Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4StatMFChannel.cc,v 1.5 2005/06/04 13:27:48 jwellisc Exp $ >> 25 // GEANT4 tag $Name: geant4-07-01 $ 27 // 26 // 28 // Hadronic Process: Nuclear De-excitations 27 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 28 // by V. Lara 30 // << 31 // Modified: << 32 // 25.07.08 I.Pshenichnov (in collaboration wi << 33 // Mishustin (FIAS, Frankfurt, INR, M << 34 // Moscow, pshenich@fias.uni-frankfur << 35 << 36 #include <numeric> << 37 29 38 #include "G4StatMFChannel.hh" 30 #include "G4StatMFChannel.hh" 39 #include "G4PhysicalConstants.hh" << 40 #include "G4HadronicException.hh" 31 #include "G4HadronicException.hh" 41 #include "Randomize.hh" << 32 #include <numeric> 42 #include "G4Pow.hh" << 33 43 #include "G4Exp.hh" << 34 class SumCoulombEnergy : public std::binary_function<G4double,G4double,G4double> 44 #include "G4RandomDirection.hh" << 35 { 45 << 36 public: 46 G4StatMFChannel::G4StatMFChannel() : << 37 SumCoulombEnergy() : total(0.0) {} 47 _NumOfNeutralFragments(0), << 38 G4double operator() (G4double& , G4StatMFFragment*& frag) 48 _NumOfChargedFragments(0) << 39 { 49 { << 40 total += frag->GetCoulombEnergy(); 50 Pos.resize(8); << 41 return total; 51 Vel.resize(8); << 42 } 52 Accel.resize(8); << 43 53 } << 44 G4double GetTotal() { return total; } 54 << 45 public: 55 G4StatMFChannel::~G4StatMFChannel() << 46 G4double total; 56 { << 47 }; 57 if (!_theFragments.empty()) { << 48 58 std::for_each(_theFragments.begin(),_theFr << 49 59 DeleteFragment()); << 50 60 } << 51 >> 52 >> 53 // Copy constructor >> 54 G4StatMFChannel::G4StatMFChannel(const G4StatMFChannel & ) >> 55 { >> 56 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::copy_constructor meant to not be accessable"); 61 } 57 } 62 58 >> 59 // Operators >> 60 >> 61 G4StatMFChannel & G4StatMFChannel:: >> 62 operator=(const G4StatMFChannel & ) >> 63 { >> 64 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator= meant to not be accessable"); >> 65 return *this; >> 66 } >> 67 >> 68 >> 69 G4bool G4StatMFChannel::operator==(const G4StatMFChannel & ) const >> 70 { >> 71 // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator== meant to not be accessable"); >> 72 return false; >> 73 } >> 74 >> 75 >> 76 G4bool G4StatMFChannel::operator!=(const G4StatMFChannel & ) const >> 77 { >> 78 // throw G4HadronicException(__FILE__, __LINE__, "G4StatMFChannel::operator!= meant to not be accessable"); >> 79 return true; >> 80 } >> 81 >> 82 63 G4bool G4StatMFChannel::CheckFragments(void) 83 G4bool G4StatMFChannel::CheckFragments(void) 64 { 84 { 65 std::deque<G4StatMFFragment*>::iterator i; << 85 std::deque<G4StatMFFragment*>::iterator i; 66 for (i = _theFragments.begin(); << 86 for (i = _theFragments.begin(); 67 i != _theFragments.end(); ++i) << 87 i != _theFragments.end(); ++i) 68 { << 88 { 69 G4int A = (*i)->GetA(); << 89 G4int A = static_cast<G4int>((*i)->GetA()); 70 G4int Z = (*i)->GetZ(); << 90 G4int Z = static_cast<G4int>((*i)->GetZ()); 71 if ( (A > 1 && (Z > A || Z <= 0)) || (A= << 91 if (A > 1 && (Z >= A || Z <= 0) || (A==1 && Z > A) || A <= 0) return false; 72 } 92 } >> 93 73 return true; 94 return true; 74 } 95 } 75 96 76 void G4StatMFChannel::CreateFragment(G4int A, << 97 77 // Create a new fragment. << 98 78 // Fragments are automatically sorted: first c << 99 79 // then neutral ones. << 100 void G4StatMFChannel::CreateFragment(const G4double A, const G4double Z) 80 { << 101 // Create a new fragment. 