Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // History: << 23 // 27 // 2001-2002 R&D by V.Grichine << 24 // $Id: G4VXTRenergyLoss.cc,v 1.5 2002/03/28 07:58:29 gcosmo Exp $ 28 // 19.06.03 V. Grichine, modifications in Buil << 25 // GEANT4 tag $Name: geant4-04-01 $ 29 // in respect of angle: << 30 // improved << 31 // 28.07.05, P.Gumplinger add G4ProcessType to << 32 // 28.09.07, V.Ivanchenko general cleanup with << 33 // 26 // 34 27 35 #include "G4VXTRenergyLoss.hh" << 28 #include "G4Timer.hh" 36 29 37 #include "G4AffineTransform.hh" << 30 #include "G4VXTRenergyLoss.hh" 38 #include "G4DynamicParticle.hh" << 31 #include "Randomize.hh" 39 #include "G4EmProcessSubType.hh" << 32 #include "G4Material.hh" 40 #include "G4Integrator.hh" << 41 #include "G4MaterialTable.hh" 33 #include "G4MaterialTable.hh" 42 #include "G4ParticleMomentum.hh" << 34 #include "globals.hh" 43 #include "G4PhysicalConstants.hh" << 35 #include "g4std/complex" 44 #include "G4PhysicsFreeVector.hh" << 36 >> 37 #include "G4LogicalVolume.hh" >> 38 >> 39 #include "G4PhysicsTable.hh" >> 40 #include "G4PhysicsVector.hh" 45 #include "G4PhysicsLinearVector.hh" 41 #include "G4PhysicsLinearVector.hh" 46 #include "G4PhysicsLogVector.hh" 42 #include "G4PhysicsLogVector.hh" 47 #include "G4RotationMatrix.hh" << 43 #include "G4Integrator.hh" 48 #include "G4SandiaTable.hh" << 44 #include "G4Gamma.hh" 49 #include "G4SystemOfUnits.hh" << 45 50 #include "G4ThreeVector.hh" << 46 // Initialization of local constants 51 #include "G4Timer.hh" << 47 52 #include "G4VDiscreteProcess.hh" << 48 G4double G4VXTRenergyLoss::fTheMinEnergyTR = 1.0*keV ; 53 #include "G4VParticleChange.hh" << 49 G4double G4VXTRenergyLoss::fTheMaxEnergyTR = 100.0*keV ; 54 #include "G4VSolid.hh" << 50 G4double G4VXTRenergyLoss::fTheMaxAngle = 1.0e-3 ; 55 #include "G4PhysicsModelCatalog.hh" << 51 G4double G4VXTRenergyLoss::fTheMinAngle = 5.0e-6 ; >> 52 G4int G4VXTRenergyLoss::fBinTR = 50 ; >> 53 >> 54 G4double G4VXTRenergyLoss::fMinProtonTkin = 100.0*GeV ; >> 55 G4double G4VXTRenergyLoss::fMaxProtonTkin = 100.0*TeV ; >> 56 G4int G4VXTRenergyLoss::fTotBin = 50 ; >> 57 // Proton energy vector initialization >> 58 >> 59 G4PhysicsLogVector* G4VXTRenergyLoss:: >> 60 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 61 fMaxProtonTkin, >> 62 fTotBin ) ; >> 63 >> 64 G4double G4VXTRenergyLoss::fPlasmaCof = 4.0*pi*fine_structure_const* >> 65 hbarc*hbarc*hbarc/electron_mass_c2 ; >> 66 >> 67 G4double G4VXTRenergyLoss::fCofTR = fine_structure_const/pi ; >> 68 >> 69 >> 70 >> 71 56 72 57 ////////////////////////////////////////////// 73 //////////////////////////////////////////////////////////////////////////// >> 74 // 58 // Constructor, destructor 75 // Constructor, destructor 59 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVo << 60 G4Material* << 61 G4double a, << 62 const G4Str << 63 G4ProcessTy << 64 : G4VDiscreteProcess(processName, type) << 65 , fGammaCutInKineticEnergy(nullptr) << 66 , fAngleDistrTable(nullptr) << 67 , fEnergyDistrTable(nullptr) << 68 , fAngleForEnergyTable(nullptr) << 69 , fPlatePhotoAbsCof(nullptr) << 70 , fGasPhotoAbsCof(nullptr) << 71 , fGammaTkinCut(0.0) << 72 { << 73 verboseLevel = 1; << 74 secID = G4PhysicsModelCatalog::GetModelID("m << 75 SetProcessSubType(fTransitionRadiation); << 76 << 77 fPtrGamma = nullptr; << 78 fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = << 79 fVarAngle = fLambda = fTotalDist = fPlateThi << 80 fAlphaPlate = 100.; << 81 fAlphaGas = 40.; << 82 << 83 fTheMinEnergyTR = CLHEP::keV * 1.; // 1.; / << 84 fTheMaxEnergyTR = CLHEP::keV * 100.; // 40.; << 85 << 86 fTheMinAngle = 1.e-8; // << 87 fTheMaxAngle = 4.e-4; << 88 << 89 fTotBin = 50; // number of bins in log sca << 90 fBinTR = 100; // number of bins in TR vec << 91 fKrange = 229; << 92 // min/max angle2 in log-vectors << 93 << 94 fMinThetaTR = 3.0e-9; << 95 fMaxThetaTR = 1.0e-4; << 96 76 97 << 77 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVolume *anEnvelope, 98 // Proton energy vector initialization << 78 G4Material* foilMat,G4Material* gasMat, 99 fProtonEnergyVector = << 79 G4double a, G4double b, 100 new G4PhysicsLogVector(fMinProtonTkin, fMa << 80 G4int n,const G4String& processName) : 101 << 81 G4VContinuousProcess(processName) 102 fXTREnergyVector = << 82 { 103 new G4PhysicsLogVector(fTheMinEnergyTR, fT << 83 fEnvelope = anEnvelope ; 104 << 84 // fPlateNumber = fEnvelope->GetNoDaughters() ; 105 fEnvelope = anEnvelope; << 85 fPlateNumber = n ; 106 << 86 G4cout<<"the number of TR radiator plates = "<<fPlateNumber<<G4endl ; 107 fPlateNumber = n; << 108 if(verboseLevel > 0) << 109 G4cout << "### G4VXTRenergyLoss: the numbe << 110 << fPlateNumber << G4endl; << 111 if(fPlateNumber == 0) 87 if(fPlateNumber == 0) 112 { 88 { 113 G4Exception("G4VXTRenergyLoss::G4VXTRenerg << 89 G4Exception("No plates in X-ray TR radiator") ; 114 FatalException, "No plates in << 115 } 90 } 116 // default is XTR dEdx, not flux after radia << 91 // Mean thicknesses of plates and gas gaps 117 fExitFlux = false; << 118 // default angle distribution according nume << 119 fFastAngle = false; // no angle accordin << 120 fAngleRadDistr = true; << 121 fCompton = false; << 122 92 123 fLambda = DBL_MAX; << 93 fPlateThick = a ; >> 94 fGasThick = b ; 124 95 125 // Mean thicknesses of plates and gas gaps << 96 fTotalDist = fPlateNumber*(fPlateThick+fGasThick) ; 126 fPlateThick = a; << 97 G4cout<<"total radiator thickness = "<<fTotalDist/cm<<" cm"<<G4endl ; 127 fGasThick = b; << 128 fTotalDist = fPlateNumber * (fPlateThick + << 129 if(verboseLevel > 0) << 130 G4cout << "total radiator thickness = " << << 131 << G4endl; << 132 98 133 // index of plate material 99 // index of plate material 134 fMatIndex1 = (G4int)foilMat->GetIndex(); << 100 fMatIndex1 = foilMat->GetIndex() ; 135 if(verboseLevel > 0) << 101 G4cout<<"plate material = "<<foilMat->GetName()<<G4endl ; 136 G4cout << "plate material = " << foilMat-> << 137 102 138 // index of gas material 103 // index of gas material 139 fMatIndex2 = (G4int)gasMat->GetIndex(); << 104 fMatIndex2 = gasMat->GetIndex() ; 140 if(verboseLevel > 0) << 105 G4cout<<"gas material = "<<gasMat->GetName()<<G4endl ; 141 G4cout << "gas material = " << gasMat->Get << 142 106 143 // plasma energy squared for plate material 107 // plasma energy squared for plate material 144 fSigma1 = fPlasmaCof * foilMat->GetElectronD << 108 145 if(verboseLevel > 0) << 109 fSigma1 = fPlasmaCof*foilMat->GetElectronDensity() ; 146 G4cout << "plate plasma energy = " << std: << 110 // fSigma1 = (20.9*eV)*(20.9*eV) ; 147 << G4endl; << 111 G4cout<<"plate plasma energy = "<<sqrt(fSigma1)/eV<<" eV"<<G4endl ; 148 112 149 // plasma energy squared for gas material 113 // plasma energy squared for gas material 150 fSigma2 = fPlasmaCof * gasMat->GetElectronDe << 114 151 if(verboseLevel > 0) << 115 fSigma2 = fPlasmaCof*gasMat->GetElectronDensity() ; 152 G4cout << "gas plasma energy = " << std::s << 116 G4cout<<"gas plasma energy = "<<sqrt(fSigma2)/eV<<" eV"<<G4endl ; 153 << G4endl; << 154 117 155 // Compute cofs for preparation of linear ph 118 // Compute cofs for preparation of linear photo absorption 156 ComputePlatePhotoAbsCof(); << 157 ComputeGasPhotoAbsCof(); << 158 119 159 pParticleChange = &fParticleChange; << 120 ComputePlatePhotoAbsCof() ; >> 121 ComputeGasPhotoAbsCof() ; >> 122 160 } 123 } 161 124 162 ////////////////////////////////////////////// 125 /////////////////////////////////////////////////////////////////////////// >> 126 163 G4VXTRenergyLoss::~G4VXTRenergyLoss() 127 G4VXTRenergyLoss::~G4VXTRenergyLoss() 164 { 128 { 165 delete fProtonEnergyVector; << 129 G4int i ; 166 delete fXTREnergyVector; << 167 if(fEnergyDistrTable) << 168 { << 169 fEnergyDistrTable->clearAndDestroy(); << 170 delete fEnergyDistrTable; << 171 } << 172 if(fAngleRadDistr) << 173 { << 174 fAngleDistrTable->clearAndDestroy(); << 175 delete fAngleDistrTable; << 176 } << 177 if(fAngleForEnergyTable) << 178 { << 179 fAngleForEnergyTable->clearAndDestroy(); << 180 delete fAngleForEnergyTable; << 181 } << 182 } << 183 130 184 void G4VXTRenergyLoss::ProcessDescription(std: << 131 if(fEnvelope) delete fEnvelope; 185 { << 132 186 out << "Base class for 'fast' parameterisati << 133 for(i=0;i<fGasIntervalNumber;i++) 187 "transition\n" << 134 { 188 "radiation. Angular distribution is v << 135 delete[] fGasPhotoAbsCof[i] ; >> 136 } >> 137 delete[] fGasPhotoAbsCof ; >> 138 >> 139 for(i=0;i<fPlateIntervalNumber;i++) >> 140 { >> 141 delete[] fPlatePhotoAbsCof[i] ; >> 142 } >> 143 delete[] fPlatePhotoAbsCof ; 189 } 144 } 190 145 191 ////////////////////////////////////////////// 146 /////////////////////////////////////////////////////////////////////////////// >> 147 // 192 // Returns condition for application of the mo 148 // Returns condition for application of the model depending on particle type >> 149 >> 150 193 G4bool G4VXTRenergyLoss::IsApplicable(const G4 151 G4bool G4VXTRenergyLoss::IsApplicable(const G4ParticleDefinition& particle) 194 { 152 { 195 return (particle.GetPDGCharge() != 0.0); << 153 return ( particle.GetPDGCharge() != 0.0 ) ; 196 } 154 } 197 155 198 ////////////////////////////////////////////// << 