Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 >> 25 // $Id: G4VXTRenergyLoss.cc,v 1.12 2004/03/01 17:00:31 vnivanch Exp $ >> 26 // GEANT4 tag $Name: xrays-V06-02-01 $ >> 27 // 26 // History: 28 // History: 27 // 2001-2002 R&D by V.Grichine 29 // 2001-2002 R&D by V.Grichine 28 // 19.06.03 V. Grichine, modifications in Buil << 30 // 19.06.03 V. Grichine, modifications in BuildTable for the integration 29 // in respect of angle: 31 // in respect of angle: range is increased, accuracy is 30 // improved 32 // improved 31 // 28.07.05, P.Gumplinger add G4ProcessType to << 32 // 28.09.07, V.Ivanchenko general cleanup with << 33 // 33 // 34 34 35 #include "G4VXTRenergyLoss.hh" << 35 #include "G4Timer.hh" 36 36 37 #include "G4AffineTransform.hh" << 37 #include "G4VXTRenergyLoss.hh" 38 #include "G4DynamicParticle.hh" << 38 #include "G4Poisson.hh" 39 #include "G4EmProcessSubType.hh" << 40 #include "G4Integrator.hh" << 41 #include "G4MaterialTable.hh" 39 #include "G4MaterialTable.hh" 42 #include "G4ParticleMomentum.hh" << 40 43 #include "G4PhysicalConstants.hh" << 41 #include "G4PhysicsVector.hh" 44 #include "G4PhysicsFreeVector.hh" << 45 #include "G4PhysicsLinearVector.hh" 42 #include "G4PhysicsLinearVector.hh" 46 #include "G4PhysicsLogVector.hh" << 43 47 #include "G4RotationMatrix.hh" << 44 // Initialization of local constants 48 #include "G4SandiaTable.hh" << 45 49 #include "G4SystemOfUnits.hh" << 46 G4double G4VXTRenergyLoss::fTheMinEnergyTR = 1.0*keV ; 50 #include "G4ThreeVector.hh" << 47 G4double G4VXTRenergyLoss::fTheMaxEnergyTR = 100.0*keV ; 51 #include "G4Timer.hh" << 48 G4double G4VXTRenergyLoss::fTheMaxAngle = 1.0e-3 ; 52 #include "G4VDiscreteProcess.hh" << 49 G4double G4VXTRenergyLoss::fTheMinAngle = 5.0e-6 ; 53 #include "G4VParticleChange.hh" << 50 G4int G4VXTRenergyLoss::fBinTR = 50 ; 54 #include "G4VSolid.hh" << 51 55 #include "G4PhysicsModelCatalog.hh" << 52 G4double G4VXTRenergyLoss::fMinProtonTkin = 100.0*GeV ; >> 53 G4double G4VXTRenergyLoss::fMaxProtonTkin = 100.0*TeV ; >> 54 G4int G4VXTRenergyLoss::fTotBin = 50 ; >> 55 // Proton energy vector initialization >> 56 >> 57 G4PhysicsLogVector* G4VXTRenergyLoss:: >> 58 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 59 fMaxProtonTkin, >> 60 fTotBin ) ; >> 61 >> 62 G4double G4VXTRenergyLoss::fPlasmaCof = 4.0*pi*fine_structure_const* >> 63 hbarc*hbarc*hbarc/electron_mass_c2 ; >> 64 >> 65 G4double G4VXTRenergyLoss::fCofTR = fine_structure_const/pi ; >> 66 >> 67 >> 68 >> 69 56 70 57 ////////////////////////////////////////////// 71 //////////////////////////////////////////////////////////////////////////// >> 72 // 58 // Constructor, destructor 73 // Constructor, destructor 59 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVo << 60 G4Material* << 61 G4double a, << 62 const G4Str << 63 G4ProcessTy << 64 : G4VDiscreteProcess(processName, type) << 65 , fGammaCutInKineticEnergy(nullptr) << 66 , fAngleDistrTable(nullptr) << 67 , fEnergyDistrTable(nullptr) << 68 , fAngleForEnergyTable(nullptr) << 69 , fPlatePhotoAbsCof(nullptr) << 70 , fGasPhotoAbsCof(nullptr) << 71 , fGammaTkinCut(0.0) << 72 { << 73 verboseLevel = 1; << 74 secID = G4PhysicsModelCatalog::GetModelID("m << 75 SetProcessSubType(fTransitionRadiation); << 76 << 77 fPtrGamma = nullptr; << 78 fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = << 79 fVarAngle = fLambda = fTotalDist = fPlateThi << 80 fAlphaPlate = 100.; << 81 fAlphaGas = 40.; << 82 << 83 fTheMinEnergyTR = CLHEP::keV * 1.; // 1.; / << 84 fTheMaxEnergyTR = CLHEP::keV * 100.; // 40.; << 85 << 86 fTheMinAngle = 1.e-8; // << 87 fTheMaxAngle = 4.e-4; << 88 << 89 fTotBin = 50; // number of bins in log sca << 90 fBinTR = 100; // number of bins in TR vec << 91 fKrange = 229; << 92 // min/max angle2 in log-vectors << 93 74 94 fMinThetaTR = 3.0e-9; << 75 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVolume *anEnvelope, 95 fMaxThetaTR = 1.0e-4; << 76 G4Material* foilMat,G4Material* gasMat, 96 << 77 G4double a, G4double b, 97 << 78 G4int n,const G4String& processName) : 98 // Proton energy vector initialization << 79 G4VContinuousProcess(processName) 99 fProtonEnergyVector = << 80 { 100 new G4PhysicsLogVector(fMinProtonTkin, fMa << 81 fEnvelope = anEnvelope ; 101 << 82 // fPlateNumber = fEnvelope->GetNoDaughters() ; 102 fXTREnergyVector = << 83 fPlateNumber = n ; 103 new G4PhysicsLogVector(fTheMinEnergyTR, fT << 84 G4cout<<"the number of TR radiator plates = "<<fPlateNumber<<G4endl ; 104 << 105 fEnvelope = anEnvelope; << 106 << 107 fPlateNumber = n; << 108 if(verboseLevel > 0) << 109 G4cout << "### G4VXTRenergyLoss: the numbe << 110 << fPlateNumber << G4endl; << 111 if(fPlateNumber == 0) 85 if(fPlateNumber == 0) 112 { 86 { 113 G4Exception("G4VXTRenergyLoss::G4VXTRenerg << 87 G4Exception("No plates in X-ray TR radiator") ; 114 FatalException, "No plates in << 115 } 88 } 116 // default is XTR dEdx, not flux after radia << 89 // Mean thicknesses of plates and gas gaps 117 fExitFlux = false; << 118 // default angle distribution according nume << 119 fFastAngle = false; // no angle accordin << 120 fAngleRadDistr = true; << 121 fCompton = false; << 122 90 123 fLambda = DBL_MAX; << 91 fPlateThick = a ; >> 92 fGasThick = b ; 124 93 125 // Mean thicknesses of plates and gas gaps << 94 fTotalDist = fPlateNumber*(fPlateThick+fGasThick) ; 126 fPlateThick = a; << 95 G4cout<<"total radiator thickness = "<<fTotalDist/cm<<" cm"<<G4endl ; 127 fGasThick = b; << 128 fTotalDist = fPlateNumber * (fPlateThick + << 129 if(verboseLevel > 0) << 130 G4cout << "total radiator thickness = " << << 131 << G4endl; << 132 96 133 // index of plate material 97 // index of plate material 134 fMatIndex1 = (G4int)foilMat->GetIndex(); << 98 fMatIndex1 = foilMat->GetIndex() ; 135 if(verboseLevel > 0) << 99 G4cout<<"plate material = "<<foilMat->GetName()<<G4endl ; 136 G4cout << "plate material = " << foilMat-> << 137 100 138 // index of gas material 101 // index of gas material 139 fMatIndex2 = (G4int)gasMat->GetIndex(); << 102 fMatIndex2 = gasMat->GetIndex() ; 140 if(verboseLevel > 0) << 103 G4cout<<"gas material = "<<gasMat->GetName()<<G4endl ; 141 G4cout << "gas material = " << gasMat->Get << 142 104 143 // plasma energy squared for plate material 105 // plasma energy squared for plate material 144 fSigma1 = fPlasmaCof * foilMat->GetElectronD << 106 145 if(verboseLevel > 0) << 107 fSigma1 = fPlasmaCof*foilMat->GetElectronDensity() ; 146 G4cout << "plate plasma energy = " << std: << 108 // fSigma1 = (20.9*eV)*(20.9*eV) ; 147 << G4endl; << 109 G4cout<<"plate plasma energy = "<<sqrt(fSigma1)/eV<<" eV"<<G4endl ; 148 110 149 // plasma energy squared for gas material 111 // plasma energy squared for gas material 150 fSigma2 = fPlasmaCof * gasMat->GetElectronDe << 112 151 if(verboseLevel > 0) << 113 fSigma2 = fPlasmaCof*gasMat->GetElectronDensity() ; 152 G4cout << "gas plasma energy = " << std::s << 114 G4cout<<"gas plasma energy = "<<sqrt(fSigma2)/eV<<" eV"<<G4endl ; 153 << G4endl; << 154 115 155 // Compute cofs for preparation of linear ph 116 // Compute cofs for preparation of linear photo absorption 156 ComputePlatePhotoAbsCof(); << 157 ComputeGasPhotoAbsCof(); << 158 117 159 pParticleChange = &fParticleChange; << 118 ComputePlatePhotoAbsCof() ; >> 119 ComputeGasPhotoAbsCof() ; >> 120 160 } 121 } 161 122 162 ////////////////////////////////////////////// 123 /////////////////////////////////////////////////////////////////////////// >> 124 163 G4VXTRenergyLoss::~G4VXTRenergyLoss() 125 G4VXTRenergyLoss::~G4VXTRenergyLoss() 164 { 126 { 165 delete fProtonEnergyVector; << 127 G4int i ; 166 delete fXTREnergyVector; << 167 if(fEnergyDistrTable) << 168 { << 169 fEnergyDistrTable->clearAndDestroy(); << 170 delete fEnergyDistrTable; << 171 } << 172 if(fAngleRadDistr) << 173 { << 174 fAngleDistrTable->clearAndDestroy(); << 175 delete fAngleDistrTable; << 176 } << 177 if(fAngleForEnergyTable) << 178 { << 179 fAngleForEnergyTable->clearAndDestroy(); << 180 delete fAngleForEnergyTable; << 181 } << 182 } << 183 128 184 void G4VXTRenergyLoss::ProcessDescription(std: << 129 if(fEnvelope) delete fEnvelope; 185 { << 130 186 out << "Base class for 'fast' parameterisati << 131 for(i=0;i<fGasIntervalNumber;i++) 187 "transition\n" << 132 { 188 "radiation. Angular distribution is v << 133 delete[] fGasPhotoAbsCof[i] ; >> 134 } >> 135 delete[] fGasPhotoAbsCof ; >> 136 >> 137 for(i=0;i<fPlateIntervalNumber;i++) >> 138 { >> 139 delete[] fPlatePhotoAbsCof[i] ; >> 140 } >> 141 delete[] fPlatePhotoAbsCof ; 189 } 142 } 190 143 191 ////////////////////////////////////////////// 144 /////////////////////////////////////////////////////////////////////////////// >> 145 // 192 // Returns condition for application of the mo 146 // Returns condition for application of the model depending on particle type >> 147 >> 148 193 G4bool G4VXTRenergyLoss::IsApplicable(const G4 149 G4bool G4VXTRenergyLoss::IsApplicable(const G4ParticleDefinition& particle) 194 { 150 { 195 return (particle.GetPDGCharge() != 0.0); << 151 return ( particle.GetPDGCharge() != 0.0 ) ; 196 } 152 } 197 153 198 ////////////////////////////////////////////// << 154 ////////////////////////////////////////////////////////////////////////////////// 199 // Calculate step size for XTR process inside << 155 // 200 G4double G4VXTRenergyLoss::GetMeanFreePath(con << 156 // GetContinuousStepLimit 