Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/fission/src/G4CompetitiveFission.cc (Version 10.7.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // Hadronic Process: Nuclear De-excitations        27 // Hadronic Process: Nuclear De-excitations
 28 // by V. Lara (Oct 1998)                           28 // by V. Lara (Oct 1998)
 29 //                                                 29 //
 30 // J. M. Quesada (March 2009). Bugs fixed:         30 // J. M. Quesada (March 2009). Bugs fixed:
 31 //          - Full relativistic calculation (L     31 //          - Full relativistic calculation (Lorentz boosts)
 32 //          - Fission pairing energy is includ     32 //          - Fission pairing energy is included in fragment excitation energies
 33 // Now Energy and momentum are conserved in fi     33 // Now Energy and momentum are conserved in fission 
 34                                                    34 
 35 #include "G4CompetitiveFission.hh"                 35 #include "G4CompetitiveFission.hh"
 36 #include "G4PairingCorrection.hh"                  36 #include "G4PairingCorrection.hh"
 37 #include "G4ParticleMomentum.hh"                   37 #include "G4ParticleMomentum.hh"
 38 #include "G4NuclearLevelData.hh"                   38 #include "G4NuclearLevelData.hh"
 39 #include "G4VFissionBarrier.hh"                    39 #include "G4VFissionBarrier.hh"
 40 #include "G4FissionBarrier.hh"                     40 #include "G4FissionBarrier.hh"
 41 #include "G4FissionProbability.hh"                 41 #include "G4FissionProbability.hh"
 42 #include "G4VLevelDensityParameter.hh"             42 #include "G4VLevelDensityParameter.hh"
 43 #include "G4FissionLevelDensityParameter.hh"       43 #include "G4FissionLevelDensityParameter.hh"
 44 #include "G4Pow.hh"                                44 #include "G4Pow.hh"
 45 #include "Randomize.hh"                            45 #include "Randomize.hh"
 46 #include "G4RandomDirection.hh"                    46 #include "G4RandomDirection.hh"
 47 #include "G4PhysicalConstants.hh"                  47 #include "G4PhysicalConstants.hh"
 48 #include "G4PhysicsModelCatalog.hh"            << 
 49                                                    48 
 50 G4CompetitiveFission::G4CompetitiveFission() : <<  49 G4CompetitiveFission::G4CompetitiveFission() : G4VEvaporationChannel("fission")
 51 {                                                  50 {
 52   theFissionBarrierPtr = new G4FissionBarrier;     51   theFissionBarrierPtr = new G4FissionBarrier;
                                                   >>  52   myOwnFissionBarrier = true;
                                                   >>  53 
 53   theFissionProbabilityPtr = new G4FissionProb     54   theFissionProbabilityPtr = new G4FissionProbability;
                                                   >>  55   myOwnFissionProbability = true;
                                                   >>  56   
 54   theLevelDensityPtr = new G4FissionLevelDensi     57   theLevelDensityPtr = new G4FissionLevelDensityParameter;
                                                   >>  58   myOwnLevelDensity = true;
                                                   >>  59 
                                                   >>  60   maxKineticEnergy = fissionBarrier = fissionProbability = 0.0;
 55   pairingCorrection = G4NuclearLevelData::GetI     61   pairingCorrection = G4NuclearLevelData::GetInstance()->GetPairingCorrection();
 56   theSecID = G4PhysicsModelCatalog::GetModelID << 
 57 }                                                  62 }
 58                                                    63 
 59 G4CompetitiveFission::~G4CompetitiveFission()      64 G4CompetitiveFission::~G4CompetitiveFission()
 60 {                                                  65 {
 61   if (myOwnFissionBarrier) delete theFissionBa     66   if (myOwnFissionBarrier) delete theFissionBarrierPtr;
 62   if (myOwnFissionProbability) delete theFissi     67   if (myOwnFissionProbability) delete theFissionProbabilityPtr;
 63   if (myOwnLevelDensity) delete theLevelDensit     68   if (myOwnLevelDensity) delete theLevelDensityPtr;
 64 }                                                  69 }
 65                                                    70 