156 ////////////////////////////////////////////////////////////////////////////////// 199 // Calculate step size for XTR process inside << 157 // 200 G4double G4VXTRenergyLoss::GetMeanFreePath(con << 158 // GetContinuousStepLimit 201 G4F << 159 // 202 { << 203 G4int iTkin, iPlace; << 204 G4double lambda, sigma, kinEnergy, mass, gam << 205 G4double charge, chargeSq, massRatio, TkinSc << 206 G4double E1, E2, W, W1, W2; << 207 << 208 *condition = NotForced; << 209 << 210 if(aTrack.GetVolume()->GetLogicalVolume() != << 211 lambda = DBL_MAX; << 212 else << 213 { << 214 const G4DynamicParticle* aParticle = aTrac << 215 kinEnergy = aPart << 216 mass = aParticle->GetDefinition()->GetPDG << 217 gamma = 1.0 + kinEnergy / mass; << 218 if(verboseLevel > 1) << 219 { << 220 G4cout << " gamma = " << gamma << "; f << 221 } << 222 << 223 if(std::fabs(gamma - fGamma) < 0.05 * gamm << 224 lambda = fLambda; << 225 else << 226 { << 227 charge = aParticle->GetDefinition()- << 228 chargeSq = charge * charge; << 229 massRatio = proton_mass_c2 / mass; << 230 TkinScaled = kinEnergy * massRatio; << 231 << 232 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 233 { << 234 if(TkinScaled < fProtonEnergyVector->G << 235 break; << 236 } << 237 iPlace = iTkin - 1; << 238 << 239 if(iTkin == 0) << 240 lambda = DBL_MAX; // Tkin is too smal << 241 else // general case: Tkin between two << 242 { << 243 if(iTkin == fTotBin) << 244 { << 245 sigma = (*(*fEnergyDistrTable)(iPlac << 246 } << 247 else << 248 { << 249 E1 = fProtonEnergyVector->GetLowE << 250 E2 = fProtonEnergyVector->GetLowE << 251 W = 1.0 / (E2 - E1); << 252 W1 = (E2 - TkinScaled) * W; << 253 W2 = (TkinScaled - E1) * W; << 254 sigma = ((*(*fEnergyDistrTable)(iPla << 255 (*(*fEnergyDistrTable)(iPla << 256 chargeSq; << 257 } << 258 if(sigma < DBL_MIN) << 259 lambda = DBL_MAX; << 260 else << 261 lambda = 1. / sigma; << 262 fLambda = lambda; << 263 fGamma = gamma; << 264 if(verboseLevel > 1) << 265 { << 266 G4cout << " lambda = " << lambda / m << 267 } << 268 } << 269 } << 270 } << 271 return lambda; << 272 } << 273 160 274 ////////////////////////////////////////////// << 161 G4double 275 // Interface for build table from physics list << 162 G4VXTRenergyLoss::GetContinuousStepLimit(const G4Track& aTrack, 276 void G4VXTRenergyLoss::BuildPhysicsTable(const << 163 G4double , >> 164 G4double , >> 165 G4double& ) 277 { 166 { 278 if(pd.GetPDGCharge() == 0.) << 167 G4double StepLimit = DBL_MAX; 279 { << 280 G4Exception("G4VXTRenergyLoss::BuildPhysic << 281 JustWarning, "XTR initialisati << 282 } << 283 BuildEnergyTable(); << 284 168 285 if(fAngleRadDistr) << 169 return StepLimit; 286 { << 287 if(verboseLevel > 0) << 288 { << 289 G4cout << 290 << "Build angle for energy distributio << 291 << G4endl; << 292 } << 293 BuildAngleForEnergyBank(); << 294 } << 295 } 170 } 296 171 297 ////////////////////////////////////////////// 172 ////////////////////////////////////////////////////////////////////////// >> 173 // 298 // Build integral energy distribution of