Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4DiffuseElastic.cc,v 1.25 2009-09-22 16:21:46 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // 29 // 28 // Physics model class G4DiffuseElastic 30 // Physics model class G4DiffuseElastic 29 // 31 // 30 // 32 // 31 // G4 Model: optical diffuse elastic scatterin 33 // G4 Model: optical diffuse elastic scattering with 4-momentum balance 32 // 34 // 33 // 24-May-07 V. Grichine 35 // 24-May-07 V. Grichine 34 // 36 // 35 // 21.10.15 V. Grichine << 36 // Bug fixed in BuildAngleTable, i << 37 // angle bins at high energies > 5 << 38 // << 39 37 40 #include "G4DiffuseElastic.hh" 38 #include "G4DiffuseElastic.hh" 41 #include "G4ParticleTable.hh" 39 #include "G4ParticleTable.hh" 42 #include "G4ParticleDefinition.hh" 40 #include "G4ParticleDefinition.hh" 43 #include "G4IonTable.hh" 41 #include "G4IonTable.hh" 44 #include "G4NucleiProperties.hh" 42 #include "G4NucleiProperties.hh" 45 43 46 #include "Randomize.hh" 44 #include "Randomize.hh" 47 #include "G4Integrator.hh" 45 #include "G4Integrator.hh" 48 #include "globals.hh" 46 #include "globals.hh" 49 #include "G4PhysicalConstants.hh" << 50 #include "G4SystemOfUnits.hh" << 51 47 52 #include "G4Proton.hh" 48 #include "G4Proton.hh" 53 #include "G4Neutron.hh" 49 #include "G4Neutron.hh" 54 #include "G4Deuteron.hh" 50 #include "G4Deuteron.hh" 55 #include "G4Alpha.hh" 51 #include "G4Alpha.hh" 56 #include "G4PionPlus.hh" 52 #include "G4PionPlus.hh" 57 #include "G4PionMinus.hh" 53 #include "G4PionMinus.hh" 58 54 59 #include "G4Element.hh" 55 #include "G4Element.hh" 60 #include "G4ElementTable.hh" 56 #include "G4ElementTable.hh" 61 #include "G4NistManager.hh" << 62 #include "G4PhysicsTable.hh" 57 #include "G4PhysicsTable.hh" 63 #include "G4PhysicsLogVector.hh" 58 #include "G4PhysicsLogVector.hh" 64 #include "G4PhysicsFreeVector.hh" 59 #include "G4PhysicsFreeVector.hh" 65 60 66 #include "G4Exp.hh" << 67 << 68 #include "G4HadronicParameters.hh" << 69 << 70 ////////////////////////////////////////////// 61 ///////////////////////////////////////////////////////////////////////// 71 // 62 // 72 // Test Constructor. Just to check xsc 63 // Test Constructor. Just to check xsc 73 64 74 65 75 G4DiffuseElastic::G4DiffuseElastic() 66 G4DiffuseElastic::G4DiffuseElastic() 76 : G4HadronElastic("DiffuseElastic"), fPartic 67 : G4HadronElastic("DiffuseElastic"), fParticle(0) 77 { 68 { 78 SetMinEnergy( 0.01*MeV ); << 69 SetMinEnergy( 0.01*GeV ); 79 SetMaxEnergy( G4HadronicParameters::Instance << 70 SetMaxEnergy( 1.*TeV ); 80 << 71 verboseLevel = 0; 81 verboseLevel = 0; << 82 lowEnergyRecoilLimit = 100.*keV; 72 lowEnergyRecoilLimit = 100.*keV; 83 lowEnergyLimitQ = 0.0*GeV; << 73 lowEnergyLimitQ = 0.0*GeV; 84 lowEnergyLimitHE = 0.0*GeV; << 74 lowEnergyLimitHE = 0.0*GeV; 85 lowestEnergyLimit = 0.0*keV; << 75 lowestEnergyLimit= 0.0*keV; 86 plabLowLimit = 20.0*MeV; << 76 plabLowLimit = 20.0*MeV; 87 << 77 88 theProton = G4Proton::Proton(); << 78 theProton = G4Proton::Proton(); 89 theNeutron = G4Neutron::Neutron(); << 79 theNeutron = G4Neutron::Neutron(); 90 theDeuteron = G4Deuteron::Deuteron(); << 80 theDeuteron = G4Deuteron::Deuteron(); 91 theAlpha = G4Alpha::Alpha(); << 81 theAlpha = G4Alpha::Alpha(); 92 thePionPlus = G4PionPlus::PionPlus(); << 82 thePionPlus = G4PionPlus::PionPlus(); 93 thePionMinus = G4PionMinus::PionMinus(); << 83 thePionMinus= G4PionMinus::PionMinus(); 94 84 95 fEnergyBin = 300; // Increased from the ori << 85 fEnergyBin = 200; 96 fAngleBin = 200; 86 fAngleBin = 200; 97 87 98 fEnergyVector = new G4PhysicsLogVector( the 88 fEnergyVector = new G4PhysicsLogVector( theMinEnergy, theMaxEnergy, fEnergyBin ); 99 << 100 fAngleTable = 0; 89 fAngleTable = 0; 101 90 102 fParticle = 0; << 91 fParticle = 0; 103 fWaveVector = 0.; << 92 fWaveVector = 0.; 104 fAtomicWeight = 0.; << 93 fAtomicWeight = 0.; 105 fAtomicNumber = 0.; << 94 fAtomicNumber = 0.; 106 fNuclearRadius = 0.; 95 fNuclearRadius = 0.; 107 fBeta = 0.; << 96 fBeta = 0.; 108 fZommerfeld = 0.; << 97 fZommerfeld = 0.; 109 fAm = 0.; 98 fAm = 0.; 110 fAddCoulomb = false; 99 fAddCoulomb = false; 111 } 100 } 112 101 113 ////////////////////////////////////////////// 102 ////////////////////////////////////////////////////////////////////////////// 114 // 103 // 115 // Destructor 104 // Destructor 116 105 117 G4DiffuseElastic::~G4DiffuseElastic() 106 G4DiffuseElastic::~G4DiffuseElastic() 118 { 107 { 119 if ( fEnergyVector ) << 108 if(fEnergyVector) delete fEnergyVector; 120 { << 121 delete fEnergyVector; << 122 fEnergyVector = 0; << 123 } << 124 for ( std::vector<G4PhysicsTable*>::iterator << 125 it != fAngleBank.end(); ++it ) << 126 { << 127 if ( (*it) ) (*it)->clearAndDestroy(); << 128 109 129 delete *it; << 110 if( fAngleTable ) 130 *it = 0; << 111 { >> 112 fAngleTable->clearAndDestroy(); >> 113 delete fAngleTable ; 131 } 114 } 132 fAngleTable = 0; << 133 } 115 } 134 116 135 ////////////////////////////////////////////// 117 ////////////////////////////////////////////////////////////////////////////// 136 // 118 // 137 // Initialisation for given particle using ele 119 // Initialisation for given particle using element table of application 138 120 139 void G4DiffuseElastic::Initialise() 121 void G4DiffuseElastic::Initialise() 140 { 122 { 141 123 142 // fEnergyVector = new G4PhysicsLogVector( t 124 // fEnergyVector = new G4PhysicsLogVector( theMinEnergy, theMaxEnergy, fEnergyBin ); 143 125 144 const G4ElementTable* theElementTable = G4El 126 const G4ElementTable* theElementTable = G4Element::GetElementTable(); 145 127 146 std::size_t jEl, numOfEl = G4Element::GetNum << 128 size_t jEl, numOfEl = G4Element::GetNumberOfElements(); 147 129 148 for( jEl = 0; jEl < numOfEl; ++jEl) // appli << 130 for(jEl = 0 ; jEl < numOfEl; ++jEl) // application element loop 149 { 131 { 150 fAtomicNumber = (*theElementTable)[jEl]->G 132 fAtomicNumber = (*theElementTable)[jEl]->GetZ(); // atomic number 151 fAtomicWeight = G4NistManager::Instance()- << 133 fAtomicWeight = (*theElementTable)[jEl]->GetN(); // number of nucleons 152 fNuclearRadius = CalculateNuclearRad(fAtom 134 fNuclearRadius = CalculateNuclearRad(fAtomicWeight); 153 135 154 if( verboseLevel > 0 ) << 136 if(verboseLevel > 0) 155 { 137 { 156 G4cout<<"G4DiffuseElastic::Initialise() 138 G4cout<<"G4DiffuseElastic::Initialise() the element: " 157 <<(*theElementTable)[jEl]->GetName()<<G4 139 <<(*theElementTable)[jEl]->GetName()<<G4endl; 158 } 140 } 159 fElementNumberVector.push_back(fAtomicNumb 141 fElementNumberVector.push_back(fAtomicNumber); 160 fElementNameVector.push_back((*theElementT 142 fElementNameVector.push_back((*theElementTable)[jEl]->GetName()); 161 143 162 BuildAngleTable(); 144 BuildAngleTable(); 163 fAngleBank.push_back(fAngleTable); 145 fAngleBank.push_back(fAngleTable); 164 } 146 } 165 return; 147 return; 166 } 148 } 167 149 168 ////////////////////////////////////////////// 150 //////////////////////////////////////////////////////////////////////////// 169 // 151 // 170 // return differential elastic cross section d 152 // return differential elastic cross section d(sigma)/d(omega) 171 153 172 G4double 154 G4double 173 G4DiffuseElastic::GetDiffuseElasticXsc( const 155 G4DiffuseElastic::GetDiffuseElasticXsc( const G4ParticleDefinition* particle, 174 G4doub 156 G4double theta, 175 G4double momentum, 157 G4double momentum, 176 G4doub 158 G4double A ) 177 { 159 { 178 fParticle = particle; 160 fParticle = particle; 179 fWaveVector = momentum/hbarc; 161 fWaveVector = momentum/hbarc; 180 fAtomicWeight = A; 162 fAtomicWeight = A; 181 fAddCoulomb = false; 163 fAddCoulomb = false; 182 fNuclearRadius = CalculateNuclearRad(A); 164 fNuclearRadius = CalculateNuclearRad(A); 183 165 184 G4double sigma = fNuclearRadius*fNuclearRadi 166 G4double sigma = fNuclearRadius*fNuclearRadius*GetDiffElasticProb(theta); 185 167 186 return sigma; 168 return sigma; 187 } 169 } 188 170 189 ////////////////////////////////////////////// 171 //////////////////////////////////////////////////////////////////////////// 190 // 172 // 191 // return invariant differential elastic cross 173 // return invariant differential elastic cross section d(sigma)/d(tMand) 192 174 193 G4double 175 G4double 194 G4DiffuseElastic::GetInvElasticXsc( const G4Pa 176 G4DiffuseElastic::GetInvElasticXsc( const G4ParticleDefinition* particle, 195 G4doub 177 G4double tMand, 196 G4double plab, 178 G4double plab, 197 G4doub 179 G4double A, G4double Z ) 198 { 180 { 199 G4double m1 = particle->GetPDGMass(); 181 G4double m1 = particle->GetPDGMass(); 200 G4LorentzVector lv1(0.,0.,plab,std::sqrt(pla 182 G4LorentzVector lv1(0.,0.,plab,std::sqrt(plab*plab+m1*m1)); 201 183 202 G4int iZ = static_cast<G4int>(Z+0.5); 184 G4int iZ = static_cast<G4int>(Z+0.5); 203 G4int iA = static_cast<G4int>(A+0.5); 185 G4int iA = static_cast<G4int>(A+0.5); 204 G4ParticleDefinition * theDef = 0; 186 G4ParticleDefinition * theDef = 0; 205 187 206 if (iZ == 1 && iA == 1) theDef = thePro 188 if (iZ == 1 && iA == 1) theDef = theProton; 207 else if (iZ == 1 && iA == 2) theDef = theDeu 189 else if (iZ == 1 && iA == 2) theDef = theDeuteron; 208 else if (iZ == 1 && iA == 3) theDef = G4Trit 190 else if (iZ == 1 && iA == 3) theDef = G4Triton::Triton(); 209 else if (iZ == 2 && iA == 3) theDef = G4He3: 191 else if (iZ == 2 && iA == 3) theDef = G4He3::He3(); 210 else if (iZ == 2 && iA == 4) theDef = theAlp 192 else if (iZ == 2 && iA == 4) theDef = theAlpha; 211 else theDef = G4ParticleTable::GetParticleTa << 193 else theDef = G4ParticleTable::GetParticleTable()->FindIon(iZ,iA,0,iZ); 212 194 213 G4double tmass = theDef->GetPDGMass(); 195 G4double tmass = theDef->GetPDGMass(); 214 196 215 G4LorentzVector lv(0.0,0.0,0.0,tmass); 197 G4LorentzVector lv(0.0,0.0,0.0,tmass); 216 lv += lv1; 198 lv += lv1; 217 199 218 G4ThreeVector bst = lv.boostVector(); 200 G4ThreeVector bst = lv.boostVector(); 219 lv1.boost(-bst); 201 lv1.boost(-bst); 220 202 221 G4ThreeVector p1 = lv1.vect(); 203 G4ThreeVector p1 = lv1.vect(); 222 G4double ptot = p1.mag(); 204 G4double ptot = p1.mag(); 223 G4double ptot2 = ptot*ptot; 205 G4double ptot2 = ptot*ptot; 224 G4double cost = 1 - 0.5*std::fabs(tMand)/pto 206 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2; 225 207 226 if( cost >= 1.0 ) cost = 1.0; 208 if( cost >= 1.0 ) cost = 1.0; 227 else if( cost <= -1.0) cost = -1.0; 209 else if( cost <= -1.0) cost = -1.0; 228 210 229 G4double thetaCMS = std::acos(cost); 211 G4double thetaCMS = std::acos(cost); 230 212 231 G4double sigma = GetDiffuseElasticXsc( parti 213 G4double sigma = GetDiffuseElasticXsc( particle, thetaCMS, ptot, A); 232 214 233 sigma *= pi/ptot2; 215 sigma *= pi/ptot2; 234 216 235 return sigma; 217 return sigma; 236 } 218 } 237 219 238 ////////////////////////////////////////////// 220 //////////////////////////////////////////////////////////////////////////// 239 // 221 // 240 // return differential elastic cross section d 222 // return differential elastic cross section d(sigma)/d(omega) with Coulomb 241 // correction 223 // correction 242 224 243 G4double 225 G4double 244 G4DiffuseElastic::GetDiffuseElasticSumXsc( con 226 G4DiffuseElastic::GetDiffuseElasticSumXsc( const G4ParticleDefinition* particle, 245 G4doub 227 G4double theta, 246 G4double momentum, 228 G4double momentum, 247 G4doub 229 G4double A, G4double Z ) 248 { 230 { 249 fParticle = particle; 231 fParticle = particle; 250 fWaveVector = momentum/hbarc; 232 fWaveVector = momentum/hbarc; 251 fAtomicWeight = A; 233 fAtomicWeight = A; 252 fAtomicNumber = Z; 234 fAtomicNumber = Z; 253 fNuclearRadius = CalculateNuclearRad(A); 235 fNuclearRadius = CalculateNuclearRad(A); 254 fAddCoulomb = false; 236 fAddCoulomb = false; 255 237 256 G4double z = particle->GetPDGCharge(); 238 G4double z = particle->GetPDGCharge(); 257 239 258 G4double kRt = fWaveVector*fNuclearRadius* 240 G4double kRt = fWaveVector*fNuclearRadius*theta; 259 G4double kRtC = 1.9; 241 G4double kRtC = 1.9; 260 242 261 if( z && (kRt > kRtC) ) 243 if( z && (kRt > kRtC) ) 262 { 244 { 263 fAddCoulomb = true; 245 fAddCoulomb = true; 264 fBeta = CalculateParticleBeta( parti 246 fBeta = CalculateParticleBeta( particle, momentum); 265 fZommerfeld = CalculateZommerfeld( fBeta, 247 fZommerfeld = CalculateZommerfeld( fBeta, z, fAtomicNumber); 266 fAm = CalculateAm( momentum, fZomm 248 fAm = CalculateAm( momentum, fZommerfeld, fAtomicNumber); 267 } 249 } 268 G4double sigma = fNuclearRadius*fNuclearRadi 250 G4double sigma = fNuclearRadius*fNuclearRadius*GetDiffElasticSumProb(theta); 269 251 270 return sigma; 252 return sigma; 271 } 253 } 272 254 273 ////////////////////////////////////////////// 255 //////////////////////////////////////////////////////////////////////////// 274 // 256 // 275 // return invariant differential elastic cross 257 // return invariant differential elastic cross section d(sigma)/d(tMand) with Coulomb 276 // correction 258 // correction 277 259 278 G4double 260 G4double 279 G4DiffuseElastic::GetInvElasticSumXsc( const G 261 G4DiffuseElastic::GetInvElasticSumXsc( const G4ParticleDefinition* particle, 280 G4doub 262 G4double tMand, 281 G4double plab, 263 G4double plab, 282 G4doub 264 G4double A, G4double Z ) 283 { 265 { 284 G4double m1 = particle->GetPDGMass(); 266 G4double m1 = particle->GetPDGMass(); 285 267 286 G4LorentzVector lv1(0.,0.,plab,std::sqrt(pla 268 G4LorentzVector lv1(0.,0.,plab,std::sqrt(plab*plab+m1*m1)); 287 269 288 G4int iZ = static_cast<G4int>(Z+0.5); 270 G4int iZ = static_cast<G4int>(Z+0.5); 289 G4int iA = static_cast<G4int>(A+0.5); 271 G4int iA = static_cast<G4int>(A+0.5); 290 272 291 G4ParticleDefinition* theDef = 0; 273 G4ParticleDefinition* theDef = 0; 292 274 293 if (iZ == 1 && iA == 1) theDef = thePro 275 if (iZ == 1 && iA == 1) theDef = theProton; 294 else if (iZ == 1 && iA == 2) theDef = theDeu 276 else if (iZ == 1 && iA == 2) theDef = theDeuteron; 295 else if (iZ == 1 && iA == 3) theDef = G4Trit 277 else if (iZ == 1 && iA == 3) theDef = G4Triton::Triton(); 296 else if (iZ == 2 && iA == 3) theDef = G4He3: 278 else if (iZ == 2 && iA == 3) theDef = G4He3::He3(); 297 else if (iZ == 2 && iA == 4) theDef = theAlp 279 else if (iZ == 2 && iA == 4) theDef = theAlpha; 298 else theDef = G4ParticleTable::GetParticleTa << 280 else theDef = G4ParticleTable::GetParticleTable()->FindIon(iZ,iA,0,iZ); 299 281 300 G4double tmass = theDef->GetPDGMass(); 282 G4double tmass = theDef->GetPDGMass(); 301 283 302 G4LorentzVector lv(0.0,0.0,0.0,tmass); 284 G4LorentzVector lv(0.0,0.0,0.0,tmass); 303 lv += lv1; 285 lv += lv1; 304 286 305 G4ThreeVector bst = lv.boostVector(); 287 G4ThreeVector bst = lv.boostVector(); 306 lv1.boost(-bst); 288 lv1.boost(-bst); 307 289 308 G4ThreeVector p1 = lv1.vect(); 290 G4ThreeVector p1 = lv1.vect(); 309 G4double ptot = p1.mag(); 291 G4double ptot = p1.mag(); 310 G4double ptot2 = ptot*ptot; 292 G4double ptot2 = ptot*ptot; 311 G4double cost = 1 - 0.5*std::fabs(tMand)/ 293 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2; 312 294 313 if( cost >= 1.0 ) cost = 1.0; 295 if( cost >= 1.0 ) cost = 1.0; 314 else if( cost <= -1.0) cost = -1.0; 296 else if( cost <= -1.0) cost = -1.0; 315 297 316 G4double thetaCMS = std::acos(cost); 298 G4double thetaCMS = std::acos(cost); 317 299 318 G4double sigma = GetDiffuseElasticSumXsc( pa 300 G4double sigma = GetDiffuseElasticSumXsc( particle, thetaCMS, ptot, A, Z ); 319 301 320 sigma *= pi/ptot2; 302 sigma *= pi/ptot2; 321 303 322 return sigma; 304 return sigma; 323 } 305 } 324 306 325 ////////////////////////////////////////////// 307 //////////////////////////////////////////////////////////////////////////// 326 // 308 // 327 // return invariant differential elastic cross 309 // return invariant differential elastic cross section d(sigma)/d(tMand) with Coulomb 328 // correction 310 // correction 329 311 330 G4double 312 G4double 331 G4DiffuseElastic::GetInvCoulombElasticXsc( con 313 G4DiffuseElastic::GetInvCoulombElasticXsc( const G4ParticleDefinition* particle, 332 G4doub 314 G4double tMand, 333 G4double plab, 315 G4double plab, 334 G4doub 316 G4double A, G4double Z ) 335 { 317 { 336 G4double m1 = particle->GetPDGMass(); 318 G4double m1 = particle->GetPDGMass(); 337 G4LorentzVector lv1(0.,0.,plab,std::sqrt(pla 319 G4LorentzVector lv1(0.,0.,plab,std::sqrt(plab*plab+m1*m1)); 338 320 339 G4int iZ = static_cast<G4int>(Z+0.5); 321 G4int iZ = static_cast<G4int>(Z+0.5); 340 G4int iA = static_cast<G4int>(A+0.5); 322 G4int iA = static_cast<G4int>(A+0.5); 341 G4ParticleDefinition * theDef = 0; 323 G4ParticleDefinition * theDef = 0; 342 324 343 if (iZ == 1 && iA == 1) theDef = thePro 325 if (iZ == 1 && iA == 1) theDef = theProton; 344 else if (iZ == 1 && iA == 2) theDef = theDeu 326 else if (iZ == 1 && iA == 2) theDef = theDeuteron; 345 else if (iZ == 1 && iA == 3) theDef = G4Trit 327 else if (iZ == 1 && iA == 3) theDef = G4Triton::Triton(); 346 else if (iZ == 2 && iA == 3) theDef = G4He3: 328 else if (iZ == 2 && iA == 3) theDef = G4He3::He3(); 347 else if (iZ == 2 && iA == 4) theDef = theAlp 329 else if (iZ == 2 && iA == 4) theDef = theAlpha; 348 else theDef = G4ParticleTable::GetParticleTa << 330 else theDef = G4ParticleTable::GetParticleTable()->FindIon(iZ,iA,0,iZ); 349 331 350 G4double tmass = theDef->GetPDGMass(); 332 G4double tmass = theDef->GetPDGMass(); 351 333 352 G4LorentzVector lv(0.0,0.0,0.0,tmass); 334 G4LorentzVector lv(0.0,0.0,0.0,tmass); 353 lv += lv1; 335 lv += lv1; 354 336 355 G4ThreeVector bst = lv.boostVector(); 337 G4ThreeVector bst = lv.boostVector(); 356 lv1.boost(-bst); 338 lv1.boost(-bst); 357 339 358 G4ThreeVector p1 = lv1.vect(); 340 G4ThreeVector p1 = lv1.vect(); 359 G4double ptot = p1.mag(); 341 G4double ptot = p1.mag(); 360 G4double ptot2 = ptot*ptot; 342 G4double ptot2 = ptot*ptot; 361 G4double cost = 1 - 0.5*std::fabs(tMand)/pto 343 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2; 362 344 363 if( cost >= 1.0 ) cost = 1.0; 345 if( cost >= 1.0 ) cost = 1.0; 364 else if( cost <= -1.0) cost = -1.0; 346 else if( cost <= -1.0) cost = -1.0; 365 347 366 G4double thetaCMS = std::acos(cost); 348 G4double thetaCMS = std::acos(cost); 367 349 368 G4double sigma = GetCoulombElasticXsc( parti 350 G4double sigma = GetCoulombElasticXsc( particle, thetaCMS, ptot, Z ); 369 351 370 sigma *= pi/ptot2; 352 sigma *= pi/ptot2; 371 353 372 return sigma; 354 return sigma; 373 } 355 } 374 356 375 ////////////////////////////////////////////// 357 //////////////////////////////////////////////////////////////////////////// 376 // 358 // 377 // return differential elastic probability d(p 359 // return differential elastic probability d(probability)/d(omega) 378 360 379 G4double 