 66 void G4CompetitiveFission::Initialise()        << 
 67 {                                              << 
 68   if (!isInitialised) {                        << 
 69     isInitialised = true;                      << 
 70     G4VEvaporationChannel::Initialise();       << 
 71     if (OPTxs == 1) { fFactor = 0.5; }         << 
 72   }                                            << 
 73 }                                              << 
 74                                                << 
 75 G4double G4CompetitiveFission::GetEmissionProb     71 G4double G4CompetitiveFission::GetEmissionProbability(G4Fragment* fragment)
 76 {                                                  72 {
 77   if (!isInitialised) { Initialise(); }        << 
 78   G4int Z = fragment->GetZ_asInt();                73   G4int Z = fragment->GetZ_asInt();
 79   G4int A = fragment->GetA_asInt();                74   G4int A = fragment->GetA_asInt();
 80   fissionProbability = 0.0;                        75   fissionProbability = 0.0;
 81   // Saddle point excitation energy ---> A = 6     76   // Saddle point excitation energy ---> A = 65
 82   if (A >= 65 && Z > 16) {                         77   if (A >= 65 && Z > 16) {
 83     G4double exEnergy = fragment->GetExcitatio     78     G4double exEnergy = fragment->GetExcitationEnergy() - 
 84       pairingCorrection->GetFissionPairingCorr     79       pairingCorrection->GetFissionPairingCorrection(A, Z);
 85                                                    80   
 86     if (exEnergy > 0.0) {                          81     if (exEnergy > 0.0) {
 87       fissionBarrier = theFissionBarrierPtr->F     82       fissionBarrier = theFissionBarrierPtr->FissionBarrier(A, Z, exEnergy);
 88       maxKineticEnergy = exEnergy - fissionBar     83       maxKineticEnergy = exEnergy - fissionBarrier;
 89       fissionProbability =                         84       fissionProbability = 
 90   theFissionProbabilityPtr->EmissionProbabilit     85   theFissionProbabilityPtr->EmissionProbability(*fragment,
 91                   maxKineticEnergy);               86                   maxKineticEnergy);
 92     }                                              87     }
 93   }                                                88   }
 94   return fissionProbability*fFactor;           <<  89   return fissionProbability;
 95 }                                                  90 }
 96                                                    91 
 97 G4Fragment* G4CompetitiveFission::EmittedFragm     92 G4Fragment* G4CompetitiveFission::EmittedFragment(G4Fragment* theNucleus)
 98 {                                                  93 {
 99   G4Fragment * Fragment1 = nullptr;                94   G4Fragment * Fragment1 = nullptr; 
100   // Nucleus data                                  95   // Nucleus data
101   // Atomic number of nucleus                      96   // Atomic number of nucleus
102   G4int A = theNucleus->GetA_asInt();              97   G4int A = theNucleus->GetA_asInt();
103   // Charge of nucleus                             98   // Charge of nucleus
104   G4int Z = theNucleus->GetZ_asInt();              99   G4int Z = theNucleus->GetZ_asInt();
105   //   Excitation energy (in MeV)                 100   //   Excitation energy (in MeV)
106   G4double U = theNucleus->GetExcitationEnergy    101   G4double U = theNucleus->GetExcitationEnergy();
107   G4double pcorr = pairingCorrection->GetFissi    102   G4double pcorr = pairingCorrection->GetFissionPairingCorrection(A,Z);
108   if (U <= pcorr) { return Fragment1; }           103   if (U <= pcorr) { return Fragment1; }
109                                                   104 
110   // Atomic Mass of Nucleus (in MeV)              105   // Atomic Mass of Nucleus (in MeV)
111   G4double M = theNucleus->GetGroundStateMass(    106   G4double M = theNucleus->GetGroundStateMass();
112                                                   107 
113   // Nucleus Momentum                             108   // Nucleus Momentum
114   G4LorentzVector theNucleusMomentum = theNucl    109   G4LorentzVector theNucleusMomentum = theNucleus->GetMomentum();
115                                                   110 