XTR p 174 // Build integral energy distribution of XTR photons 299 void G4VXTRenergyLoss::BuildEnergyTable() << 300 { << 301 G4int iTkin, iTR, iPlace; << 302 G4double radiatorCof = 1.0; // for tuning o << 303 G4double energySum = 0.0; << 304 << 305 fEnergyDistrTable = new G4PhysicsTable(fTotB << 306 if(fAngleRadDistr) << 307 fAngleDistrTable = new G4PhysicsTable(fTot << 308 << 309 fGammaTkinCut = 0.0; << 310 << 311 // setting of min/max TR energies << 312 if(fGammaTkinCut > fTheMinEnergyTR) << 313 fMinEnergyTR = fGammaTkinCut; << 314 else << 315 fMinEnergyTR = fTheMinEnergyTR; << 316 175 317 if(fGammaTkinCut > fTheMaxEnergyTR) << 176 void G4VXTRenergyLoss::BuildTable() 318 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 177 { 319 else << 178 G4int iTkin, iTR, iPlace ; 320 fMaxEnergyTR = fTheMaxEnergyTR; << 179 G4double radiatorCof = 1.0 ; // for tuning of XTR yield 321 180 322 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 181 fEnergyDistrTable = new G4PhysicsTable(fTotBin) ; 323 integral; << 324 182 325 G4cout.precision(4); << 183 fGammaTkinCut = 0.0 ; 326 G4Timer timer; << 184 327 timer.Start(); << 185 // setting of min/max TR energies >> 186 >> 187 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut ; >> 188 else fMinEnergyTR = fTheMinEnergyTR ; >> 189 >> 190 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut ; >> 191 else fMaxEnergyTR = fTheMaxEnergyTR ; 328 192 329 if(verboseLevel > 0) << 193 G4cout.precision(4) ; 330 { << 194 G4Timer timer ; 331 G4cout << G4endl; << 195 timer.Start() ; 332 G4cout << "Lorentz Factor" << 196 333 << "\t" << 197 for( iTkin = 0 ; iTkin < fTotBin ; iTkin++ ) // Lorentz factor loop 334 << "XTR photon number" << G4endl; << 335 G4cout << G4endl; << 336 } << 337 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 338 { 198 { 339 auto energyVector = << 199 G4PhysicsLogVector* energyVector = new G4PhysicsLogVector( fMinEnergyTR, 340 new G4PhysicsLogVector(fMinEnergyTR, fMa << 200 fMaxEnergyTR, 341 << 201 fBinTR ) ; 342 fGamma = << 343 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 344 202 345 // if(fMaxThetaTR > fTheMaxAngle) fMax << 203 fGamma = 1.0 + (fProtonEnergyVector-> 346 // else if(fMaxThetaTR < fTheMinAngle) << 204 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 347 205 348 energySum = 0.0; << 206 fMaxThetaTR = 25.0/(fGamma*fGamma) ; // theta^2 349 207 350 energyVector->PutValue(fBinTR - 1, energyS << 208 fTheMinAngle = 1.0e-6 ; // was 5.e-6, e-5, e-4 351 << 209 352 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 210 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle ; 353 { << 211 else 354 // Legendre96 or Legendre10 << 212 { 355 << 213 if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle ; 356 energySum += radiatorCof * fCofTR * << 214 } 357 << 215 358 // integral.Legendre10(this, &G4VXTRenergyLo << 216 G4PhysicsLinearVector* angleVector = new G4PhysicsLinearVector( 0.0, 359 << 217 fMaxThetaTR, 360 integral.Legendre96(this, & << 218 fBinTR ) ; 361 << 219 362 energyV << 220 G4double energySum = 0.0 ; 363 