Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc (Version 9.4.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4CompetitiveFission.cc,v 1.14 2010-11-17 20:22:46 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-04-patch-01 $
                                                   >>  29 //
 27 // Hadronic Process: Nuclear De-excitations        30 // Hadronic Process: Nuclear De-excitations
 28 // by V. Lara (Oct 1998)                           31 // by V. Lara (Oct 1998)
 29 //                                                 32 //
 30 // J. M. Quesada (March 2009). Bugs fixed:         33 // J. M. Quesada (March 2009). Bugs fixed:
 31 //          - Full relativistic calculation (L     34 //          - Full relativistic calculation (Lorentz boosts)
 32 //          - Fission pairing energy is includ     35 //          - Fission pairing energy is included in fragment excitation energies
 33 // Now Energy and momentum are conserved in fi     36 // Now Energy and momentum are conserved in fission 
 34                                                    37 
 35 #include "G4CompetitiveFission.hh"                 38 #include "G4CompetitiveFission.hh"
 36 #include "G4PairingCorrection.hh"                  39 #include "G4PairingCorrection.hh"
 37 #include "G4ParticleMomentum.hh"                   40 #include "G4ParticleMomentum.hh"
 38 #include "G4NuclearLevelData.hh"               << 
 39 #include "G4VFissionBarrier.hh"                << 
 40 #include "G4FissionBarrier.hh"                 << 
 41 #include "G4FissionProbability.hh"             << 
 42 #include "G4VLevelDensityParameter.hh"         << 
 43 #include "G4FissionLevelDensityParameter.hh"   << 
 44 #include "G4Pow.hh"                                41 #include "G4Pow.hh"
 45 #include "Randomize.hh"                        << 
 46 #include "G4RandomDirection.hh"                << 
 47 #include "G4PhysicalConstants.hh"              << 
 48 #include "G4PhysicsModelCatalog.hh"            << 
 49                                                << 
 50 G4CompetitiveFission::G4CompetitiveFission() : << 
 51 {                                              << 
 52   theFissionBarrierPtr = new G4FissionBarrier; << 
 53   theFissionProbabilityPtr = new G4FissionProb << 
 54   theLevelDensityPtr = new G4FissionLevelDensi << 
 55   pairingCorrection = G4NuclearLevelData::GetI << 
 56   theSecID = G4PhysicsModelCatalog::GetModelID << 
 57 }                                              << 
 58                                                    42 
 59 G4CompetitiveFission::~G4CompetitiveFission()  <<  43 G4CompetitiveFission::G4CompetitiveFission() : G4VEvaporationChannel("fission")
 60 {                                                  44 {
 61   if (myOwnFissionBarrier) delete theFissionBa <<  45     theFissionBarrierPtr = new G4FissionBarrier;
 62   if (myOwnFissionProbability) delete theFissi <<  46     MyOwnFissionBarrier = true;
 63   if (myOwnLevelDensity) delete theLevelDensit <<  47 
                                                   >>  48     theFissionProbabilityPtr = new G4FissionProbability;
                                                   >>  49     MyOwnFissionProbability = true;
                                                   >>  50   
                                                   >>  51     theLevelDensityPtr = new G4FissionLevelDensityParameter;
                                                   >>  52     MyOwnLevelDensity = true;
                                                   >>  53 
                                                   >>  54     MaximalKineticEnergy = -1000.0*MeV;
                                                   >>  55     FissionBarrier = 0.0;
                                                   >>  56     FissionProbability = 0.0;
                                                   >>  57     LevelDensityParameter = 0.0;
 64 }                                                  58 }
 65                                                    59 
 66 void G4CompetitiveFission::Initialise()        <<  60 G4CompetitiveFission::~G4CompetitiveFission()
 67 {                                                  61 {
 68   if (!isInitialised) {                        <<  62     if (MyOwnFissionBarrier) delete theFissionBarrierPtr;
 69     isInitialised = true;                      <<  63 
 70     G4VEvaporationChannel::Initialise();       <<  64     if (MyOwnFissionProbability) delete theFissionProbabilityPtr;
 71     if (OPTxs == 1) { fFactor = 0.5; }         <<  65 
 72   }                                            <<  66     if (MyOwnLevelDensity) delete theLevelDensityPtr;
 73 }                                                  67 }
 74                                                    68 
 75 G4double G4CompetitiveFission::GetEmissionProb <<  69 void G4CompetitiveFission::Initialize(const G4Fragment & fragment)
 76 {                                                  70 {
 77   if (!isInitialised) { Initialise(); }        <<  71   G4int anA = fragment.GetA_asInt();
 78   G4int Z = fragment->GetZ_asInt();            <<  72   G4int aZ  = fragment.GetZ_asInt();
 79   G4int A = fragment->GetA_asInt();            <<  73   G4double ExEnergy = fragment.GetExcitationEnergy() - 
 80   fissionProbability = 0.0;                    <<  74     G4PairingCorrection::GetInstance()->GetFissionPairingCorrection(anA,aZ);
 81   // Saddle point excitation energy ---> A = 6 << 
 82   if (A >= 65 && Z > 16) {                     << 
 83     G4double exEnergy = fragment->GetExcitatio << 
 84       pairingCorrection->GetFissionPairingCorr << 
 85                                                    75   
 86     if (exEnergy > 0.0) {                      <<  76 
 87       fissionBarrier = theFissionBarrierPtr->F <<  77   // Saddle point excitation energy ---> A = 65
 88       maxKineticEnergy = exEnergy - fissionBar <<  78   // Fission is excluded for A < 65
 89       fissionProbability =                     <<  79   if (anA >= 65 && ExEnergy > 0.0) {