116   // Calculate fission parameters                 111   // Calculate fission parameters
117   theParam.DefineParameters(A, Z, U-pcorr, fis    112   theParam.DefineParameters(A, Z, U-pcorr, fissionBarrier);
118                                                   113   
119   // First fragment                               114   // First fragment
120   G4int A1 = 0;                                   115   G4int A1 = 0;
121   G4int Z1 = 0;                                   116   G4int Z1 = 0;
122   G4double M1 = 0.0;                              117   G4double M1 = 0.0;
123                                                   118 
124   // Second fragment                              119   // Second fragment
125   G4int A2 = 0;                                   120   G4int A2 = 0;
126   G4int Z2 = 0;                                   121   G4int Z2 = 0;
127   G4double M2 = 0.0;                              122   G4double M2 = 0.0;
128                                                   123 
129   G4double FragmentsExcitationEnergy = 0.0;       124   G4double FragmentsExcitationEnergy = 0.0;
130   G4double FragmentsKineticEnergy = 0.0;          125   G4double FragmentsKineticEnergy = 0.0;
131                                                   126 
132   G4int Trials = 0;                               127   G4int Trials = 0;
133   do {                                            128   do {
134                                                   129 
135     // First fragment                             130     // First fragment 
136     A1 = FissionAtomicNumber(A);                  131     A1 = FissionAtomicNumber(A);
137     Z1 = FissionCharge(A, Z, A1);                 132     Z1 = FissionCharge(A, Z, A1);
138     M1 = G4NucleiProperties::GetNuclearMass(A1    133     M1 = G4NucleiProperties::GetNuclearMass(A1, Z1);
139                                                   134 
140     // Second Fragment                            135     // Second Fragment
141     A2 = A - A1;                                  136     A2 = A - A1;
142     Z2 = Z - Z1;                                  137     Z2 = Z - Z1;
143     if (A2 < 1 || Z2 < 0 || Z2 > A2) {            138     if (A2 < 1 || Z2 < 0 || Z2 > A2) {
144       FragmentsExcitationEnergy = -1.0;           139       FragmentsExcitationEnergy = -1.0;
145       continue;                                   140       continue;
146     }                                             141     }
147     M2 = G4NucleiProperties::GetNuclearMass(A2    142     M2 = G4NucleiProperties::GetNuclearMass(A2, Z2);
148     // Maximal Kinetic Energy (available energ    143     // Maximal Kinetic Energy (available energy for fragments)
149     G4double Tmax = M + U - M1 - M2 - pcorr;      144     G4double Tmax = M + U - M1 - M2 - pcorr;
150                                                   145 
151     // Check that fragment masses are less or     146     // Check that fragment masses are less or equal than total energy
152     if (Tmax < 0.0) {                             147     if (Tmax < 0.0) {
153       FragmentsExcitationEnergy = -1.0;           148       FragmentsExcitationEnergy = -1.0;
154       continue;                                   149       continue;
155     }                                             150     }
156                                                   151 
157     FragmentsKineticEnergy = FissionKineticEne    152     FragmentsKineticEnergy = FissionKineticEnergy( A , Z,
158                A1, Z1,                            153                A1, Z1,
159                A2, Z2,                            154                A2, Z2,
160                U , Tmax);                         155                U , Tmax);
161                                                   156     
162     // Excitation Energy                          157     // Excitation Energy
163     // FragmentsExcitationEnergy = Tmax - Frag    158     // FragmentsExcitationEnergy = Tmax - FragmentsKineticEnergy;
164     // JMQ 04/03/09 BUG FIXED: in order to ful    159     // JMQ 04/03/09 BUG FIXED: in order to fulfill energy conservation the
165     // fragments carry the fission pairing ene    160     // fragments carry the fission pairing energy in form of 