361 G4double 380 G4DiffuseElastic::GetDiffElasticProb( // G4Par 362 G4DiffuseElastic::GetDiffElasticProb( // G4ParticleDefinition* particle, 381 G4doub 363 G4double theta 382 // G4double momentum, 364 // G4double momentum, 383 // G4double A 365 // G4double A 384 ) 366 ) 385 { 367 { 386 G4double sigma, bzero, bzero2, bonebyarg, bo 368 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2; 387 G4double delta, diffuse, gamma; 369 G4double delta, diffuse, gamma; 388 G4double e1, e2, bone, bone2; 370 G4double e1, e2, bone, bone2; 389 371 390 // G4double wavek = momentum/hbarc; // wave 372 // G4double wavek = momentum/hbarc; // wave vector 391 // G4double r0 = 1.08*fermi; 373 // G4double r0 = 1.08*fermi; 392 // G4double rad = r0*G4Pow::GetInstance()- << 374 // G4double rad = r0*std::pow(A, 1./3.); >> 375 >> 376 G4double kr = fWaveVector*fNuclearRadius; // wavek*rad; >> 377 G4double kr2 = kr*kr; >> 378 G4double krt = kr*theta; >> 379 >> 380 bzero = BesselJzero(krt); >> 381 bzero2 = bzero*bzero; >> 382 bone = BesselJone(krt); >> 383 bone2 = bone*bone; >> 384 bonebyarg = BesselOneByArg(krt); >> 385 bonebyarg2 = bonebyarg*bonebyarg; 393 386 394 if (fParticle == theProton) 387 if (fParticle == theProton) 395 { 388 { 396 diffuse = 0.63*fermi; 389 diffuse = 0.63*fermi; 397 gamma = 0.3*fermi; 390 gamma = 0.3*fermi; 398 delta = 0.1*fermi*fermi; 391 delta = 0.1*fermi*fermi; 399 e1 = 0.3*fermi; 392 e1 = 0.3*fermi; 400 e2 = 0.35*fermi; 393 e2 = 0.35*fermi; 401 } 394 } 402 else if (fParticle == theNeutron) << 403 { << 404 diffuse = 0.63*fermi; // 1.63*fermi; // << 405 G4double k0 = 1*GeV/hbarc; << 406 diffuse *= k0/fWaveVector; << 407 << 408 gamma = 0.3*fermi; << 409 delta = 0.1*fermi*fermi; << 410 e1 = 0.3*fermi; << 411 e2 = 0.35*fermi; << 412 } << 413 else // as proton, if were not defined 395 else // as proton, if were not defined 414 { 396 { 415 diffuse = 0.63*fermi; 397 diffuse = 0.63*fermi; 416 gamma = 0.3*fermi; 398 gamma = 0.3*fermi; 417 delta = 0.1*fermi*fermi; 399 delta = 0.1*fermi*fermi; 418 e1 = 0.3*fermi; 400 e1 = 0.3*fermi; 419 e2 = 0.35*fermi; 401 e2 = 0.35*fermi; 420 } 402 } 421 G4double kr = fWaveVector*fNuclearRadius; << 422 G4double kr2 = kr*kr; << 423 G4double krt = kr*theta; << 424 << 425 bzero = BesselJzero(krt); << 426 bzero2 = bzero*bzero; << 427 bone = BesselJone(krt); << 428 bone2 = bone*bone; << 429 bonebyarg = BesselOneByArg(krt); << 430 bonebyarg2 = bonebyarg*bonebyarg; << 431 << 432 G4double lambda = 15.; // 15 ok 403 G4double lambda = 15.; // 15 ok 433 404 434 // G4double kgamma = fWaveVector*gamma; << 405 // G4double kg = fWaveVector*gamma; // wavek*delta; 435 406 436 G4double kgamma = lambda*(1.-G4Exp(-fWave << 407 G4double kg = lambda*(1.-std::exp(-fWaveVector*gamma/lambda)); // wavek*delta; 437 G4double kgamma2 = kgamma*kgamma; << 408 G4double kg2 = kg*kg; 438 409 439 // G4double dk2t = delta*fWaveVector*fWaveV 410 // G4double dk2t = delta*fWaveVector*fWaveVector*theta; // delta*wavek*wavek*theta; 440 // G4double dk2t2 = dk2t*dk2t; 411 // G4double dk2t2 = dk2t*dk2t; 441 // G4double pikdt = pi*fWaveVector*diffuse*t 412 // G4double pikdt = pi*fWaveVector*diffuse*theta;// pi*wavek*diffuse*theta; 442 413 443 G4double pikdt = lambda*(1.-G4Exp(-pi*fWa << 414 G4double pikdt = lambda*(1.-std::exp(-pi*fWaveVector*diffuse*theta/lambda)); // wavek*delta; 444 415 445 damp = DampFactor(pikdt); 416 damp = DampFactor(pikdt); 446 damp2 = damp*damp; 417 damp2 = damp*damp; 447 418 448 G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector 419 G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector; 449 G4double e2dk3t = -2.*e2*delta*fWaveVector* 420 G4double e2dk3t = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta; 450 421 451 422 452 sigma = kgamma2; << 423 sigma = kg2; 453 // sigma += dk2t2; 424 // sigma += dk2t2; 454 sigma *= bzero2; 425 sigma *= bzero2; 455 sigma += mode2k2*bone2 + e2dk3t*bzero*bone; 426 sigma += mode2k2*bone2 + e2dk3t*bzero*bone; 456 sigma += kr2*bonebyarg2; 427 sigma += kr2*bonebyarg2; 457 sigma *= damp2; // *rad*rad; 428 sigma *= damp2; // *rad*rad; 458 429 459 return sigma; 430 return sigma; 460 } 431 } 461 432 462 ////////////////////////////////////////////// 433 //////////////////////////////////////////////////////////////////////////// 463 // 434 // 464 // return differential elastic probability d(p 435 // return differential elastic probability d(probability)/d(omega) with 465 // Coulomb correction 436 // Coulomb correction 466 437 467 G4double 438 G4double 468 G4DiffuseElastic::GetDiffElasticSumProb( // G4 439 G4DiffuseElastic::GetDiffElasticSumProb( // G4ParticleDefinition* particle, 469 G4doub 440 G4double theta 470 // G4double momentum, 441 // G4double momentum, 471 // G4double A 442 // G4double A 472 ) 443 ) 473 { 444 { 474 G4double sigma, bzero, bzero2, bonebyarg, bo 445 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2; 475 G4double delta, diffuse, gamma; 446 G4double delta, diffuse, gamma; 476 G4double e1, e2, bone, bone2; 447 G4double e1, e2, bone, bone2; 477 448 478 // G4double wavek = momentum/hbarc; // wave 449 // G4double wavek = momentum/hbarc; // wave vector 479 // G4double r0 = 1.08*fermi; 450 // G4double r0 = 1.08*fermi; 480 // G4double rad = r0*G4Pow::GetInstance()- << 451 // G4double rad = r0*std::pow(A, 1./3.); 481 452 482 G4double kr = fWaveVector*fNuclearRadius; 453 G4double kr = fWaveVector*fNuclearRadius; // wavek*rad; 483 G4double kr2 = kr*kr; 454 G4double kr2 = kr*kr; 484 G4double krt = kr*theta; 455 G4double krt = kr*theta; 485 456 486 bzero = BesselJzero(krt); 457 bzero = BesselJzero(krt); 487 bzero2 = bzero*bzero; 458 bzero2 = bzero*bzero; 488 bone = BesselJone(krt); 459 bone = BesselJone(krt); 489 bone2 = bone*bone; 460 bone2 = bone*bone; 490 bonebyarg = BesselOneByArg(krt); 461 bonebyarg = BesselOneByArg(krt); 491 bonebyarg2 = bonebyarg*bonebyarg; 462 bonebyarg2 = bonebyarg*bonebyarg; 492 463 493 if (fParticle == theProton) 464 if (fParticle == theProton) 494 { 465 { 495 diffuse = 0.63*fermi; 466 diffuse = 0.63*fermi; 496 // diffuse = 0.6*fermi; 467 // diffuse = 0.6*fermi; 497 gamma = 0.3*fermi; 468 gamma = 0.3*fermi; 498 delta = 0.1*fermi*fermi; 469 delta = 0.1*fermi*fermi; 499 e1 = 0.3*fermi; 470 e1 = 0.3*fermi; 500 e2 = 0.35*fermi; 471 e2 = 0.35*fermi; 501 } 472 } 502 else if (fParticle == theNeutron) << 503 { << 504 diffuse = 0.63*fermi; << 505 // diffuse = 0.6*fermi; << 506 G4double k0 = 1*GeV/hbarc; << 507 diffuse *= k0/fWaveVector; << 508 gamma = 0.3*fermi; << 509 delta = 0.1*fermi*fermi; << 510 e1 = 0.3*fermi; << 511 e2 = 0.35*fermi; << 512 } << 513 else // as proton, if were not defined 473 else // as proton, if were not defined 514 { 474 { 515 diffuse = 0.63*fermi; 475 diffuse = 0.63*fermi; 516 gamma = 0.3*fermi; 476 gamma = 0.3*fermi; 517 delta = 0.1*fermi*fermi; 477 delta = 0.1*fermi*fermi; 518 e1 = 0.3*fermi; 478 e1 = 0.3*fermi; 519 e2 = 0.35*fermi; 479 e2 = 0.35*fermi; 520 } 480 } 521 G4double lambda = 15.; // 15 ok 481 G4double lambda = 15.; // 15 ok 522 // G4double kgamma = fWaveVector*gamma; << 482 // G4double kg = fWaveVector*gamma; // wavek*delta; 523 G4double kgamma = lambda*(1.-G4Exp(-fWave << 483 G4double kg = lambda*(1.-std::exp(-fWaveVector*gamma/lambda)); // wavek*delta; 524 484 525 // G4cout<<"kgamma = "<<kgamma<<G4endl; << 485 // G4cout<<"kg = "<<kg<<G4endl; 526 486 527 if(fAddCoulomb) // add Coulomb correction 487 if(fAddCoulomb) // add Coulomb correction 528 { 488 { 529 G4double sinHalfTheta = std::sin(0.5*thet 489 G4double sinHalfTheta = std::sin(0.5*theta); 530 G4double sinHalfTheta2 = sinHalfTheta*sinH 490 G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta; 531 491 532 kgamma += 0.5*fZommerfeld/kr/(sinHalfTheta << 492 kg += 0.5*fZommerfeld/kr/(sinHalfTheta2+fAm); // correction at J0() 533 // kgamma += 0.65*fZommerfeld/kr/(sinHalfThe << 493 // kg += 0.65*fZommerfeld/kr/(sinHalfTheta2+fAm); // correction at J0() 534 } 494 } 535 495 536 G4double kgamma2 = kgamma*kgamma; << 496 G4double kg2 = kg*kg; 537 497 538 // G4double dk2t = delta*fWaveVector*fWaveV 498 // G4double dk2t = delta*fWaveVector*fWaveVector*theta; // delta*wavek*wavek*theta; 539 // G4cout<<"dk2t = "<<dk2t<<G4endl; 499 // G4cout<<"dk2t = "<<dk2t<<G4endl; 540 // G4double dk2t2 = dk2t*dk2t; 500 // G4double dk2t2 = dk2t*dk2t; 541 // G4double pikdt = pi*fWaveVector*diffuse*t 501 // G4double pikdt = pi*fWaveVector*diffuse*theta;// pi*wavek*diffuse*theta; 542 502 543 G4double pikdt = lambda*(1.-G4Exp(-pi*fWa << 503 G4double pikdt = lambda*(1.-std::exp(-pi*fWaveVector*diffuse*theta/lambda)); // wavek*delta; 544 504 545 // G4cout<<"pikdt = "<<pikdt<<G4endl; 505 // G4cout<<"pikdt = "<<pikdt<<G4endl; 546 506 547 damp = DampFactor(pikdt); 507 damp = DampFactor(pikdt); 548 damp2 = damp*damp; 508 damp2 = damp*damp; 549 509 550 G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector 510 G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector; 551 G4double e2dk3t = -2.*e2*delta*fWaveVector* 511 G4double e2dk3t = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta; 552 512 553 sigma = kgamma2; << 513 sigma = kg2; 554 // sigma += dk2t2; 514 // sigma += dk2t2; 555 sigma *= bzero2; 515 sigma *= bzero2; 556 sigma += mode2k2*bone2; 516 sigma += mode2k2*bone2; 557 sigma += e2dk3t*bzero*bone; 517 sigma += e2dk3t*bzero*bone; 558 518 559 // sigma += kr2*(1 + 8.