Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4Integrator 27 // 28 // Class description: 29 // 30 // Template class collecting integrator methods for generic funtions. 31 32 // Author: V.Grichine, 04.09.1999 - First implementation based on 33 // G4SimpleIntegration class with H.P.Wellisch, G.Cosmo, and 34 // E.TCherniaev advises 35 // -------------------------------------------------------------------- 36 #ifndef G4INTEGRATOR_HH 37 #define G4INTEGRATOR_HH 1 38 39 #include "G4Types.hh" 40 #include <CLHEP/Units/PhysicalConstants.h> 41 #include <cmath> 42 43 template <class T, class F> 44 class G4Integrator 45 { 46 public: 47 G4Integrator() { ; } 48 ~G4Integrator() { ; } 49 50 G4double Simpson(T& typeT, F f, G4double a, G4double b, G4int n); 51 G4double Simpson(T* ptrT, F f, G4double a, G4double b, G4int n); 52 G4double Simpson(G4double (*f)(G4double), G4double a, G4double b, G4int n); 53 // Simpson integration method 54 55 G4double AdaptiveGauss(T& typeT, F f, G4double a, G4double b, G4double e); 56 G4double AdaptiveGauss(T* ptrT, F f, G4double a, G4double b, G4double e); 57 G4double AdaptiveGauss(G4double (*f)(G4double), G4double a, G4double b, 58 G4double e); 59 // Adaptive Gauss method 60 61 // Integration methods involving orthogohol polynomials 62 63 G4double Legendre(T& typeT, F f, G4double a, G4double b, G4int n); 64 G4double Legendre(T* ptrT, F f, G4double a, G4double b, G4int n); 65 G4double Legendre(G4double (*f)(G4double), G4double a, G4double b, G4int n); 66 // 67 // Methods involving Legendre polynomials 68 69 G4double Legendre10(T& typeT, F f, G4double a, G4double b); 70 G4double Legendre10(T* ptrT, F f, G4double a, G4double b); 71 G4double Legendre10(G4double (*f)(G4double), G4double a, G4double b); 72 // 73 // Legendre10 is very fast and accurate enough 74 75 G4double Legendre96(T& typeT, F f, G4double a, G4double b); 76 G4double Legendre96(T* ptrT, F f, G4double a, G4double b); 77 G4double Legendre96(G4double (*f)(G4double), G4double a, G4double b); 78 // 79 // Legendre96 is very accurate and fast enough 80 81 G4double Chebyshev(T& typeT, F f, G4double a, G4double b, G4int n); 82 G4double Chebyshev(T* ptrT, F f, G4double a, G4double b, G4int n); 83 G4double Chebyshev(G4double (*f)(G4double), G4double a, G4double b, G4int n); 84 // 85 // Methods involving Chebyshev polynomials 86 87 G4double Laguerre(T& typeT, F f, G4double alpha, G4int n); 88 G4double Laguerre(T* ptrT, F f, G4double alpha, G4int n); 89 G4double Laguerre(G4double (*f)(G4double), G4double alpha, G4int n); 90 // 91 // Method involving Laguerre polynomials 92 93 G4double Hermite(T& typeT, F f, G4int n); 94 G4double Hermite(T* ptrT, F f, G4int n); 95 G4double Hermite(G4double (*f)(G4double), G4int n); 96 // 97 // Method involving Hermite polynomials 98 99 G4double Jacobi(T& typeT, F f, G4double alpha, G4double beta, G4int n); 100 G4double Jacobi(T* ptrT, F f, G4double alpha, G4double beta, G4int n); 101 G4double Jacobi(G4double (*f)(G4double), G4double alpha, G4double beta, 102 G4int n); 103 // Method involving Jacobi polynomials 104 105 protected: 106 // Auxiliary functions for adaptive Gauss method 107 108 G4double Gauss(T& typeT, F f, G4double a, G4double b); 109 G4double Gauss(T* ptrT, F f, G4double a, G4double b); 110 G4double Gauss(G4double (*f)(G4double), G4double a, G4double b); 111 112 void AdaptGauss(T& typeT, F f, G4double a, G4double b, G4double e, 113 G4double& sum, G4int& n); 114 void AdaptGauss(T* typeT, F f, G4double a, G4double b, G4double e, 115 G4double& sum, G4int& n); 116 void AdaptGauss(G4double (*f)(G4double), G4double a, G4double b, G4double e, 117 G4double& sum, G4int& n); 118 119 G4double GammaLogarithm(G4double xx); 120 }; 121 122 #include "G4Integrator.icc" 123 124 #endif 125