 128 G4double Coulomb = std::accumulate(_theFragments.begin(),_theFragments.end(), 95 std::accumulate(_theFragments.begin(),_the << 129 0.0,SumCoulombEnergy()); 96 0.0, << 130 // G4double Coulomb = 0.0; 97 [](const G4double& running << 131 // for (unsigned int i = 0;i < _theFragments.size(); i++) 98 G4StatMFFragment*& frag << 132 // Coulomb += _theFragments[i]->GetCoulombEnergy(); 99 { << 133 return Coulomb; 100 return running_total + f << 101 } ); << 102 // G4double Coulomb = 0.0; << 103 // for (unsigned int i = 0;i < _theFrag << 104 // Coulomb += _theFragments[i]->GetCoulom << 105 return Coulomb; << 106 } 134 } 107 135 108 G4double G4StatMFChannel::GetFragmentsEnergy(G << 136 >> 137 >> 138 G4double G4StatMFChannel::GetFragmentsEnergy(const G4double T) const 109 { 139 { 110 G4double Energy = 0.0; << 140 G4double Energy = 0.0; 111 141 112 G4double TranslationalEnergy = 1.5*T*_theFra << 142 G4double TranslationalEnergy = (3./2.)*T*static_cast<G4double>(_theFragments.size()); 113 143 114 std::deque<G4StatMFFragment*>::const_iterato << 144 std::deque<G4StatMFFragment*>::const_iterator i; 115 for (i = _theFragments.begin(); i != _theFra << 145 for (i = _theFragments.begin(); i != _theFragments.end(); ++i) 116 { << 146 { 117 Energy += (*i)->GetEnergy(T); << 147 Energy += (*i)->GetEnergy(T); 118 } << 148 } 119 return Energy + TranslationalEnergy; << 149 return Energy + TranslationalEnergy; 120 } 150 } 121 151 122 G4FragmentVector * G4StatMFChannel::GetFragmen << 152 G4FragmentVector * G4StatMFChannel::GetFragments(const G4double anA, 123 G4int anZ, << 153 const G4double anZ, 124 G4double T) << 154 const G4double T) >> 155 // 125 { 156 { 126 // calculate momenta of charged fragments << 157 // calculate momenta of charged fragments 127 CoulombImpulse(anA,anZ,T); << 158 CoulombImpulse(anA,anZ,T); 128 159 129 // calculate momenta of neutral fragments << 160 // calculate momenta of neutral fragments 130 FragmentsMomenta(_NumOfNeutralFragments, _Nu << 161 FragmentsMomenta(_NumOfNeutralFragments, _NumOfChargedFragments, T); 131 162 132 G4FragmentVector * theResult = new G4Fragmen << 133 std::deque<G4StatMFFragment*>::iterator i; << 134 for (i = _theFragments.begin(); i != _theFra << 135 theResult->push_back((*i)->GetFragment(T)) << 136 163 137 return theResult; << 164 G4FragmentVector * theResult = new G4FragmentVector; >> 165 std::deque<G4StatMFFragment*>::iterator i; >> 166 for (i = _theFragments.begin(); i != _theFragments.end(); ++i) >> 167 theResult->push_back((*i)->GetFragment(T)); >> 168 >> 169 return theResult; >> 170 138 } 171 } 139 172 140 void G4StatMFChannel::CoulombImpulse(G4int anA << 173 141 // Aafter breakup, fragments fly away under Co << 174 142 // This method calculates asymptotic fragments << 175 void G4StatMFChannel::CoulombImpulse(const G4double anA, const G4double anZ, const G4double T) >> 176 // Aafter breakup, fragments fly away under Coulomb field. >> 177 // This method calculates asymptotic fragments momenta. 