201 G4F << 157 // 202 { << 203 G4int iTkin, iPlace; << 204 G4double lambda, sigma, kinEnergy, mass, gam << 205 G4double charge, chargeSq, massRatio, TkinSc << 206 G4double E1, E2, W, W1, W2; << 207 << 208 *condition = NotForced; << 209 << 210 if(aTrack.GetVolume()->GetLogicalVolume() != << 211 lambda = DBL_MAX; << 212 else << 213 { << 214 const G4DynamicParticle* aParticle = aTrac << 215 kinEnergy = aPart << 216 mass = aParticle->GetDefinition()->GetPDG << 217 gamma = 1.0 + kinEnergy / mass; << 218 if(verboseLevel > 1) << 219 { << 220 G4cout << " gamma = " << gamma << "; f << 221 } << 222 << 223 if(std::fabs(gamma - fGamma) < 0.05 * gamm << 224 lambda = fLambda; << 225 else << 226 { << 227 charge = aParticle->GetDefinition()- << 228 chargeSq = charge * charge; << 229 massRatio = proton_mass_c2 / mass; << 230 TkinScaled = kinEnergy * massRatio; << 231 << 232 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 233 { << 234 if(TkinScaled < fProtonEnergyVector->G << 235 break; << 236 } << 237 iPlace = iTkin - 1; << 238 << 239 if(iTkin == 0) << 240 lambda = DBL_MAX; // Tkin is too smal << 241 else // general case: Tkin between two << 242 { << 243 if(iTkin == fTotBin) << 244 { << 245 sigma = (*(*fEnergyDistrTable)(iPlac << 246 } << 247 else << 248 { << 249 E1 = fProtonEnergyVector->GetLowE << 250 E2 = fProtonEnergyVector->GetLowE << 251 W = 1.0 / (E2 - E1); << 252 W1 = (E2 - TkinScaled) * W; << 253 W2 = (TkinScaled - E1) * W; << 254 sigma = ((*(*fEnergyDistrTable)(iPla << 255 (*(*fEnergyDistrTable)(iPla << 256 chargeSq; << 257 } << 258 if(sigma < DBL_MIN) << 259 lambda = DBL_MAX; << 260 else << 261 lambda = 1. / sigma; << 262 fLambda = lambda; << 263 fGamma = gamma; << 264 if(verboseLevel > 1) << 265 { << 266 G4cout << " lambda = " << lambda / m << 267 } << 268 } << 269 } << 270 } << 271 return lambda; << 272 } << 273 158 274 ////////////////////////////////////////////// << 159 G4double 275 // Interface for build table from physics list << 160 G4VXTRenergyLoss::GetContinuousStepLimit(const G4Track& , 276 void G4VXTRenergyLoss::BuildPhysicsTable(const << 161 G4double , >> 162 G4double , >> 163 G4double& ) 277 { 164 { 278 if(pd.GetPDGCharge() == 0.) << 165 G4double StepLimit = DBL_MAX; 279 { << 280 G4Exception("G4VXTRenergyLoss::BuildPhysic << 281 JustWarning, "XTR initialisati << 282 } << 283 BuildEnergyTable(); << 284 166 285 if(fAngleRadDistr) << 167 return StepLimit; 286 { << 287 if(verboseLevel > 0) << 288 { << 289 G4cout << 290 << "Build angle for energy distributio << 291 << G4endl; << 292 } << 293 BuildAngleForEnergyBank(); << 294 } << 295 } 168 } 296 169 297 ////////////////////////////////////////////// 170 ////////////////////////////////////////////////////////////////////////// >> 171 // 298 // Build integral energy distribution of XTR p 172 // Build integral energy distribution of XTR photons 299 void G4VXTRenergyLoss::BuildEnergyTable() << 300 { << 301 G4int iTkin, iTR, iPlace; << 302 G4double radiatorCof = 1.0; // for tuning o << 303 G4double energySum = 0.0; << 304 << 305 fEnergyDistrTable = new G4PhysicsTable(fTotB << 306 if(fAngleRadDistr) << 307 fAngleDistrTable = new G4PhysicsTable(fTot << 308 << 309 fGammaTkinCut = 0.0; << 310 << 311 // setting of min/max TR energies << 312 if(fGammaTkinCut > fTheMinEnergyTR) << 313 fMinEnergyTR = fGammaTkinCut; << 314 else << 315 fMinEnergyTR = fTheMinEnergyTR; << 316 173 317 if(fGammaTkinCut > fTheMaxEnergyTR) << 174 void G4VXTRenergyLoss::BuildTable() 318 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 175 { 319 else << 176 G4int iTkin, iTR, iPlace ; 320 fMaxEnergyTR = fTheMaxEnergyTR; << 177 G4double radiatorCof = 1.0 ; // for tuning of XTR yield 321 178 322 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 179 fEnergyDistrTable = new G4PhysicsTable(fTotBin) ; 323 integral; << 324 180 325 G4cout.precision(4); << 181 fGammaTkinCut = 0.0 ; 326 G4Timer timer; << 182 327 timer.Start(); << 183 // setting of min/max TR energies >> 184 >> 185 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut ; >> 186 else fMinEnergyTR = fTheMinEnergyTR ; >> 187 >> 188 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut ; >> 189 else fMaxEnergyTR = fTheMaxEnergyTR ; 328 190 329 if(verboseLevel > 0) << 191 G4cout.precision(4) ; 330 { << 192 G4Timer timer ; 331 G4cout << G4endl; << 193 timer.Start() ; 332 G4cout << "Lorentz Factor" << 194 333 << "\t" << 195 for( iTkin = 0 ; iTkin < fTotBin ; iTkin++ ) // Lorentz factor loop 334 << "XTR photon number" << G4endl; << 335 G4cout << G4endl; << 336 } << 337 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 338 { 196 { 339 auto energyVector = << 197 G4PhysicsLogVector* energyVector = new G4PhysicsLogVector( fMinEnergyTR, 340 new G4PhysicsLogVector(fMinEnergyTR, fMa << 198 fMaxEnergyTR, >> 199 fBinTR ) ; 341 200 342 fGamma = << 201 fGamma = 1.0 + (fProtonEnergyVector-> 343 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 202 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 344 203 345 // if(fMaxThetaTR > fTheMaxAngle) fMax << 204 fMaxThetaTR = 25.0/(fGamma*fGamma) ; // theta^2 346 // else if(fMaxThetaTR < fTheMinAngle) << 347 205 348 energySum = 0.0; << 206 fTheMinAngle = 1.0e-3 ; // was 5.e-6, e-6 !!!, e-5, e-4 349 << 207 350 energyVector->PutValue(fBinTR - 1, energyS << 208 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle ; 351 << 209 else 352 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 210 { 353 { << 211 if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle ; 354 // Legendre96 or Legendre10 << 212 } 355 << 213 G4PhysicsLinearVector* angleVector = new G4PhysicsLinearVector(0.0, 356 energySum += radiatorCof * fCofTR * << 214 fMaxThetaTR, 357 << 215 fBinTR ); 358 // integral.Legendre10(this, &G4VXTRenergyLo << 216 359 << 217 G4double energySum = 0.0 ; 360 integral.Legendre96(this, & << 218 G4double angleSum = 0.0 ; 361 << 219 362 energyV << 220 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 363 energyV << 221 364 << 222 energyVector->PutValue(fBinTR-1,energySum) ; 365 energyVector->PutValue(iTR, energySum / << 223 angleVector->PutValue(fBinTR-1,angleSum) ; 366 } << 224 367 iPlace = iTkin; << 225 for( iTR = fBinTR - 2 ; iTR >= 0 ; iTR-- ) 368 fEnergyDistrTable->insertAt(iPlace, energy << 226 { 369 << 227 energySum += radiatorCof*fCofTR*integral.Legendre10( 370 if(verboseLevel > 0) << 228 this,&G4VXTRenergyLoss::SpectralXTRdEdx, 371 { << 229 energyVector->GetLowEdgeEnergy(iTR), 372 G4cout << fGamma << "\t" << energySum << << 230 energyVector->GetLowEdgeEnergy(iTR+1) ) ; 373 } << 231 374 } << 232 // angleSum += fCofTR*integral.Legendre96( 375 timer.Stop(); << 233 // this,&G4VXTRenergyLoss::AngleXTRdEdx, 376 G4cout.precision(6); << 234 // angleVector->GetLowEdgeEnergy(iTR), 377 if(verboseLevel > 0) << 235 // angleVector->GetLowEdgeEnergy(iTR+1) ) ; 378 { << 236 379 G4cout << G4endl; << 237 energyVector->PutValue(iTR,energySum/fTotalDist) ; 380 G4cout << "total time for build X-ray TR e << 238 // angleVector ->PutValue(iTR,angleSum) ; 381 << timer.GetUserElapsed() << " s" < << 239 } 382 } << 240 G4cout<<iTkin<<"\t" 383 fGamma = 0.; << 241 <<"fGamma = "<<fGamma<<"\t" // <<" fMaxThetaTR = "<<fMaxThetaTR 384 return; << 242 <<"sumE = "<<energySum // <<" ; sumA = "<<angleSum >> 243 <<G4endl ; >> 244 iPlace = iTkin ; >> 245 fEnergyDistrTable->insertAt(iPlace,energyVector) ; >> 246 // fAngleDistrTable->insertAt(iPlace,angleVector) ; >> 247 } >> 248 timer.Stop() ; >> 249 G4cout.precision(6) ; >> 250 G4cout<<G4endl ; >> 251 G4cout<<"total time for build X-ray TR energy loss tables = " >> 252 <<timer.GetUserElapsed()<<" s"<<G4endl ; >> 253 return ; 385 } 254 } 386 255 387 ////////////////////////////////////////////// 256 ////////////////////////////////////////////////////////////////////////// 388 // Bank of angle distributions for given energ << 257 // >> 258 // 389 259 390 void G4VXTRenergyLoss::BuildAngleForEnergyBank << 260 void G4VXTRenergyLoss::BuildEnergyTable() 391 { 261 { 392 << 262 return ; 393 if( ( this->GetProcessName() == "TranspRegXT << 394 this->GetProcessName() == "TranspRegXT << 395 this->GetProcessName() == "RegularXTRa << 396 this->GetProcessName() == "RegularXTRmodel" << 397 { << 398 BuildAngleTable(); // by sum of delta-func << 399 return; << 400 } << 401 G4int i, iTkin, iTR; << 402 G4double angleSum = 0.0; << 403 << 404 fGammaTkinCut = 0.0; << 405 << 406 // setting of min/max TR energies << 407 if(fGammaTkinCut > fTheMinEnergyTR) << 408 fMinEnergyTR = fGammaTkinCut; << 409 else << 410 fMinEnergyTR = fTheMinEnergyTR; << 411 << 412 if(fGammaTkinCut > fTheMaxEnergyTR) << 413 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 414 else << 415 fMaxEnergyTR = fTheMaxEnergyTR; << 416 << 417 auto energyVector = << 418 new G4PhysicsLogVector(fMinEnergyTR, fMaxE << 419 << 420 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 421 integral; << 422 << 423 G4cout.precision(4); << 424 G4Timer timer; << 425 timer.Start(); << 426 << 427 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 428 { << 429 fGamma = << 430 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 431 << 432 if(fMaxThetaTR > fTheMaxAngle) << 433 fMaxThetaTR = fTheMaxAngle; << 434 else if(fMaxThetaTR < fTheMinAngle) << 435 fMaxThetaTR = fTheMinAngle; << 436 << 437 fAngleForEnergyTable = new G4PhysicsTable( << 438 << 439 for(iTR = 0; iTR < fBinTR; ++iTR) << 440 { << 441 angleSum = 0.0; << 442 fEnergy = energyVector->GetLowEdgeEnerg << 443 << 444 // log-vector to increase number of thin << 445 auto angleVector = new G4PhysicsLogVecto << 446 << 447 << 448 << 449 angleVector->PutValue(fBinTR - 1, angleS << 450 << 451 for(i = fBinTR - 2; i >= 0; --i) << 452 { << 453 // Legendre96 or Legendre10 << 454 << 455 angleSum += << 456 integral.Legendre10(this, &G4VXTRene << 457 angleVector->Get << 458 angleVector->Get << 459 << 460 angleVector->PutValue(i, angleSum); << 461 } << 462 fAngleForEnergyTable->insertAt(iTR, angl << 463 } << 464 fAngleBank.push_back(fAngleForEnergyTable) << 465 } << 466 timer.Stop(); << 467 G4cout.precision(6); << 468 if(verboseLevel > 0) << 469 { << 470 G4cout << G4endl; << 471 G4cout << "total time for build X-ray TR a << 472 << timer.GetUserElapsed() << " s" < << 473 } << 474 fGamma = 0.; << 475 delete energyVector; << 476 } 263 } 477 264 478 ////////////////////////////////////////////// 265 //////////////////////////////////////////////////////////////////////// 479 // Build XTR angular distribution at given ene << 266 // 480 // of transparent regular radiator << 267 // >> 268 481 void G4VXTRenergyLoss::BuildAngleTable() 269 void G4VXTRenergyLoss::BuildAngleTable() 482 { 270 { 483 G4int iTkin, iTR; << 271 return ; 484 G4double energy; << 272 } 485 273 486 fGammaTkinCut = 0.0; << 487 274 488 // setting of min/max TR energies << 275 ////////////////////////////////////////////////////////////////////////////// 489 if(fGammaTkinCut > fTheMinEnergyTR) << 276 // 490 fMinEnergyTR = fGammaTkinCut; << 277 // The main function which is responsible for the treatment of a particle passage 491 else << 278 // trough G4Envelope 492 fMinEnergyTR = fTheMinEnergyTR; << 493 << 494 if(fGammaTkinCut > fTheMaxEnergyTR) << 495 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 496 else << 497 fMaxEnergyTR = fTheMaxEnergyTR; << 498 << 499 G4cout.precision(4); << 500 G4Timer timer; << 501 timer.Start(); << 502 if(verboseLevel > 0) << 503 { << 504 G4cout << G4endl << "Lorentz Factor" << "\ << 505 << "XTR photon number" << G4endl << << 506 } << 507 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 508 { << 509 fGamma = << 510 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 511 << 512 // fMaxThetaTR = 25. * 2500.0 / (fGamma * << 513 << 514 if(fMaxThetaTR > fTheMaxAngle) << 515 fMaxThetaTR = fTheMaxAngle; << 516 else << 517 { << 518 if(fMaxThetaTR < fTheMinAngle) << 519 fMaxThetaTR = fTheMinAngle; << 520 } << 521 << 522 fAngleForEnergyTable = new G4PhysicsTable( << 523 << 524 for(iTR = 0; iTR < fBinTR; ++iTR) << 525 { << 526 energy = fXTREnergyVector->GetLowEdgeEne << 527 << 528 G4PhysicsFreeVector* angleVector = GetAn << 529 << 530 fAngleForEnergyTable->insertAt(iTR, angl << 531 } << 532 fAngleBank.push_back(fAngleForEnergyTable) << 533 } << 534 timer.Stop(); << 535 G4cout.precision(6); << 536 if(verboseLevel > 0) << 537 { << 538 G4cout << G4endl; << 539 G4cout << "total time for build XTR angle << 540 << timer.GetUserElapsed() << " s" < << 541 } << 542 fGamma = 0.; << 543 << 544 return; << 545 } << 546 279 547 ////////////////////////////////////////////// << 280 G4VParticleChange* G4VXTRenergyLoss::AlongStepDoIt( const G4Track& aTrack, 548 // Vector of angles and angle integral distrib << 281 const G4Step& aStep ) 549 G4PhysicsFreeVector* G4VXTRenergyLoss::GetAngl << 550 { 282 { 551 G4double theta = 0., result, tmp = 0., cof1, << 283 G4int iTkin, iPlace, numOfTR, iTR ; 552 angleSum = 0.; << 284 G4double energyTR, meanNumOfTR, theta, phi, dirX, dirY, dirZ, rand ; 553 G4int iTheta, k, kMin; << 285 G4double W, W1, W2, E1, E2 ; 554 << 555 auto angleVector = new G4PhysicsFreeVector(n << 556 << 557 cofPHC = 4. * pi * hbarc; << 558 tmp = (fSigma1 - fSigma2) / cofPHC / ener << 559 cof1 = fPlateThick * tmp; << 560 cof2 = fGasThick * tmp; << 561 << 562 cofMin = energy * (fPlateThick + fGasThick) << 563 cofMin += (fPlateThick * fSigma1 + fGasThick << 564 cofMin /= cofPHC; << 565 286 566 kMin = G4int(cofMin); << 287 aParticleChange.Initialize(aTrack); 567 if(cofMin > kMin) << 568 kMin++; << 569 288 570 if(verboseLevel > 2) << 289 if(verboseLevel) 571 { 290 { 572 G4cout << "n-1 = " << n - 1 << 291 G4cout<<"Start of G4VXTRenergyLoss::AlongStepDoIt "<<G4endl ; 573 << "; theta = " << std::sqrt(fMaxTh << 292 G4cout<<"name of current material = " 574 << "; tmp = " << 0. << "; angleS << 293 <<aTrack.GetVolume()->GetLogicalVolume()->GetMaterial()->GetName()<<G4endl ; 575 } 294 } >> 295 // if(aStep.GetPreStepPoint()->GetPhysicalVolume()->GetLogicalVolume() != fEnvelope) 576 296 577 for(iTheta = n - 1; iTheta >= 1; --iTheta) << 297 if( aTrack.GetVolume()->GetLogicalVolume() != fEnvelope ) 578 { 298 { 579 k = iTheta - 1 + kMin; << 299 if(verboseLevel) 580 tmp = pi * fPlateThick * (k + cof2) / ( << 581 result = (k - cof1) * (k - cof1) * (k + co << 582 tmp = std::sin(tmp) * std::sin(tmp) * s << 583 << 584 if(k == kMin && kMin == G4int(cofMin)) << 585 { 300 { 586 // angleSum += 0.5 * tmp; << 301 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt: wrong volume "<<G4endl; 587 angleSum += tmp; // ATLAS TB << 588 } 302 } 589 else if(iTheta == n - 1) << 303 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 590 ; << 591 else << 592 { << 593 angleSum += tmp; << 594 } << 595 theta = std::abs(k - cofMin) * cofPHC / en << 596 << 597 if(verboseLevel > 2) << 598 { << 599 G4cout << "iTheta = " << iTheta << "; k << 600 << "; theta = " << std::sqrt(thet << 601 << "; angleSum = " << angleSum << 602 } << 603 angleVector->PutValue(iTheta, theta, angle << 604 } << 605 if(theta > 0.) << 606 { << 607 // angleSum += 0.5 * tmp; << 608 angleSum += 0.; // ATLAS TB << 609 theta = 0.; << 610 } 304 } 611 if(verboseLevel > 2) << 305 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 612 { << 306 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 613 G4cout << "iTheta = " << iTheta << "; thet << 307 614 << "; tmp = " << tmp << "; angle << 308 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 615 } << 309 G4double charge = aParticle->GetDefinition()->GetPDGCharge(); 616 angleVector->PutValue(iTheta, theta, angleSu << 310 617 << 311 618 return angleVector; << 312 // Now we are ready to Generate TR photons 619 } << 620 << 621 ////////////////////////////////////////////// << 622 // Build XTR angular distribution based on the << 623 // radiator << 624 void G4VXTRenergyLoss::BuildGlobalAngleTable() << 625 { << 626 G4int iTkin, iTR, iPlace; << 627 G4double radiatorCof = 1.0; // for tuning o << 628 G4double angleSum; << 629 fAngleDistrTable = new G4PhysicsTable(fTotBi << 630 << 631 fGammaTkinCut = 0.0; << 632 << 633 // setting of min/max TR energies << 634 if(fGammaTkinCut > fTheMinEnergyTR) << 635 fMinEnergyTR = fGammaTkinCut; << 636 else << 637 fMinEnergyTR = fTheMinEnergyTR; << 638 313 639 if(fGammaTkinCut > fTheMaxEnergyTR) << 314 G4double chargeSq = charge*charge ; 640 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 315 G4double kinEnergy = aParticle->GetKineticEnergy() ; 641 else << 316 G4double mass = aParticle->GetDefinition()->GetPDGMass() ; 642 fMaxEnergyTR = fTheMaxEnergyTR; << 317 G4double gamma = 1.0 + kinEnergy/mass ; 643 318 644 G4cout.precision(4); << 319 if(verboseLevel > 0 ) 645 G4Timer timer; << 646 timer.Start(); << 647 if(verboseLevel > 0) << 648 { 320 { 649 G4cout << G4endl; << 321 G4cout<<"gamma = "<<gamma<<G4endl ; 650 G4cout << "Lorentz Factor" << 651 << "\t" << 652 << "XTR photon number" << G4endl; << 653 G4cout << G4endl; << 654 } 322 } 655 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 323 G4double massRatio = proton_mass_c2/mass ; 656 { << 324 G4double TkinScaled = kinEnergy*massRatio ; 657 fGamma = << 658 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 659 325 660 // fMaxThetaTR = 25.0 / (fGamma * fGamma); << 326 G4ThreeVector startPos = pPreStepPoint->GetPosition(); 661 // fMaxThetaTR = 1.e-4; // theta^2 << 327 G4double startTime = pPreStepPoint->GetGlobalTime(); 662 328 663 if(fMaxThetaTR > fTheMaxAngle) << 329 G4ParticleMomentum direction = aParticle->GetMomentumDirection(); 664 fMaxThetaTR = fTheMaxAngle; << 665 else << 666 { << 667 if(fMaxThetaTR < fTheMinAngle) << 668 fMaxThetaTR = fTheMinAngle; << 669 } << 670 auto angleVector = << 671 // G4PhysicsLogVector* angleVector = << 672 new G4PhysicsLinearVector(0.0, fMaxTheta << 673 // new G4PhysicsLogVector(1.e-8, fMaxThet << 674 << 675 angleSum = 0.0; << 676 330 677 G4Integrator<G4VXTRenergyLoss, G4double (G << 331 G4double distance = aStep.GetStepLength() ; 678 integral; << 679 332 680 angleVector->PutValue(fBinTR - 1, angleSum << 681 333 682 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 334 for(iTkin=0;iTkin<fTotBin;iTkin++) 683 { << 684 angleSum += radiatorCof * fCofTR * << 685 integral.Legendre96(this, &G << 686 angleVec << 687 angleVec << 688 << 689 angleVector->PutValue(iTR, angleSum); << 690 } << 691 if(verboseLevel > 1) << 692 { << 693 G4cout << fGamma << "\t" << angleSum << << 694 } << 695 iPlace = iTkin; << 696 fAngleDistrTable->insertAt(iPlace, angleVe << 697 } << 698 timer.Stop(); << 699 G4cout.precision(6); << 700 if(verboseLevel > 0) << 701 { 335 { 702 G4cout << G4endl; << 336 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ; 703 G4cout << "total time for build X-ray TR a << 704 << timer.GetUserElapsed() << " s" < << 