166     // excitation energy                          161     // excitation energy
167                                                   162 
168     FragmentsExcitationEnergy =                   163     FragmentsExcitationEnergy = 
169       Tmax - FragmentsKineticEnergy + pcorr;      164       Tmax - FragmentsKineticEnergy + pcorr;
170                                                   165 
171     // Loop checking, 05-Aug-2015, Vladimir Iv    166     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
172   } while (FragmentsExcitationEnergy < 0.0 &&     167   } while (FragmentsExcitationEnergy < 0.0 && ++Trials < 100);
173                                                   168     
174   if (FragmentsExcitationEnergy <= 0.0) {         169   if (FragmentsExcitationEnergy <= 0.0) { 
175     throw G4HadronicException(__FILE__, __LINE    170     throw G4HadronicException(__FILE__, __LINE__, 
176       "G4CompetitiveFission::BreakItUp: Excita    171       "G4CompetitiveFission::BreakItUp: Excitation energy for fragments < 0.0!");
177   }                                               172   }
178                                                   173 
179   // Fragment 1                                   174   // Fragment 1
180   M1 += FragmentsExcitationEnergy * A1/static_    175   M1 += FragmentsExcitationEnergy * A1/static_cast<G4double>(A);
181   // Fragment 2                                   176   // Fragment 2
182   M2 += FragmentsExcitationEnergy * A2/static_    177   M2 += FragmentsExcitationEnergy * A2/static_cast<G4double>(A);
183   // primary                                      178   // primary
184   M += U;                                         179   M += U;
185                                                   180 
186   G4double etot1 = ((M - M2)*(M + M2) + M1*M1)    181   G4double etot1 = ((M - M2)*(M + M2) + M1*M1)/(2*M);
187   G4ParticleMomentum Momentum1 =                  182   G4ParticleMomentum Momentum1 = 
188     std::sqrt((etot1 - M1)*(etot1+M1))*G4Rando    183     std::sqrt((etot1 - M1)*(etot1+M1))*G4RandomDirection();
189   G4LorentzVector FourMomentum1(Momentum1, eto    184   G4LorentzVector FourMomentum1(Momentum1, etot1);
190   FourMomentum1.boost(theNucleusMomentum.boost    185   FourMomentum1.boost(theNucleusMomentum.boostVector());
191                                                   186     
192   // Create Fragments                             187   // Create Fragments
193   Fragment1 = new G4Fragment( A1, Z1, FourMome    188   Fragment1 = new G4Fragment( A1, Z1, FourMomentum1);
194   if (Fragment1 != nullptr) { Fragment1->SetCr << 
195   theNucleusMomentum -= FourMomentum1;            189   theNucleusMomentum -= FourMomentum1;
196   theNucleus->SetZandA_asInt(Z2, A2);             190   theNucleus->SetZandA_asInt(Z2, A2);
197   theNucleus->SetMomentum(theNucleusMomentum);    191   theNucleus->SetMomentum(theNucleusMomentum);
198   theNucleus->SetCreatorModelID(theSecID);     << 
199   return Fragment1;                               192   return Fragment1;
200 }                                                 193 }
201                                                   194 
202 G4int                                             195 G4int 
203 G4CompetitiveFission::FissionAtomicNumber(G4in    196 G4CompetitiveFission::FissionAtomicNumber(G4int A)
204   // Calculates the atomic number of a fission    197   // Calculates the atomic number of a fission product
205 {                                                 198 {
206                                                   199 
207   // For Simplicity reading code                  200   // For Simplicity reading code
208   G4int A1 = theParam.GetA1();                    201   G4int A1 = theParam.GetA1();
209   G4int A2 = theParam.GetA2();                    202   G4int A2 = theParam.GetA2();
210   G4double As = theParam.GetAs();                 203   G4double As = theParam.GetAs();
211   G4double Sigma2 = theParam.GetSigma2();         204   G4double Sigma2 = theParam.GetSigma2();
212   G4double SigmaS = theParam.GetSigmaS();         205   G4double SigmaS = theParam.GetSigmaS();
213   G4double w = theParam.GetW();                   206   G4double w = theParam.GetW();