81 if (Z <= 0.5) { << 102 // Fragments are automatically sorted: first charged fragments, 82 _theFragments.push_back(new G4StatMFFragme << 103 // then neutral ones. 83 _NumOfNeutralFragments++; << 104 { 84 } else { << 105 if (Z <= 0.5) { 85 _theFragments.push_front(new G4StatMFFragm << 106 _theFragments.push_back(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z))); 86 _NumOfChargedFragments++; << 107 _NumOfNeutralFragments++; 87 } << 108 } else { >> 109 _theFragments.push_front(new G4StatMFFragment(static_cast<G4int>(A),static_cast<G4int>(Z))); >> 110 _NumOfChargedFragments++; >> 111 } 88 112 89 return; << 113 return; 90 } 114 } 91 115 >> 116 92 G4double G4StatMFChannel::GetFragmentsCoulombE 117 G4double G4StatMFChannel::GetFragmentsCoulombEnergy(void) 93 { 118 { 94 G4double Coulomb = << 119 G4double Coulomb = std::accumulate(_theFragments.begin(),_theFragments.end(), 95 std::accumulate(_theFragments.begin(),_the << 120 0.0,SumCoulombEnergy()); 96 0.0, << 121 // G4double Coulomb = 0.0; 97 [](const G4double& running << 122 // for (unsigned int i = 0;i < _theFragments.size(); i++) 98 G4StatMFFragment*& frag << 123 // Coulomb += _theFragments[i]->GetCoulombEnergy(); 99 { << 124 return Coulomb; 100 return running_total + f << 101 } ); << 102 // G4double Coulomb = 0.0; << 103 // for (unsigned int i = 0;i < _theFrag << 104 // Coulomb += _theFragments[i]->GetCoulom << 105 return Coulomb; << 106 } 125 } 107 126 108 G4double G4StatMFChannel::GetFragmentsEnergy(G << 127 >> 128 >> 129 G4double G4StatMFChannel::GetFragmentsEnergy(const G4double T) const 109 { 130 { 110 G4double Energy = 0.0; << 131 G4double Energy = 0.0; 111 132 112 G4double TranslationalEnergy = 1.5*T*_theFra << 133 G4double TranslationalEnergy = (3./2.)*T*static_cast<G4double>(_theFragments.size()); 113 134 114 std::deque<G4StatMFFragment*>::const_iterato << 135 std::deque<G4StatMFFragment*>::const_iterator i; 115 for (i = _theFragments.begin(); i != _theFra << 136 for (i = _theFragments.begin(); i != _theFragments.end(); ++i) 116 { << 137 { 117 Energy += (*i)->GetEnergy(T); << 138 Energy += (*i)->GetEnergy(T); 118 } << 139 } 119 return Energy + TranslationalEnergy; << 140 return Energy + TranslationalEnergy; 120 } 141 } 121 142 122 G4FragmentVector * G4StatMFChannel::GetFragmen << 143 G4FragmentVector * G4StatMFChannel::GetFragments(const G4double anA, 123 G4int anZ, << 144 const G4double anZ, 124 G4double T) << 145 const G4double T) >> 146 // 125 { 147 { 126 // calculate momenta of charged fragments << 148 // calculate momenta of charged fragments 127 CoulombImpulse(anA,anZ,T); << 149 CoulombImpulse(anA,anZ,T); 128 150 129 // calculate momenta of neutral fragments << 151 // calculate momenta of neutral fragments 130 FragmentsMomenta(_NumOfNeutralFragments, _Nu << 152 FragmentsMomenta(_NumOfNeutralFragments, _NumOfChargedFragments, T); >> 153 131 154 132 G4FragmentVector * theResult = new G4Fragmen << 155 G4FragmentVector * theResult = new G4FragmentVector; 133 std::deque<G4StatMFFragment*>::iterator i; << 156 std::deque<G4StatMFFragment*>::iterator i; 134 for (i = _theFragments.begin(); i != _theFra << 157 for (i = _theFragments.begin(); i != _theFragments.end(); ++i) 135 theResult->push_back((*i)->GetFragment(T)) << 158 theResult->push_back((*i)->GetFragment(T)); >> 159 >> 160 return theResult; 136 161 137 return theResult; << 138 } 162 } 139 163 140 void G4StatMFChannel::CoulombImpulse(G4int anA << 164 141 // Aafter breakup, fragments fly away under Co << 165 142 // This method calculates asymptotic fragments << 166 void G4StatMFChannel::CoulombImpulse(const G4double anA, const G4double anZ, const G4double T) >> 167 // Aafter breakup, fragments fly away under Coulomb field. >> 168 // This method calculates asymptotic fragments momenta. 143 { 169 { 144 // First, we have to place the fragments ins << 170 // First, we have to place the fragments inside of the original nucleus volume 145 PlaceFragments(anA); << 171 PlaceFragments(anA); 146 172 147 // Second, we sample initial charged fragmen << 173 // Second, we sample initial charged fragments momenta. There are 148 // _NumOfChargedFragments charged fragments << 174 // _NumOfChargedFragments charged fragments and they start at the begining 149 // of the vector _theFragments (i.e. 0) << 175 // of the vector _theFragments (i.e. 0) 150 FragmentsMomenta(_NumOfChargedFragments, 0, << 176 FragmentsMomenta(_NumOfChargedFragments, 0, T); 151 177 152 // Third, we have to figure out the asymptot << 178 // Third, we have to figure out the asymptotic momenta of charged fragments 153 // For taht we have to solve equations of mo << 179 // For taht we have to solve equations of motion for fragments 154 SolveEqOfMotion(anA,anZ,T); << 180 SolveEqOfMotion(anA,anZ,T); 155 181 156 return; << 182 return; 157 } 183 } 158 184 159 void G4StatMFChannel::PlaceFragments(G4int anA << 160 // This gives the position of fragments at the << 161 // Fragments positions are sampled inside prol << 162 { << 163 G4Pow* g4calc = G4Pow::GetInstance(); << 164 const G4double R0 = G4StatMFParameters::Getr << 165 G4double Rsys = 2.0*R0*g4calc->Z13(anA); << 166 185 167 G4bool TooMuchIterations; << 186 168 do << 187 void G4StatMFChannel::PlaceFragments(const G4double anA) 169 { << 188 // This gives the position of fragments at the breakup instant. 170 TooMuchIterations = false; << 189 // Fragments positions are sampled inside prolongated ellipsoid. >> 190 { >> 191 const G4double R0 = G4StatMFParameters::Getr0(); >> 192 const G4double Rsys = 2.0*R0*std::pow(anA,1./3.); >> 193 >> 194 G4bool TooMuchIterations; >> 195 do >> 196 { >> 197 TooMuchIterations = false; 171 198 172 // Sample the position of the first frag << 199 // Sample the position of the first fragment 173 G4double R = (Rsys - R0*g4calc->Z13(_the << 200 G4double R = (Rsys - R0*std::pow(_theFragments[0]->GetA(),1./3.))* 174 g4calc->A13(G4UniformRand()); << 201 std::pow(G4UniformRand(),1./3.); 175 _theFragments[0]->SetPosition(R*G4Random << 202 _theFragments[0]->SetPosition(IsotropicVector(R)); 176 203 177 204 178 // Sample the position of the remaining << 205 // Sample the position of the remaining fragments 179 G4bool ThereAreOverlaps = false; << 206 G4bool ThereAreOverlaps = false; 180 std::deque<G4StatMFFragment*>::iterator << 207 std::deque<G4StatMFFragment*>::iterator i; 181 for (i = _theFragments.begin()+1; i != _ << 208 for (i = _theFragments.begin()+1; i != _theFragments.end(); ++i) 182 { << 209 { 183 G4int counter = 0; << 210 G4int counter = 0; 184 do << 211 do 185 { << 212 { 186 R = (Rsys - R0*g4calc->Z13((*i)->GetA( << 213 R = (Rsys - R0*std::pow((*i)->GetA(),1./3.))