705 } 337 } 706 fGamma = 0.; << 338 iPlace = iTkin - 1 ; 707 339 708 return; << 340 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 709 } << 710 << 711 ////////////////////////////////////////////// << 712 // The main function which is responsible for << 713 // passage through G4Envelope with discrete ge << 714 G4VParticleChange* G4VXTRenergyLoss::PostStepD << 715 << 716 { << 717 G4int iTkin; << 718 G4double energyTR, theta, theta2, phi, dirX, << 719 << 720 fParticleChange.Initialize(aTrack); << 721 << 722 if(verboseLevel > 1) << 723 { 341 { 724 G4cout << "Start of G4VXTRenergyLoss::Post << 342 if(verboseLevel) 725 G4cout << "name of current material = " << 726 << aTrack.GetVolume()->GetLogicalVo << 727 << G4endl; << 728 } << 729 if(aTrack.GetVolume()->GetLogicalVolume() != << 730 { << 731 if(verboseLevel > 0) << 732 { 343 { 733 G4cout << "Go out from G4VXTRenergyLoss: << 344 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt:iTkin = "<<iTkin<<G4endl; 734 << G4endl; << 735 } 345 } 736 return G4VDiscreteProcess::PostStepDoIt(aT << 346 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 737 } << 347 } 738 else << 348 else // general case: Tkin between two vectors of the material 739 { 349 { 740 G4StepPoint* pPostStepPoint = aStep << 350 if(iTkin == fTotBin) 741 const G4DynamicParticle* aParticle = aTrac << 742 << 743 // Now we are ready to Generate one TR pho << 744 G4double kinEnergy = aParticle->GetKinetic << 745 G4double mass = aParticle->GetDefinit << 746 G4double gamma = 1.0 + kinEnergy / mas << 747 << 748 if(verboseLevel > 1) << 749 { 351 { 750 G4cout << "gamma = " << gamma << G4endl; << 352 meanNumOfTR = (*(*fEnergyDistrTable)(iPlace))(0)*chargeSq*distance ; >> 353 numOfTR = G4Poisson(meanNumOfTR) ; 751 } 354 } 752 G4double massRatio = proton_mass << 355 else 753 G4double TkinScaled = kinEnergy * << 754 G4ThreeVector position = pPostStepPo << 755 G4ParticleMomentum direction = aParticle-> << 756 G4double startTime = pPostStepPo << 757 << 758 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 759 { 356 { 760 if(TkinScaled < fProtonEnergyVector->Get << 357 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 761 break; << 358 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; >> 359 W = 1.0/(E2 - E1) ; >> 360 W1 = (E2 - TkinScaled)*W ; >> 361 W2 = (TkinScaled - E1)*W ; >> 362 meanNumOfTR = ( (*(*fEnergyDistrTable)(iPlace ))(0)*W1+ >> 363 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*chargeSq*distance ; >> 364 >> 365 if(verboseLevel > 0 ) >> 366 { >> 367 G4cout<<iTkin<<" mean TR number = "<<meanNumOfTR >> 368 <<" or mean over energy-angle tables " >> 369 <<(((*(*fEnergyDistrTable)(iPlace))(0)+ >> 370 (*(*fAngleDistrTable)(iPlace))(0))*W1 + >> 371 ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ >> 372 (*(*fAngleDistrTable)(iPlace + 1))(0))*W2)*chargeSq*0.5 >> 373 <<G4endl ; >> 374 } >> 375 numOfTR = G4Poisson( meanNumOfTR ) ; 762 } 376 } 763 << 377 if( numOfTR == 0 ) // no change, return 764 if(iTkin == 0) // Tkin is too small, negl << 765 { 378 { 766 if(verboseLevel > 0) << 379 aParticleChange.SetNumberOfSecondaries(0); >> 380 if(verboseLevel) 767 { 381 { 768 G4cout << "Go out from G4VXTRenergyLos << 382 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt: numOfTR = " 769 << G4endl; << 383 <<numOfTR<<G4endl ; 770 } 384 } 771 return G4VDiscreteProcess::PostStepDoIt( << 385 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 772 } 386 } 773 else // general case: Tkin between two ve << 387 else 774 { 388 { 775 fParticleChange.SetNumberOfSecondaries(1 << 389 if(verboseLevel) >> 390 { >> 391 G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 392 } >> 393 aParticleChange.SetNumberOfSecondaries(numOfTR); 776 394 777 energyTR = GetXTRrandomEnergy(TkinScaled << 395 G4double sumEnergyTR = 0.0 ; 778 396 779 if(verboseLevel > 1) << 397 for(iTR=0;iTR<numOfTR;iTR++) 780 { 398 { 781 G4cout << "energyTR = " << energyTR / << 399 782 } << 400 // energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+ 783 if(fAngleRadDistr) << 401 // (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; >> 402 // for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) >> 403 // { >> 404 // if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+ >> 405 // (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; >> 406 // } >> 407 // energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+ >> 408 // ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2 ; >> 409 >> 410 energyTR = GetXTRrandomEnergy(TkinScaled,iTkin) ; >> 411 >> 412 if(verboseLevel) 784 { 413 { 785 theta2 = GetRandomAngle(energyTR, iTki << 414 G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 786 if(theta2 > 0.) << 787 theta = std::sqrt(theta2); << 788 else << 789 theta = 0.; << 790 } 415 } 791 else << 416 sumEnergyTR += energyTR ; 792 theta = std::fabs(G4RandGauss::shoot(0 << 793 417 794 if(theta >= 0.1) << 418 theta = abs(G4RandGauss::shoot(0.0,pi/gamma)) ; 795 theta = 0.1; << 796 419 797 phi = twopi * G4UniformRand(); << 420 if( theta >= 0.1 ) theta = 0.1 ; 798 421 799 dirX = std::sin(theta) * std::cos(phi); << 422 // G4cout<<" : theta = "<<theta<<endl ; 800 dirY = std::sin(theta) * std::sin(phi); << 801 dirZ = std::cos(theta); << 802 423 803 G4ThreeVector directionTR(dirX, dirY, di << 424 phi = twopi*G4UniformRand() ; 804 directionTR.rotateUz(direction); << 805 directionTR.unit(); << 806 425 807 auto aPhotonTR = << 426 dirX = sin(theta)*cos(phi) ; 808 new G4DynamicParticle(G4Gamma::Gamma() << 427 dirY = sin(theta)*sin(phi) ; >> 428 dirZ = cos(theta) ; 809 429 810 // A XTR photon is set on the particle t << 430 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 811 // and is moved to the G4Envelope surfac << 431 directionTR.rotateUz(direction) ; 812 // only. The case of fExitFlux=true << 432 directionTR.unit() ; 813 433 814 if(fExitFlux) << 434 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 815 { << 435 directionTR,energyTR) ; 816 const G4RotationMatrix* rotM = << 817 pPostStepPoint->GetTouchable()->GetR << 818 G4ThreeVector transl = pPostStepPoint- << 819 G4AffineTransform transform = G4Affine << 820 transform.Invert(); << 821 G4ThreeVector localP = transform.Trans << 822 G4ThreeVector localV = transform.Trans << 823 << 824 G4double distance = << 825 fEnvelope->GetSolid()->DistanceToOut << 826 if(verboseLevel > 1) << 827 { << 828 G4cout << "distance to exit = " << d << 829 } << 830 position += distance * directionTR; << 831 startTime += distance / c_light; << 832 } << 833 G4Track* aSecondaryTrack = new G4Track(a << 834 aSecondaryTrack->SetTouchableHandle( << 835 aStep.GetPostStepPoint()->GetTouchable << 836 aSecondaryTrack->SetParentID(aTrack.GetT << 837 436 838 fParticleChange.AddSecondary(aSecondaryT << 437 // A XTR photon is set along the particle track and is not moved to 839 fParticleChange.ProposeEnergy(kinEnergy) << 438 // the G4Envelope surface as in standard X-ray TR models >> 439 >> 440 rand = G4UniformRand(); >> 441 G4double delta = rand*distance ; >> 442 G4double deltaTime = delta / >> 443 ((pPreStepPoint->GetVelocity()+ >> 444 pPostStepPoint->GetVelocity())/2.); >> 445 >> 446 G4double aSecondaryTime = startTime + deltaTime; >> 447 >> 448 G4ThreeVector positionTR = startPos + delta*direction ; >> 449 >> 450 >> 451 G4Track* aSecondaryTrack = new G4Track( aPhotonTR, >> 452 aSecondaryTime,positionTR ) ; >> 453 aSecondaryTrack->SetTouchableHandle(aStep.GetPostStepPoint() >> 454 ->GetTouchableHandle()); >> 455 aSecondaryTrack->SetParentID(aTrack.GetTrackID()); >> 456 >> 457 aParticleChange.AddSecondary(aSecondaryTrack); >> 458 } >> 459 kinEnergy -= sumEnergyTR ; >> 460 aParticleChange.SetEnergyChange(kinEnergy) ; 840 } 461 } 841 } 462 } 842 return G4VDiscreteProcess::PostStepDoIt(aTra << 463 // return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); >> 464 return &aParticleChange; 843 } 465 } 844 466 845 ////////////////////////////////////////////// 467 /////////////////////////////////////////////////////////////////////// >> 468 // 846 // This function returns the spectral and angl 469 // This function returns the spectral and angle density of TR quanta 847 // in X-ray energy region generated forward wh 470 // in X-ray energy region generated forward when a relativistic 848 // charged particle crosses interface between 471 // charged particle crosses interface between two materials. 849 // The high energy small theta approximation i 472 // The high energy small theta approximation is applied. 