*fZommerfeld*fZommerf 519 // sigma += kr2*(1 + 8.*fZommerfeld*fZommerfeld/kr2)*bonebyarg2; // correction at J1()/() 560 sigma += kr2*bonebyarg2; // correction at J 520 sigma += kr2*bonebyarg2; // correction at J1()/() 561 521 562 sigma *= damp2; // *rad*rad; 522 sigma *= damp2; // *rad*rad; 563 523 564 return sigma; 524 return sigma; 565 } 525 } 566 526 567 527 568 ////////////////////////////////////////////// 528 //////////////////////////////////////////////////////////////////////////// 569 // 529 // 570 // return differential elastic probability d(p 530 // return differential elastic probability d(probability)/d(t) with 571 // Coulomb correction. It is called from Build << 531 // Coulomb correction 572 532 573 G4double 533 G4double 574 G4DiffuseElastic::GetDiffElasticSumProbA( G4do 534 G4DiffuseElastic::GetDiffElasticSumProbA( G4double alpha ) 575 { 535 { 576 G4double theta; 536 G4double theta; 577 537 578 theta = std::sqrt(alpha); 538 theta = std::sqrt(alpha); 579 539 580 // theta = std::acos( 1 - alpha/2. ); 540 // theta = std::acos( 1 - alpha/2. ); 581 541 582 G4double sigma, bzero, bzero2, bonebyarg, bo 542 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2; 583 G4double delta, diffuse, gamma; 543 G4double delta, diffuse, gamma; 584 G4double e1, e2, bone, bone2; 544 G4double e1, e2, bone, bone2; 585 545 586 // G4double wavek = momentum/hbarc; // wave 546 // G4double wavek = momentum/hbarc; // wave vector 587 // G4double r0 = 1.08*fermi; 547 // G4double r0 = 1.08*fermi; 588 // G4double rad = r0*G4Pow::GetInstance()- << 548 // G4double rad = r0*std::pow(A, 1./3.); 589 549 590 G4double kr = fWaveVector*fNuclearRadius; 550 G4double kr = fWaveVector*fNuclearRadius; // wavek*rad; 591 G4double kr2 = kr*kr; 551 G4double kr2 = kr*kr; 592 G4double krt = kr*theta; 552 G4double krt = kr*theta; 593 553 594 bzero = BesselJzero(krt); 554 bzero = BesselJzero(krt); 595 bzero2 = bzero*bzero; 555 bzero2 = bzero*bzero; 596 bone = BesselJone(krt); 556 bone = BesselJone(krt); 597 bone2 = bone*bone; 557 bone2 = bone*bone; 598 bonebyarg = BesselOneByArg(krt); 558 bonebyarg = BesselOneByArg(krt); 599 bonebyarg2 = bonebyarg*bonebyarg; 559 bonebyarg2 = bonebyarg*bonebyarg; 600 560 601 if ( fParticle == theProton ) << 561 if (fParticle == theProton) 602 { << 603 diffuse = 0.63*fermi; << 604 // diffuse = 0.6*fermi; << 605 gamma = 0.3*fermi; << 606 delta = 0.1*fermi*fermi; << 607 e1 = 0.3*fermi; << 608 e2 = 0.35*fermi; << 609 } << 610 else if ( fParticle == theNeutron ) << 611 { 562 { 612 diffuse = 0.63*fermi; 563 diffuse = 0.63*fermi; 613 // diffuse = 0.6*fermi; 564 // diffuse = 0.6*fermi; 614 // G4double k0 = 0.8*GeV/hbarc; << 615 // diffuse *= k0/fWaveVector; << 616 gamma = 0.3*fermi; 565 gamma = 0.3*fermi; 617 delta = 0.1*fermi*fermi; 566 delta = 0.1*fermi*fermi; 618 e1 = 0.3*fermi; 567 e1 = 0.3*fermi; 619 e2 = 0.35*fermi; 568 e2 = 0.35*fermi; 620 } 569 } 621 else // as proton, if were not defined 570 else // as proton, if were not defined 622 { 571 { 623 diffuse = 0.63*fermi; 572 diffuse = 0.63*fermi; 624 gamma = 0.3*fermi; 573 gamma = 0.3*fermi; 625 delta = 0.1*fermi*fermi; 574 delta = 0.1*fermi*fermi; 626 e1 = 0.3*fermi; 575 e1 = 0.3*fermi; 627 e2 = 0.35*fermi; 576 e2 = 0.35*fermi; 628 } 577 } 629 G4double lambda = 15.; // 15 ok 578 G4double lambda = 15.; // 15 ok 630 // G4double kgamma = fWaveVector*gamma; << 579 // G4double kg = fWaveVector*gamma; // wavek*delta; 631 G4double kgamma = lambda*(1.-G4Exp(-fWave << 580 G4double kg = lambda*(1.-std::exp(-fWaveVector*gamma/lambda)); // wavek*delta; 632 581 633 // G4cout<<"kgamma = "<<kgamma<<G4endl; << 582 // G4cout<<"kg = "<<kg<<G4endl; 634 583 635 if( fAddCoulomb ) // add Coulomb correction << 584 if(fAddCoulomb) // add Coulomb correction 636 { 585 { 637 G4double sinHalfTheta = theta*0.5; // std 586 G4double sinHalfTheta = theta*0.5; // std::sin(0.5*theta); 638 G4double sinHalfTheta2 = sinHalfTheta*sinH 587 G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta; 639 588 640 kgamma += 0.5*fZommerfeld/kr/(sinHalfTheta << 589 kg += 0.5*fZommerfeld/kr/(sinHalfTheta2+fAm); // correction at J0() 641 // kgamma += 0.65*fZommerfeld/kr/(sinHalfThe << 590 // kg += 0.65*fZommerfeld/kr/(sinHalfTheta2+fAm); // correction at J0() 642 } 591 } 643 G4double kgamma2 = kgamma*kgamma; << 592 >> 593 G4double kg2 = kg*kg; 644 594 645 // G4double dk2t = delta*fWaveVector*fWaveV 595 // G4double dk2t = delta*fWaveVector*fWaveVector*theta; // delta*wavek*wavek*theta; 646 // G4cout<<"dk2t = "<<dk2t<<G4endl; 596 // G4cout<<"dk2t = "<<dk2t<<G4endl; 647 // G4double dk2t2 = dk2t*dk2t; 597 // G4double dk2t2 = dk2t*dk2t; 648 // G4double pikdt = pi*fWaveVector*diffuse*t 598 // G4double pikdt = pi*fWaveVector*diffuse*theta;// pi*wavek*diffuse*theta; 649 599 650 G4double pikdt = lambda*(1. - G4Exp( -pi* << 600 G4double pikdt = lambda*(1.-std::exp(-pi*fWaveVector*diffuse*theta/lambda)); // wavek*delta; 651 601 652 // G4cout<<"pikdt = "<<pikdt<<G4endl; 602 // G4cout<<"pikdt = "<<pikdt<<G4endl; 653 603 654 damp = DampFactor( pikdt ); << 604 damp = DampFactor(pikdt); 655 damp2 = damp*damp; 605 damp2 = damp*damp; 656 606 657 G4double mode2k2 = ( e1*e1 + e2*e2 )*fWaveVe << 607 G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector; 658 G4double e2dk3t = -2.*e2*delta*fWaveVector* 608 G4double e2dk3t = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta; 659 609 660 sigma = kgamma2; << 610 sigma = kg2; 661 // sigma += dk2t2; 611 // sigma += dk2t2; 662 sigma *= bzero2; 612 sigma *= bzero2; 663 sigma += mode2k2*bone2; 613 sigma += mode2k2*bone2; 664 sigma += e2dk3t*bzero*bone; 614 sigma += e2dk3t*bzero*bone; 665 615 666 // sigma += kr2*(1 + 8.*fZommerfeld*fZommerf 616 // sigma += kr2*(1 + 8.*fZommerfeld*fZommerfeld/kr2)*bonebyarg2; // correction at J1()/() 667 sigma += kr2*bonebyarg2; // correction at J 617 sigma += kr2*bonebyarg2; // correction at J1()/() 668 618 669 sigma *= damp2; // *rad*rad; 619 sigma *= damp2; // *rad*rad; 670 620 671 return sigma; 621 return sigma; 672 } 622 } 673 623 674 624 675 ////////////////////////////////////////////// 625 //////////////////////////////////////////////////////////////////////////// 676 // 626 // 677 // return differential elastic probability 2*p 627 // return differential elastic probability 2*pi*sin(theta)*d(probability)/d(omega) 678 628 679 G4double 629 G4double 680 G4DiffuseElastic::GetIntegrandFunction( G4doub 630 G4DiffuseElastic::GetIntegrandFunction( G4double alpha ) 681 { 631 { 682 G4double result; 632 G4double result; 683 633 684 result = GetDiffElasticSumProbA(alpha); 634 result = GetDiffElasticSumProbA(alpha); 685 635 686 // result *= 2*pi*std::sin(theta); 636 // result *= 2*pi*std::sin(theta); 687 637 688 return result; 638 return result; 689 } 639 } 690 640 691 ////////////////////////////////////////////// 641 //////////////////////////////////////////////////////////////////////////// 692 // 642 // 693 // return integral elastic cross section d(sig 643 // return integral elastic cross section d(sigma)/d(omega) integrated 0 - theta 694 644 695 G4double 645 G4double 696 G4DiffuseElastic::IntegralElasticProb( const 646 G4DiffuseElastic::IntegralElasticProb( const G4ParticleDefinition* particle, 697 G4doub 647 G4double theta, 698 G4double momentum, 648 G4double momentum, 699 G4doub 649 G4double A ) 700 { 650 { 701 G4double result; 651 G4double result; 702 fParticle = particle; 652 fParticle = particle; 703 fWaveVector = momentum/hbarc; 653 fWaveVector = momentum/hbarc; 704 fAtomicWeight = A; 654 fAtomicWeight = A; 705 655 706 fNuclearRadius = CalculateNuclearRad(A); 656 fNuclearRadius = CalculateNuclearRad(A); 707 657 708 658 709 G4Integrator<G4DiffuseElastic,G4double(G4Dif 659 G4Integrator<G4DiffuseElastic,G4double(G4DiffuseElastic::*)(G4double)> integral; 710 660 711 // result = integral.Legendre10(this,&G4Diff 661 // result = integral.Legendre10(this,&G4DiffuseElastic::GetIntegrandFunction, 0., theta ); 712 result = integral.Legendre96(this,&G4Diffuse 662 result = integral.Legendre96(this,&G4DiffuseElastic::GetIntegrandFunction, 0., theta ); 713 663 714 return result; 664 return result; 715 } 665 } 716 666 717 ////////////////////////////////////////////// 667 //////////////////////////////////////////////////////////////////////////// 718 // 668 // 719 // Return inv momentum transfer -t > 0 669 // Return inv momentum transfer -t > 0 720 670 721 G4double G4DiffuseElastic::SampleT( const G4Pa 671 G4double G4DiffuseElastic::SampleT( const G4ParticleDefinition* aParticle, G4double p, G4double A) 722 { 672 { 723 G4double theta = SampleThetaCMS( aParticle, 673 G4double theta = SampleThetaCMS( aParticle, p, A); // sample theta in cms 724 G4double t = 2*p*p*( 1 - std::cos(theta) 674 G4double t = 2*p*p*( 1 - std::cos(theta) ); // -t !!! 