*std::pow(G4UniformRand(),1./3.); 187 (*i)->SetPosition(R*G4RandomDirection( << 214 (*i)->SetPosition(IsotropicVector(R)); 188 215 189 // Check that there are not overlappin << 216 // Check that there are not overlapping fragments 190 std::deque<G4StatMFFragment*>::iterato << 217 std::deque<G4StatMFFragment*>::iterator j; 191 for (j = _theFragments.begin(); j != i << 218 for (j = _theFragments.begin(); j != i; ++j) 192 { << 219 { 193 G4ThreeVector FragToFragVector = << 220 G4ThreeVector FragToFragVector = (*i)->GetPosition() - (*j)->GetPosition(); 194 (*i)->GetPosition() - (*j)->GetPositio << 221 G4double Rmin = R0*(std::pow((*i)->GetA(),1./3.) + 195 G4double Rmin = R0*(g4calc->Z13((*i)->Ge << 222 std::pow((*j)->GetA(),1./3)); 196 g4calc->Z13((*j)->GetA())); << 223 if (ThereAreOverlaps = (FragToFragVector.mag2() < Rmin*Rmin)) break; 197 if ( (ThereAreOverlaps = (FragToFragVect << 224 } 198 { break; } << 225 counter++; 199 } << 226 } while (ThereAreOverlaps && counter < 1000); 200 counter++; << 201 // Loop checking, 05-Aug-2015, Vladimi << 202 } while (ThereAreOverlaps && counter < 1 << 203 227 204 if (counter >= 1000) << 228 if (counter >= 1000) 205 { << 229 { 206 TooMuchIterations = true; << 230 TooMuchIterations = true; 207 break; << 231 break; 208 } << 232 } 209 } << 233 } 210 // Loop checking, 05-Aug-2015, Vladimir << 211 } while (TooMuchIterations); 234 } while (TooMuchIterations); >> 235 212 return; 236 return; 213 } 237 } 214 238 215 void G4StatMFChannel::FragmentsMomenta(G4int N << 239 216 G4double T) << 240 void G4StatMFChannel::FragmentsMomenta(const G4int NF, const G4int idx, 217 // Calculate fragments momenta at the breakup << 241 const G4double T) 218 // Fragment kinetic energies are calculated ac << 242 // Calculate fragments momenta at the breakup instant 219 // Boltzmann distribution at given temperature << 243 // Fragment kinetic energies are calculated according to the 220 // NF is number of fragments << 244 // Boltzmann distribution at given temperature. 221 // idx is index of first fragment << 245 // NF is number of fragments >> 246 // idx is index of first fragment 222 { 247 { 223 G4double KinE = 1.5*T*NF; << 248 G4double KinE = (3./2.)*T*static_cast<G4double>(NF); 224 G4ThreeVector p(0.,0.,0.); << 225 249 226 if (NF <= 0) return; << 250 G4ThreeVector p; 227 else if (NF == 1) << 251 228 { << 252 if (NF <= 0) return; 229 // We have only one fragment to deal wit << 253 else if (NF == 1) 230 p = std::sqrt(2.0*_theFragments[idx]->Ge << 254 { 231 *G4RandomDirection(); << 255 // We have only one fragment to deal with 232 _theFragments[idx]->SetMomentum(p); << 256 p = IsotropicVector(std::sqrt(2.0*_theFragments[idx]->GetNuclearMass()*KinE)); 233 } << 257 _theFragments[idx]->SetMomentum(p); 234 else if (NF == 2) << 258 } 235 { << 259 else if (NF == 2) 236 // We have only two fragment to deal wit << 260 { 237 G4double M1 = _theFragments[idx]->GetNuc << 261 // We have only two fragment to deal with 238 G4double M2 = _theFragments[idx+1]->GetN << 262 G4double M1 = _theFragments[idx]->GetNuclearMass(); 239 p = std::sqrt(2.0*KinE*(M1*M2)/(M1+M2))* << 263 G4double M2 = _theFragments[idx+1]->GetNuclearMass(); 240 _theFragments[idx]->SetMomentum(p); << 264 p = IsotropicVector(std::sqrt(2.0*KinE*(M1*M2)/(M1+M2))); 241 _theFragments[idx+1]->SetMomentum(-p); << 265 _theFragments[idx]->SetMomentum(p); 242 } << 266 _theFragments[idx+1]->SetMomentum(-p); 243 else << 267 } 244 { << 268 else 245 // We have more than two fragments << 269 { 246 G4double AvailableE; << 270 // We have more than two fragments 247 G4int i1,i2; << 271 G4double AvailableE; 248 G4double SummedE; << 272 G4int i1,i2; 249 G4ThreeVector SummedP(0.,0.,0.); << 273 G4double SummedE; 250 do << 274 G4ThreeVector SummedP; 251 { << 275 do 252 // Fisrt sample momenta of NF-2 fragments << 276 { 253 // according to Boltzmann distribution << 277 // Fisrt sample momenta of NF-2 fragments 254 AvailableE = 0.0; << 278 // according to Boltzmann distribution 255 SummedE = 0.0; << 279 AvailableE = 0.0; 256 SummedP.setX(0.0);SummedP.setY(0.0);Summed << 280 SummedE = 0.0; 257 for (G4int i = idx; i < idx+NF-2; ++i) << 281 SummedP.setX(0.0);SummedP.setY(0.0);SummedP.setZ(0.0); 258 { << 282 for (G4int i = idx; i < idx+NF-2; i++) 259 G4double E; << 283 { 260 G4double RandE; << 284 G4double E; 261 do << 285 G4double RandE; 262 { << 286 G4double Boltzmann; 263 E = 9.0*G4UniformRand(); << 287 do 264 RandE = std::sqrt(0.5/E)*G4Exp(E-0.5)*G4 << 288 { 265 } << 289 E = 9.0*T*G4UniformRand(); 266 // Loop checking, 05-Aug-2015, Vladimi << 290 Boltzmann = std::sqrt(E)*std::exp(-E/T); 267 while (RandE > 1.0); << 291 RandE = std::sqrt(T/2.)*std::exp(-0.5)*G4UniformRand(); 268 E *= T; << 292 } 269 p = std::sqrt(2.0*E*_theFragments[i]-> << 293 while (RandE > Boltzmann); 270 *G4RandomDirection(); << 294 p = IsotropicVector(std::sqrt(2.0*E*_theFragments[i]->GetNuclearMass())); 271 _theFragments[i]->SetMomentum(p); << 295 _theFragments[i]->SetMomentum(p); 272 SummedE += E; << 296 SummedE += E; 273 SummedP += p; << 297 SummedP += p; 274 } << 298 } 275 // Calculate momenta of last two fragments << 299 // Calculate momenta of last two fragments in such a way 276 // that constraints are satisfied << 300 // that constraints are satisfied 277 i1 = idx+NF-2; // before last fragment in << 301 i1 = idx+NF-2; // before last fragment index 278 i2 = idx+NF-1; // last fragment index << 302 i2 = idx+NF-1; // last fragment index 279 p = -SummedP; << 303 p = -SummedP; 280 AvailableE = KinE - SummedE; << 304 AvailableE = KinE - SummedE; 281 // Available Kinetic Energy should be shar << 305 // Available Kinetic Energy should be shared between two last fragments 282 } << 306 } 283 // Loop checking, 05-Aug-2015, Vladimir << 307 while (AvailableE <= p.mag2()/(2.0*(_theFragments[i1]->GetNuclearMass()+ 284 while (AvailableE <= p.mag2()/(2.0*(_the << 308 _theFragments[i2]->GetNuclearMass()))); 285 _theFragments[i2]->GetNuclearMass( << 309 286 G4double H = 1.0 + _theFragments[i2]->Ge << 310 G4double H = 1.0 + _theFragments[i2]->GetNuclearMass()/_theFragments[i1]->GetNuclearMass(); 287 /_theFragments[i1]->GetNuclearMass(); << 311 G4double CTM12 = H*(1.0 - 2.0*_theFragments[i2]->GetNuclearMass()*AvailableE/p.mag2()); 288 G4double CTM12 = H*(1.0 - 2.0*_theFragme << 312 G4double CosTheta1; 289 *AvailableE/p.mag2()); << 313 G4double Sign; 290 G4double CosTheta1; << 291 G4double Sign; << 292 << 293 if (CTM12 > 1.) {CosTheta1 = 1.;} << 294 else { << 295 do 314 do 296 { 315 { 297 do 316 do 298 { 317 { 299 CosTheta1 = 1.0 - 2.0*G4UniformRand(); 318 CosTheta1 = 1.0 - 2.0*G4UniformRand(); 300 } 319 } 301 // Loop checking, 05-Aug-2015, Vladimir << 302 while (CosTheta1*CosTheta1 < CTM12); 320 while (CosTheta1*CosTheta1 < CTM12); 303 } 321 } 304 // Loop checking, 05-Aug-2015, Vladimir Ivan << 305 while (CTM12 >= 0.0 && CosTheta1 < 0.0); 322 while (CTM12 >= 0.0 && CosTheta1 < 0.0); 306 } << 307 323 308 if (CTM12 < 0.0) Sign = 1.0; << 324 if (CTM12 < 0.0) Sign = 1.0; 309 else if (G4UniformRand() <= 0.5) Sign = << 325 else if (G4UniformRand() <= 0.5) Sign = -1.0; 310 else Sign = 1.0; << 326 else Sign = 1.0; 311 327 312 G4double P1 = (p.mag()*CosTheta1+Sign*st << 313 *(CosTheta1*CosTheta1-CTM12) << 314 G4double P2 = std::sqrt(P1*P1+p.mag2() - << 315 G4double Phi = twopi*G4UniformRand(); << 316 G4double SinTheta1 = std::sqrt(1.0 - Cos << 317 G4double CosPhi1 = std::cos(Phi); << 318 G4double SinPhi1 = std::sin(Phi); << 319 G4double CosPhi2 = -CosPhi1; << 320 G4double SinPhi2 = -SinPhi1; << 321 G4double CosTheta2 = (p.mag2() + P2*P2 - << 322 G4double SinTheta2 = 0.0; << 323 if (CosTheta2 > -1.0 && CosTheta2 < 1.0) << 324 SinTheta2 = std::sqrt(1.0 - CosTheta2*CosThe << 325 } << 326 G4ThreeVector p1(P1*SinTheta1*CosPhi1,P1 << 327 G4ThreeVector p2(P2*SinTheta2*CosPhi2,P2 << 328 G4ThreeVector b(1.0,0.0,0.0); << 329 << 330 p1 = RotateMomentum(p,b,p1); << 331 p2 = RotateMomentum(p,b,p2); << 332 << 333 SummedP += p1 + p2; << 334 SummedE += p1.mag2()/(2.0*_theFragments[ << 335 p2.mag2()/(2.0*_theFragments[i2]->GetNuclear << 336 328 337 _theFragments[i1]->SetMomentum(p1); << 329 G4double P1 = (p.mag()*CosTheta1+Sign*std::sqrt(p.mag2()*(CosTheta1*CosTheta1-CTM12)))/H; 338 _theFragments[i2]->SetMomentum(p2); << 330 G4double P2 = std::sqrt(P1*P1+p.mag2() - 2.0*P1*p.mag()*CosTheta1); >> 331 G4double Phi = twopi*G4UniformRand(); >> 332 G4double SinTheta1 = std::sqrt(1.0 - CosTheta1*CosTheta1); >> 333 G4double CosPhi1 = std::cos(Phi); >> 334 G4double SinPhi1 = std::sin(Phi); >> 335 G4double CosPhi2 = -CosPhi1; >> 336 G4double SinPhi2 = -SinPhi1; >> 337 G4double CosTheta2 = (p.mag2() + P2*P2 - P1*P1)/(2.0*p.mag()*P2); >> 338 G4double SinTheta2 = 0.0; >> 339 if (CosTheta2 > -1.0 && CosTheta2 < 1.0) SinTheta2 = std::sqrt(1.0 - CosTheta2*CosTheta2); >> 340 >> 341 G4ThreeVector p1(P1*SinTheta1*CosPhi1,P1*SinTheta1*SinPhi1,P1*CosTheta1); >> 342 G4ThreeVector p2(P2*SinTheta2*CosPhi2,P2*SinTheta2*SinPhi2,P2*CosTheta2); >> 343 G4ThreeVector b(1.0,0.0,0.0); >> 344 >> 345 p1 = RotateMomentum(p,b,p1); >> 346 p2 = RotateMomentum(p,b,p2); >> 347 >> 348 SummedP += p1 + p2; >> 349 SummedE += p1.mag2()/(2.0*_theFragments[i1]->GetNuclearMass()) + >> 350 p2.mag2()/(2.0*_theFragments[i2]->GetNuclearMass()); 339 351 340 } << 352 _theFragments[i1]->SetMomentum(p1); 341 return; << 353 _theFragments[i2]->SetMomentum(p2); >> 354 >> 355 } >> 356 >> 357 return; 342 } 358 } 343 359 344 void G4StatMFChannel::SolveEqOfMotion(G4int an << 360 345 // This method will find a solution of Newton' << 361 void G4StatMFChannel::SolveEqOfMotion(const G4double anA, const G4double anZ, const G4double T) 346 // for fragments in the self-consistent time-d << 362 // This method will find a solution of Newton's equation of motion 347 { << 363 // for fragments in the self-consistent time-dependent Coulomb field 348 G4Pow* g4calc = G4Pow::GetInstance(); << 364 { 349 G4double CoulombEnergy = 0.6*CLHEP::elm_coup << 365 G4double CoulombEnergy = (3./5.)