 90   theFissionProbabilityPtr->EmissionProbabilit <<  80     FissionBarrier = theFissionBarrierPtr->FissionBarrier(anA,aZ,ExEnergy);
 91                   maxKineticEnergy);           <<  81     MaximalKineticEnergy = ExEnergy - FissionBarrier;
                                                   >>  82     LevelDensityParameter = 
                                                   >>  83       theLevelDensityPtr->LevelDensityParameter(anA,aZ,ExEnergy);
                                                   >>  84     FissionProbability = 
                                                   >>  85       theFissionProbabilityPtr->EmissionProbability(fragment,MaximalKineticEnergy);
 92     }                                              86     }
                                                   >>  87   else {
                                                   >>  88     MaximalKineticEnergy = -1000.0*MeV;
                                                   >>  89     LevelDensityParameter = 0.0;
                                                   >>  90     FissionProbability = 0.0;
 93   }                                                91   }
 94   return fissionProbability*fFactor;           << 
 95 }                                                  92 }
 96                                                    93 
 97 G4Fragment* G4CompetitiveFission::EmittedFragm <<  94 G4FragmentVector * G4CompetitiveFission::BreakUp(const G4Fragment & theNucleus)
 98 {                                                  95 {
 99   G4Fragment * Fragment1 = nullptr;            << 
100   // Nucleus data                                  96   // Nucleus data
101   // Atomic number of nucleus                      97   // Atomic number of nucleus
102   G4int A = theNucleus->GetA_asInt();          <<  98   G4int A = theNucleus.GetA_asInt();
103   // Charge of nucleus                             99   // Charge of nucleus
104   G4int Z = theNucleus->GetZ_asInt();          << 100   G4int Z = theNucleus.GetZ_asInt();
105   //   Excitation energy (in MeV)                 101   //   Excitation energy (in MeV)
106   G4double U = theNucleus->GetExcitationEnergy << 102   G4double U = theNucleus.GetExcitationEnergy() - 
107   G4double pcorr = pairingCorrection->GetFissi << 103     G4PairingCorrection::GetInstance()->GetFissionPairingCorrection(A,Z);
108   if (U <= pcorr) { return Fragment1; }        << 104   // Check that U > 0
                                                   >> 105   if (U <= 0.0) {
                                                   >> 106     G4FragmentVector * theResult = new  G4FragmentVector;
                                                   >> 107     theResult->push_back(new G4Fragment(theNucleus));
                                                   >> 108     return theResult;
                                                   >> 109   }
109                                                   110 
110   // Atomic Mass of Nucleus (in MeV)              111   // Atomic Mass of Nucleus (in MeV)
111   G4double M = theNucleus->GetGroundStateMass( << 112   G4double M = theNucleus.GetGroundStateMass();
112                                                   113 
113   // Nucleus Momentum                             114   // Nucleus Momentum
114   G4LorentzVector theNucleusMomentum = theNucl << 115   G4LorentzVector theNucleusMomentum = theNucleus.GetMomentum();
115                                                   116 
116   // Calculate fission parameters                 117   // Calculate fission parameters
117   theParam.DefineParameters(A, Z, U-pcorr, fis << 118   G4FissionParameters theParameters(A,Z,U,FissionBarrier);
118                                                   119   
119   // First fragment                               120   // First fragment
120   G4int A1 = 0;                                   121   G4int A1 = 0;
121   G4int Z1 = 0;                                   122   G4int Z1 = 0;
122   G4double M1 = 0.0;                              123   G4double M1 = 0.0;
123                                                   124 
124   // Second fragment                              125   // Second fragment
125   G4int A2 = 0;                                   126   G4int A2 = 0;
126   G4int Z2 = 0;                                   127   G4int Z2 = 0;
127   G4double M2 = 0.0;                              128   G4double M2 = 0.0;
128                                                   129 
129   G4double FragmentsExcitationEnergy = 0.0;       130   G4double FragmentsExcitationEnergy = 0.0;
130   G4double FragmentsKineticEnergy = 0.0;          131   G4double FragmentsKineticEnergy = 0.0;
131                                                   132 
                                                   >> 133   //JMQ 04/03/09 It will be used latter to fix the bug in energy conservation
                                                   >> 134   G4double FissionPairingEnergy=
                                                   >> 135     G4PairingCorrection::GetInstance()->GetFissionPairingCorrection(A,Z);
                                                   >> 136 
132   G4int Trials = 0;                               137   G4int Trials = 0;
133   do {                                            138   do {
134                                                   139 
135     // First fragment                             140     // First fragment 
136     A1 = FissionAtomicNumber(A);               << 141     A1 = FissionAtomicNumber(A,theParameters);
137     Z1 = FissionCharge(A, Z, A1);              << 142     Z1 = FissionCharge(A,Z,A1);
138     M1 = G4NucleiProperties::GetNuclearMass(A1 << 143     M1 = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z1,A1);
139                                                   144 
140     // Second Fragment                            145     // Second Fragment
141     A2 = A - A1;                                  146     A2 = A - A1;
142     Z2 = Z - Z1;                                  147     Z2 = Z - Z1;
143     if (A2 < 1 || Z2 < 0 || Z2 > A2) {         << 148     if (A2 < 1 || Z2 < 0) {