214                                                   207   
215   G4double C2A = A2 + 3.72*Sigma2;                208   G4double C2A = A2 + 3.72*Sigma2;
216   G4double C2S = As + 3.72*SigmaS;                209   G4double C2S = As + 3.72*SigmaS;
217                                                   210   
218   G4double C2 = 0.0;                              211   G4double C2 = 0.0;
219   if (w > 1000.0 )    { C2 = C2S; }               212   if (w > 1000.0 )    { C2 = C2S; }
220   else if (w < 0.001) { C2 = C2A; }               213   else if (w < 0.001) { C2 = C2A; }
221   else                { C2 =  std::max(C2A,C2S    214   else                { C2 =  std::max(C2A,C2S); }
222                                                   215 
223   G4double C1 = A-C2;                             216   G4double C1 = A-C2;
224   if (C1 < 30.0) {                                217   if (C1 < 30.0) {
225     C2 = A-30.0;                                  218     C2 = A-30.0;
226     C1 = 30.0;                                    219     C1 = 30.0;
227   }                                               220   }
228                                                   221 
229   G4double Am1 = (As + A1)*0.5;                   222   G4double Am1 = (As + A1)*0.5;
230   G4double Am2 = (A1 + A2)*0.5;                   223   G4double Am2 = (A1 + A2)*0.5;
231                                                   224 
232   // Get Mass distributions as sum of symmetri    225   // Get Mass distributions as sum of symmetric and asymmetric Gasussians
233   G4double Mass1 = MassDistribution(As,A);        226   G4double Mass1 = MassDistribution(As,A); 
234   G4double Mass2 = MassDistribution(Am1,A);       227   G4double Mass2 = MassDistribution(Am1,A); 
235   G4double Mass3 = MassDistribution(G4double(A    228   G4double Mass3 = MassDistribution(G4double(A1),A); 
236   G4double Mass4 = MassDistribution(Am2,A);       229   G4double Mass4 = MassDistribution(Am2,A); 
237   G4double Mass5 = MassDistribution(G4double(A    230   G4double Mass5 = MassDistribution(G4double(A2),A); 
238   // get maximal value among Mass1,...,Mass5      231   // get maximal value among Mass1,...,Mass5
239   G4double MassMax = Mass1;                       232   G4double MassMax = Mass1;
240   if (Mass2 > MassMax) { MassMax = Mass2; }       233   if (Mass2 > MassMax) { MassMax = Mass2; }
241   if (Mass3 > MassMax) { MassMax = Mass3; }       234   if (Mass3 > MassMax) { MassMax = Mass3; }
242   if (Mass4 > MassMax) { MassMax = Mass4; }       235   if (Mass4 > MassMax) { MassMax = Mass4; }
243   if (Mass5 > MassMax) { MassMax = Mass5; }       236   if (Mass5 > MassMax) { MassMax = Mass5; }
244                                                   237 
245   // Sample a fragment mass number, which lies    238   // Sample a fragment mass number, which lies between C1 and C2
246   G4double xm;                                    239   G4double xm;
247   G4double Pm;                                    240   G4double Pm;
248   do {                                            241   do {
249     xm = C1+G4UniformRand()*(C2-C1);              242     xm = C1+G4UniformRand()*(C2-C1);
250     Pm = MassDistribution(xm,A);                  243     Pm = MassDistribution(xm,A); 
251     // Loop checking, 05-Aug-2015, Vladimir Iv    244     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
252   } while (MassMax*G4UniformRand() > Pm);         245   } while (MassMax*G4UniformRand() > Pm);
253   G4int ires = G4lrint(xm);                       246   G4int ires = G4lrint(xm);
254                                                   247 
255   return ires;                                    248   return ires;
256 }                                                 249 }
257                                                   250 
258 G4double                                          251 G4double 
259 G4CompetitiveFission::MassDistribution(G4doubl    252 G4CompetitiveFission::MassDistribution(G4double x, G4int A)
260   // This method gives mass distribution F(x)     253   // This method gives mass distribution F(x) = F_{asym}(x)+w*F_{sym}(x)
261   // which consist of symmetric and asymmetric    254   // which consist of symmetric and asymmetric sum of gaussians components.