energyV << 221 G4double angleSum = 0.0 ; 364 << 222 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 365 energyVector->PutValue(iTR, energySum / << 223 energyVector->PutValue(fBinTR-1,energySum) ; 366 } << 224 angleVector->PutValue(fBinTR-1,angleSum) ; 367 iPlace = iTkin; << 225 368 fEnergyDistrTable->insertAt(iPlace, energy << 226 for( iTR = fBinTR - 2 ; iTR >= 0 ; iTR-- ) 369 << 227 { 370 if(verboseLevel > 0) << 228 energySum += radiatorCof*fCofTR*integral.Legendre10( 371 { << 229 this,&G4VXTRenergyLoss::SpectralXTRdEdx, 372 G4cout << fGamma << "\t" << energySum << << 230 energyVector->GetLowEdgeEnergy(iTR), 373 } << 231 energyVector->GetLowEdgeEnergy(iTR+1) ) ; 374 } << 232 375 timer.Stop(); << 233 // angleSum += fCofTR*integral.Legendre96( 376 G4cout.precision(6); << 234 // this,&G4VXTRenergyLoss::AngleXTRdEdx, 377 if(verboseLevel > 0) << 235 // angleVector->GetLowEdgeEnergy(iTR), 378 { << 236 // angleVector->GetLowEdgeEnergy(iTR+1) ) ; 379 G4cout << G4endl; << 237 380 G4cout << "total time for build X-ray TR e << 238 energyVector->PutValue(iTR,energySum/fTotalDist) ; 381 << timer.GetUserElapsed() << " s" < << 239 // angleVector ->PutValue(iTR,angleSum) ; 382 } << 240 } 383 fGamma = 0.; << 241 G4cout<<iTkin<<"\t" 384 return; << 242 <<"fGamma = "<<fGamma<<"\t" // <<" fMaxThetaTR = "<<fMaxThetaTR >> 243 <<"sumE = "<<energySum // <<" ; sumA = "<<angleSum >> 244 <<G4endl ; >> 245 iPlace = iTkin ; >> 246 fEnergyDistrTable->insertAt(iPlace,energyVector) ; >> 247 // fAngleDistrTable->insertAt(iPlace,angleVector) ; >> 248 } >> 249 timer.Stop() ; >> 250 G4cout.precision(6) ; >> 251 G4cout<<G4endl ; >> 252 G4cout<<"total time for build X-ray TR energy loss tables = " >> 253 <<timer.GetUserElapsed()<<" s"<<G4endl ; >> 254 return ; 385 } 255 } 386 256 387 ////////////////////////////////////////////// 257 ////////////////////////////////////////////////////////////////////////// 388 // Bank of angle distributions for given energ << 258 // >> 259 // 389 260 390 void G4VXTRenergyLoss::BuildAngleForEnergyBank << 261 void G4VXTRenergyLoss::BuildEnergyTable() 391 { 262 { 392 << 263 return ; 393 if( ( this->GetProcessName() == "TranspRegXT << 394 this->GetProcessName() == "TranspRegXT << 395 this->GetProcessName() == "RegularXTRa << 396 this->GetProcessName() == "RegularXTRmodel" << 397 { << 398 BuildAngleTable(); // by sum of delta-func << 399 return; << 400 } << 401 G4int i, iTkin, iTR; << 402 G4double angleSum = 0.0; << 403 << 404 fGammaTkinCut = 0.0; << 405 << 406 // setting of min/max TR energies << 407 if(fGammaTkinCut > fTheMinEnergyTR) << 408 fMinEnergyTR = fGammaTkinCut; << 409 else << 410 fMinEnergyTR = fTheMinEnergyTR; << 411 << 412 if(fGammaTkinCut > fTheMaxEnergyTR) << 413 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 414 else << 415 fMaxEnergyTR = fTheMaxEnergyTR; << 416 << 417 auto energyVector = << 418 new G4PhysicsLogVector(fMinEnergyTR, fMaxE << 419 << 420 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 421 integral; << 422 << 423 G4cout.precision(4); << 424 G4Timer timer; << 