Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara (Oct 1998) 30 31 #ifndef G4CompetitiveFission_h 32 #define G4CompetitiveFission_h 1 33 34 #include "G4VEvaporationChannel.hh" 35 #include "G4Fragment.hh" 36 #include "G4VEmissionProbability.hh" 37 #include "G4FissionParameters.hh" 38 #include <CLHEP/Units/SystemOfUnits.h> 39 #include "G4Exp.hh" 40 41 class G4VFissionBarrier; 42 class G4VEmissionProbability; 43 class G4VLevelDensityParameter; 44 class G4PairingCorrection; 45 46 class G4CompetitiveFission : public G4VEvaporationChannel 47 { 48 public: 49 50 G4CompetitiveFission(); 51 ~G4CompetitiveFission() override; 52 53 void Initialise() override; 54 55 G4Fragment* EmittedFragment(G4Fragment* theNucleus) override; 56 57 G4double GetEmissionProbability(G4Fragment* theNucleus) override; 58 59 void SetFissionBarrier(G4VFissionBarrier * aBarrier); 60 61 void SetEmissionStrategy(G4VEmissionProbability * aFissionProb); 62 63 void SetLevelDensityParameter(G4VLevelDensityParameter * aLevelDensity); 64 65 inline G4double GetFissionBarrier(void) const; 66 67 inline G4double GetLevelDensityParameter(void) const; 68 69 inline G4double GetMaximalKineticEnergy(void) const; 70 71 G4CompetitiveFission(const G4CompetitiveFission &right) = delete; 72 const G4CompetitiveFission & operator=(const G4CompetitiveFission &right) = delete; 73 G4bool operator==(const G4CompetitiveFission &right) const = delete; 74 G4bool operator!=(const G4CompetitiveFission &right) const = delete; 75 76 private: 77 78 // Sample AtomicNumber of Fission products 79 G4int FissionAtomicNumber(G4int A); 80 81 G4double MassDistribution(G4double x, G4int A); 82 83 // Sample Charge of fission products 84 G4int FissionCharge(G4int A, G4int Z, G4double Af); 85 86 // Sample Kinetic energy of fission products 87 G4double FissionKineticEnergy(G4int A, G4int Z, 88 G4int Af1, G4int Zf1, 89 G4int Af2, G4int Zf2, 90 G4double U, G4double Tmax); 91 92 inline G4double Ratio(G4double A, G4double A11, 93 G4double B1, G4double A00) const; 94 95 inline G4double SymmetricRatio(G4int A, G4double A11) const; 96 97 inline G4double AsymmetricRatio(G4int A, G4double A11) const; 98 99 inline G4double LocalExp(G4double x) const; 100 101 // Maximal Kinetic Energy that can be carried by fragment 102 G4double maxKineticEnergy{0.0}; 103 G4double fissionBarrier{0.0}; 104 G4double fissionProbability{0.0}; 105 G4double fFactor{1.0}; 106 107 // For Fission barrier 108 G4VFissionBarrier* theFissionBarrierPtr; 109 110 // For Fission probability emission 111 G4VEmissionProbability* theFissionProbabilityPtr; 112 113 // For Level Density calculation 114 G4VLevelDensityParameter* theLevelDensityPtr; 115 G4PairingCorrection* pairingCorrection; 116 117 G4bool myOwnFissionProbability{true}; 118 G4bool myOwnFissionBarrier{true}; 119 G4bool myOwnLevelDensity{true}; 120 121 G4FissionParameters theParam; 122 123 G4int theSecID; // Creator model ID for the secondaries created by this model 124 G4bool isInitialised{false}; 125 }; 126 127 inline G4double G4CompetitiveFission::GetFissionBarrier(void) const 128 { 129 return fissionBarrier; 130 } 131 132 inline G4double G4CompetitiveFission::GetMaximalKineticEnergy(void) const 133 { 134 return maxKineticEnergy; 135 } 136 137 inline 138 G4double G4CompetitiveFission::Ratio(G4double A, G4double A11, 139 G4double B1, G4double A00) const 140 { 141 G4double res; 142 if (A11 >= A*0.5 && A11 <= (A00+10.0)) { 143 G4double x = (A11-A00)/A; 144 res = 1.0 - B1*x*x; 145 } else { 146 G4double x = 10.0/A; 147 res = 1.0 - B1*x*x - 2.0*x*B1*(A11-A00-10.0)/A; 148 } 149 return res; 150 } 151 152 inline 153 G4double G4CompetitiveFission::AsymmetricRatio(G4int A, G4double A11) const 154 { 155 return Ratio(G4double(A),A11,23.5,134.0); 156 } 157 158 inline 159 G4double G4CompetitiveFission::SymmetricRatio(G4int A, G4double A11) const 160 { 161 G4double A0 = G4double(A); 162 return Ratio(A0,A11,5.32,A0*0.5); 163 } 164 165 inline G4double G4CompetitiveFission::LocalExp(G4double x) const 166 { 167 return (std::abs(x) < 8.) ? G4Exp(-0.5*x*x) : 0.0; 168 } 169 170 #endif 171 172 173