143 { 178 { 144 // First, we have to place the fragments ins << 179 // First, we have to place the fragments inside of the original nucleus volume 145 PlaceFragments(anA); << 180 PlaceFragments(anA); 146 181 147 // Second, we sample initial charged fragmen << 182 // Second, we sample initial charged fragments momenta. There are 148 // _NumOfChargedFragments charged fragments << 183 // _NumOfChargedFragments charged fragments and they start at the begining 149 // of the vector _theFragments (i.e. 0) << 184 // of the vector _theFragments (i.e. 0) 150 FragmentsMomenta(_NumOfChargedFragments, 0, << 185 FragmentsMomenta(_NumOfChargedFragments, 0, T); 151 186 152 // Third, we have to figure out the asymptot << 187 // Third, we have to figure out the asymptotic momenta of charged fragments 153 // For taht we have to solve equations of mo << 188 // For taht we have to solve equations of motion for fragments 154 SolveEqOfMotion(anA,anZ,T); << 189 SolveEqOfMotion(anA,anZ,T); 155 190 156 return; << 191 return; 157 } 192 } 158 193 159 void G4StatMFChannel::PlaceFragments(G4int anA << 160 // This gives the position of fragments at the << 161 // Fragments positions are sampled inside prol << 162 { << 163 G4Pow* g4calc = G4Pow::GetInstance(); << 164 const G4double R0 = G4StatMFParameters::Getr << 165 G4double Rsys = 2.0*R0*g4calc->Z13(anA); << 166 194 167 G4bool TooMuchIterations; << 195 168 do << 196 void G4StatMFChannel::PlaceFragments(const G4double anA) 169 { << 197 // This gives the position of fragments at the breakup instant. 170 TooMuchIterations = false; << 198 // Fragments positions are sampled inside prolongated ellipsoid. >> 199 { >> 200 const G4double R0 = G4StatMFParameters::Getr0(); >> 201 const G4double Rsys = 2.0*R0*std::pow(anA,1./3.); >> 202 >> 203 G4bool TooMuchIterations; >> 204 do >> 205 { >> 206 TooMuchIterations = false; 171 207 172 // Sample the position of the first frag << 208 // Sample the position of the first fragment 173 G4double R = (Rsys - R0*g4calc->Z13(_the << 209 G4double R = (Rsys - R0*std::pow(_theFragments[0]->GetA(),1./3.))* 174 g4calc->A13(G4UniformRand()); << 210 std::pow(G4UniformRand(),1./3.); 175 _theFragments[0]->SetPosition(R*G4Random << 211 _theFragments[0]->SetPosition(IsotropicVector(R)); 176 212 177 213 178 // Sample the position of the remaining << 214 // Sample the position of the remaining fragments 179 G4bool ThereAreOverlaps = false; << 215 G4bool ThereAreOverlaps = false; 180 std::deque<G4StatMFFragment*>::iterator << 216 std::deque<G4StatMFFragment*>::iterator i; 181 for (i = _theFragments.begin()+1; i != _ << 217 for (i = _theFragments.begin()+1; i != _theFragments.end(); ++i) 182 { << 218 { 183 G4int counter = 0; << 219 G4int counter = 0; 184 do << 220 do 185 { << 221 { 186 R = (Rsys - R0*g4calc->Z13((*i)->GetA( << 222 R = (Rsys - R0*std::pow((*i)->GetA(),1./3.))*std::pow(G4UniformRand(),1./3.); 187 (*i)->SetPosition(R*G4RandomDirection( << 223 (*i)->SetPosition(IsotropicVector(R)); 188 224 189 // Check that there are not overlappin << 225 // Check that there are not overlapping fragments 190 std::deque<G4StatMFFragment*>::iterato << 226 std::deque<G4StatMFFragment*>::iterator j; 191 for (j = _theFragments.begin(); j != i << 227 for (j = _theFragments.begin(); j != i; ++j) 192 { << 228 { 193 G4ThreeVector FragToFragVector = << 229 G4ThreeVector FragToFragVector = (*i)->GetPosition() - (*j)->GetPosition(); 194 (*i)->GetPosition() - (*j)->GetPositio << 230 G4double Rmin = R0*(std::pow((*i)->GetA(),1./3.) + 195 G4double Rmin = R0*(g4calc->Z13((*i)->Ge << 231 std::pow((*j)->GetA(),1./3)); 196 g4calc->Z13((*j)->GetA())); << 232 if ( (ThereAreOverlaps = (FragToFragVector.mag2() < Rmin*Rmin)) ) break; 197 if ( (ThereAreOverlaps = (FragToFragVect << 233 } 198 { break; } << 234 counter++; 199 } << 235 } while (ThereAreOverlaps && counter < 1000); 200 counter++; << 201 // Loop checking, 05-Aug-2015, Vladimi << 202 } while (ThereAreOverlaps && counter < 1 << 203 236 204 if (counter >= 1000) << 237 if (counter >= 1000) 205 { << 238 { 206 TooMuchIterations = true; << 239 TooMuchIterations = true; 207 break; << 240 break; 208 } << 241 } 209 } << 242 } 210 // Loop checking, 05-Aug-2015, Vladimir << 211 } while (TooMuchIterations); 243 } while (TooMuchIterations); >> 244 212 return; 245 return; 213 } 246 } 214 247 215 void G4StatMFChannel::FragmentsMomenta(G4int N << 248 216 G4double T) << 249 void G4StatMFChannel::FragmentsMomenta(const G4int NF, const G4int idx, 217 // Calculate fragments momenta at the breakup << 250 const G4double T) 218 // Fragment kinetic energies are calculated ac << 251 // Calculate fragments momenta at the breakup instant 219 // Boltzmann distribution at given temperature << 252 // Fragment kinetic energies are calculated according to the 220 // NF is number of fragments << 253 // Boltzmann distribution at given temperature. 221 // idx is index of first fragment << 254 // NF is number of fragments >> 255 // idx is index of first fragment 222 { 256 { 223 G4double KinE = 1.5*T*NF; << 257 G4double KinE = (3./2.)*T*static_cast<G4double>(NF); 224 G4ThreeVector p(0.,0.,0.); << 225 258 226 if (NF <= 0) return; << 259 G4ThreeVector p; 227 else if (NF == 1) << 260 228 { << 261 if (NF <= 0) return; 229 // We have only one fragment to deal wit << 262 else if (NF == 1) 230 p = std::sqrt(2.0*_theFragments[idx]->Ge << 263 { 231 *G4RandomDirection(); << 264 // We have only one fragment to deal with 232 _theFragments[idx]->SetMomentum(p); << 265 p = IsotropicVector(std::sqrt(2.0*_theFragments[idx]->GetNuclearMass()*KinE)); 233 } << 266 _theFragments[idx]->SetMomentum(p); 234 else if (NF == 2) << 267 } 235 { << 268 else if (NF == 2) 236 // We have only two fragment to deal wit << 269 { 237 G4double M1 = _theFragments[idx]->GetNuc << 270 // We have only two fragment to deal with 238 G4double M2 = _theFragments[idx+1]->GetN << 271 G4double M1 = _theFragments[idx]->GetNuclearMass(); 239 p = std::sqrt(2.0*KinE*(M1*M2)/(M1+M2))* << 272 G4double M2 = _theFragments[idx+1]->GetNuclearMass(); 240 _theFragments[idx]->SetMomentum(p); << 273 p = IsotropicVector(std::sqrt(2.0*KinE*(M1*M2)/(M1+M2))); 241 _theFragments[idx+1]->SetMomentum(-p); << 274 _theFragments[idx]->SetMomentum(p); 242 } << 275 _theFragments[idx+1]->SetMomentum(-p); 243 else << 276 } 244 { << 277 else 245 // We have more than two fragments << 278 { 246 G4double AvailableE; << 279 // We have more than two fragments 247 G4int i1,i2; << 280 G4double AvailableE; 248 G4double SummedE; << 281 G4int i1,i2; 249 G4ThreeVector SummedP(0.,0.,0.); << 282 G4double SummedE; 250 do << 283 G4ThreeVector SummedP; 251 { << 