725 return t; 675 return t; 726 } 676 } 727 677 728 ////////////////////////////////////////////// 678 //////////////////////////////////////////////////////////////////////////// 729 // 679 // 730 // Return scattering angle sampled in cms 680 // Return scattering angle sampled in cms 731 681 732 682 733 G4double 683 G4double 734 G4DiffuseElastic::SampleThetaCMS(const G4Parti 684 G4DiffuseElastic::SampleThetaCMS(const G4ParticleDefinition* particle, 735 G4doubl 685 G4double momentum, G4double A) 736 { 686 { 737 G4int i, iMax = 100; 687 G4int i, iMax = 100; 738 G4double norm, theta1, theta2, thetaMax; << 688 G4double norm, result, theta1, theta2, thetaMax, sum = 0.; 739 G4double result = 0., sum = 0.; << 740 689 741 fParticle = particle; 690 fParticle = particle; 742 fWaveVector = momentum/hbarc; 691 fWaveVector = momentum/hbarc; 743 fAtomicWeight = A; 692 fAtomicWeight = A; 744 693 745 fNuclearRadius = CalculateNuclearRad(A); 694 fNuclearRadius = CalculateNuclearRad(A); 746 695 747 thetaMax = 10.174/fWaveVector/fNuclearRadius 696 thetaMax = 10.174/fWaveVector/fNuclearRadius; 748 697 749 if (thetaMax > pi) thetaMax = pi; 698 if (thetaMax > pi) thetaMax = pi; 750 699 751 G4Integrator<G4DiffuseElastic,G4double(G4Dif 700 G4Integrator<G4DiffuseElastic,G4double(G4DiffuseElastic::*)(G4double)> integral; 752 701 753 // result = integral.Legendre10(this,&G4Diff 702 // result = integral.Legendre10(this,&G4DiffuseElastic::GetIntegrandFunction, 0., theta ); 754 norm = integral.Legendre96(this,&G4DiffuseEl 703 norm = integral.Legendre96(this,&G4DiffuseElastic::GetIntegrandFunction, 0., thetaMax ); 755 704 756 norm *= G4UniformRand(); 705 norm *= G4UniformRand(); 757 706 758 for(i = 1; i <= iMax; i++) 707 for(i = 1; i <= iMax; i++) 759 { 708 { 760 theta1 = (i-1)*thetaMax/iMax; 709 theta1 = (i-1)*thetaMax/iMax; 761 theta2 = i*thetaMax/iMax; 710 theta2 = i*thetaMax/iMax; 762 sum += integral.Legendre10(this,&G4Diffu 711 sum += integral.Legendre10(this,&G4DiffuseElastic::GetIntegrandFunction, theta1, theta2); 763 712 764 if ( sum >= norm ) 713 if ( sum >= norm ) 765 { 714 { 766 result = 0.5*(theta1 + theta2); 715 result = 0.5*(theta1 + theta2); 767 break; 716 break; 768 } 717 } 769 } 718 } 770 if (i > iMax ) result = 0.5*(theta1 + theta2 719 if (i > iMax ) result = 0.5*(theta1 + theta2); 771 720 772 G4double sigma = pi*thetaMax/iMax; 721 G4double sigma = pi*thetaMax/iMax; 773 722 774 result += G4RandGauss::shoot(0.,sigma); 723 result += G4RandGauss::shoot(0.,sigma); 775 724 776 if(result < 0.) result = 0.; 725 if(result < 0.) result = 0.; 777 if(result > thetaMax) result = thetaMax; 726 if(result > thetaMax) result = thetaMax; 778 727 779 return result; 728 return result; 780 } 729 } 781 730 782 ////////////////////////////////////////////// 731 ///////////////////////////////////////////////////////////////////////////// 783 ///////////////////// Table preparation and r 732 ///////////////////// Table preparation and reading //////////////////////// 784 ////////////////////////////////////////////// 733 //////////////////////////////////////////////////////////////////////////// 785 // 734 // 786 // Return inv momentum transfer -t > 0 from in 735 // Return inv momentum transfer -t > 0 from initialisation table 787 736 788 G4double G4DiffuseElastic::SampleInvariantT( c 737 G4double G4DiffuseElastic::SampleInvariantT( const G4ParticleDefinition* aParticle, G4double p, 789 738 G4int Z, G4int A) 790 { 739 { 791 fParticle = aParticle; 740 fParticle = aParticle; 792 G4double m1 = fParticle->GetPDGMass(), t; << 741 G4double m1 = fParticle->GetPDGMass(); 793 G4double totElab = std::sqrt(m1*m1+p*p); 742 G4double totElab = std::sqrt(m1*m1+p*p); 794 G4double mass2 = G4NucleiProperties::GetNucl << 743 G4double m2 = G4NucleiProperties::GetNuclearMass(A, Z); 795 G4LorentzVector lv1(p,0.0,0.0,totElab); 744 G4LorentzVector lv1(p,0.0,0.0,totElab); 796 G4LorentzVector lv(0.0,0.0,0.0,mass2); << 745 G4LorentzVector lv(0.0,0.0,0.0,m2); 797 lv += lv1; 746 lv += lv1; 798 747 799 G4ThreeVector bst = lv.boostVector(); 748 G4ThreeVector bst = lv.boostVector(); 800 lv1.boost(-bst); 749 lv1.boost(-bst); 801 750 802 G4ThreeVector p1 = lv1.vect(); 751 G4ThreeVector p1 = lv1.vect(); 803 G4double momentumCMS = p1.mag(); 752 G4double momentumCMS = p1.mag(); 804 << 805 if( aParticle == theNeutron) << 806 { << 807 G4double Tmax = NeutronTuniform( Z ); << 808 G4double pCMS2 = momentumCMS*momentumCMS; << 809 G4double Tkin = std::sqrt(pCMS2+m1*m1)-m1; << 810 << 811 if( Tkin <= Tmax ) << 812 { << 813 t = 4.*pCMS2*G4UniformRand(); << 814 // G4cout<<Tkin<<", "<<Tmax<<", "<<std:: << 815 return t; << 816 } << 817 } << 818 << 819 t = SampleTableT( aParticle, momentumCMS, G << 820 753 >> 754 G4double t = SampleTableT( aParticle, momentumCMS, G4double(Z), G4double(A) ); // sample theta2 in cms 821 return t; 755 return t; 822 } 756 } 823 757 824 ////////////////////////////////////////////// << 825 << 826 G4double G4DiffuseElastic::NeutronTuniform(G4i << 827 { << 828 G4double elZ = G4double(Z); << 829 elZ -= 1.; << 830 // G4double Tkin = 20.*G4Exp(-elZ/10.) + 1.; << 831 G4double Tkin = 12.*G4Exp(-elZ/10.) + 1.; << 832 return Tkin; << 833 } << 834 << 835 << 836 ////////////////////////////////////////////// 758 //////////////////////////////////////////////////////////////////////////// 837 // 759 // 838 // Return inv momentum transfer -t > 0 from in 760 // Return inv momentum transfer -t > 0 from initialisation table 839 761 840 G4double G4DiffuseElastic::SampleTableT( const 762 G4double G4DiffuseElastic::SampleTableT( const G4ParticleDefinition* aParticle, G4double p, 841 763 G4double Z, G4double A) 842 { 764 { 843 G4double alpha = SampleTableThetaCMS( aParti 765 G4double alpha = SampleTableThetaCMS( aParticle, p, Z, A); // sample theta2 in cms 844 G4double t = 2*p*p*( 1 - std::cos(std::s << 766 // G4double t = 2*p*p*( 1 - std::cos(std::sqrt(alpha)) ); // -t !!! 845 // G4double t = p*p*alpha; / << 767 G4double t = p*p*alpha; // -t !!! 846 return t; 768 return t; 847 } 769 } 848 770 849 ////////////////////////////////////////////// 771 //////////////////////////////////////////////////////////////////////////// 850 // 772 // 851 // Return scattering angle2 sampled in cms acc 773 // Return scattering angle2 sampled in cms according to precalculated table. 852 774 853 775 854 G4double 776 G4double 855 G4DiffuseElastic::SampleTableThetaCMS(const G4 777 G4DiffuseElastic::SampleTableThetaCMS(const G4ParticleDefinition* particle, 856 G4doubl 778 G4double momentum, G4double Z, G4double A) 857 { 779 { 858 std::size_t iElement; << 780 size_t iElement; 859 G4int iMomentum, iAngle; 781 G4int iMomentum, iAngle; 860 G4double randAngle, position, theta1, theta2 782 G4double randAngle, position, theta1, theta2, E1, E2, W1, W2, W; 861 G4double m1 = particle->GetPDGMass(); 783 G4double m1 = particle->GetPDGMass(); 862 784 863 for(iElement = 0; iElement < fElementNumberV 785 for(iElement = 0; iElement < fElementNumberVector.size(); iElement++) 864 { 786 { 865 if( std::fabs(Z - fElementNumberVector[iEl 787 if( std::fabs(Z - fElementNumberVector[iElement]) < 0.5) break; 866 } 788 } 867 if ( iElement == fElementNumberVector.size() 789 if ( iElement == fElementNumberVector.size() ) 868 { 790 { 869 InitialiseOnFly(Z,A); // table preparation 791 InitialiseOnFly(Z,A); // table preparation, if needed 870 792 871 // iElement--; 793 // iElement--; 872 794 873 // G4cout << "G4DiffuseElastic: Element wi 795 // G4cout << "G4DiffuseElastic: Element with atomic number " << Z 874 // << " is not found, return zero angle" < 796 // << " is not found, return zero angle" << G4endl; 875 // return 0.; // no table for this element 797 // return 0.; // no table for this element 876 } 798 } 877 // G4cout<<"iElement = "<<iElement<<G4endl; 799 // G4cout<<"iElement = "<<iElement<<G4endl; 878 800 879 fAngleTable = fAngleBank[iElement]; 801 fAngleTable = fAngleBank[iElement]; 880 802 881 G4double kinE = std::sqrt(momentum*momentum 803 G4double kinE = std::sqrt(momentum*momentum + m1*m1) - m1; 882 804 883 for( iMomentum = 0; iMomentum < fEnergyBin; 805 for( iMomentum = 0; iMomentum < fEnergyBin; iMomentum++) 884 { 806 { 885 if( kinE < fEnergyVector->GetLowEdgeEnergy 807 if( kinE < fEnergyVector->GetLowEdgeEnergy(iMomentum) ) break; 886 } 808 } 887 if ( iMomentum >= fEnergyBin ) iMomentum = f 809 if ( iMomentum >= fEnergyBin ) iMomentum = fEnergyBin-1; // kinE is more then theMaxEnergy 888 if ( iMomentum < 0 ) iMomentum = 0 810 if ( iMomentum < 0 ) iMomentum = 0; // against negative index, kinE < theMinEnergy 889 811 890 // G4cout<<"iMomentum = "<<iMomentum<<G4endl 812 // G4cout<<"iMomentum = "<<iMomentum<<G4endl; 891 813 892 if (iMomentum == fEnergyBin -1 || iMomentum 814 if (iMomentum == fEnergyBin -1 || iMomentum == 0 ) // the table edges 893 { 815 { 894 position = (*(*fAngleTable)(iMomentum))(fA 816 position = (*(*fAngleTable)(iMomentum))(fAngleBin-2)*G4UniformRand(); 895 817 896 // G4cout<<"position = "<<position<<G4endl 818 // G4cout<<"position = "<<position<<G4endl; 897 819 898 for(iAngle = 0; iAngle < fAngleBin-1; iAng 820 for(iAngle = 0; iAngle < fAngleBin-1; iAngle++) 899 { 821 { 900 if( position > (*(*fAngleTable)(iMomentu << 822 if( position < (*(*fAngleTable)(iMomentum))(iAngle) ) break; 901 } 823 } 902 if (iAngle >= fAngleBin-1) iAngle = fAngle 824 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2; 903 825 904 // G4cout<<"iAngle = "<<iAngle<<G4endl; 826 // G4cout<<"iAngle = "<<iAngle<<G4endl; 905 827 906 randAngle = GetScatteringAngle(iMomentum, 828 randAngle = GetScatteringAngle(iMomentum, iAngle, position); 907 829 908 // G4cout<<"randAngle = "<<randAngle<<G4en 830 // G4cout<<"randAngle = "<<randAngle<<G4endl; 909 } 831 } 910 else // kinE inside between energy table ed 832 else // kinE inside between energy table edges 911 { 833 { 912 // position = (*(*fAngleTable)(iMomentum)) 834 // position = (*(*fAngleTable)(iMomentum))(fAngleBin-2)*G4UniformRand(); 913 position = (*(*fAngleTable)(iMomentum))(0) 835 position = (*(*fAngleTable)(iMomentum))(0)*G4UniformRand(); 914 836 915 // G4cout<<"position = "<<position<<G4endl 837 // G4cout<<"position = "<<position<<G4endl; 916 838 917 for(iAngle = 0; iAngle < fAngleBin-1; iAng 839 for(iAngle = 0; iAngle < fAngleBin-1; iAngle++) 918 { 840 { 919 // if( position < (*(*fAngleTable)(iMome 841 // if( position < (*(*fAngleTable)(iMomentum))(iAngle) ) break; 920 if( position > (*(*fAngleTable)(iMomentu 842 if( position > (*(*fAngleTable)(iMomentum))(iAngle) ) break; 921 } 843 } 922 if (iAngle >= fAngleBin-1) iAngle = fAngle 844 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2; 923 845 924 // G4cout<<"iAngle = "<<iAngle<<G4endl; 846 // G4cout<<"iAngle = "<<iAngle<<G4endl; 925 847 926 theta2 = GetScatteringAngle(iMomentum, iA 848 theta2 = GetScatteringAngle(iMomentum, iAngle, position); 927 849 928 // G4cout<<"theta2 = "<<theta2<<G4endl; 850 // G4cout<<"theta2 = "<<theta2<<G4endl; 929 E2 = fEnergyVector->GetLowEdgeEnergy(iMome 851 E2 = fEnergyVector->GetLowEdgeEnergy(iMomentum); 930 852 931 // G4cout<<"E2 = "<<E2<<G4endl; 853 // G4cout<<"E2 = "<<E2<<G4endl; 932 854 933 iMomentum--; 855 iMomentum--; 934 856 935 // position = (*(*fAngleTable)(iMomentum)) 857 // position = (*(*fAngleTable)(iMomentum))(fAngleBin-2)*G4UniformRand(); 936 858 937 // G4cout<<"position = "<<position<<G4endl 859 // G4cout<<"position = "<<position<<G4endl; 938 860 939 for(iAngle = 0; iAngle < fAngleBin-1; iAng 861 for(iAngle = 0; iAngle < fAngleBin-1; iAngle++) 940 { 862 { 941 // if( position < (*(*fAngleTable)(iMome 863 // if( position < (*(*fAngleTable)(iMomentum))(iAngle) ) break; 942 if( position > (*(*fAngleTable)(iMomentu 864 if( position > (*(*fAngleTable)(iMomentum))(iAngle) ) break; 943 } 865 } 944 if (iAngle >= fAngleBin-1) iAngle = fAngle 866 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2; 945 867 946 theta1 = GetScatteringAngle(iMomentum, iA 868 theta1 = GetScatteringAngle(iMomentum, iAngle, position); 947 869 948 // G4cout<<"theta1 = "<<theta1<<G4endl; 870 // G4cout<<"theta1 = "<<theta1<<G4endl; 949 871 950 E1 = fEnergyVector->GetLowEdgeEnergy(iMome 872 E1 = fEnergyVector->GetLowEdgeEnergy(iMomentum); 951 873 952 // G4cout<<"E1 = "<<E1<<G4endl; 874 // G4cout<<"E1 = "<<E1<<G4endl; 953 875 954 W = 1.0/(E2 - E1); 876 W = 1.0/(E2 - E1); 955 W1 = (E2 - kinE)*W; 877 W1 = (E2 - kinE)*W; 956 W2 = (kinE - E1)*W; 878 W2 = (kinE - E1)*W; 957 879 958 randAngle = W1*theta1 + W2*theta2; 880 randAngle = W1*theta1 + W2*theta2; 959 881 960 // randAngle = theta2; 882 // randAngle = theta2; 961 // G4cout<<"randAngle = "<<randAngle<<G4en 883 // G4cout<<"randAngle = "<<randAngle<<G4endl; 962 } 884 } 963 // G4double angle = randAngle; 885 // G4double angle = randAngle; 964 // if (randAngle > 0.) randAngle /= 2*pi*std 886 // if (randAngle > 0.) randAngle /= 2*pi*std::sin(angle); 965 887 966 if(randAngle < 0.) randAngle = 0.; << 967 << 968 return randAngle; 888 return randAngle; 969 } 889 } 970 890 971 ////////////////////////////////////////////// 891 ////////////////////////////////////////////////////////////////////////////// 972 // 892 // 973 // Initialisation for given particle on fly us 893 // Initialisation for given particle on fly using new element number 974 894 975 void G4DiffuseElastic::InitialiseOnFly(G4doubl 895 void G4DiffuseElastic::InitialiseOnFly(G4double Z, G4double A) 976 { 896 { 977 fAtomicNumber = Z; // atomic number 897 fAtomicNumber = Z; // atomic number 978 fAtomicWeight = G4NistManager::Instance()-> << 898 fAtomicWeight = A; // number of nucleons 979 899 980 fNuclearRadius = CalculateNuclearRad(fAtomic 900 fNuclearRadius = CalculateNuclearRad(fAtomicWeight); 981 << 901 982 if( verboseLevel > 0 ) 902 if( verboseLevel > 0 ) 983 { 903 { 984 G4cout<<"G4DiffuseElastic::InitialiseOnFly << 904 G4cout<<"G4DiffuseElastic::Initialise() the element with Z = " 985 <<Z<<"; and A = "<<A<<G4endl; 905 <<Z<<"; and A = "<<A<<G4endl; 986 } 906 } 987 fElementNumberVector.push_back(fAtomicNumber 907 fElementNumberVector.push_back(fAtomicNumber); 988 908 989 BuildAngleTable(); 909 BuildAngleTable(); 990 910 991 fAngleBank.push_back(fAngleTable); 911 fAngleBank.push_back(fAngleTable); 992 912 993 return; 913 return; 994 } 914 } 995 915 996 ////////////////////////////////////////////// 916 /////////////////////////////////////////////////////////////////////////////// 997 // 917 // 998 // Build for given particle and element table 918 // Build for given particle and element table of momentum, angle probability. 999 // For the moment in lab system. 919 // For the moment in lab system. 1000 920 1001 void G4DiffuseElastic::BuildAngleTable() 921 void G4DiffuseElastic::BuildAngleTable() 1002 { 922 { 1003 G4int i, j; 923 G4int i, j; 1004 G4double partMom, kinE, a = 0., z = fPartic 924 G4double partMom, kinE, a = 0., z = fParticle->GetPDGCharge(), m1 = fParticle->GetPDGMass(); 1005 G4double alpha1, alpha2, alphaMax, alphaCou 925 G4double alpha1, alpha2, alphaMax, alphaCoulomb, delta = 0., sum = 0.; 1006 926 1007 G4Integrator<G4DiffuseElastic,G4double(G4Di 927 G4Integrator<G4DiffuseElastic,G4double(G4DiffuseElastic::*)(G4double)> integral; 1008 928 1009 fAngleTable = new G4PhysicsTable( fEnergyBi << 929 fAngleTable = new G4PhysicsTable(fEnergyBin); 1010 930 1011 for( i = 0; i < fEnergyBin; i++) 931 for( i = 0; i < fEnergyBin; i++) 1012 { 932 { 1013 kinE = fEnergyVector->GetLowEdgeEn 933 kinE = fEnergyVector->GetLowEdgeEnergy(i); 1014 partMom = std::sqrt( kinE*(kinE + 2*m 934 partMom = std::sqrt( kinE*(kinE + 2*m1) ); 1015 935 1016 fWaveVector = partMom/hbarc; 936 fWaveVector = partMom/hbarc; 1017 937 1018 G4double kR = fWaveVector*fNuclearRad 938 G4double kR = fWaveVector*fNuclearRadius; 1019 G4double kR2 = kR*kR; 939 G4double kR2 = kR*kR; 1020 G4double kRmax = 18.6; // 10.6; 10.6, 18 940 G4double kRmax = 18.6; // 10.6; 10.6, 18, 10.174; ~ 3 maxima of J1 or 15., 25. 1021 G4double kRcoul = 1.9; // 1.2; 1.4, 2.5; 941 G4double kRcoul = 1.9; // 1.2; 1.4, 2.5; // on the first slope of J1 1022 // G4double kRlim = 1.2; 942 // G4double kRlim = 1.2; 1023 // G4double kRlim2 = kRlim*kRlim/kR2; 943 // G4double kRlim2 = kRlim*kRlim/kR2; 1024 944 1025 alphaMax = kRmax*kRmax/kR2; 945 alphaMax = kRmax*kRmax/kR2; 1026 946 1027 << 947 if (alphaMax > 4.) alphaMax = 4.; // vmg05-02-09: was pi2 1028 // if (alphaMax > 4.) alphaMax = 4.; // << 1029 // if ( alphaMax > 4. || alphaMax < 1. ) << 1030 << 1031 // if ( alphaMax > 4. || alphaMax < 1. ) << 1032 << 1033 // G4cout<<"alphaMax = "<<alphaMax<<", "; << 1034 << 1035 if ( alphaMax >= CLHEP::pi*CLHEP::pi ) al << 1036 948 1037 alphaCoulomb = kRcoul*kRcoul/kR2; 949 alphaCoulomb = kRcoul*kRcoul/kR2; 1038 950 1039 if( z ) 951 if( z ) 1040 { 952 { 1041 a = partMom/m1; // be 953 a = partMom/m1; // beta*gamma for m1 1042 fBeta = a/std::sqrt(1+a*a); 954 fBeta = a/std::sqrt(1+a*a); 1043 fZommerfeld = CalculateZommerfeld( fBet 955 fZommerfeld = CalculateZommerfeld( fBeta, z, fAtomicNumber); 1044 fAm = CalculateAm( partMom, fZo 956 fAm = CalculateAm( partMom, fZommerfeld, fAtomicNumber); 1045 } 957 } 1046 G4PhysicsFreeVector* angleVector = new G4 958 G4PhysicsFreeVector* angleVector = new G4PhysicsFreeVector(fAngleBin-1); 1047 959 1048 // G4PhysicsLogVector* angleBins = new G 960 // G4PhysicsLogVector* angleBins = new G4PhysicsLogVector( 0.001*alphaMax, alphaMax, fAngleBin ); 1049 961 1050 G4double delth = alphaMax/fAngleBin; 962 G4double delth = alphaMax/fAngleBin; 1051 963 1052 sum = 0.; 964 sum = 0.; 1053 965 1054 // fAddCoulomb = false; 966 // fAddCoulomb = false; 1055 fAddCoulomb = true; 967 fAddCoulomb = true; 1056 968 1057 // for(j = 1; j < fAngleBin; j++) 969 // for(j = 1; j < fAngleBin; j++) 1058 for(j = fAngleBin-1; j >= 1; j--) 970 for(j = fAngleBin-1; j >= 1; j--) 1059 { 971 { 1060 // alpha1 = angleBins->GetLowEdgeEnergy 972 // alpha1 = angleBins->GetLowEdgeEnergy(j-1); 1061 // alpha2 = angleBins->GetLowEdgeEnergy 973 // alpha2 = angleBins->GetLowEdgeEnergy(j); 1062 974 1063 // alpha1 = alphaMax*(j-1)/fAngleBin; 975 // alpha1 = alphaMax*(j-1)/fAngleBin; 1064 // alpha2 = alphaMax*( j )/fAngleBin; 976 // alpha2 = alphaMax*( j )/fAngleBin; 1065 977 1066 alpha1 = delth*(j-1); 978 alpha1 = delth*(j-1); 1067 // if(alpha1 < kRlim2) alpha1 = kRlim2; 979 // if(alpha1 < kRlim2) alpha1 = kRlim2; 1068 alpha2 = alpha1 + delth; 980 alpha2 = alpha1 + delth; 1069 981 1070 // if( ( alpha2 > alphaCoulomb ) && z ) 982 // if( ( alpha2 > alphaCoulomb ) && z ) fAddCoulomb = true; 1071 if( ( alpha1 < alphaCoulomb ) && z ) fA 983 if( ( alpha1 < alphaCoulomb ) && z ) fAddCoulomb = false; 1072 984 1073 delta = integral.Legendre10(this, &G4Di 985 delta = integral.Legendre10(this, &G4DiffuseElastic::GetIntegrandFunction, alpha1, alpha2); 1074 // delta = integral.Legendre96(this, &G 986 // delta = integral.Legendre96(this, &G4DiffuseElastic::GetIntegrandFunction, alpha1, alpha2); 1075 987 1076 sum += delta; 988 sum += delta; 1077 989 1078 angleVector->PutValue( j-1 , alpha1, su 990 angleVector->PutValue( j-1 , alpha1, sum ); // alpha2 1079 // G4cout<<"j-1 = "<<j-1<<"; alpha << 991 // G4cout<<"j-1 = "<<j-1<<"; alpha2 = "<<alpha2<<"; sum = "<<sum<<G4endl; 1080 } 992 } 1081 fAngleTable->insertAt(i, angleVector); << 993 fAngleTable->insertAt(i,angleVector); 1082 994 1083 // delete[] angleVector; 995 // delete[] angleVector; 1084 // delete[] angleBins; 996 // delete[] angleBins; 1085 } 997 } 1086 return; 998 return; 1087 } 999 } 1088 1000 1089 ///////////////////////////////////////////// 1001 ///////////////////////////////////////////////////////////////////////////////// 1090 // 1002 // 1091 // 1003 // 1092 1004 1093 G4double 1005 G4double 1094 G4DiffuseElastic:: GetScatteringAngle( G4int 1006 G4DiffuseElastic:: GetScatteringAngle( G4int iMomentum, G4int iAngle, G4double position ) 1095 { 1007 { 1096 G4double x1, x2, y1, y2, randAngle; 1008 G4double x1, x2, y1, y2, randAngle; 1097 1009 1098 if( iAngle == 0 ) 1010 if( iAngle == 0 ) 1099 { 1011 { 1100 randAngle = (*fAngleTable)(iMomentum)->Ge 1012 randAngle = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle); 1101 // iAngle++; 1013 // iAngle++; 1102 } 1014 } 1103 else 1015 else 1104 { 1016 { 1105 if ( iAngle >= G4int((*fAngleTable)(iMome 1017 if ( iAngle >= G4int((*fAngleTable)(iMomentum)->GetVectorLength()) ) 1106 { 1018 { 1107 iAngle = G4int((*fAngleTable)(iMomentum << 1019 iAngle = (*fAngleTable)(iMomentum)->GetVectorLength() - 1; 1108 } 1020 } 1109 y1 = (*(*fAngleTable)(iMomentum))(iAngle- 1021 y1 = (*(*fAngleTable)(iMomentum))(iAngle-1); 1110 y2 = (*(*fAngleTable)(iMomentum))(iAngle) 1022 y2 = (*(*fAngleTable)(iMomentum))(iAngle); 1111 1023 1112 x1 = (*fAngleTable)(iMomentum)->GetLowEdg 1024 x1 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle-1); 1113 x2 = (*fAngleTable)(iMomentum)->GetLowEdg 1025 x2 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle); 1114 1026 1115 if ( x1 == x2 ) randAngle = x2; 1027 if ( x1 == x2 ) randAngle = x2; 1116 else 1028 else 1117 { 1029 { 1118 if ( y1 == y2 ) randAngle = x1 + ( x2 - 1030 if ( y1 == y2 ) randAngle = x1 + ( x2 - x1 )*G4UniformRand(); 1119 else 1031 else 1120 { 1032 { 1121 randAngle = x1 + ( position - y1 )*( 1033 randAngle = x1 + ( position - y1 )*( x2 - x1 )/( y2 - y1 ); 1122 } 1034 } 1123 } 1035 } 1124 } 1036 } 1125 return randAngle; 1037 return randAngle; 1126 } 1038 } 1127 1039 1128 1040 1129 1041 1130 ///////////////////////////////////////////// 1042 //////////////////////////////////////////////////////////////////////////// 1131 // 1043 // 1132 // Return scattering angle sampled in lab sys 1044 // Return scattering angle sampled in lab system (target at rest) 1133 1045 1134 1046 1135 1047 1136 G4double 1048 G4double 1137 G4DiffuseElastic::SampleThetaLab( const G4Had 1049 G4DiffuseElastic::SampleThetaLab( const G4HadProjectile* aParticle, 1138 G4dou 1050 G4double tmass, G4double A) 1139 { 1051 { 1140 const G4ParticleDefinition* theParticle = a 1052 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 1141 G4double m1 = theParticle->GetPDGMass(); 1053 G4double m1 = theParticle->GetPDGMass(); 1142 G4double plab = aParticle->GetTotalMomentum 1054 G4double plab = aParticle->GetTotalMomentum(); 1143 G4LorentzVector lv1 = aParticle->Get4Moment 1055 G4LorentzVector lv1 = aParticle->Get4Momentum(); 1144 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1056 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1145 lv += lv1; 1057 lv += lv1; 1146 1058 1147 G4ThreeVector bst = lv.boostVector(); 1059 G4ThreeVector bst = lv.boostVector(); 1148 lv1.boost(-bst); 1060 lv1.boost(-bst); 1149 1061 1150 G4ThreeVector p1 = lv1.vect(); 1062 G4ThreeVector p1 = lv1.vect(); 1151 G4double ptot = p1.mag(); 1063 G4double ptot = p1.mag(); 1152 G4double tmax = 4.0*ptot*ptot; 1064 G4double tmax = 4.0*ptot*ptot; 1153 G4double t = 0.0; 1065 G4double t = 0.0; 1154 1066 1155 1067 1156 // 1068 // 1157 // Sample t 1069 // Sample t 1158 // 1070 // 1159 1071 1160 t = SampleT( theParticle, ptot, A); 1072 t = SampleT( theParticle, ptot, A); 1161 1073 1162 // NaN finder 1074 // NaN finder 1163 if(!(t < 0.0 || t >= 0.0)) 1075 if(!(t < 0.0 || t >= 0.0)) 1164 { 1076 { 1165 if (verboseLevel > 0) 1077 if (verboseLevel > 0) 1166 { 1078 { 1167 G4cout << "G4DiffuseElastic:WARNING: A 1079 G4cout << "G4DiffuseElastic:WARNING: A = " << A 1168 << " mom(GeV)= " << plab/GeV 1080 << " mom(GeV)= " << plab/GeV 1169 << " S-wave will be sampled" 1081 << " S-wave will be sampled" 1170 << G4endl; 1082 << G4endl; 1171 } 1083 } 1172 t = G4UniformRand()*tmax; 1084 t = G4UniformRand()*tmax; 1173 } 1085 } 1174 if(verboseLevel>1) 1086 if(verboseLevel>1) 1175 { 1087 { 1176 G4cout <<" t= " << t << " tmax= " << tmax 1088 G4cout <<" t= " << t << " tmax= " << tmax 1177 << " ptot= " << ptot << G4endl; 1089 << " ptot= " << ptot << G4endl; 1178 } 1090 } 1179 // Sampling of angles in CM system 1091 // Sampling of angles in CM system 1180 1092 1181 G4double phi = G4UniformRand()*twopi; 1093 G4double phi = G4UniformRand()*twopi; 1182 G4double cost = 1. - 2.0*t/tmax; 1094 G4double cost = 1. - 2.0*t/tmax; 1183 G4double sint; 1095 G4double sint; 1184 1096 1185 if( cost >= 1.0 ) 1097 if( cost >= 1.0 ) 1186 { 1098 { 1187 cost = 1.0; 1099 cost = 1.0; 1188 sint = 0.0; 1100 sint = 0.0; 1189 } 1101 } 1190 else if( cost <= -1.0) 1102 else if( cost <= -1.0) 1191 { 1103 { 1192 cost = -1.0; 1104 cost = -1.0; 1193 sint = 0.0; 1105 sint = 0.0; 1194 } 1106 } 1195 else 1107 else 1196 { 1108 { 1197 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1109 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1198 } 1110 } 1199 if (verboseLevel>1) 1111 if (verboseLevel>1) 1200 { 1112 { 1201 G4cout << "cos(t)=" << cost << " std::sin 1113 G4cout << "cos(t)=" << cost << " std::sin(t)=" << sint << G4endl; 1202 } 1114 } 1203 G4ThreeVector v1(sint*std::cos(phi),sint*st 1115 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost); 1204 v1 *= ptot; 1116 v1 *= ptot; 1205 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),s 1117 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1)); 1206 1118 1207 nlv1.boost(bst); 1119 nlv1.boost(bst); 1208 1120 1209 G4ThreeVector np1 = nlv1.vect(); 1121 G4ThreeVector np1 = nlv1.vect(); 1210 1122 1211 // G4double theta = std::acos( np1.z()/np 1123 // G4double theta = std::acos( np1.z()/np1.mag() ); // degree; 1212 1124 1213 G4double theta = np1.theta(); 1125 G4double theta = np1.theta(); 1214 1126 1215 return theta; 1127 return theta; 1216 } 1128 } 1217 1129 1218 ///////////////////////////////////////////// 1130 //////////////////////////////////////////////////////////////////////////// 1219 // 1131 // 1220 // Return scattering angle in lab system (tar 1132 // Return scattering angle in lab system (target at rest) knowing theta in CMS 1221 1133 1222 1134 1223 1135 1224 G4double 1136 G4double 1225 G4DiffuseElastic::ThetaCMStoThetaLab( const G 1137 G4DiffuseElastic::ThetaCMStoThetaLab( const G4DynamicParticle* aParticle, 1226 G4dou 1138 G4double tmass, G4double thetaCMS) 1227 { 1139 { 1228 const G4ParticleDefinition* theParticle = a 1140 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 1229 G4double m1 = theParticle->GetPDGMass(); 1141 G4double m1 = theParticle->GetPDGMass(); 1230 // G4double plab = aParticle->GetTotalMomen 1142 // G4double plab = aParticle->GetTotalMomentum(); 1231 G4LorentzVector lv1 = aParticle->Get4Moment 1143 G4LorentzVector lv1 = aParticle->Get4Momentum(); 1232 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1144 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1233 1145 1234 lv += lv1; 1146 lv += lv1; 1235 1147 1236 G4ThreeVector bst = lv.boostVector(); 1148 G4ThreeVector bst = lv.boostVector(); 1237 1149 1238 lv1.boost(-bst); 1150 lv1.boost(-bst); 1239 1151 1240 G4ThreeVector p1 = lv1.vect(); 1152 G4ThreeVector p1 = lv1.vect(); 1241 G4double ptot = p1.mag(); 1153 G4double ptot = p1.mag(); 1242 1154 1243 G4double phi = G4UniformRand()*twopi; 1155 G4double phi = G4UniformRand()*twopi; 1244 G4double cost = std::cos(thetaCMS); 1156 G4double cost = std::cos(thetaCMS); 1245 G4double sint; 1157 G4double sint; 1246 1158 1247 if( cost >= 1.0 ) 1159 if( cost >= 1.0 ) 1248 { 1160 { 1249 cost = 1.0; 1161 cost = 1.0; 1250 sint = 0.0; 1162 sint = 0.0; 1251 } 1163 } 1252 else if( cost <= -1.0) 1164 else if( cost <= -1.0) 1253 { 1165 { 1254 cost = -1.0; 1166 cost = -1.0; 1255 sint = 0.0; 1167 sint = 0.0; 1256 } 1168 } 1257 else 1169 else 1258 { 1170 { 1259 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1171 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1260 } 1172 } 1261 if (verboseLevel>1) 1173 if (verboseLevel>1) 1262 { 1174 { 1263 G4cout << "cos(tcms)=" << cost << " std:: 1175 G4cout << "cos(tcms)=" << cost << " std::sin(tcms)=" << sint << G4endl; 1264 } 1176 } 1265 G4ThreeVector v1(sint*std::cos(phi),sint*st 1177 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost); 1266 v1 *= ptot; 1178 v1 *= ptot; 1267 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),s 1179 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1)); 1268 1180 1269 nlv1.boost(bst); 1181 nlv1.boost(bst); 1270 1182 1271 G4ThreeVector np1 = nlv1.vect(); 1183 G4ThreeVector np1 = nlv1.vect(); 1272 1184 1273 1185 1274 G4double thetaLab = np1.theta(); 1186 G4double thetaLab = np1.theta(); 1275 1187 1276 return thetaLab; 1188 return thetaLab; 1277 } 1189 } 1278 ///////////////////////////////////////////// 1190 //////////////////////////////////////////////////////////////////////////// 1279 // 1191 // 1280 // Return