850 // (matter1 -> matter2, or 2->1) 473 // (matter1 -> matter2, or 2->1) 851 // varAngle =2* (1 - std::cos(theta)) or appro << 474 // varAngle =2* (1 - cos(theta)) or approximately = theta*theta 852 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEd << 475 // 853 << 476 854 { << 477 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEdx( G4double energy, 855 G4complex Z1 = GetPlateComplexFZ(energy, gam << 478 G4double gamma, 856 G4complex Z2 = GetGasComplexFZ(energy, gamma << 479 G4double varAngle ) >> 480 { >> 481 G4complex Z1 = GetPlateComplexFZ(energy,gamma,varAngle) ; >> 482 G4complex Z2 = GetGasComplexFZ(energy,gamma,varAngle) ; >> 483 >> 484 G4complex zOut = (Z1 - Z2)*(Z1 - Z2) >> 485 * (varAngle*energy/hbarc/hbarc) ; >> 486 return zOut ; 857 487 858 G4complex zOut = (Z1 - Z2) * (Z1 - Z2) * (va << 859 return zOut; << 860 } 488 } 861 489 >> 490 862 ////////////////////////////////////////////// 491 ////////////////////////////////////////////////////////////////////////////// >> 492 // 863 // For photon energy distribution tables. Inte 493 // For photon energy distribution tables. Integrate first over angle >> 494 // >> 495 864 G4double G4VXTRenergyLoss::SpectralAngleXTRdEd 496 G4double G4VXTRenergyLoss::SpectralAngleXTRdEdx(G4double varAngle) 865 { 497 { 866 G4double result = GetStackFactor(fEnergy, fG << 498 G4double result = GetStackFactor(fEnergy,fGamma,varAngle) ; 867 if(result < 0.0) << 499 if(result < 0.0) result = 0.0 ; 868 result = 0.0; << 500 return result ; 869 return result; << 870 } 501 } 871 502 872 ////////////////////////////////////////////// 503 ///////////////////////////////////////////////////////////////////////// >> 504 // 873 // For second integration over energy 505 // For second integration over energy >> 506 874 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4d 507 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4double energy) 875 { 508 { 876 G4int i; << 509 fEnergy = energy ; 877 static constexpr G4int iMax = 8; << 510 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 878 G4double angleSum = 0.0; << 511 return integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 879 << 512 0.0,0.3*fMaxThetaTR) + 880 G4double lim[iMax] = { 0.0, 0.01, 0.02, 0.05 << 513 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 881 << 514 0.3*fMaxThetaTR,0.6*fMaxThetaTR) + 882 for(i = 0; i < iMax; ++i) << 515 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 883 lim[i] *= fMaxThetaTR; << 516 0.6*fMaxThetaTR,fMaxThetaTR) ; 884 << 517 } 885 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 518 886 integral; << 887 << 888 fEnergy = energy; << 889 { << 890 for(i = 0; i < iMax - 1; ++i) << 891 { << 892 angleSum += integral.Legendre96( << 893 this, &G4VXTRenergyLoss::SpectralAngle << 894 } << 895 } << 896 return angleSum; << 897 } << 898 << 899 ////////////////////////////////////////////// 519 ////////////////////////////////////////////////////////////////////////// >> 520 // 900 // for photon angle distribution tables 521 // for photon angle distribution tables >> 522 // >> 523 901 G4double G4VXTRenergyLoss::AngleSpectralXTRdEd 524 G4double G4VXTRenergyLoss::AngleSpectralXTRdEdx(G4double energy) 902 { 525 { 903 G4double result = GetStackFactor(energy, fGa << 526 G4double result = GetStackFactor(energy,fGamma,fVarAngle) ; 904 if(result < 0) << 527 if(result < 0) result = 0.0 ; 905 result = 0.0; << 528 return result ; 906 return result; << 529 } 907 } << 908 530 909 ////////////////////////////////////////////// 531 /////////////////////////////////////////////////////////////////////////// 910 // The XTR angular distribution based on trans << 532 // 911 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4doub << 533 // >> 534 >> 535 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4double varAngle) 912 { 536 { 913 G4double result; << 537 fVarAngle = varAngle ; 914 G4double sum = 0., tmp1, tmp2, tmp = 0., cof << 538 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 915 energy2; << 539 return integral.Legendre10(this,&G4VXTRenergyLoss::AngleSpectralXTRdEdx, 916 G4int k, kMax, kMin, i; << 540 fMinEnergyTR,fMaxEnergyTR) ; >> 541 } 917 542 918 cofPHC = twopi * hbarc; << 919 543 920 cof1 = (fPlateThick + fGasThick) * (1. / fGa << 921 cof2 = fPlateThick * fSigma1 + fGasThick * f << 922 544 923 cofMin = std::sqrt(cof1 * cof2); << 924 cofMin /= cofPHC; << 925 545 926 kMin = G4int(cofMin); << 927 if(cofMin > kMin) << 928 kMin++; << 929 546 930 kMax = kMin + 9; << 931 547 932 for(k = kMin; k <= kMax; ++k) << 933 { << 934 tmp1 = cofPHC * k; << 935 tmp2 = std::sqrt(tmp1 * tmp1 - cof1 * c << 936 energy1 = (tmp1 + tmp2) / cof1; << 937 energy2 = (tmp1 - tmp2) / cof1; << 938 548 939 for(i = 0; i < 2; ++i) << 940 { << 941 if(i == 0) << 942 { << 943 if(energy1 > fTheMaxEnergyTR || energy << 944 continue; << 945 549 946 tmp1 = << 947 (energy1 * energy1 * (1. / fGamma / << 948 fPlateThick / (4 * hbarc * energy1); << 949 tmp2 = std::sin(tmp1); << 950 tmp = energy1 * tmp2 * tmp2; << 951 tmp2 = fPlateThick / (4. * tmp1); << 952 tmp1 = << 953 hbarc * energy1 / << 954 (energy1 * energy1 * (1. / fGamma / << 955 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 956 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 957 tmp2 = std::abs(tmp1); << 958 << 959 if(tmp2 > 0.) << 960 tmp /= tmp2; << 961 else << 962 continue; << 963 } << 964 else << 965 { << 966 if(energy2 > fTheMaxEnergyTR || energy << 967 continue; << 968 550 969 tmp1 = << 970 (energy2 * energy2 * (1. / fGamma / << 971 fPlateThick / (4. * hbarc * energy2) << 972 tmp2 = std::sin(tmp1); << 973 tmp = energy2 * tmp2 * tmp2; << 974 tmp2 = fPlateThick / (4. * tmp1); << 975 tmp1 = << 976 hbarc * energy2 / << 977 (energy2 * energy2 * (1. / fGamma / << 978 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 979 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 980 tmp2 = std::abs(tmp1); << 981 << 982 if(tmp2 > 0.) << 983 tmp /= tmp2; << 984 else << 985 continue; << 986 } << 987 sum += tmp; << 988 } << 989 } << 990 result = 4. * pi * fPlateNumber * sum * varA << 991 result /= hbarc * hbarc; << 992 551 993 return result; << 994 } << 995 552 >> 553 >> 554 >> 555 >> 556 >> 557 ////////////////////////////////////////////////////////////////////// >> 558 ////////////////////////////////////////////////////////////////////// 996 ////////////////////////////////////////////// 559 ////////////////////////////////////////////////////////////////////// >> 560 // 997 // Calculates formation zone for plates. Omega 561 // Calculates formation zone for plates. Omega is energy !!! 998 G4double G4VXTRenergyLoss::GetPlateFormationZo << 562 999 << 563 G4double G4VXTRenergyLoss::GetPlateFormationZone( G4double omega , 1000 { << 564 G4double gamma , 1001 G4double cof, lambda; << 565 G4double varAngle ) 1002 lambda = 1.0 / gamma / gamma + varAngle + f << 566 { 1003 cof = 2.0 * hbarc / omega / lambda; << 567 G4double cof, lambda ; 1004 return cof; << 568 lambda = 1.0/gamma/gamma + varAngle + fSigma1/omega/omega ; >> 569 cof = 2.0*hbarc/omega/lambda ; >> 570 return cof ; 1005 } 571 } 1006 572 1007 ///////////////////////////////////////////// 573 ////////////////////////////////////////////////////////////////////// >> 574 // 1008 // Calculates complex formation zone for plat 575 // Calculates complex formation zone for plates. Omega is energy !!! 1009 G4complex G4VXTRenergyLoss::GetPlateComplexFZ << 576 1010 << 577 G4complex G4VXTRenergyLoss::GetPlateComplexFZ( G4double omega , >> 578 G4double gamma , >> 579 G4double varAngle ) 1011 { 580 { 1012 G4double cof, length, delta, real_v, image_ << 581 G4double cof, length,delta, real, image ; 1013 582 1014 length = 0.5 * GetPlateFormationZone(omega, << 583 length = 0.5*GetPlateFormationZone(omega,gamma,varAngle) ; 1015 delta = length * GetPlateLinearPhotoAbs(om << 584 delta = length*GetPlateLinearPhotoAbs(omega) ; 1016 cof = 1.0 / (1.0 + delta * delta); << 585 cof = 1.0/(1.0 + delta*delta) ; 1017 586 1018 real_v = length * cof; << 587 real = length*cof ; 1019 image_v = real_v * delta; << 588 image = real*delta ; 1020 589 1021 G4complex zone(real_v, image_v); << 590 G4complex zone(real,image); 1022 return zone; << 591 return zone ; 1023 } 592 } 1024 593 1025 ///////////////////////////////////////////// 594 //////////////////////////////////////////////////////////////////////// >> 595 // 1026 // Computes matrix of Sandia photo absorption 596 // Computes matrix of Sandia photo absorption cross section coefficients for 1027 // plate material 597 // plate material 1028 void G4VXTRenergyLoss::ComputePlatePhotoAbsCo << 1029 { << 1030 const G4MaterialTable* theMaterialTable = G << 1031 const G4Material* mat = ( << 1032 fPlatePhotoAbsCof = m << 1033 598 1034 return; << 599 void G4VXTRenergyLoss::ComputePlatePhotoAbsCof() >> 600 { >> 601 G4int i, j, numberOfElements ; >> 602 static const G4MaterialTable* >> 603 theMaterialTable = G4Material::GetMaterialTable(); >> 604 >> 605 G4SandiaTable thisMaterialSandiaTable(fMatIndex1) ; >> 606 numberOfElements = (*theMaterialTable)[fMatIndex1]->GetNumberOfElements() ; >> 607 G4int* thisMaterialZ = new G4int[numberOfElements] ; >> 608 >> 609 for(i=0;i<numberOfElements;i++) >> 610 { >> 611 thisMaterialZ[i] = (G4int)(*theMaterialTable)[fMatIndex1]-> >> 612 GetElement(i)->GetZ() ; >> 613 } >> 614 fPlateIntervalNumber = thisMaterialSandiaTable.SandiaIntervals >> 615 (thisMaterialZ,numberOfElements) ; >> 616 >> 617 fPlateIntervalNumber = thisMaterialSandiaTable.SandiaMixing >> 618 ( thisMaterialZ , >> 619 (*theMaterialTable)[fMatIndex1]->GetFractionVector() , >> 620 numberOfElements,fPlateIntervalNumber) ; >> 621 >> 622 fPlatePhotoAbsCof = new G4double*[fPlateIntervalNumber] ; >> 623 >> 624 for(i=0;i<fPlateIntervalNumber;i++) >> 625 { >> 626 fPlatePhotoAbsCof[i] = new G4double[5] ; >> 627 } >> 628 for(i=0;i<fPlateIntervalNumber;i++) >> 629 { >> 630 fPlatePhotoAbsCof[i][0] = thisMaterialSandiaTable. >> 631 GetPhotoAbsorpCof(i+1,0) ; >> 632 >> 633 for(j=1;j<5;j++) >> 634 { >> 635 fPlatePhotoAbsCof[i][j] = thisMaterialSandiaTable. >> 636 GetPhotoAbsorpCof(i+1,j)* >> 637 (*theMaterialTable)[fMatIndex1]->GetDensity() ; >> 638 } >> 639 } >> 640 