262 {                                                 255 {
263   G4double y0 = (x-theParam.GetAs())/theParam.    256   G4double y0 = (x-theParam.GetAs())/theParam.GetSigmaS();
264   G4double Xsym = LocalExp(y0);                   257   G4double Xsym = LocalExp(y0);
265                                                   258 
266   G4double y1 = (x - theParam.GetA1())/thePara    259   G4double y1 = (x - theParam.GetA1())/theParam.GetSigma1();
267   G4double y2 = (x - theParam.GetA2())/thePara    260   G4double y2 = (x - theParam.GetA2())/theParam.GetSigma2();
268   G4double z1 = (x - A + theParam.GetA1())/the    261   G4double z1 = (x - A + theParam.GetA1())/theParam.GetSigma1();
269   G4double z2 = (x - A + theParam.GetA2())/the    262   G4double z2 = (x - A + theParam.GetA2())/theParam.GetSigma2();
270   G4double Xasym = LocalExp(y1) + LocalExp(y2)    263   G4double Xasym = LocalExp(y1) + LocalExp(y2) 
271     + 0.5*(LocalExp(z1) + LocalExp(z2));          264     + 0.5*(LocalExp(z1) + LocalExp(z2));
272                                                   265 
273   G4double res;                                   266   G4double res;
274   G4double w = theParam.GetW();                   267   G4double w = theParam.GetW();
275   if (w > 1000)       { res = Xsym; }             268   if (w > 1000)       { res = Xsym; }
276   else if (w < 0.001) { res = Xasym; }            269   else if (w < 0.001) { res = Xasym; }
277   else                { res = w*Xsym+Xasym; }     270   else                { res = w*Xsym+Xasym; }
278   return res;                                     271   return res;
279 }                                                 272 }
280                                                   273 
281 G4int G4CompetitiveFission::FissionCharge(G4in    274 G4int G4CompetitiveFission::FissionCharge(G4int A, G4int Z, G4double Af)
282   // Calculates the charge of a fission produc    275   // Calculates the charge of a fission product for a given atomic number Af
283 {                                                 276 {
284   static const G4double sigma = 0.6;              277   static const G4double sigma = 0.6;
285   G4double DeltaZ = 0.0;                          278   G4double DeltaZ = 0.0;
286   if (Af >= 134.0)          { DeltaZ = -0.45;     279   if (Af >= 134.0)          { DeltaZ = -0.45; }  
287   else if (Af <= (A-134.0)) { DeltaZ = 0.45; }    280   else if (Af <= (A-134.0)) { DeltaZ = 0.45; }
288   else                      { DeltaZ = -0.45*(    281   else                      { DeltaZ = -0.45*(Af-A*0.5)/(134.0-A*0.5); }
289                                                   282 
290   G4double Zmean = (Af/A)*Z + DeltaZ;             283   G4double Zmean = (Af/A)*Z + DeltaZ;
291                                                   284  
292   G4double theZ;                                  285   G4double theZ;
293   do {                                            286   do {
294     theZ = G4RandGauss::shoot(Zmean,sigma);       287     theZ = G4RandGauss::shoot(Zmean,sigma);
295     // Loop checking, 05-Aug-2015, Vladimir Iv    288     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
296   } while (theZ  < 1.0 || theZ > (Z-1.0) || th    289   } while (theZ  < 1.0 || theZ > (Z-1.0) || theZ > Af);
297                                                   290   
298   return G4lrint(theZ);                           291   return G4lrint(theZ);
299 }                                                 292 }
300                                                   293 
301 G4double                                          294 G4double 
302 G4CompetitiveFission::FissionKineticEnergy(G4i    295 G4CompetitiveFission::FissionKineticEnergy(G4int A, G4int Z,
303              G4int Af1, G4int /*Zf1*/,            296              G4int Af1, G4int /*Zf1*/,
304              G4int Af2, G4int /*Zf2*/,            297              G4int Af2, G4int /*Zf2*/,
305              G4double /*U*/, G4double Tmax)       298              G4double /*U*/, G4double Tmax)
306   // Gives the kinetic energy of fission produ    299   // Gives the kinetic energy of fission products
307 {                                                 300 {
308   // Find maximal value of A for fragments        301   // Find maximal value of A for fragments