252 // Fisrt sample momenta of NF-2 fragments << 253 // according to Boltzmann distribution << 254 AvailableE = 0.0; << 255 SummedE = 0.0; << 256 SummedP.setX(0.0);SummedP.setY(0.0);Summed << 257 for (G4int i = idx; i < idx+NF-2; ++i) << 258 { << 259 G4double E; << 260 G4double RandE; << 261 do << 262 { << 263 E = 9.0*G4UniformRand(); << 264 RandE = std::sqrt(0.5/E)*G4Exp(E-0.5)*G4 << 265 } << 266 // Loop checking, 05-Aug-2015, Vladimi << 267 while (RandE > 1.0); << 268 E *= T; << 269 p = std::sqrt(2.0*E*_theFragments[i]-> << 270 *G4RandomDirection(); << 271 _theFragments[i]->SetMomentum(p); << 272 SummedE += E; << 273 SummedP += p; << 274 } << 275 // Calculate momenta of last two fragments << 276 // that constraints are satisfied << 277 i1 = idx+NF-2; // before last fragment in << 278 i2 = idx+NF-1; // last fragment index << 279 p = -SummedP; << 280 AvailableE = KinE - SummedE; << 281 // Available Kinetic Energy should be shar << 282 } << 283 // Loop checking, 05-Aug-2015, Vladimir << 284 while (AvailableE <= p.mag2()/(2.0*(_the << 285 _theFragments[i2]->GetNuclearMass( << 286 G4double H = 1.0 + _theFragments[i2]->Ge << 287 /_theFragments[i1]->GetNuclearMass(); << 288 G4double CTM12 = H*(1.0 - 2.0*_theFragme << 289 *AvailableE/p.mag2()); << 290 G4double CosTheta1; << 291 G4double Sign; << 292 << 293 if (CTM12 > 1.) {CosTheta1 = 1.;} << 294 else { << 295 do 284 do 296 { 285 { 297 do << 286 // Fisrt sample momenta of NF-2 fragments >> 287 // according to Boltzmann distribution >> 288 AvailableE = 0.0; >> 289 SummedE = 0.0; >> 290 SummedP.setX(0.0);SummedP.setY(0.0);SummedP.setZ(0.0); >> 291 for (G4int i = idx; i < idx+NF-2; i++) 298 { 292 { 299 CosTheta1 = 1.0 - 2.0*G4UniformRand(); << 293 G4double E; 300 } << 294 G4double RandE; 301 // Loop checking, 05-Aug-2015, Vladimir << 295 G4double Boltzmann; 302 while (CosTheta1*CosTheta1 < CTM12); << 296 do 303 } << 297 { 304 // Loop checking, 05-Aug-2015, Vladimir Ivan << 298 E = 9.0*T*G4UniformRand(); 305 while (CTM12 >= 0.0 && CosTheta1 < 0.0); << 299 Boltzmann = std::sqrt(E)*std::exp(-E/T); 306 } << 300 RandE = std::sqrt(T/2.)*std::exp(-0.5)*G4UniformRand(); >> 301 } >> 302 while (RandE > Boltzmann); >> 303 p = IsotropicVector(std::sqrt(2.0*E*_theFragments[i]->GetNuclearMass())); >> 304 _theFragments[i]->SetMomentum(p); >> 305 SummedE += E; >> 306 SummedP += p; >> 307 } >> 308 // Calculate momenta of last two fragments in such a way >> 309 // that constraints are satisfied >> 310 i1 = idx+NF-2; // before last fragment index >> 311 i2 = idx+NF-1; // last fragment index >> 312 p = -SummedP; >> 313 AvailableE = KinE - SummedE; >> 314 // Available Kinetic Energy should be shared between two last fragments >> 315 } >> 316 while (AvailableE <= p.mag2()/(2.0*(_theFragments[i1]->GetNuclearMass()+ >> 317 _theFragments[i2]->GetNuclearMass()))); >> 318 >> 319 G4double H = 1.0 + _theFragments[i2]->GetNuclearMass()/_theFragments[i1]->GetNuclearMass(); >> 320 G4double CTM12 = H*(1.0 - 2.0*_theFragments[i2]->GetNuclearMass()*AvailableE/p.mag2()); >> 321 G4double CosTheta1; >> 322 G4double Sign; >> 323 >> 324 if (CTM12 > 0.9999) {CosTheta1 = 1.;} >> 325 else { >> 326 do >> 327 { >> 328 do >> 329 { >> 330 CosTheta1 = 1.0 - 2.0*G4UniformRand(); >> 331 } >> 332 while (CosTheta1*CosTheta1 < CTM12); >> 333 } >> 334 while (CTM12 >= 0.0 && CosTheta1 < 0.0); >> 335 } 307 336 308 if (CTM12 < 0.0) Sign = 1.0; << 337 if (CTM12 < 0.0) Sign = 1.0; 309 else if (G4UniformRand() <= 0.5) Sign = << 338 else if (G4UniformRand() <= 0.5) Sign = -1.0; 310 else Sign = 1.0; << 339 else Sign = 1.0; 311 340 312 G4double P1 = (p.mag()*CosTheta1+Sign*st << 313 *(CosTheta1*CosTheta1-CTM12) << 314 G4double P2 = std::sqrt(P1*P1+p.mag2() - << 315 G4double Phi = twopi*G4UniformRand(); << 316 G4double SinTheta1 = std::sqrt(1.0 - Cos << 317 G4double CosPhi1 = std::cos(Phi); << 318 G4double SinPhi1 = std::sin(Phi); << 319 G4double CosPhi2 = -CosPhi1; << 320 G4double SinPhi2 = -SinPhi1; << 321 G4double CosTheta2 = (p.mag2() + P2*P2 - << 322 G4double SinTheta2 = 0.0; << 323 if (CosTheta2 > -1.0 && CosTheta2 < 1.0) << 324 SinTheta2 = std::sqrt(1.0 - CosTheta2*CosThe << 325 } << 326 G4ThreeVector p1(P1*SinTheta1*CosPhi1,P1 << 327 G4ThreeVector p2(P2*SinTheta2*CosPhi2,P2 << 328 G4ThreeVector b(1.0,0.0,0.0); << 329 << 330 p1 = RotateMomentum(p,b,p1); << 331 p2 = RotateMomentum(p,b,p2); << 332 << 333 SummedP += p1 + p2; << 334 SummedE += p1.mag2()/(2.0*_theFragments[ << 335 p2.mag2()/(2.0*_theFragments[i2]->GetNuclear << 336 341 337 _theFragments[i1]->SetMomentum(p1); << 342 G4double P1 = (p.mag()*CosTheta1+Sign*std::sqrt(p.mag2()*(CosTheta1*CosTheta1-CTM12)))/H; 338 _theFragments[i2]->SetMomentum(p2); << 343 G4double P2 = std::sqrt(P1*P1+p.mag2() - 2.0*P1*p.mag()*CosTheta1); >> 344 G4double Phi = twopi*G4UniformRand(); >> 345 G4double SinTheta1 = std::sqrt(1.0 - CosTheta1*CosTheta1); >> 346 G4double CosPhi1 = std::cos(Phi); >> 347 G4double SinPhi1 = std::sin(Phi); >> 348 G4double CosPhi2 = -CosPhi1; >> 349 G4double SinPhi2 = -SinPhi1; >> 350 G4double CosTheta2 = (p.mag2() + P2*P2 - P1*P1)/(2.0*p.mag()*P2); >> 351 G4double SinTheta2 = 0.0; >> 352 if (CosTheta2 > -1.0 && CosTheta2 < 1.0) SinTheta2 = std::sqrt(1.0 - CosTheta2*CosTheta2); >> 353 >> 354 G4ThreeVector p1(P1*SinTheta1*CosPhi1,P1*SinTheta1*SinPhi1,P1*CosTheta1); >> 355 G4ThreeVector p2(P2*SinTheta2*CosPhi2,P2*SinTheta2*SinPhi2,P2*CosTheta2); >> 356 G4ThreeVector b(1.0,0.0,0.0); >> 357 >> 358 p1 = RotateMomentum(p,b,p1); >> 359 p2 = RotateMomentum(p,b,p2); >> 360 >> 361 SummedP += p1 + p2; >> 362 SummedE += p1.mag2()/(2.0*_theFragments[i1]->GetNuclearMass()) + >> 363 p2.mag2()/(2.0*_theFragments[i2]->GetNuclearMass()); 339 364 340 } << 365 _theFragments[i1]->SetMomentum(p1); 341 return; << 366 _theFragments[i2]->SetMomentum(p2); >> 367 >> 368 } >> 369 >> 370 return; 342 } 371 } 343 372 344 void G4StatMFChannel::SolveEqOfMotion(G4int an << 373 345 // This method will find a solution of Newton' << 374 void G4StatMFChannel::SolveEqOfMotion(const G4double anA, const G4double anZ, const G4double T) 346 // for fragments in the self-consistent time-d << 375 // This method will find a solution of Newton's equation of motion 347 { << 376 // for fragments in the self-consistent time-dependent Coulomb field 348 G4Pow* g4calc = G4Pow::GetInstance(); << 377 { 349 G4double CoulombEnergy = 0.6*CLHEP::elm_coup << 378 G4double CoulombEnergy = (3./5.)