144       FragmentsExcitationEnergy = -1.0;        << 149       throw G4HadronicException(__FILE__, __LINE__, 
145       continue;                                << 150   "G4CompetitiveFission::BreakUp: Can't define second fragment! ");
146     }                                             151     }
147     M2 = G4NucleiProperties::GetNuclearMass(A2 << 152     M2 = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z2,A2);
148     // Maximal Kinetic Energy (available energ << 
149     G4double Tmax = M + U - M1 - M2 - pcorr;   << 
150                                                   153 
151     // Check that fragment masses are less or     154     // Check that fragment masses are less or equal than total energy
152     if (Tmax < 0.0) {                          << 155     if (M1 + M2 > theNucleusMomentum.e()) {
153       FragmentsExcitationEnergy = -1.0;        << 156       throw G4HadronicException(__FILE__, __LINE__, 
154       continue;                                << 157   "G4CompetitiveFission::BreakUp: Fragments Mass > Total Energy");
155     }                                             158     }
                                                   >> 159     // Maximal Kinetic Energy (available energy for fragments)
                                                   >> 160     G4double Tmax = M + U - M1 - M2;
156                                                   161 
157     FragmentsKineticEnergy = FissionKineticEne    162     FragmentsKineticEnergy = FissionKineticEnergy( A , Z,
158                A1, Z1,                            163                A1, Z1,
159                A2, Z2,                            164                A2, Z2,
160                U , Tmax);                      << 165                U , Tmax,
                                                   >> 166                theParameters);
161                                                   167     
162     // Excitation Energy                          168     // Excitation Energy
163     // FragmentsExcitationEnergy = Tmax - Frag << 169     //  FragmentsExcitationEnergy = Tmax - FragmentsKineticEnergy;
164     // JMQ 04/03/09 BUG FIXED: in order to ful    170     // JMQ 04/03/09 BUG FIXED: in order to fulfill energy conservation the
165     // fragments carry the fission pairing ene    171     // fragments carry the fission pairing energy in form of 
166     // excitation energy                       << 172     //excitation energy
167                                                   173 
168     FragmentsExcitationEnergy =                   174     FragmentsExcitationEnergy = 
169       Tmax - FragmentsKineticEnergy + pcorr;   << 175       Tmax - FragmentsKineticEnergy+FissionPairingEnergy;
170                                                   176 
171     // Loop checking, 05-Aug-2015, Vladimir Iv << 177   } while (FragmentsExcitationEnergy < 0.0 && Trials++ < 100);
172   } while (FragmentsExcitationEnergy < 0.0 &&  << 
173                                                   178     
174   if (FragmentsExcitationEnergy <= 0.0) {         179   if (FragmentsExcitationEnergy <= 0.0) { 
175     throw G4HadronicException(__FILE__, __LINE    180     throw G4HadronicException(__FILE__, __LINE__, 
176       "G4CompetitiveFission::BreakItUp: Excita    181       "G4CompetitiveFission::BreakItUp: Excitation energy for fragments < 0.0!");
177   }                                               182   }
178                                                   183 
                                                   >> 184   // while (FragmentsExcitationEnergy < 0 && Trials < 100);
                                                   >> 185   
179   // Fragment 1                                   186   // Fragment 1
180   M1 += FragmentsExcitationEnergy * A1/static_ << 187   G4double U1 = FragmentsExcitationEnergy * A1/static_cast<G4double>(A);
181   // Fragment 2                                << 188     // Fragment 2
182   M2 += FragmentsExcitationEnergy * A2/static_ << 189   G4double U2 = FragmentsExcitationEnergy * A2/static_cast<G4double>(A);
183   // primary                                   << 190 
184   M += U;                                      << 191   //JMQ  04/03/09 Full relativistic calculation is performed
185                                                << 192   //
186   G4double etot1 = ((M - M2)*(M + M2) + M1*M1) << 193   G4double Fragment1KineticEnergy=
187   G4ParticleMomentum Momentum1 =               << 194     (FragmentsKineticEnergy*(FragmentsKineticEnergy+2*(M2+U2)))
188     std::sqrt((etot1 - M1)*(etot1+M1))*G4Rando << 195     /(2*(M1+U1+M2+U2+FragmentsKineticEnergy));
189   G4LorentzVector FourMomentum1(Momentum1, eto << 196   G4ParticleMomentum Momentum1(IsotropicVector(std::sqrt(Fragment1KineticEnergy*(Fragment1KineticEnergy+2*(M1+U1)))));
                                                   >> 197   G4ParticleMomentum Momentum2(-Momentum1);
                                                   >> 198   G4LorentzVector FourMomentum1(Momentum1,std::sqrt(Momentum1.mag2()+(M1+U1)*(M1+U1)));
                                                   >> 199   G4LorentzVector FourMomentum2(Momentum2,std::sqrt(Momentum2.mag2()+(M2+U2)*(M2+U2)));
                                                   >> 200 
                                                   >> 201   //JMQ 04/03/09 now we do Lorentz boosts (instead of Galileo boosts)
190   FourMomentum1.boost(theNucleusMomentum.boost    202   FourMomentum1.boost(theNucleusMomentum.boostVector());
                                                   >> 203   FourMomentum2.boost(theNucleusMomentum.boostVector());
191                                                   204     
                                                   >> 205   //////////JMQ 04/03: Old version calculation is commented
                                                   >> 206   // There was vioation of energy momentum conservation
                                                   >> 207 
                                                   >> 208   //    G4double Pmax = std::sqrt( 2 * ( ( (M1+U1)*(M2+U2) ) /