425 timer.Start(); << 426 << 427 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 428 { << 429 fGamma = << 430 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 431 << 432 if(fMaxThetaTR > fTheMaxAngle) << 433 fMaxThetaTR = fTheMaxAngle; << 434 else if(fMaxThetaTR < fTheMinAngle) << 435 fMaxThetaTR = fTheMinAngle; << 436 << 437 fAngleForEnergyTable = new G4PhysicsTable( << 438 << 439 for(iTR = 0; iTR < fBinTR; ++iTR) << 440 { << 441 angleSum = 0.0; << 442 fEnergy = energyVector->GetLowEdgeEnerg << 443 << 444 // log-vector to increase number of thin << 445 auto angleVector = new G4PhysicsLogVecto << 446 << 447 << 448 << 449 angleVector->PutValue(fBinTR - 1, angleS << 450 << 451 for(i = fBinTR - 2; i >= 0; --i) << 452 { << 453 // Legendre96 or Legendre10 << 454 << 455 angleSum += << 456 integral.Legendre10(this, &G4VXTRene << 457 angleVector->Get << 458 angleVector->Get << 459 << 460 angleVector->PutValue(i, angleSum); << 461 } << 462 fAngleForEnergyTable->insertAt(iTR, angl << 463 } << 464 fAngleBank.push_back(fAngleForEnergyTable) << 465 } << 466 timer.Stop(); << 467 G4cout.precision(6); << 468 if(verboseLevel > 0) << 469 { << 470 G4cout << G4endl; << 471 G4cout << "total time for build X-ray TR a << 472 << timer.GetUserElapsed() << " s" < << 473 } << 474 fGamma = 0.; << 475 delete energyVector; << 476 } 264 } 477 265 478 ////////////////////////////////////////////// 266 //////////////////////////////////////////////////////////////////////// 479 // Build XTR angular distribution at given ene << 267 // 480 // of transparent regular radiator << 268 // >> 269 481 void G4VXTRenergyLoss::BuildAngleTable() 270 void G4VXTRenergyLoss::BuildAngleTable() 482 { 271 { 483 G4int iTkin, iTR; << 272 return ; 484 G4double energy; << 273 } 485 << 486 fGammaTkinCut = 0.0; << 487 274 488 // setting of min/max TR energies << 489 if(fGammaTkinCut > fTheMinEnergyTR) << 490 fMinEnergyTR = fGammaTkinCut; << 491 else << 492 fMinEnergyTR = fTheMinEnergyTR; << 493 275 494 if(fGammaTkinCut > fTheMaxEnergyTR) << 276 ////////////////////////////////////////////////////////////////////////////// 495 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 277 // 496 else << 278 // The main function which is responsible for the treatment of a particle passage 497 fMaxEnergyTR = fTheMaxEnergyTR; << 279 // trough G4Envelope 498 << 499 G4cout.precision(4); << 500 G4Timer timer; << 501 timer.Start(); << 502 if(verboseLevel > 0) << 503 { << 504 G4cout << G4endl << "Lorentz Factor" << "\ << 505 << "XTR photon number" << G4endl << << 506 } << 507 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 508 { << 509 fGamma = << 510 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 511 << 512 // fMaxThetaTR = 25. * 2500.0 / (fGamma * << 513 << 514 if(fMaxThetaTR > fTheMaxAngle) << 515 fMaxThetaTR = fTheMaxAngle; << 516 else << 517 { << 518 if(fMaxThetaTR < fTheMinAngle) << 519 fMaxThetaTR = fTheMinAngle; << 520 } << 521 << 522 fAngleForEnergyTable = new G4PhysicsTable( << 523 << 524 for(iTR = 0; iTR < fBinTR; ++iTR) << 