*(elm_coupling*anZ*anZ)* 350 g4calc->A13(1.0+G4StatMFParameters::GetKap << 379 std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/ 351 (G4StatMFParameters::Getr0()*g4calc->Z13(a << 380 (G4StatMFParameters::Getr0()*std::pow(anA,1./3.)) >> 381 - GetFragmentsCoulombEnergy(); 352 if (CoulombEnergy <= 0.0) return; 382 if (CoulombEnergy <= 0.0) return; 353 383 354 G4int Iterations = 0; 384 G4int Iterations = 0; 355 G4double TimeN = 0.0; 385 G4double TimeN = 0.0; 356 G4double TimeS = 0.0; 386 G4double TimeS = 0.0; 357 G4double DeltaTime = 10.0; 387 G4double DeltaTime = 10.0; 358 if (_NumOfChargedFragments > (G4int)Pos.size << 388 359 Pos.resize(_NumOfChargedFragments); << 389 G4ThreeVector * Pos = new G4ThreeVector[_NumOfChargedFragments]; 360 Vel.resize(_NumOfChargedFragments); << 390 G4ThreeVector * Vel = new G4ThreeVector[_NumOfChargedFragments]; 361 Accel.resize(_NumOfChargedFragments); << 391 G4ThreeVector * Accel = new G4ThreeVector[_NumOfChargedFragments]; 362 } << 363 392 364 G4int i; 393 G4int i; 365 for (i = 0; i < _NumOfChargedFragments; ++i) << 394 for (i = 0; i < _NumOfChargedFragments; i++) 366 { 395 { 367 Vel[i] = (1.0/(_theFragments[i]->GetNucl 396 Vel[i] = (1.0/(_theFragments[i]->GetNuclearMass()))* 368 _theFragments[i]->GetMomentum(); 397 _theFragments[i]->GetMomentum(); 369 Pos[i] = _theFragments[i]->GetPosition() 398 Pos[i] = _theFragments[i]->GetPosition(); 370 } 399 } >> 400 >> 401 do >> 402 { 371 403 372 G4ThreeVector distance(0.,0.,0.); << 404 G4ThreeVector distance; 373 G4ThreeVector force(0.,0.,0.); << 405 G4ThreeVector force; 374 G4ThreeVector SavedVel(0.,0.,0.); << 406 375 do { << 407 for (i = 0; i < _NumOfChargedFragments; i++) 376 for (i = 0; i < _NumOfChargedFragments; ++ << 408 { 377 { << 409 force.setX(0.0); force.setY(0.0); force.setZ(0.0); 378 force.set(0.,0.,0.); << 410 for (G4int j = 0; j < _NumOfChargedFragments; j++) 379 for (G4int j = 0; j < _NumOfChargedFragments << 411 { 380 { << 412 if (i != j) 381 if (i != j) << 413 { 382 { << 414 distance = Pos[i] - Pos[j]; 383 distance = Pos[i] - Pos[j]; << 415 force += (elm_coupling*(_theFragments[i]->GetZ()*_theFragments[j]->GetZ())/ 384 force += (_theFragments[i]->GetZ()*_theFra << 416 (distance.mag2()*distance.mag()))*distance; 385 (distance.mag2()*distance.mag()))*dist << 417 } 386 } << 418 } 387 } << 419 Accel[i] = (1./(_theFragments[i]->GetNuclearMass()))*force; 388 Accel[i] = CLHEP::elm_coupling*CLHEP::fermi* << 420 } 389 } << 390 421 391 TimeN = TimeS + DeltaTime; << 422 TimeN = TimeS + DeltaTime; 392 423 393 for ( i = 0; i < _NumOfChargedFragments; + << 424 G4ThreeVector SavedVel; 394 { << 425 for ( i = 0; i < _NumOfChargedFragments; i++) 395 SavedVel = Vel[i]; << 426 { 396 Vel[i] += Accel[i]*(TimeN-TimeS); << 427 SavedVel = Vel[i]; 397 Pos[i] += (SavedVel+Vel[i])*(TimeN-TimeS)*0. << 428 Vel[i] += Accel[i]*(TimeN-TimeS); 398 } << 429 Pos[i] += (SavedVel+Vel[i])*(TimeN-TimeS)*0.5; 399 TimeS = TimeN; << 430 } 400 << 431 401 // Loop checking, 05-Aug-2015, Vladimir Iv << 432 // if (Iterations >= 50 && Iterations < 75) DeltaTime = 4.; 402 } while (Iterations++ < 100); << 433 // else if (Iterations >= 75) DeltaTime = 10.; >> 434 >> 435 TimeS = TimeN; >> 436 >> 437 } >> 438 while (Iterations++ < 100); 403 439 404 // Summed fragment kinetic energy 440 // Summed fragment kinetic energy 405 G4double TotalKineticEnergy = 0.0; 441 G4double TotalKineticEnergy = 0.0; 406 for (i = 0; i < _NumOfChargedFragments; ++i) << 442 for (i = 0; i < _NumOfChargedFragments; i++) 407 { 443 { 408 TotalKineticEnergy += _theFragments[i]-> 444 TotalKineticEnergy += _theFragments[i]->GetNuclearMass()* 409 0.5*Vel[i].mag2(); 445 0.5*Vel[i].mag2(); 410 } 446 } 411 // Scaling of fragment velocities 447 // Scaling of fragment velocities 412 G4double KineticEnergy = 1.5*_NumOfChargedFr << 448 G4double KineticEnergy = (3./2.)*static_cast<G4double>(_theFragments.size())*T; 413 G4double Eta = std::pow(( CoulombEnergy + Ki << 449 G4double Eta = ( CoulombEnergy + KineticEnergy ) / TotalKineticEnergy; 414 << 450 for (i = 0; i < _NumOfChargedFragments; i++) >> 451 { >> 452 Vel[i] *= Eta; >> 453 } >> 454 415 // Finally calculate fragments momenta 455 // Finally calculate fragments momenta 416 for (i = 0; i < _NumOfChargedFragments; ++i) << 456 for (i = 0; i < _NumOfChargedFragments; i++) 417 { 457 { 418 _theFragments[i]->SetMomentum((_theFragm << 458 _theFragments[i]->SetMomentum(_theFragments[i]->GetNuclearMass()*Vel[i]); 419 } 459 } >> 460 >> 461 // garbage collection >> 462 delete [] Pos; >> 463 delete [] Vel; >> 464 delete [] Accel; >> 465 420 return; 466 return; 421 } 467 } 422 468 >> 469 >> 470 423 G4ThreeVector G4StatMFChannel::RotateMomentum( 471 G4ThreeVector G4StatMFChannel::RotateMomentum(G4ThreeVector Pa, 424 G4ThreeVector V, G4ThreeVector 472 G4ThreeVector V, G4ThreeVector P) 425 // Rotates a 3-vector P to close momentum 473 // Rotates a 3-vector P to close momentum triangle Pa + V + P = 0 426 { 474 { 427 G4ThreeVector U = Pa.unit(); 475 G4ThreeVector U = Pa.unit(); 428 476 429 G4double Alpha1 = U * V; 477 G4double Alpha1 = U * V; 430 478 431 G4double Alpha2 = std::sqrt(V.mag2() - Alpha 479 G4double Alpha2 = std::sqrt(V.mag2() - Alpha1*Alpha1); 432 480 433 G4ThreeVector N = (1./Alpha2)*U.cross(V); 481 G4ThreeVector N = (1./Alpha2)*U.cross(V); 434 482 435 G4ThreeVector RotatedMomentum( 483 G4ThreeVector RotatedMomentum( 436 ( (V.x() - Alpha1*U.x())/Alpha2 ) * P. 484 ( (V.x() - Alpha1*U.x())/Alpha2 ) * P.x() + N.x() * P.y() + U.x() * P.z(), 437 ( (V.y() - Alpha1*U.y())/Alpha2 ) * P. 485 ( (V.y() - Alpha1*U.y())/Alpha2 ) * P.x() + N.y() * P.y() + U.y() * P.z(), 438 ( (V.z() - Alpha1*U.z())/Alpha2 ) * P. 486 ( (V.z() - Alpha1*U.z())/Alpha2 ) * P.x() + N.z() * P.y() + U.z() * P.z() 439 ); 487 ); 440 return RotatedMomentum; 488 return RotatedMomentum; 441 } 489 } 442 490 >> 491 >> 492 >> 493 >> 494 >> 495 G4ThreeVector G4StatMFChannel::IsotropicVector(const G4double Magnitude) >> 496 // Samples a isotropic random vector with a magnitud given by Magnitude. >> 497 // By default Magnitude = 1 >> 498 { >> 499 G4double CosTheta = 1.0 - 2.0*G4UniformRand(); >> 500 G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta); >> 501 G4double Phi = twopi*G4UniformRand(); >> 502 G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta, >> 503 Magnitude*std::cos(Phi)*CosTheta, >> 504 Magnitude*std::sin(Phi)); >> 505 return Vector; >> 506 } 443 507