                                                   >> 209   //        ( (M1+U1)+(M2+U2) ) ) * FragmentsKineticEnergy);
                                                   >> 210 
                                                   >> 211   //G4ParticleMomentum momentum1 = IsotropicVector( Pmax );
                                                   >> 212   //  G4ParticleMomentum momentum2( -momentum1 );
                                                   >> 213 
                                                   >> 214   // Perform a Galileo boost for fragments
                                                   >> 215   //    momentum1 += (theNucleusMomentum.boostVector() * (M1+U1));
                                                   >> 216   //    momentum2 += (theNucleusMomentum.boostVector() * (M2+U2));
                                                   >> 217 
                                                   >> 218 
                                                   >> 219   // Create 4-momentum for first fragment
                                                   >> 220   // Warning!! Energy conservation is broken
                                                   >> 221   //JMQ 04/03/09 ...NOT ANY MORE!! BUGS FIXED: Energy and momentum are NOW conserved 
                                                   >> 222   //    G4LorentzVector FourMomentum1( momentum1 , std::sqrt(momentum1.mag2() + (M1+U1)*(M1+U1)));
                                                   >> 223 
                                                   >> 224   // Create 4-momentum for second fragment
                                                   >> 225   // Warning!! Energy conservation is broken
                                                   >> 226   //JMQ 04/03/09 ...NOT ANY MORE!! BUGS FIXED: Energy and momentum are NOW conserved
                                                   >> 227   //    G4LorentzVector FourMomentum2( momentum2 , std::sqrt(momentum2.mag2() + (M2+U2)*(M2+U2)));
                                                   >> 228 
                                                   >> 229   //////////
                                                   >> 230 
192   // Create Fragments                             231   // Create Fragments
193   Fragment1 = new G4Fragment( A1, Z1, FourMome << 232   G4Fragment * Fragment1 = new G4Fragment( A1, Z1, FourMomentum1);
194   if (Fragment1 != nullptr) { Fragment1->SetCr << 233   G4Fragment * Fragment2 = new G4Fragment( A2, Z2, FourMomentum2);
195   theNucleusMomentum -= FourMomentum1;         << 234 
196   theNucleus->SetZandA_asInt(Z2, A2);          << 235   // Create Fragment Vector
197   theNucleus->SetMomentum(theNucleusMomentum); << 236   G4FragmentVector * theResult = new G4FragmentVector;
198   theNucleus->SetCreatorModelID(theSecID);     << 237 
199   return Fragment1;                            << 238   theResult->push_back(Fragment1);
                                                   >> 239   theResult->push_back(Fragment2);
                                                   >> 240 
                                                   >> 241 #ifdef debug
                                                   >> 242   CheckConservation(theNucleus,theResult);
                                                   >> 243 #endif
                                                   >> 244 
                                                   >> 245   return theResult;
200 }                                                 246 }
201                                                   247 
202 G4int                                             248 G4int 
203 G4CompetitiveFission::FissionAtomicNumber(G4in << 249 G4CompetitiveFission::FissionAtomicNumber(G4int A, 
                                                   >> 250             const G4FissionParameters & theParam)
204   // Calculates the atomic number of a fission    251   // Calculates the atomic number of a fission product
205 {                                                 252 {
206                                                   253 
207   // For Simplicity reading code                  254   // For Simplicity reading code
208   G4int A1 = theParam.GetA1();                 << 255   const G4double A1 = theParam.GetA1();
209   G4int A2 = theParam.GetA2();                 << 256   const G4double A2 = theParam.GetA2();
210   G4double As = theParam.GetAs();              << 257   const G4double As = theParam.GetAs();
211   G4double Sigma2 = theParam.GetSigma2();      << 258   //    const G4double Sigma1 = theParam.GetSigma1();
212   G4double SigmaS = theParam.GetSigmaS();      << 259   const G4double Sigma2 = theParam.GetSigma2();
213   G4double w = theParam.GetW();                << 260   const G4double SigmaS = theParam.GetSigmaS();
                                                   >> 261   const G4double w = theParam.GetW();
214                                                   262   
                                                   >> 263   //    G4double FasymAsym = 2.0*std::exp(-((A2-As)*(A2-As))/(2.0*Sigma2*Sigma2)) + 
                                                   >> 264   //  std::exp(-((A1-As)*(A1-As))/(2.0*Sigma1*Sigma1));
                                                   >> 265 
                                                   >> 266   //    G4double FsymA1A2 = std::exp(-((As-(A1+A2))*(As-(A1+A2)))/(2.0*SigmaS*SigmaS));
                                                   >> 267 
215   G4double C2A = A2 + 3.72*Sigma2;                268   G4double C2A = A2 + 3.72*Sigma2;
216   G4double C2S = As + 3.72*SigmaS;                269   G4double C2S = As + 3.72*SigmaS;
217                                                   270   
218   G4double C2 = 0.0;                              271   G4double C2 = 0.0;
219   if (w > 1000.0 )    { C2 = C2S; }            << 272   if (w > 1000.0 ) C2 = C2S;
220   else if (w < 0.001) { C2 = C2A; }            << 273   else if (w < 0.001) C2 = C2A;
221   else                { C2 =  std::max(C2A,C2S << 274   else C2 =  std::max(C2A,C2S);