delete[] thisMaterialZ ; >> 641 return ; 1035 } 642 } 1036 643 1037 ///////////////////////////////////////////// 644 ////////////////////////////////////////////////////////////////////// 1038 // Returns the value of linear photo absorpti << 645 // >> 646 // Returns the value of linear photo absorption coefficient (in reciprocal 1039 // length) for plate for given energy of X-ra 647 // length) for plate for given energy of X-ray photon omega 1040 G4double G4VXTRenergyLoss::GetPlateLinearPhot << 648 >> 649 G4double G4VXTRenergyLoss::GetPlateLinearPhotoAbs(G4double omega) 1041 { 650 { 1042 G4double omega2, omega3, omega4; << 651 G4int i ; >> 652 G4double omega2, omega3, omega4 ; >> 653 >> 654 omega2 = omega*omega ; >> 655 omega3 = omega2*omega ; >> 656 omega4 = omega2*omega2 ; 1043 657 1044 omega2 = omega * omega; << 658 for(i=0;i<fPlateIntervalNumber;i++) 1045 omega3 = omega2 * omega; << 659 { 1046 omega4 = omega2 * omega2; << 660 if( omega < fPlatePhotoAbsCof[i][0] ) break ; 1047 << 661 } 1048 const G4double* SandiaCof = fPlatePhotoAbsC << 662 if( i == 0 ) 1049 G4double cross = SandiaCof[0] / << 663 { 1050 SandiaCof[2] / omega3 + Sa << 664 G4Exception("Invalid (<I1) energy in G4VXTRenergyLoss::GetPlateLinearPhotoAbs"); 1051 return cross; << 665 } >> 666 else i-- ; >> 667 >> 668 return fPlatePhotoAbsCof[i][1]/omega + fPlatePhotoAbsCof[i][2]/omega2 + >> 669 fPlatePhotoAbsCof[i][3]/omega3 + fPlatePhotoAbsCof[i][4]/omega4 ; 1052 } 670 } 1053 671 1054 ///////////////////////////////////////////// 672 ////////////////////////////////////////////////////////////////////// >> 673 // 1055 // Calculates formation zone for gas. Omega i 674 // Calculates formation zone for gas. Omega is energy !!! 1056 G4double G4VXTRenergyLoss::GetGasFormationZon << 675 1057 << 676 G4double G4VXTRenergyLoss::GetGasFormationZone( G4double omega , 1058 { << 677 G4double gamma , 1059 G4double cof, lambda; << 678 G4double varAngle ) 1060 lambda = 1.0 / gamma / gamma + varAngle + f << 679 { 1061 cof = 2.0 * hbarc / omega / lambda; << 680 G4double cof, lambda ; 1062 return cof; << 681 lambda = 1.0/gamma/gamma + varAngle + fSigma2/omega/omega ; >> 682 cof = 2.0*hbarc/omega/lambda ; >> 683 return cof ; >> 684 1063 } 685 } 1064 686 >> 687 1065 ///////////////////////////////////////////// 688 ////////////////////////////////////////////////////////////////////// >> 689 // 1066 // Calculates complex formation zone for gas 690 // Calculates complex formation zone for gas gaps. Omega is energy !!! 1067 G4complex G4VXTRenergyLoss::GetGasComplexFZ(G << 691 1068 G << 692 G4complex G4VXTRenergyLoss::GetGasComplexFZ( G4double omega , >> 693 G4double gamma , >> 694 G4double varAngle ) 1069 { 695 { 1070 G4double cof, length, delta, real_v, image_ << 696 G4double cof, length,delta, real, image ; 1071 697 1072 length = 0.5 * GetGasFormationZone(omega, g << 698 length = 0.5*GetGasFormationZone(omega,gamma,varAngle) ; 1073 delta = length * GetGasLinearPhotoAbs(omeg << 699 delta = length*GetGasLinearPhotoAbs(omega) ; 1074 cof = 1.0 / (1.0 + delta * delta); << 700 cof = 1.0/(1.0 + delta*delta) ; 1075 701 1076 real_v = length * cof; << 702 real = length*cof ; 1077 image_v = real_v * delta; << 703 image = real*delta ; 1078 704 1079 G4complex zone(real_v, image_v); << 705 G4complex zone(real,image); 1080 return zone; << 706 return zone ; 1081 } 707 } 1082 708 >> 709 >> 710 1083 ///////////////////////////////////////////// 711 //////////////////////////////////////////////////////////////////////// >> 712 // 1084 // Computes matrix of Sandia photo absorption 713 // Computes matrix of Sandia photo absorption cross section coefficients for 1085 // gas material 714 // gas material 1086 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof( << 715 >> 716 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof() 1087 { 717 { 1088 const G4MaterialTable* theMaterialTable = G << 718 G4int i, j, numberOfElements ; 1089 const G4Material* mat = ( << 719 static const G4MaterialTable* 1090 fGasPhotoAbsCof = m << 720 theMaterialTable = G4Material::GetMaterialTable(); 1091 return; << 721 >> 722 G4SandiaTable thisMaterialSandiaTable(fMatIndex2) ; >> 723 numberOfElements = (*theMaterialTable)[fMatIndex2]->GetNumberOfElements() ; >> 724 G4int* thisMaterialZ = new G4int[numberOfElements] ; >> 725 >> 726 for(i=0;i<numberOfElements;i++) >> 727 { >> 728 thisMaterialZ[i] = (G4int)(*theMaterialTable)[fMatIndex2]-> >> 729 GetElement(i)->GetZ() ; >> 730 } >> 731 fGasIntervalNumber = thisMaterialSandiaTable.SandiaIntervals >> 732 (thisMaterialZ,numberOfElements) ; >> 733 >> 734 fGasIntervalNumber = thisMaterialSandiaTable.SandiaMixing >> 735 ( thisMaterialZ , >> 736 (*theMaterialTable)[fMatIndex2]->GetFractionVector() , >> 737 numberOfElements,fGasIntervalNumber) ; >> 738 >> 739 fGasPhotoAbsCof = new G4double*[fGasIntervalNumber] ; >> 740 >> 741 for(i=0;i<fGasIntervalNumber;i++) >> 742 { >> 743 fGasPhotoAbsCof[i] = new G4double[5] ; >> 744 } >> 745 for(i=0;i<fGasIntervalNumber;i++) >> 746 { >> 747 fGasPhotoAbsCof[i][0] = thisMaterialSandiaTable. >> 748 GetPhotoAbsorpCof(i+1,0) ; >> 749 >> 750 for(j=1;j<5;j++) >> 751 { >> 752 fGasPhotoAbsCof[i][j] = thisMaterialSandiaTable. >> 753 GetPhotoAbsorpCof(i+1,j)* >> 754 (*theMaterialTable)[fMatIndex2]->GetDensity() ; >> 755 } >> 756 } >> 757 delete[] thisMaterialZ ; >> 758 return ; 1092 } 759 } 1093 760 1094 ///////////////////////////////////////////// 761 ////////////////////////////////////////////////////////////////////// 1095 // Returns the value of linear photo absorpti << 762 // >> 763 // Returns the value of linear photo absorption coefficient (in reciprocal 1096 // length) for gas 764 // length) for gas 1097 G4double G4VXTRenergyLoss::GetGasLinearPhotoA << 765 >> 766 G4double G4VXTRenergyLoss::GetGasLinearPhotoAbs(G4double omega) 1098 { 767 { 1099 G4double omega2, omega3, omega4; << 768 G4int i ; >> 769 G4double omega2, omega3, omega4 ; >> 770 >> 771 omega2 = omega*omega ; >> 772 omega3 = omega2*omega ; >> 773 omega4 = omega2*omega2 ; >> 774 >> 775 for(i=0;i<fGasIntervalNumber;i++) >> 776 { >> 777 if( omega < fGasPhotoAbsCof[i][0] ) break ; >> 778 } >> 779 if( i == 0 ) >> 780 { >> 781 G4Exception("Invalid (<I1) energy in G4VXTRenergyLoss::GetGasLinearPhotoAbs"); >> 782 } >> 783 else i-- ; >> 784 >> 785 return fGasPhotoAbsCof[i][1]/omega + fGasPhotoAbsCof[i][2]/omega2 + >> 786 fGasPhotoAbsCof[i][3]/omega3 + fGasPhotoAbsCof[i][4]/omega4 ; 1100 787 1101 omega2 = omega * omega; << 1102 omega3 = omega2 * omega; << 1103 omega4 = omega2 * omega2; << 1104 << 1105 const G4double* SandiaCof = fGasPhotoAbsCof << 1106 G4double cross = SandiaCof[0] / << 1107 SandiaCof[2] / omega3 + Sa << 1108 return cross; << 1109 } 788 } 1110 789 1111 ///////////////////////////////////////////// 790 ////////////////////////////////////////////////////////////////////// 1112 // Calculates the product of linear cof by fo << 791 // >> 792 // Calculates the product of linear cof by formation zone for plate. 1113 // Omega is energy !!! 793 // Omega is energy !!! 1114 G4double G4VXTRenergyLoss::GetPlateZmuProduct << 794 1115 << 795 G4double G4VXTRenergyLoss::GetPlateZmuProduct( G4double omega , >> 796 G4double gamma , >> 797 G4double varAngle ) 1116 { 798 { 1117 return GetPlateFormationZone(omega, gamma, << 799 return GetPlateFormationZone(omega,gamma,varAngle)*GetPlateLinearPhotoAbs(omega) ; 1118 GetPlateLinearPhotoAbs(omega); << 1119 } 800 } 1120 ///////////////////////////////////////////// 801 ////////////////////////////////////////////////////////////////////// 1121 // Calculates the product of linear cof by fo << 802 // >> 803 // Calculates the product of linear cof by formation zone for plate. 1122 // G4cout and output in file in some energy r 804 // G4cout and output in file in some energy range. 1123 void G4VXTRenergyLoss::GetPlateZmuProduct() << 805 >> 806 void G4VXTRenergyLoss::GetPlateZmuProduct() 1124 { 807 { 1125 std::ofstream outPlate("plateZmu.dat", std: << 808 std::ofstream outPlate("plateZmu.dat", std::ios::out ) ; 1126 outPlate.setf(std::ios::scientific, std::io << 809 outPlate.setf( std::ios::scientific, std::ios::floatfield ); 1127 810 1128 G4int i; << 811 G4int i ; 1129 G4double omega, varAngle, gamma; << 812 G4double omega, varAngle, gamma ; 1130 gamma = 10000.; << 813 gamma = 10000. ; 1131 varAngle = 1 / gamma / gamma; << 814 varAngle = 1/gamma/gamma ; 1132 if(verboseLevel > 0) << 815 G4cout<<"energy, keV"<<"\t"<<"Zmu for plate"<<G4endl ; 1133 G4cout << "energy, keV" << "\t" << "Zmu f << 816 for(i=0;i<100;i++) 1134 for(i = 0; i < 100; ++i) << 817 { 1135 { << 818 omega = (1.0 + i)*keV ; 1136 omega = (1.0 + i) * keV; << 819 G4cout<<omega/keV<<"\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<"\t" ; 1137 if(verboseLevel > 1) << 820 outPlate<<omega/keV<<"\t\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<G4endl ; 1138 G4cout << omega / keV << "\t" << 1139 << GetPlateZmuProduct(omega, gam << 1140 if(verboseLevel > 0) << 1141 outPlate << omega / keV << "\t\t" << 1142 << GetPlateZmuProduct(omega, g << 1143 } 821 } 1144 return; << 822 return ; 1145 } 823 } 1146 824 1147 ///////////////////////////////////////////// 825 ////////////////////////////////////////////////////////////////////// 1148 // Calculates the product of linear cof by fo << 826 // >> 827 // Calculates the product of linear cof by formation zone for gas. 1149 // Omega is energy !!! 