scattering angle in CMS system (tar 1192 // Return scattering angle in CMS system (target at rest) knowing theta in Lab 1281 1193 1282 1194 1283 1195 1284 G4double 1196 G4double 1285 G4DiffuseElastic::ThetaLabToThetaCMS( const G 1197 G4DiffuseElastic::ThetaLabToThetaCMS( const G4DynamicParticle* aParticle, 1286 G4dou 1198 G4double tmass, G4double thetaLab) 1287 { 1199 { 1288 const G4ParticleDefinition* theParticle = a 1200 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 1289 G4double m1 = theParticle->GetPDGMass(); 1201 G4double m1 = theParticle->GetPDGMass(); 1290 G4double plab = aParticle->GetTotalMomentum 1202 G4double plab = aParticle->GetTotalMomentum(); 1291 G4LorentzVector lv1 = aParticle->Get4Moment 1203 G4LorentzVector lv1 = aParticle->Get4Momentum(); 1292 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1204 G4LorentzVector lv(0.0,0.0,0.0,tmass); 1293 1205 1294 lv += lv1; 1206 lv += lv1; 1295 1207 1296 G4ThreeVector bst = lv.boostVector(); 1208 G4ThreeVector bst = lv.boostVector(); 1297 1209 1298 // lv1.boost(-bst); 1210 // lv1.boost(-bst); 1299 1211 1300 // G4ThreeVector p1 = lv1.vect(); 1212 // G4ThreeVector p1 = lv1.vect(); 1301 // G4double ptot = p1.mag(); 1213 // G4double ptot = p1.mag(); 1302 1214 1303 G4double phi = G4UniformRand()*twopi; 1215 G4double phi = G4UniformRand()*twopi; 1304 G4double cost = std::cos(thetaLab); 1216 G4double cost = std::cos(thetaLab); 1305 G4double sint; 1217 G4double sint; 1306 1218 1307 if( cost >= 1.0 ) 1219 if( cost >= 1.0 ) 1308 { 1220 { 1309 cost = 1.0; 1221 cost = 1.0; 1310 sint = 0.0; 1222 sint = 0.0; 1311 } 1223 } 1312 else if( cost <= -1.0) 1224 else if( cost <= -1.0) 1313 { 1225 { 1314 cost = -1.0; 1226 cost = -1.0; 1315 sint = 0.0; 1227 sint = 0.0; 1316 } 1228 } 1317 else 1229 else 1318 { 1230 { 1319 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1231 sint = std::sqrt((1.0-cost)*(1.0+cost)); 1320 } 1232 } 1321 if (verboseLevel>1) 1233 if (verboseLevel>1) 1322 { 1234 { 1323 G4cout << "cos(tlab)=" << cost << " std:: 1235 G4cout << "cos(tlab)=" << cost << " std::sin(tlab)=" << sint << G4endl; 1324 } 1236 } 1325 G4ThreeVector v1(sint*std::cos(phi),sint*st 1237 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost); 1326 v1 *= plab; 1238 v1 *= plab; 1327 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),s 1239 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(plab*plab + m1*m1)); 1328 1240 1329 nlv1.boost(-bst); 1241 nlv1.boost(-bst); 1330 1242 1331 G4ThreeVector np1 = nlv1.vect(); 1243 G4ThreeVector np1 = nlv1.vect(); 1332 1244 1333 1245 1334 G4double thetaCMS = np1.theta(); 1246 G4double thetaCMS = np1.theta(); 1335 1247 1336 return thetaCMS; 1248 return thetaCMS; 1337 } 1249 } 1338 1250 1339 ///////////////////////////////////////////// 1251 /////////////////////////////////////////////////////////////////////////////// 1340 // 1252 // 1341 // Test for given particle and element table 1253 // Test for given particle and element table of momentum, angle probability. 1342 // For the moment in lab system. 1254 // For the moment in lab system. 1343 1255 1344 void G4DiffuseElastic::TestAngleTable(const G 1256 void G4DiffuseElastic::TestAngleTable(const G4ParticleDefinition* theParticle, G4double partMom, 1345 G 1257 G4double Z, G4double A) 1346 { 1258 { 1347 fAtomicNumber = Z; // atomic number 1259 fAtomicNumber = Z; // atomic number 1348 fAtomicWeight = A; // number of nucleo 1260 fAtomicWeight = A; // number of nucleons 1349 fNuclearRadius = CalculateNuclearRad(fAtomi 1261 fNuclearRadius = CalculateNuclearRad(fAtomicWeight); 1350 1262 1351 1263 1352 1264 1353 G4cout<<"G4DiffuseElastic::TestAngleTable() 1265 G4cout<<"G4DiffuseElastic::TestAngleTable() init the element with Z = " 1354 <<Z<<"; and A = "<<A<<G4endl; 1266 <<Z<<"; and A = "<<A<<G4endl; 1355 1267 1356 fElementNumberVector.push_back(fAtomicNumbe 1268 fElementNumberVector.push_back(fAtomicNumber); 1357 1269 1358 1270 1359 1271 1360 1272 1361 G4int i=0, j; 1273 G4int i=0, j; 1362 G4double a = 0., z = theParticle->GetPDGCha 1274 G4double a = 0., z = theParticle->GetPDGCharge(), m1 = fParticle->GetPDGMass(); 1363 G4double alpha1=0., alpha2=0., alphaMax=0., 1275 G4double alpha1=0., alpha2=0., alphaMax=0., alphaCoulomb=0.; 1364 G4double deltaL10 = 0., deltaL96 = 0., delt 1276 G4double deltaL10 = 0., deltaL96 = 0., deltaAG = 0.; 1365 G4double sumL10 = 0.,sumL96 = 0.,sumAG = 0. 1277 G4double sumL10 = 0.,sumL96 = 0.,sumAG = 0.; 1366 G4double epsilon = 0.001; 1278 G4double epsilon = 0.001; 1367 1279 1368 G4Integrator<G4DiffuseElastic,G4double(G4Di 1280 G4Integrator<G4DiffuseElastic,G4double(G4DiffuseElastic::*)(G4double)> integral; 1369 1281 1370 fAngleTable = new G4PhysicsTable(fEnergyBin 1282 fAngleTable = new G4PhysicsTable(fEnergyBin); 1371 1283 1372 fWaveVector = partMom/hbarc; 1284 fWaveVector = partMom/hbarc; 1373 1285 1374 G4double kR = fWaveVector*fNuclearRadiu 1286 G4double kR = fWaveVector*fNuclearRadius; 1375 G4double kR2 = kR*kR; 1287 G4double kR2 = kR*kR; 1376 G4double kRmax = 10.6; // 10.6, 18, 10.174 1288 G4double kRmax = 10.6; // 10.6, 18, 10.174; ~ 3 maxima of J1 or 15., 25. 1377 G4double kRcoul = 1.2; // 1.4, 2.5; // on t 1289 G4double kRcoul = 1.2; // 1.4, 2.5; // on the first slope of J1 1378 1290 1379 alphaMax = kRmax*kRmax/kR2; 1291 alphaMax = kRmax*kRmax/kR2; 1380 1292 1381 if (alphaMax > 4.) alphaMax = 4.; // vmg05 1293 if (alphaMax > 4.) alphaMax = 4.; // vmg05-02-09: was pi2 1382 1294 1383 alphaCoulomb = kRcoul*kRcoul/kR2; 1295 alphaCoulomb = kRcoul*kRcoul/kR2; 1384 1296 1385 if( z ) 1297 if( z ) 1386 { 1298 { 1387 a = partMom/m1; // beta*gamma 1299 a = partMom/m1; // beta*gamma for m1 1388 fBeta = a/std::sqrt(1+a*a); 1300 fBeta = a/std::sqrt(1+a*a); 1389 fZommerfeld = CalculateZommerfeld( fBet 1301 fZommerfeld = CalculateZommerfeld( fBeta, z, fAtomicNumber); 1390 fAm = CalculateAm( partMom, fZo 1302 fAm = CalculateAm( partMom, fZommerfeld, fAtomicNumber); 1391 } 1303 } 1392 G4PhysicsFreeVector* angleVector = new G4Ph 1304 G4PhysicsFreeVector* angleVector = new G4PhysicsFreeVector(fAngleBin-1); 1393 1305 1394 // G4PhysicsLogVector* angleBins = new G4P 1306 // G4PhysicsLogVector* angleBins = new G4PhysicsLogVector( 0.001*alphaMax, alphaMax, fAngleBin ); 1395 1307 1396 1308 1397 fAddCoulomb = false; 1309 fAddCoulomb = false; 1398 1310 1399 for(j = 1; j < fAngleBin; j++) 1311 for(j = 1; j < fAngleBin; j++) 1400 { 1312 { 1401 // alpha1 = angleBins->GetLowEdgeEnergy 1313 // alpha1 = angleBins->GetLowEdgeEnergy(j-1); 1402 // alpha2 = angleBins->GetLowEdgeEnergy 1314 // alpha2 = angleBins->GetLowEdgeEnergy(j); 1403 1315 1404 alpha1 = alphaMax*(j-1)/fAngleBin; 1316 alpha1 = alphaMax*(j-1)/fAngleBin; 1405 alpha2 = alphaMax*( j )/fAngleBin; 1317 alpha2 = alphaMax*( j )/fAngleBin; 1406 1318 1407 if( ( alpha2 > alphaCoulomb ) && z ) fAdd 1319 if( ( alpha2 > alphaCoulomb ) && z ) fAddCoulomb = true; 1408 1320 1409 deltaL10 = integral.Legendre10(this, &G4D 1321 deltaL10 = integral.Legendre10(this, &G4DiffuseElastic::GetIntegrandFunction, alpha1, alpha2); 1410 deltaL96 = integral.Legendre96(this, &G4D 1322 deltaL96 = integral.Legendre96(this, &G4DiffuseElastic::GetIntegrandFunction, alpha1, alpha2); 1411 deltaAG = integral.AdaptiveGauss(this, & 1323 deltaAG = integral.AdaptiveGauss(this, &G4DiffuseElastic::GetIntegrandFunction, 1412 alpha1 1324 alpha1, alpha2,epsilon); 1413 1325 1414 // G4cout<<alpha1<<"\t"<<std::sqrt(alph 1326 // G4cout<<alpha1<<"\t"<<std::sqrt(alpha1)/degree<<"\t" 1415 // <<deltaL10<<"\t"<<deltaL96<<"\t" 1327 // <<deltaL10<<"\t"<<deltaL96<<"\t"<<deltaAG<<G4endl; 1416 1328 1417 sumL10 += deltaL10; 1329 sumL10 += deltaL10; 1418 sumL96 += deltaL96; 1330 sumL96 += deltaL96; 1419 sumAG += deltaAG; 1331 sumAG += deltaAG; 1420 1332 1421 G4cout<<alpha1<<"\t"<<std::sqrt(alpha1)/d 1333 G4cout<<alpha1<<"\t"<<std::sqrt(alpha1)/degree<<"\t" 1422 <<sumL10<<"\t"<<sumL96<<"\t"<<sum 1334 <<sumL10<<"\t"<<sumL96<<"\t"<<sumAG<<G4endl; 1423 1335 1424 angleVector->PutValue( j-1 , alpha1, sumL 1336 angleVector->PutValue( j-1 , alpha1, sumL10 ); // alpha2 1425 } 1337 } 1426 fAngleTable->insertAt(i,angleVector); 1338 fAngleTable->insertAt(i,angleVector); 1427 fAngleBank.push_back(fAngleTable); 1339 fAngleBank.push_back(fAngleTable); 1428 1340 1429 /* 1341 /* 1430 // Integral over all angle range - Bad accu 1342 // Integral over all angle range - Bad accuracy !!! 1431 1343 1432 sumL10 = integral.Legendre10(this, &G4Diffu 1344 sumL10 = integral.Legendre10(this, &G4DiffuseElastic::GetIntegrandFunction, 0., alpha2); 1433 sumL96 = integral.Legendre96(this, &G4Diffu 1345 sumL96 = integral.Legendre96(this, &G4DiffuseElastic::GetIntegrandFunction, 0., alpha2); 1434 sumAG = integral.AdaptiveGauss(this, &G4Di 1346 sumAG = integral.AdaptiveGauss(this, &G4DiffuseElastic::GetIntegrandFunction, 1435 0., al 1347 0., alpha2,epsilon); 1436 G4cout<<G4endl; 1348 G4cout<<G4endl; 1437 G4cout<<alpha2<<"\t"<<std::sqrt(alpha2)/deg 1349 G4cout<<alpha2<<"\t"<<std::sqrt(alpha2)/degree<<"\t" 1438 <<sumL10<<"\t"<<sumL96<<"\t"<<sum 1350 <<sumL10<<"\t"<<sumL96<<"\t"<<sumAG<<G4endl; 1439 */ 1351 */ 1440 return; 1352 return; 1441 } 1353 } 1442 1354 1443 // 1355 // 1444 // 1356 // 1445 ///////////////////////////////////////////// 1357 ///////////////////////////////////////////////////////////////////////////////// 1446 1358