222                                                   275 
223   G4double C1 = A-C2;                             276   G4double C1 = A-C2;
224   if (C1 < 30.0) {                                277   if (C1 < 30.0) {
225     C2 = A-30.0;                                  278     C2 = A-30.0;
226     C1 = 30.0;                                    279     C1 = 30.0;
227   }                                               280   }
228                                                   281 
229   G4double Am1 = (As + A1)*0.5;                << 282   G4double Am1 = (As + A1)/2.0;
230   G4double Am2 = (A1 + A2)*0.5;                << 283   G4double Am2 = (A1 + A2)/2.0;
231                                                   284 
232   // Get Mass distributions as sum of symmetri    285   // Get Mass distributions as sum of symmetric and asymmetric Gasussians
233   G4double Mass1 = MassDistribution(As,A);     << 286   G4double Mass1 = MassDistribution(As,A,theParam); 
234   G4double Mass2 = MassDistribution(Am1,A);    << 287   G4double Mass2 = MassDistribution(Am1,A,theParam); 
235   G4double Mass3 = MassDistribution(G4double(A << 288   G4double Mass3 = MassDistribution(A1,A,theParam); 
236   G4double Mass4 = MassDistribution(Am2,A);    << 289   G4double Mass4 = MassDistribution(Am2,A,theParam); 
237   G4double Mass5 = MassDistribution(G4double(A << 290   G4double Mass5 = MassDistribution(A2,A,theParam); 
238   // get maximal value among Mass1,...,Mass5      291   // get maximal value among Mass1,...,Mass5
239   G4double MassMax = Mass1;                       292   G4double MassMax = Mass1;
240   if (Mass2 > MassMax) { MassMax = Mass2; }    << 293   if (Mass2 > MassMax) MassMax = Mass2;
241   if (Mass3 > MassMax) { MassMax = Mass3; }    << 294   if (Mass3 > MassMax) MassMax = Mass3;
242   if (Mass4 > MassMax) { MassMax = Mass4; }    << 295   if (Mass4 > MassMax) MassMax = Mass4;
243   if (Mass5 > MassMax) { MassMax = Mass5; }    << 296   if (Mass5 > MassMax) MassMax = Mass5;
244                                                   297 
245   // Sample a fragment mass number, which lies    298   // Sample a fragment mass number, which lies between C1 and C2
246   G4double xm;                                 << 299   G4double m;
247   G4double Pm;                                    300   G4double Pm;
248   do {                                            301   do {
249     xm = C1+G4UniformRand()*(C2-C1);           << 302     m = C1+G4UniformRand()*(C2-C1);
250     Pm = MassDistribution(xm,A);               << 303     Pm = MassDistribution(m,A,theParam); 
251     // Loop checking, 05-Aug-2015, Vladimir Iv << 
252   } while (MassMax*G4UniformRand() > Pm);         304   } while (MassMax*G4UniformRand() > Pm);
253   G4int ires = G4lrint(xm);                    << 
254                                                   305 
255   return ires;                                 << 306   return static_cast<G4int>(m+0.5);
256 }                                                 307 }
257                                                   308 
258 G4double                                          309 G4double 
259 G4CompetitiveFission::MassDistribution(G4doubl << 310 G4CompetitiveFission::MassDistribution(G4double x, G4double A, 
                                                   >> 311                const G4FissionParameters & theParam)
260   // This method gives mass distribution F(x)     312   // This method gives mass distribution F(x) = F_{asym}(x)+w*F_{sym}(x)
261   // which consist of symmetric and asymmetric    313   // which consist of symmetric and asymmetric sum of gaussians components.
262 {                                                 314 {
263   G4double y0 = (x-theParam.GetAs())/theParam. << 315   G4double Xsym = std::exp(-0.5*(x-theParam.GetAs())*(x-theParam.GetAs())/
264   G4double Xsym = LocalExp(y0);                << 316          (theParam.GetSigmaS()*theParam.GetSigmaS()));
265                                                   317 
266   G4double y1 = (x - theParam.GetA1())/thePara << 318   G4double Xasym = std::exp(-0.5*(x-theParam.GetA2())*(x-theParam.GetA2())/
267   G4double y2 = (x - theParam.GetA2())/thePara << 319           (theParam.GetSigma2()*theParam.GetSigma2())) + 
268   G4double z1 = (x - A + theParam.GetA1())/the << 320     std::exp(-0.5*(x-(A-theParam.GetA2()))*(x-(A-theParam.GetA2()))/
269   G4double z2 = (x - A + theParam.GetA2())/the << 321        (theParam.GetSigma2()*theParam.GetSigma2())) +
270   G4double Xasym = LocalExp(y1) + LocalExp(y2) << 322     0.5*std::exp(-0.5*(x-theParam.GetA1())*(x-theParam.GetA1())/
271     + 0.5*(LocalExp(z1) + LocalExp(z2));       << 323      (theParam.GetSigma1()*theParam.GetSigma1())) +
272                                                << 324     0.5*std::exp(-0.5*(x-(A-theParam.GetA1()))*(x-(A-theParam.GetA1()))/
273   G4double res;                                << 325      (theParam.GetSigma1()*theParam.GetSigma1()));
274   G4double w = theParam.GetW();                << 326 
275   if (w > 1000)       { res = Xsym; }          << 327   if (theParam.GetW() > 1000) return Xsym;
276   else if (w < 0.001) { res = Xasym; }         << 328   else if (theParam.GetW() < 0.001) return Xasym;
277   else                { res = w*Xsym+Xasym; }  << 329   else return theParam.GetW()*Xsym+Xasym;
278   return res;                                  << 
279 }                                                 330 }
280                                                   331 
281 G4int G4CompetitiveFission::FissionCharge(G4in << 332 G4int G4CompetitiveFission::FissionCharge(G4double A, G4double Z,
                                                   >> 333             G4double Af)
282   // Calculates the charge of a fission produc    334   // Calculates the charge of a fission product for a given atomic number Af
283 {                                                 335 {
284   static const G4double sigma = 0.6;           << 336   const G4double sigma = 0.6;
285   G4double DeltaZ = 0.0;                          337   G4double DeltaZ = 0.0;