309   G4int AfMax = std::max(Af1,Af2);                302   G4int AfMax = std::max(Af1,Af2);
310                                                   303 
311   // Weights for symmetric and asymmetric comp    304   // Weights for symmetric and asymmetric components
312   G4double Pas = 0.0;                             305   G4double Pas = 0.0;
313   if (theParam.GetW() <= 1000) {                  306   if (theParam.GetW() <= 1000) { 
314     G4double x1 = (AfMax-theParam.GetA1())/the    307     G4double x1 = (AfMax-theParam.GetA1())/theParam.GetSigma1();
315     G4double x2 = (AfMax-theParam.GetA2())/the    308     G4double x2 = (AfMax-theParam.GetA2())/theParam.GetSigma2();
316     Pas = 0.5*LocalExp(x1) + LocalExp(x2);        309     Pas = 0.5*LocalExp(x1) + LocalExp(x2);
317   }                                               310   }
318                                                   311 
319   G4double Ps = 0.0;                              312   G4double Ps = 0.0;
320   if (theParam.GetW() >= 0.001) {                 313   if (theParam.GetW() >= 0.001) {
321     G4double xs = (AfMax-theParam.GetAs())/the    314     G4double xs = (AfMax-theParam.GetAs())/theParam.GetSigmaS();
322     Ps = theParam.GetW()*LocalExp(xs);            315     Ps = theParam.GetW()*LocalExp(xs);
323   }                                               316   }
324   G4double Psy = (Pas + Ps > 0.0) ? Ps/(Pas+Ps    317   G4double Psy = (Pas + Ps > 0.0) ? Ps/(Pas+Ps) : 0.5;
325                                                   318 
326   // Fission fractions Xsy and Xas formed in s    319   // Fission fractions Xsy and Xas formed in symmetric and asymmetric modes
327   G4double PPas = theParam.GetSigma1() + 2.0 *    320   G4double PPas = theParam.GetSigma1() + 2.0 * theParam.GetSigma2();
328   G4double PPsy = theParam.GetW() * theParam.G    321   G4double PPsy = theParam.GetW() * theParam.GetSigmaS();
329   G4double Xas = (PPas + PPsy > 0.0) ? PPas/(P    322   G4double Xas = (PPas + PPsy > 0.0) ? PPas/(PPas+PPsy) : 0.5;
330   G4double Xsy = 1.0 - Xas;                       323   G4double Xsy = 1.0 - Xas;
331                                                   324 
332   // Average kinetic energy for symmetric and     325   // Average kinetic energy for symmetric and asymmetric components
333   G4double Eaverage = (0.1071*(Z*Z)/G4Pow::Get    326   G4double Eaverage = (0.1071*(Z*Z)/G4Pow::GetInstance()->Z13(A) + 22.2)*CLHEP::MeV;
334                                                   327 
335   // Compute maximal average kinetic energy of    328   // Compute maximal average kinetic energy of fragments and Energy Dispersion 
336   G4double TaverageAfMax;                         329   G4double TaverageAfMax;
337   G4double ESigma = 10*CLHEP::MeV;                330   G4double ESigma = 10*CLHEP::MeV;
338   // Select randomly fission mode (symmetric o    331   // Select randomly fission mode (symmetric or asymmetric)
339   if (G4UniformRand() > Psy) { // Asymmetric M    332   if (G4UniformRand() > Psy) { // Asymmetric Mode
340     G4double A11 = theParam.GetA1()-0.7979*the    333     G4double A11 = theParam.GetA1()-0.7979*theParam.GetSigma1();
341     G4double A12 = theParam.GetA1()+0.7979*the    334     G4double A12 = theParam.GetA1()+0.7979*theParam.GetSigma1();
342     G4double A21 = theParam.GetA2()-0.7979*the    335     G4double A21 = theParam.GetA2()-0.7979*theParam.GetSigma2();
343     G4double A22 = theParam.GetA2()+0.7979*the    336     G4double A22 = theParam.GetA2()+0.7979*theParam.GetSigma2();
344     // scale factor                               337     // scale factor
345     G4double ScaleFactor = 0.5*theParam.GetSig    338     G4double ScaleFactor = 0.5*theParam.GetSigma1()*
346       (AsymmetricRatio(A,A11)+AsymmetricRatio(    339       (AsymmetricRatio(A,A11)+AsymmetricRatio(A,A12))+
347       theParam.GetSigma2()*(AsymmetricRatio(A,    340       theParam.GetSigma2()*(AsymmetricRatio(A,A21)+AsymmetricRatio(A,A22));
348     // Compute average kinetic energy for frag    341     // Compute average kinetic energy for fragment with AfMax
349     TaverageAfMax = (Eaverage + 12.5 * Xsy) *     342     TaverageAfMax = (Eaverage + 12.5 * Xsy) * (PPas/ScaleFactor) * 