828 // Omega is energy !!! 1150 G4double G4VXTRenergyLoss::GetGasZmuProduct(G << 829 1151 G << 830 G4double G4VXTRenergyLoss::GetGasZmuProduct( G4double omega , >> 831 G4double gamma , >> 832 G4double varAngle ) 1152 { 833 { 1153 return GetGasFormationZone(omega, gamma, va << 834 return GetGasFormationZone(omega,gamma,varAngle)*GetGasLinearPhotoAbs(omega) ; 1154 GetGasLinearPhotoAbs(omega); << 1155 } 835 } 1156 << 1157 ///////////////////////////////////////////// 836 ////////////////////////////////////////////////////////////////////// 1158 // Calculates the product of linear cof by fo << 837 // >> 838 // Calculates the product of linear cof byformation zone for gas. 1159 // G4cout and output in file in some energy r 839 // G4cout and output in file in some energy range. 1160 void G4VXTRenergyLoss::GetGasZmuProduct() << 1161 { << 1162 std::ofstream outGas("gasZmu.dat", std::ios << 1163 outGas.setf(std::ios::scientific, std::ios: << 1164 G4int i; << 1165 G4double omega, varAngle, gamma; << 1166 gamma = 10000.; << 1167 varAngle = 1 / gamma / gamma; << 1168 if(verboseLevel > 0) << 1169 G4cout << "energy, keV" << "\t" << "Zmu f << 1170 for(i = 0; i < 100; ++i) << 1171 { << 1172 omega = (1.0 + i) * keV; << 1173 if(verboseLevel > 1) << 1174 G4cout << omega / keV << "\t" << GetGas << 1175 << "\t"; << 1176 if(verboseLevel > 0) << 1177 outGas << omega / keV << "\t\t" << 1178 << GetGasZmuProduct(omega, gamma << 1179 } << 1180 return; << 1181 } << 1182 840 1183 ///////////////////////////////////////////// << 841 void G4VXTRenergyLoss::GetGasZmuProduct() 1184 // Computes Compton cross section for plate m << 1185 G4double G4VXTRenergyLoss::GetPlateCompton(G4 << 1186 { 842 { 1187 G4int i, numberOfElements; << 843 std::ofstream outGas("gasZmu.dat", std::ios::out ) ; 1188 G4double xSection = 0., nowZ, sumZ = 0.; << 844 outGas.setf( std::ios::scientific, std::ios::floatfield ); 1189 << 845 G4int i ; 1190 const G4MaterialTable* theMaterialTable = G << 846 G4double omega, varAngle, gamma ; 1191 numberOfElements = (G4int)(*theMaterialTabl << 847 gamma = 10000. ; 1192 << 848 varAngle = 1/gamma/gamma ; 1193 for(i = 0; i < numberOfElements; ++i) << 849 G4cout<<"energy, keV"<<"\t"<<"Zmu for gas"<<G4endl ; 1194 { << 850 for(i=0;i<100;i++) 1195 nowZ = (*theMaterialTable)[fMatIndex1]->G << 851 { 1196 sumZ += nowZ; << 852 omega = (1.0 + i)*keV ; 1197 xSection += GetComptonPerAtom(omega, nowZ << 853 G4cout<<omega/keV<<"\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<"\t" ; >> 854 outGas<<omega/keV<<"\t\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<G4endl ; 1198 } 855 } 1199 xSection /= sumZ; << 856 return ; 1200 xSection *= (*theMaterialTable)[fMatIndex1] << 1201 return xSection; << 1202 } << 1203 << 1204 ///////////////////////////////////////////// << 1205 // Computes Compton cross section for gas mat << 1206 G4double G4VXTRenergyLoss::GetGasCompton(G4do << 1207 { << 1208 G4double xSection = 0., sumZ = 0.; << 1209 << 1210 const G4MaterialTable* theMaterialTable = G << 1211 G4int numberOfElements = (G4int)(*theMateri << 1212 << 1213 for (G4int i = 0; i < numberOfElements; ++i << 1214 { << 1215 G4double nowZ = (*theMaterialTable)[fMatI << 1216 sumZ += nowZ; << 1217 xSection += GetComptonPerAtom(omega, nowZ << 1218 } << 1219 if (sumZ > 0.0) { xSection /= sumZ; } << 1220 xSection *= (*theMaterialTable)[fMatIndex2] << 1221 return xSection; << 1222 } << 1223 << 1224 ///////////////////////////////////////////// << 1225 // Computes Compton cross section per atom wi << 1226 // the energy GammaEnergy << 1227 G4double G4VXTRenergyLoss::GetComptonPerAtom( << 1228 { << 1229 G4double CrossSection = 0.0; << 1230 if(Z < 0.9999) << 1231 return CrossSection; << 1232 if(GammaEnergy < 0.1 * keV) << 1233 return CrossSection; << 1234 if(GammaEnergy > (100. * GeV / Z)) << 1235 return CrossSection; << 1236 << 1237 static constexpr G4double a = 20.0; << 1238 static constexpr G4double b = 230.0; << 1239 static constexpr G4double c = 440.0; << 1240 << 1241 static constexpr G4double d1 = 2.7965e-1 * << 1242 d3 = 6.7527 * bar << 1243 e1 = 1.9756e-5 * << 1244 e3 = -7.3913e-2 * << 1245 f1 = -3.9178e-7 * << 1246 f3 = 6.0480e-5 * << 1247 << 1248 G4double p1Z = Z * (d1 + e1 * Z + f1 * Z * << 1249 G4double p2Z = Z * (d2 + e2 * Z + f2 * Z * << 1250 G4double p3Z = Z * (d3 + e3 * Z + f3 * Z * << 1251 G4double p4Z = Z * (d4 + e4 * Z + f4 * Z * << 1252 << 1253 G4double T0 = 15.0 * keV; << 1254 if(Z < 1.5) << 1255 T0 = 40.0 * keV; << 1256 << 1257 G4double X = std::max(GammaEnergy, T0) / el << 1258 CrossSection = << 1259 p1Z * std::log(1. + 2. * X) / X + << 1260 (p2Z + p3Z * X + p4Z * X * X) / (1. + a * << 1261 << 1262 // modification for low energy. (special c << 1263 if(GammaEnergy < T0) << 1264 { << 1265 G4double dT0 = 1. * keV; << 1266 X = (T0 + dT0) / electron_mass << 1267 G4double sigma = << 1268 p1Z * std::log(1. + 2. * X) / X + << 1269 (p2Z + p3Z * X + p4Z * X * X) / (1. + a << 1270 G4double c1 = -T0 * (sigma - CrossSection << 1271 G4double c2 = 0.150; << 1272 if(Z > 1.5) << 1273 c2 = 0.375 - 0.0556 * std::log(Z); << 1274 G4double y = std::log(GammaEnergy / T0); << 1275 CrossSection *= std::exp(-y * (c1 + c2 * << 1276 } << 1277 return CrossSection; << 1278 } 857 } 1279 858 1280 ///////////////////////////////////////////// 859 /////////////////////////////////////////////////////////////////////// >> 860 // 1281 // This function returns the spectral and ang 861 // This function returns the spectral and angle density of TR quanta 1282 // in X-ray energy region generated forward w 862 // in X-ray energy region generated forward when a relativistic 1283 // charged particle crosses interface between 863 // charged particle crosses interface between two materials. 1284 // The high energy small theta approximation 864 // The high energy small theta approximation is applied. 1285 // (matter1 -> matter2, or 2->1) 865 // (matter1 -> matter2, or 2->1) 1286 // varAngle =2* (1 - std::cos(theta)) or appr << 866 // varAngle =2* (1 - cos(theta)) or approximately = theta*theta 1287 G4double G4VXTRenergyLoss::OneBoundaryXTRNden << 867 // 1288 << 868 1289 << 869 G4double 1290 { << 870 G4VXTRenergyLoss::OneBoundaryXTRNdensity( G4double energy,G4double gamma, 1291 G4double formationLength1, formationLength2 << 871 G4double varAngle ) const 1292 formationLength1 = << 872 { 1293 1.0 / (1.0 / (gamma * gamma) + fSigma1 / << 873 G4double formationLength1, formationLength2 ; 1294 formationLength2 = << 874 formationLength1 = 1.0/ 1295 1.0 / (1.0 / (gamma * gamma) + fSigma2 / << 875 (1.0/(gamma*gamma) 1296 return (varAngle / energy) * (formationLeng << 876 + fSigma1/(energy*energy) 1297 (formationLength1 - formationLength2 << 877 + varAngle) ; 1298 } << 878 formationLength2 = 1.0/ >> 879 (1.0/(gamma*gamma) >> 880 + fSigma2/(energy*energy) >> 881 + varAngle) ; >> 882 return (varAngle/energy)*(formationLength1 - formationLength2) >> 883 *(formationLength1 - formationLength2) ; 1299 884 1300 G4double G4VXTRenergyLoss::GetStackFactor(G4d << 1301 G4d << 1302 { << 1303 // return stack factor corresponding to one << 1304 return std::real(OneInterfaceXTRdEdx(energy << 1305 } 885 } 1306 886 >> 887 1307 ///////////////////////////////////////////// 888 ////////////////////////////////////////////////////////////////////////////// >> 889 // 1308 // For photon energy distribution tables. Int 890 // For photon energy distribution tables. Integrate first over angle >> 891 // >> 892 1309 G4double G4VXTRenergyLoss::XTRNSpectralAngleD 893 G4double G4VXTRenergyLoss::XTRNSpectralAngleDensity(G4double varAngle) 1310 { 894 { 1311 return OneBoundaryXTRNdensity(fEnergy, fGam << 895 return OneBoundaryXTRNdensity(fEnergy,fGamma,varAngle)* 1312 GetStackFactor(fEnergy, fGamma, varA << 896 GetStackFactor(fEnergy,fGamma,varAngle) ; 1313 } 897 } 1314 898 1315 ///////////////////////////////////////////// 899 ///////////////////////////////////////////////////////////////////////// >> 900 // 1316 // For second integration over energy 901 // For second integration over energy >> 902 1317 G4double G4VXTRenergyLoss::XTRNSpectralDensit 903 G4double G4VXTRenergyLoss::XTRNSpectralDensity(G4double energy) 1318 { 904 { 1319 fEnergy = energy; << 905 fEnergy = energy ; 1320 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 906 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 1321 integral; << 907 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1322 return integral.Legendre96(this, &G4VXTRene << 908 0.0,0.2*fMaxThetaTR) + 1323 0.0, 0.2 * fMaxT << 909 integral.Legendre10(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1324 integral.Legendre10(this, &G4VXTRene << 910 0.2*fMaxThetaTR,fMaxThetaTR) ; 1325 0.2 * fMaxThetaT << 911 } 1326 } << 912 1327 << 1328 ///////////////////////////////////////////// 913 ////////////////////////////////////////////////////////////////////////// >> 914 // 1329 // for photon angle distribution tables 915 // for photon angle distribution tables >> 916 // >> 917 1330 G4double G4VXTRenergyLoss::XTRNAngleSpectralD 918 G4double G4VXTRenergyLoss::XTRNAngleSpectralDensity(G4double energy) 1331 { 919 { 1332 return OneBoundaryXTRNdensity(energy, fGamm << 920 return OneBoundaryXTRNdensity(energy,fGamma,fVarAngle)* 1333 GetStackFactor(energy, fGamma, fVarA << 921 