286   if (Af >= 134.0)          { DeltaZ = -0.45;  << 338   if (Af >= 134.0) DeltaZ = -0.45;                    //                      134 <= Af
287   else if (Af <= (A-134.0)) { DeltaZ = 0.45; } << 339   else if (Af <= (A-134.0)) DeltaZ = 0.45;             // Af <= (A-134) 
288   else                      { DeltaZ = -0.45*( << 340   else DeltaZ = -0.45*(Af-(A/2.0))/(134.0-(A/2.0));   //       (A-134) < Af < 134
289                                                   341 
290   G4double Zmean = (Af/A)*Z + DeltaZ;             342   G4double Zmean = (Af/A)*Z + DeltaZ;
291                                                   343  
292   G4double theZ;                                  344   G4double theZ;
293   do {                                            345   do {
294     theZ = G4RandGauss::shoot(Zmean,sigma);       346     theZ = G4RandGauss::shoot(Zmean,sigma);
295     // Loop checking, 05-Aug-2015, Vladimir Iv << 
296   } while (theZ  < 1.0 || theZ > (Z-1.0) || th    347   } while (theZ  < 1.0 || theZ > (Z-1.0) || theZ > Af);
297                                                << 348   //  return static_cast<G4int>(theZ+0.5);
298   return G4lrint(theZ);                        << 349   return static_cast<G4int>(theZ+0.5);
299 }                                                 350 }
300                                                   351 
301 G4double                                          352 G4double 
302 G4CompetitiveFission::FissionKineticEnergy(G4i    353 G4CompetitiveFission::FissionKineticEnergy(G4int A, G4int Z,
303              G4int Af1, G4int /*Zf1*/,         << 354              G4double Af1, G4double /*Zf1*/,
304              G4int Af2, G4int /*Zf2*/,         << 355              G4double Af2, G4double /*Zf2*/,
305              G4double /*U*/, G4double Tmax)    << 356              G4double /*U*/, G4double Tmax,
                                                   >> 357              const G4FissionParameters & theParam)
306   // Gives the kinetic energy of fission produ    358   // Gives the kinetic energy of fission products
307 {                                                 359 {
308   // Find maximal value of A for fragments        360   // Find maximal value of A for fragments
309   G4int AfMax = std::max(Af1,Af2);             << 361   G4double AfMax = std::max(Af1,Af2);
                                                   >> 362   if (AfMax < (A/2.0)) AfMax = A - AfMax;
310                                                   363 
311   // Weights for symmetric and asymmetric comp    364   // Weights for symmetric and asymmetric components
312   G4double Pas = 0.0;                          << 365   G4double Pas;
313   if (theParam.GetW() <= 1000) {               << 366   if (theParam.GetW() > 1000) Pas = 0.0;
314     G4double x1 = (AfMax-theParam.GetA1())/the << 367   else {
315     G4double x2 = (AfMax-theParam.GetA2())/the << 368     G4double P1 = 0.5*std::exp(-0.5*(AfMax-theParam.GetA1())*(AfMax-theParam.GetA1())/
316     Pas = 0.5*LocalExp(x1) + LocalExp(x2);     << 369              (theParam.GetSigma1()*theParam.GetSigma1()));
                                                   >> 370 
                                                   >> 371     G4double P2 = std::exp(-0.5*(AfMax-theParam.GetA2())*(AfMax-theParam.GetA2())/
                                                   >> 372          (theParam.GetSigma2()*theParam.GetSigma2()));
                                                   >> 373 
                                                   >> 374     Pas = P1+P2;
317   }                                               375   }
318                                                   376 
319   G4double Ps = 0.0;                           << 377   G4double Ps;
320   if (theParam.GetW() >= 0.001) {              << 378   if (theParam.GetW() < 0.001) Ps = 0.0;
321     G4double xs = (AfMax-theParam.GetAs())/the << 379   else {
322     Ps = theParam.GetW()*LocalExp(xs);         << 380     Ps = theParam.GetW()*std::exp(-0.5*(AfMax-theParam.GetAs())*(AfMax-theParam.GetAs())/
                                                   >> 381           (theParam.GetSigmaS()*theParam.GetSigmaS()));
323   }                                               382   }
324   G4double Psy = (Pas + Ps > 0.0) ? Ps/(Pas+Ps << 383   G4double Psy = Ps/(Pas+Ps);
325                                                   384 
326   // Fission fractions Xsy and Xas formed in s    385   // Fission fractions Xsy and Xas formed in symmetric and asymmetric modes
327   G4double PPas = theParam.GetSigma1() + 2.0 *    386   G4double PPas = theParam.GetSigma1() + 2.0 * theParam.GetSigma2();
328   G4double PPsy = theParam.GetW() * theParam.G    387   G4double PPsy = theParam.GetW() * theParam.GetSigmaS();
329   G4double Xas = (PPas + PPsy > 0.0) ? PPas/(P << 388   G4double Xas = PPas / (PPas+PPsy);
330   G4double Xsy = 1.0 - Xas;                    << 389   G4double Xsy = PPsy / (PPas+PPsy);
331                                                   390 
332   // Average kinetic energy for symmetric and     391   // Average kinetic energy for symmetric and asymmetric components
333   G4double Eaverage = (0.1071*(Z*Z)/G4Pow::Get << 392   G4double Eaverage = 0.1071*MeV*(Z*Z)/G4Pow::GetInstance()->Z13(A) + 22.2*MeV;
                                                   >> 393 
334                                                   394 
335   // Compute maximal average kinetic energy of << 395   // Compute maximal average kinetic energy of fragments and Energy Dispersion (sqrt)
336   G4double TaverageAfMax;                         396   G4double TaverageAfMax;
337   G4double ESigma = 10*CLHEP::MeV;             << 397   G4double ESigma;
338   // Select randomly fission mode (symmetric o    398   // Select randomly fission mode (symmetric or asymmetric)
339   if (G4UniformRand() > Psy) { // Asymmetric M    399   if (G4UniformRand() > Psy) { // Asymmetric Mode
340     G4double A11 = theParam.GetA1()-0.7979*the    400     G4double A11 = theParam.GetA1()-0.7979*theParam.GetSigma1();