350       AsymmetricRatio(A,G4double(AfMax));         343       AsymmetricRatio(A,G4double(AfMax));
351                                                   344 
352   } else { // Symmetric Mode                      345   } else { // Symmetric Mode
353     G4double As0 = theParam.GetAs() + 0.7979*t    346     G4double As0 = theParam.GetAs() + 0.7979*theParam.GetSigmaS();
354     // Compute average kinetic energy for frag    347     // Compute average kinetic energy for fragment with AfMax
355     TaverageAfMax = (Eaverage - 12.5*CLHEP::Me    348     TaverageAfMax = (Eaverage - 12.5*CLHEP::MeV*Xas)
356       *SymmetricRatio(A, G4double(AfMax))/Symm    349       *SymmetricRatio(A, G4double(AfMax))/SymmetricRatio(A, As0);
357     ESigma = 8.0*CLHEP::MeV;                      350     ESigma = 8.0*CLHEP::MeV;
358   }                                               351   }
359                                                   352 
360   // Select randomly, in accordance with Gauss    353   // Select randomly, in accordance with Gaussian distribution, 
361   // fragment kinetic energy                      354   // fragment kinetic energy
362   G4double KineticEnergy;                         355   G4double KineticEnergy;
363   G4int i = 0;                                    356   G4int i = 0;
364   do {                                            357   do {
365     KineticEnergy = G4RandGauss::shoot(Taverag    358     KineticEnergy = G4RandGauss::shoot(TaverageAfMax, ESigma);
366     if (++i > 100) return Eaverage;               359     if (++i > 100) return Eaverage;
367     // Loop checking, 05-Aug-2015, Vladimir Iv    360     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
368   } while (KineticEnergy < Eaverage-3.72*ESigm    361   } while (KineticEnergy < Eaverage-3.72*ESigma || 
369      KineticEnergy > Eaverage+3.72*ESigma ||      362      KineticEnergy > Eaverage+3.72*ESigma ||
370      KineticEnergy > Tmax);                       363      KineticEnergy > Tmax);
371                                                   364   
372   return KineticEnergy;                           365   return KineticEnergy;
373 }                                                 366 }
374                                                   367 
375 void G4CompetitiveFission::SetFissionBarrier(G    368 void G4CompetitiveFission::SetFissionBarrier(G4VFissionBarrier * aBarrier)
376 {                                                 369 {
377   if (myOwnFissionBarrier) delete theFissionBa    370   if (myOwnFissionBarrier) delete theFissionBarrierPtr;
378   theFissionBarrierPtr = aBarrier;                371   theFissionBarrierPtr = aBarrier;
379   myOwnFissionBarrier = false;                    372   myOwnFissionBarrier = false;
380 }                                                 373 }
381                                                   374 
382 void                                              375 void 
383 G4CompetitiveFission::SetEmissionStrategy(G4VE    376 G4CompetitiveFission::SetEmissionStrategy(G4VEmissionProbability * aFissionProb)
384 {                                                 377 {
385   if (myOwnFissionProbability) delete theFissi    378   if (myOwnFissionProbability) delete theFissionProbabilityPtr;
386   theFissionProbabilityPtr = aFissionProb;        379   theFissionProbabilityPtr = aFissionProb;
387   myOwnFissionProbability = false;                380   myOwnFissionProbability = false;
388 }                                                 381 }
389                                                   382 
390 void                                              383 void 
391 G4CompetitiveFission::SetLevelDensityParameter    384 G4CompetitiveFission::SetLevelDensityParameter(G4VLevelDensityParameter* aLevelDensity)
392 {                                                 385 { 
393   if (myOwnLevelDensity) delete theLevelDensit    386   if (myOwnLevelDensity) delete theLevelDensityPtr;
394   theLevelDensityPtr = aLevelDensity;             387   theLevelDensityPtr = aLevelDensity;
395   myOwnLevelDensity = false;                      388   myOwnLevelDensity = false;
396 }                                                 389 }
397                                                   390 
398                                                   391