*(elm_coupling*anZ*anZ)* 350 g4calc->A13(1.0+G4StatMFParameters::GetKap << 366 std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/ 351 (G4StatMFParameters::Getr0()*g4calc->Z13(a << 367 (G4StatMFParameters::Getr0()*std::pow(anA,1./3.)) >> 368 - GetFragmentsCoulombEnergy(); 352 if (CoulombEnergy <= 0.0) return; 369 if (CoulombEnergy <= 0.0) return; 353 370 354 G4int Iterations = 0; 371 G4int Iterations = 0; 355 G4double TimeN = 0.0; 372 G4double TimeN = 0.0; 356 G4double TimeS = 0.0; 373 G4double TimeS = 0.0; 357 G4double DeltaTime = 10.0; 374 G4double DeltaTime = 10.0; 358 if (_NumOfChargedFragments > (G4int)Pos.size << 375 359 Pos.resize(_NumOfChargedFragments); << 376 G4ThreeVector * Pos = new G4ThreeVector[_NumOfChargedFragments]; 360 Vel.resize(_NumOfChargedFragments); << 377 G4ThreeVector * Vel = new G4ThreeVector[_NumOfChargedFragments]; 361 Accel.resize(_NumOfChargedFragments); << 378 G4ThreeVector * Accel = new G4ThreeVector[_NumOfChargedFragments]; 362 } << 363 379 364 G4int i; 380 G4int i; 365 for (i = 0; i < _NumOfChargedFragments; ++i) << 381 for (i = 0; i < _NumOfChargedFragments; i++) 366 { 382 { 367 Vel[i] = (1.0/(_theFragments[i]->GetNucl 383 Vel[i] = (1.0/(_theFragments[i]->GetNuclearMass()))* 368 _theFragments[i]->GetMomentum(); 384 _theFragments[i]->GetMomentum(); 369 Pos[i] = _theFragments[i]->GetPosition() 385 Pos[i] = _theFragments[i]->GetPosition(); 370 } 386 } >> 387 >> 388 do >> 389 { 371 390 372 G4ThreeVector distance(0.,0.,0.); << 391 G4ThreeVector distance; 373 G4ThreeVector force(0.,0.,0.); << 392 G4ThreeVector force; 374 G4ThreeVector SavedVel(0.,0.,0.); << 393 375 do { << 394 for (i = 0; i < _NumOfChargedFragments; i++) 376 for (i = 0; i < _NumOfChargedFragments; ++ << 395 { 377 { << 396 force.setX(0.0); force.setY(0.0); force.setZ(0.0); 378 force.set(0.,0.,0.); << 397 for (G4int j = 0; j < _NumOfChargedFragments; j++) 379 for (G4int j = 0; j < _NumOfChargedFragments << 398 { 380 { << 399 if (i != j) 381 if (i != j) << 400 { 382 { << 401 distance = Pos[i] - Pos[j]; 383 distance = Pos[i] - Pos[j]; << 402 force += (elm_coupling*(_theFragments[i]->GetZ()*_theFragments[j]->GetZ())/ 384 force += (_theFragments[i]->GetZ()*_theFra << 403 (distance.mag2()*distance.mag()))*distance; 385 (distance.mag2()*distance.mag()))*dist << 404 } 386 } << 405 } 387 } << 406 Accel[i] = (1./(_theFragments[i]->GetNuclearMass()))*force; 388 Accel[i] = CLHEP::elm_coupling*CLHEP::fermi* << 407 } 389 } << 390 408 391 TimeN = TimeS + DeltaTime; << 409 TimeN = TimeS + DeltaTime; 392 410 393 for ( i = 0; i < _NumOfChargedFragments; + << 411 G4ThreeVector SavedVel; 394 { << 412 for ( i = 0; i < _NumOfChargedFragments; i++) 395 SavedVel = Vel[i]; << 413 { 396 Vel[i] += Accel[i]*(TimeN-TimeS); << 414 SavedVel = Vel[i]; 397 Pos[i] += (SavedVel+Vel[i])*(TimeN-TimeS)*0. << 415 Vel[i] += Accel[i]*(TimeN-TimeS); 398 } << 416 Pos[i] += (SavedVel+Vel[i])*(TimeN-TimeS)*0.5; 399 TimeS = TimeN; << 417 } 400 << 418 401 // Loop checking, 05-Aug-2015, Vladimir Iv << 419 // if (Iterations >= 50 && Iterations < 75) DeltaTime = 4.; 402 } while (Iterations++ < 100); << 420 // else if (Iterations >= 75) DeltaTime = 10.; >> 421 >> 422 TimeS = TimeN; >> 423 >> 424 } >> 425 while (Iterations++ < 100); 403 426 404 // Summed fragment kinetic energy 427 // Summed fragment kinetic energy 405 G4double TotalKineticEnergy = 0.0; 428 G4double TotalKineticEnergy = 0.0; 406 for (i = 0; i < _NumOfChargedFragments; ++i) << 429 for (i = 0; i < _NumOfChargedFragments; i++) 407 { 430 { 408 TotalKineticEnergy += _theFragments[i]-> 431 TotalKineticEnergy += _theFragments[i]->GetNuclearMass()* 409 0.5*Vel[i].mag2(); 432 0.5*Vel[i].mag2(); 410 } 433 } 411 // Scaling of fragment velocities 434 // Scaling of fragment velocities 412 G4double KineticEnergy = 1.5*_NumOfChargedFr << 435 G4double KineticEnergy = (3./2.)*static_cast<G4double>(_theFragments.size())*T; 413 G4double Eta = std::pow(( CoulombEnergy + Ki << 436 G4double Eta = ( CoulombEnergy + KineticEnergy ) / TotalKineticEnergy; 414 << 437 for (i = 0; i < _NumOfChargedFragments; i++) >> 438 { >> 439 Vel[i] *= Eta; >> 440 } >> 441 415 // Finally calculate fragments momenta 442 // Finally calculate fragments momenta 416 for (i = 0; i < _NumOfChargedFragments; ++i) << 443 for (i = 0; i < _NumOfChargedFragments; i++) 417 { 444 { 418 _theFragments[i]->SetMomentum((_theFragm << 445 _theFragments[i]->SetMomentum(_theFragments[i]->GetNuclearMass()*Vel[i]); 419 } 446 } >> 447 >> 448 // garbage collection >> 449 delete [] Pos; >> 450 delete [] Vel; >> 451 delete [] Accel; >> 452 420 return; 453 return; 421 } 454 } 422 455 >> 456 >> 457 423 G4ThreeVector G4StatMFChannel::RotateMomentum( 458 G4ThreeVector G4StatMFChannel::RotateMomentum(G4ThreeVector Pa, 424 G4ThreeVector V, G4ThreeVector 459 G4ThreeVector V, G4ThreeVector P) 425 // Rotates a 3-vector P to close momentum 460 // Rotates a 3-vector P to close momentum triangle Pa + V + P = 0 426 { 461 { 427 G4ThreeVector U = Pa.unit(); 462 G4ThreeVector U = Pa.unit(); 428 463 429 G4double Alpha1 = U * V; 464 G4double Alpha1 = U * V; 430 465 431 G4double Alpha2 = std::sqrt(V.mag2() - Alpha 466 G4double Alpha2 = std::sqrt(V.mag2() - Alpha1*Alpha1); 432 467 433 G4ThreeVector N = (1./Alpha2)*U.cross(V); 468 G4ThreeVector N = (1./Alpha2)*U.cross(V); 434 469 435 G4ThreeVector RotatedMomentum( 470 G4ThreeVector RotatedMomentum( 436 ( (V.x() - Alpha1*U.x())/Alpha2 ) * P. 471 ( (V.x() - Alpha1*U.x())/Alpha2 ) * P.x() + N.x() * P.y() + U.x() * P.z(), 437 ( (V.y() - Alpha1*U.y())/Alpha2 ) * P. 472 ( (V.y() - Alpha1*U.y())/Alpha2 ) * P.x() + N.y() * P.y() + U.y() * P.z(), 438 ( (V.z() - Alpha1*U.z())/Alpha2 ) * P. 473 ( (V.z() - Alpha1*U.z())/Alpha2 ) * P.x() + N.z() * P.y() + U.z() * P.z() 439 ); 474 ); 440 return RotatedMomentum; 475 return RotatedMomentum; 441 } 476 } 442 477 >> 478 >> 479 >> 480 >> 481 >> 482 G4ThreeVector G4StatMFChannel::IsotropicVector(const G4double Magnitude) >> 483 // Samples a isotropic random vector with a magnitud given by Magnitude. >> 484 // By default Magnitude = 1 >> 485 { >> 486 G4double CosTheta = 1.0 - 2.0*G4UniformRand(); >> 487 G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta); >> 488 G4double Phi = twopi*G4UniformRand(); >> 489 G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta, >> 490 Magnitude*std::cos(Phi)*CosTheta, >> 491 Magnitude*std::sin(Phi)); >> 492 return Vector; >> 493 } 443 494