341     G4double A12 = theParam.GetA1()+0.7979*the    401     G4double A12 = theParam.GetA1()+0.7979*theParam.GetSigma1();
342     G4double A21 = theParam.GetA2()-0.7979*the    402     G4double A21 = theParam.GetA2()-0.7979*theParam.GetSigma2();
343     G4double A22 = theParam.GetA2()+0.7979*the    403     G4double A22 = theParam.GetA2()+0.7979*theParam.GetSigma2();
344     // scale factor                               404     // scale factor
345     G4double ScaleFactor = 0.5*theParam.GetSig << 405     G4double ScaleFactor = 0.5*theParam.GetSigma1()*(AsymmetricRatio(A,A11)+AsymmetricRatio(A,A12))+
346       (AsymmetricRatio(A,A11)+AsymmetricRatio( << 
347       theParam.GetSigma2()*(AsymmetricRatio(A,    406       theParam.GetSigma2()*(AsymmetricRatio(A,A21)+AsymmetricRatio(A,A22));
348     // Compute average kinetic energy for frag    407     // Compute average kinetic energy for fragment with AfMax
349     TaverageAfMax = (Eaverage + 12.5 * Xsy) *  << 408     TaverageAfMax = (Eaverage + 12.5 * Xsy) * (PPas/ScaleFactor) * AsymmetricRatio(A,AfMax);
350       AsymmetricRatio(A,G4double(AfMax));      << 409     ESigma = 10.0*MeV; // MeV
351                                                   410 
352   } else { // Symmetric Mode                      411   } else { // Symmetric Mode
353     G4double As0 = theParam.GetAs() + 0.7979*t    412     G4double As0 = theParam.GetAs() + 0.7979*theParam.GetSigmaS();
                                                   >> 413     // scale factor
                                                   >> 414     G4double ScaleFactor = theParam.GetW()*theParam.GetSigmaS()*SymmetricRatio(A,As0);
354     // Compute average kinetic energy for frag    415     // Compute average kinetic energy for fragment with AfMax
355     TaverageAfMax = (Eaverage - 12.5*CLHEP::Me << 416     TaverageAfMax = (Eaverage - 12.5*MeV*Xas) * (PPsy/ScaleFactor) * SymmetricRatio(A,AfMax);
356       *SymmetricRatio(A, G4double(AfMax))/Symm << 417     ESigma = 8.0*MeV;
357     ESigma = 8.0*CLHEP::MeV;                   << 
358   }                                               418   }
359                                                   419 
360   // Select randomly, in accordance with Gauss << 420 
361   // fragment kinetic energy                   << 421   // Select randomly, in accordance with Gaussian distribution, fragment kinetic energy
362   G4double KineticEnergy;                         422   G4double KineticEnergy;
363   G4int i = 0;                                    423   G4int i = 0;
364   do {                                            424   do {
365     KineticEnergy = G4RandGauss::shoot(Taverag << 425     KineticEnergy = G4RandGauss::shoot(TaverageAfMax,ESigma);
366     if (++i > 100) return Eaverage;            << 426     if (i++ > 100) return Eaverage;
367     // Loop checking, 05-Aug-2015, Vladimir Iv << 
368   } while (KineticEnergy < Eaverage-3.72*ESigm    427   } while (KineticEnergy < Eaverage-3.72*ESigma || 
369      KineticEnergy > Eaverage+3.72*ESigma ||      428      KineticEnergy > Eaverage+3.72*ESigma ||
370      KineticEnergy > Tmax);                       429      KineticEnergy > Tmax);
371                                                   430   
372   return KineticEnergy;                           431   return KineticEnergy;
373 }                                                 432 }
374                                                   433 
375 void G4CompetitiveFission::SetFissionBarrier(G << 434 G4double G4CompetitiveFission::AsymmetricRatio(G4int A, G4double A11)
                                                   >> 435 {
                                                   >> 436   const G4double B1 = 23.5;
                                                   >> 437   const G4double A00 = 134.0;
                                                   >> 438   return Ratio(G4double(A),A11,B1,A00);
                                                   >> 439 }
                                                   >> 440 
                                                   >> 441 G4double G4CompetitiveFission::SymmetricRatio(G4int A, G4double A11)
376 {                                                 442 {
377   if (myOwnFissionBarrier) delete theFissionBa << 443   const G4double B1 = 5.32;
378   theFissionBarrierPtr = aBarrier;             << 444   const G4double A00 = A/2.0;
379   myOwnFissionBarrier = false;                 << 445   return Ratio(G4double(A),A11,B1,A00);
380 }                                                 446 }
381                                                   447 
382 void                                           << 448 G4double G4CompetitiveFission::Ratio(G4double A, G4double A11,
383 G4CompetitiveFission::SetEmissionStrategy(G4VE << 449              G4double B1, G4double A00) 
384 {                                                 450 {
385   if (myOwnFissionProbability) delete theFissi << 451   if (A == 0.0) {
386   theFissionProbabilityPtr = aFissionProb;     << 452     throw G4HadronicException(__FILE__, __LINE__, 
387   myOwnFissionProbability = false;             << 453             "G4CompetitiveFission::Ratio: A == 0!");
                                                   >> 454   }
                                                   >> 455   if (A11 >= A/2.0 && A11 <= (A00+10.0)) {
                                                   >> 456     return 1.0-B1*((A11-A00)/A)*((A11-A00)/A);
                                                   >> 457   } else {
                                                   >> 458     return 1.0-B1*(10.0/A)*(10.0/A)-2.0*(10.0/A)*B1*((A11-A00-10.0)/A);
                                                   >> 459   }
388 }                                                 460 }
389                                                   461 
390 void                                           << 462 G4ThreeVector G4CompetitiveFission::IsotropicVector(const G4double Magnitude)
391 G4CompetitiveFission::SetLevelDensityParameter << 463   // Samples a isotropic random vectorwith a magnitud given by Magnitude.