GetStackFactor(energy,fGamma,fVarAngle) ; 1334 } << 922 } 1335 923 1336 ///////////////////////////////////////////// 924 /////////////////////////////////////////////////////////////////////////// 1337 G4double G4VXTRenergyLoss::XTRNAngleDensity(G << 925 // >> 926 // >> 927 >> 928 G4double G4VXTRenergyLoss::XTRNAngleDensity(G4double varAngle) 1338 { 929 { 1339 fVarAngle = varAngle; << 930 fVarAngle = varAngle ; 1340 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 931 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 1341 integral; << 932 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNAngleSpectralDensity, 1342 return integral.Legendre96(this, &G4VXTRene << 933 fMinEnergyTR,fMaxEnergyTR) ; 1343 fMinEnergyTR, fM << 1344 } 934 } 1345 935 1346 ///////////////////////////////////////////// 936 ////////////////////////////////////////////////////////////////////////////// 1347 // Check number of photons for a range of Lor << 937 // >> 938 // Check number of photons for a range of Lorentz factors from both energy 1348 // and angular tables 939 // and angular tables >> 940 1349 void G4VXTRenergyLoss::GetNumberOfPhotons() 941 void G4VXTRenergyLoss::GetNumberOfPhotons() 1350 { 942 { 1351 G4int iTkin; << 943 G4int iTkin ; 1352 G4double gamma, numberE; << 944 G4double gamma, numberE ; 1353 945 1354 std::ofstream outEn("numberE.dat", std::ios << 946 std::ofstream outEn("numberE.dat", std::ios::out ) ; 1355 outEn.setf(std::ios::scientific, std::ios:: << 947 outEn.setf( std::ios::scientific, std::ios::floatfield ); 1356 948 1357 std::ofstream outAng("numberAng.dat", std:: << 949 std::ofstream outAng("numberAng.dat", std::ios::out ) ; 1358 outAng.setf(std::ios::scientific, std::ios: << 950 outAng.setf( std::ios::scientific, std::ios::floatfield ); 1359 951 1360 for(iTkin = 0; iTkin < fTotBin; ++iTkin) / << 952 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 1361 { << 953 { 1362 gamma = << 954 gamma = 1.0 + (fProtonEnergyVector-> 1363 1.0 + (fProtonEnergyVector->GetLowEdgeE << 955 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 1364 numberE = (*(*fEnergyDistrTable)(iTkin))( << 956 numberE = (*(*fEnergyDistrTable)(iTkin))(0) ; 1365 if(verboseLevel > 1) << 957 // numberA = (*(*fAngleDistrTable)(iTkin))(0) ; 1366 G4cout << gamma << "\t\t" << numberE << << 958 G4cout<<gamma<<"\t\t"<<numberE<<"\t" // <<numberA 1367 if(verboseLevel > 0) << 959 <<G4endl ; 1368 outEn << gamma << "\t\t" << numberE << << 960 outEn<<gamma<<"\t\t"<<numberE<<G4endl ; >> 961 // outAng<<gamma<<"\t\t"<<numberA<<G4endl ; 1369 } 962 } 1370 return; << 963 return ; 1371 } << 964 } 1372 965 1373 ///////////////////////////////////////////// 966 ///////////////////////////////////////////////////////////////////////// 1374 // Returns random energy of a X-ray TR photon << 967 // >> 968 // Returns randon energy of a X-ray TR photon for given scaled kinetic energy 1375 // of a charged particle 969 // of a charged particle 1376 G4double G4VXTRenergyLoss::GetXTRrandomEnergy << 970 >> 971 G4double G4VXTRenergyLoss::GetXTRrandomEnergy( G4double scaledTkin, G4int iTkin ) 1377 { 972 { 1378 G4int iTransfer, iPlace; << 973 G4int iTransfer, iPlace ; 1379 G4double transfer = 0.0, position, E1, E2, << 974 G4double transfer = 0.0, position, E1, E2, W1, W2, W ; >> 975 >> 976 iPlace = iTkin - 1 ; 1380 977 1381 iPlace = iTkin - 1; << 978 // G4cout<<"iPlace = "<<iPlace<<endl ; 1382 979 1383 if(iTkin == fTotBin) // relativistic plato << 980 if(iTkin == fTotBin) // relativistic plato, try from left 1384 { 981 { 1385 position = (*(*fEnergyDistrTable)(iPlace) << 982 position = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand() ; 1386 983 1387 for(iTransfer = 0;; ++iTransfer) << 984 for(iTransfer=0;;iTransfer++) 1388 { << 985 { 1389 if(position >= (*(*fEnergyDistrTable)(i << 986 if(position >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break ; 1390 break; << 987 } 1391 } << 988 transfer = GetXTRenergy(iPlace,position,iTransfer); 1392 transfer = GetXTRenergy(iPlace, position, << 1393 } 989 } 1394 else 990 else 1395 { 991 { 1396 E1 = fProtonEnergyVector->GetLowEdgeEnerg << 992 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 1397 E2 = fProtonEnergyVector->GetLowEdgeEnerg << 993 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; 1398 W = 1.0 / (E2 - E1); << 994 W = 1.0/(E2 - E1) ; 1399 W1 = (E2 - scaledTkin) * W; << 995 W1 = (E2 - scaledTkin)*W ; 1400 W2 = (scaledTkin - E1) * W; << 996 W2 = (scaledTkin - E1)*W ; 1401 << 997 1402 position = ((*(*fEnergyDistrTable)(iPlace << 998 position =( (*(*fEnergyDistrTable)(iPlace))(0)*W1 + 1403 (*(*fEnergyDistrTable)(iPlace << 999 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*G4UniformRand() ; 1404 G4UniformRand(); << 1000 1405 << 1001 // G4cout<<position<<"\t" ; 1406 for(iTransfer = 0;; ++iTransfer) << 1002 1407 { << 1003 for(iTransfer=0;;iTransfer++) 1408 if(position >= ((*(*fEnergyDistrTable)( << 1004 { 1409 (*(*fEnergyDistrTable)( << 1005 if( position >= 1410 break; << 1006 ( (*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1 + 1411 } << 1007 (*(*fEnergyDistrTable)(iPlace+1))(iTransfer)*W2) ) break ; 1412 transfer = GetXTRenergy(iPlace, position, << 1008 } 1413 } << 1009 transfer = GetXTRenergy(iPlace,position,iTransfer); 1414 if(transfer < 0.0) << 1010 1415 transfer = 0.0; << 1011 } 1416 return transfer; << 1012 // G4cout<<"XTR transfer = "<<transfer/keV<<" keV"<<endl ; >> 1013 if(transfer < 0.0 ) transfer = 0.0 ; >> 1014 return transfer ; 1417 } 1015 } 1418 1016 1419 ///////////////////////////////////////////// 1017 //////////////////////////////////////////////////////////////////////// >> 1018 // 1420 // Returns approximate position of X-ray phot 1019 // Returns approximate position of X-ray photon energy during random sampling 1421 // over integral energy distribution 1020 // over integral energy distribution 1422 G4double G4VXTRenergyLoss::GetXTRenergy(G4int << 1021 >> 1022 G4double G4VXTRenergyLoss::GetXTRenergy( G4int iPlace, >> 1023 G4double position, >> 1024 G4int iTransfer ) 1423 { 1025 { 1424 G4double x1, x2, y1, y2, result; << 1026 G4double x1, x2, y1, y2, result ; 1425 1027 1426 if(iTransfer == 0) 1028 if(iTransfer == 0) 1427 { 1029 { 1428 result = (*fEnergyDistrTable)(iPlace)->Ge << 1030 result = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 1429 } << 1031 } 1430 else 1032 else 1431 { 1033 { 1432 y1 = (*(*fEnergyDistrTable)(iPlace))(iTra << 1034 y1 = (*(*fEnergyDistrTable)(iPlace))(iTransfer-1) ; 1433 y2 = (*(*fEnergyDistrTable)(iPlace))(iTra << 1035 y2 = (*(*fEnergyDistrTable)(iPlace))(iTransfer) ; 1434 1036 1435 x1 = (*fEnergyDistrTable)(iPlace)->GetLow << 1037 x1 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ; 1436 x2 = (*fEnergyDistrTable)(iPlace)->GetLow << 1038 x2 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 1437 1039 1438 if(x1 == x2) << 1040 if ( x1 == x2 ) result = x2 ; 1439 result = x2; << 1440 else 1041 else 1441 { 1042 { 1442 if(y1 == y2) << 1043 if ( y1 == y2 ) result = x1 + (x2 - x1)*G4UniformRand() ; 1443 result = x1 + (x2 - x1) * G4UniformRa << 1444 else 1044 else 1445 { 1045 { 1446 result = x1 + (x2 - x1) * G4UniformRa << 1046 result = x1 + (position - y1)*(x2 - x1)/(y2 - y1) ; 1447 } 1047 } 1448 } 1048 } 1449 } 1049 } 1450 return result; << 1050 return result ; 1451 } << 1452 << 1453 ///////////////////////////////////////////// << 1454 // Get XTR photon angle at given energy and << 1455 << 1456 G4double G4VXTRenergyLoss::GetRandomAngle(G4d << 1457 { << 1458 G4int iTR, iAngle; << 1459 G4double position, angle; << 1460 << 1461 if(iTkin == fTotBin) << 1462 --iTkin; << 1463 << 1464 fAngleForEnergyTable = fAngleBank[iTkin]; << 1465 << 1466 for(iTR = 0; iTR < fBinTR; ++iTR) << 1467 { << 1468 if(energyXTR < fXTREnergyVector->GetLowEd << 1469 break; << 1470 } << 1471 if(iTR == fBinTR) << 1472 --iTR; << 1473 << 1474 position = (*(*fAngleForEnergyTable)(iTR))( << 1475 // position = (*(*fAngleForEnergyTable)(iTR << 1476 << 1477 for(iAngle = 0;; ++iAngle) << 1478 // for(iAngle = 1;; ++iAngle) // ATLAS TB << 1479 { << 1480 if(position >= (*(*fAngleForEnergyTable)( << 1481 break; << 1482 } << 1483 angle = GetAngleXTR(iTR, position, iAngle); << 1484 return angle; << 1485 } 1051 } 1486 1052 1487 ///////////////////////////////////////////// << 1488 // Returns approximate position of X-ray phot << 1489 // random sampling over integral energy distr << 1490 1053 1491 G4double G4VXTRenergyLoss::GetAngleXTR(G4int << 1492 G4int << 1493 { << 1494 G4double x1, x2, y1, y2, result; << 1495 1054 1496 if( iTransfer == 0 ) << 1055 // 1497 // if( iTransfer == 1 ) // ATLAS TB << 1056 // 1498 { << 1057 /////////////////////////////////////////////////////////////////////// 1499 result = (*fAngleForEnergyTable)(iPlace)- << 1500 } << 1501 else << 1502 { << 1503 y1 = (*(*fAngleForEnergyTable)(iPlace))(i << 1504 y2 = (*(*fAngleForEnergyTable)(iPlace))(i << 1505 << 1506 x1 = (*fAngleForEnergyTable)(iPlace)->Get << 1507 x2 = (*fAngleForEnergyTable)(iPlace)->Get << 1508 1058 1509 if(x1 == x2) result = x2; << 1510 else << 1511 { << 1512 if( y1 == y2 ) result = x1 + (x2 - x1) << 1513 else << 1514 { << 1515 result = x1 + (position - y1) * (x2 - << 1516 // result = x1 + 0.1*(position - y1) << 1517 // result = x1 + 0.05*(position - y1) << 1518 } << 1519 } << 1520 } << 1521 return result; << 1522 } << 1523 1059