392 {                                              << 464   // By default Magnitude = 1.0
393   if (myOwnLevelDensity) delete theLevelDensit << 465 {
394   theLevelDensityPtr = aLevelDensity;          << 466   G4double CosTheta = 1.0 - 2.0*G4UniformRand();
395   myOwnLevelDensity = false;                   << 467   G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
                                                   >> 468   G4double Phi = twopi*G4UniformRand();
                                                   >> 469   G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta,
                                                   >> 470            Magnitude*std::sin(Phi)*SinTheta,
                                                   >> 471            Magnitude*CosTheta);
                                                   >> 472   return Vector;
                                                   >> 473 }
                                                   >> 474 
                                                   >> 475 #ifdef debug
                                                   >> 476 void G4CompetitiveFission::CheckConservation(const G4Fragment & theInitialState,
                                                   >> 477                G4FragmentVector * Result) const
                                                   >> 478 {
                                                   >> 479     G4double ProductsEnergy =0;
                                                   >> 480     G4ThreeVector ProductsMomentum;
                                                   >> 481     G4int ProductsA = 0;
                                                   >> 482     G4int ProductsZ = 0;
                                                   >> 483     G4FragmentVector::iterator h;
                                                   >> 484     for (h = Result->begin(); h != Result->end(); h++) {
                                                   >> 485   G4LorentzVector tmp = (*h)->GetMomentum();
                                                   >> 486   ProductsEnergy += tmp.e();
                                                   >> 487   ProductsMomentum += tmp.vect();
                                                   >> 488   ProductsA += static_cast<G4int>((*h)->GetA());
                                                   >> 489   ProductsZ += static_cast<G4int>((*h)->GetZ());
                                                   >> 490     }
                                                   >> 491 
                                                   >> 492     if (ProductsA != theInitialState.GetA()) {
                                                   >> 493   G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl;
                                                   >> 494   G4cout << "G4CompetitiveFission.cc: Barionic Number Conservation test for fission fragments" 
                                                   >> 495          << G4endl; 
                                                   >> 496   G4cout << "Initial A = " << theInitialState.GetA() 
                                                   >> 497          << "   Fragments A = " << ProductsA << "   Diference --> " 
                                                   >> 498          << theInitialState.GetA() - ProductsA << G4endl;
                                                   >> 499     }
                                                   >> 500     if (ProductsZ != theInitialState.GetZ()) {
                                                   >> 501   G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl;
                                                   >> 502   G4cout << "G4CompetitiveFission.cc: Charge Conservation test for fission fragments" 
                                                   >> 503          << G4endl; 
                                                   >> 504   G4cout << "Initial Z = " << theInitialState.GetZ() 
                                                   >> 505          << "   Fragments Z = " << ProductsZ << "   Diference --> " 
                                                   >> 506          << theInitialState.GetZ() - ProductsZ << G4endl;
                                                   >> 507     }
                                                   >> 508     if (std::abs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) {
                                                   >> 509   G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl;
                                                   >> 510   G4cout << "G4CompetitiveFission.cc: Energy Conservation test for fission fragments" 
                                                   >> 511          << G4endl; 
                                                   >> 512   G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV"
                                                   >> 513          << "   Fragments E = " << ProductsEnergy/MeV  << " MeV   Diference --> " 
                                                   >> 514          << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl;
                                                   >> 515     } 
                                                   >> 516     if (std::abs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV || 
                                                   >> 517   std::abs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV ||
                                                   >> 518   std::abs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) {
                                                   >> 519   G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl;
                                                   >> 520   G4cout << "G4CompetitiveFission.cc: Momentum Conservation test for fission fragments" 
                                                   >> 521          << G4endl; 
                                                   >> 522   G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV"
                                                   >> 523          << "   Fragments P = " << ProductsMomentum  << " MeV   Diference --> " 
                                                   >> 524          << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl;
                                                   >> 525     }
                                                   >> 526     return;
396 }                                                 527 }
                                                   >> 528 #endif
                                                   >> 529 
                                                   >> 530 
                                                   >> 531 
397                                                   532 
398                                                   533