525 { << 526 energy = fXTREnergyVector->GetLowEdgeEne << 527 << 528 G4PhysicsFreeVector* angleVector = GetAn << 529 << 530 fAngleForEnergyTable->insertAt(iTR, angl << 531 } << 532 fAngleBank.push_back(fAngleForEnergyTable) << 533 } << 534 timer.Stop(); << 535 G4cout.precision(6); << 536 if(verboseLevel > 0) << 537 { << 538 G4cout << G4endl; << 539 G4cout << "total time for build XTR angle << 540 << timer.GetUserElapsed() << " s" < << 541 } << 542 fGamma = 0.; << 543 << 544 return; << 545 } << 546 280 547 ////////////////////////////////////////////// << 281 G4VParticleChange* G4VXTRenergyLoss::AlongStepDoIt( const G4Track& aTrack, 548 // Vector of angles and angle integral distrib << 282 const G4Step& aStep ) 549 G4PhysicsFreeVector* G4VXTRenergyLoss::GetAngl << 550 { 283 { 551 G4double theta = 0., result, tmp = 0., cof1, << 284 G4int iTkin, iPlace, numOfTR, iTR ; 552 angleSum = 0.; << 285 G4double energyTR, meanNumOfTR, theta, phi, dirX, dirY, dirZ, rand ; 553 G4int iTheta, k, kMin; << 286 G4double W, W1, W2, E1, E2 ; 554 << 555 auto angleVector = new G4PhysicsFreeVector(n << 556 << 557 cofPHC = 4. * pi * hbarc; << 558 tmp = (fSigma1 - fSigma2) / cofPHC / ener << 559 cof1 = fPlateThick * tmp; << 560 cof2 = fGasThick * tmp; << 561 287 562 cofMin = energy * (fPlateThick + fGasThick) << 288 aParticleChange.Initialize(aTrack); 563 cofMin += (fPlateThick * fSigma1 + fGasThick << 564 cofMin /= cofPHC; << 565 289 566 kMin = G4int(cofMin); << 290 if(verboseLevel) 567 if(cofMin > kMin) << 568 kMin++; << 569 << 570 if(verboseLevel > 2) << 571 { 291 { 572 G4cout << "n-1 = " << n - 1 << 292 G4cout<<"Start of G4VXTRenergyLoss::AlongStepDoIt "<<G4endl ; 573 << "; theta = " << std::sqrt(fMaxTh << 293 G4cout<<"name of current material = " 574 << "; tmp = " << 0. << "; angleS << 294 <<aTrack.GetVolume()->GetLogicalVolume()->GetMaterial()->GetName()<<G4endl ; 575 } 295 } >> 296 // if(aStep.GetPreStepPoint()->GetPhysicalVolume()->GetLogicalVolume() != fEnvelope) 576 297 577 for(iTheta = n - 1; iTheta >= 1; --iTheta) << 298 if( aTrack.GetVolume()->GetLogicalVolume() != fEnvelope ) 578 { 299 { 579 k = iTheta - 1 + kMin; << 300 if(verboseLevel) 580 tmp = pi * fPlateThick * (k + cof2) / ( << 581 result = (k - cof1) * (k - cof1) * (k + co << 582 tmp = std::sin(tmp) * std::sin(tmp) * s << 583 << 584 if(k == kMin && kMin == G4int(cofMin)) << 585 { 301 { 586 // angleSum += 0.5 * tmp; << 302 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt: wrong volume "<<G4endl; 587 angleSum += tmp; // ATLAS TB << 588 } 303 } 589 else if(iTheta == n - 1) << 304 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 590 ; << 591 else << 592 { << 593 angleSum += tmp; << 594 } << 595 theta = std::abs(k - cofMin) * cofPHC / en << 596 << 597 if(verboseLevel > 2) << 598 { << 599 G4cout << "iTheta = " << iTheta << "; k << 600 << "; theta = " << std::sqrt(thet << 601 << "; angleSum = " << angleSum << 602 } << 603 angleVector->PutValue(iTheta, theta, angle << 604 } << 605 if(theta > 0.) << 606 { << 607 // angleSum += 0.5 * tmp; << 608 angleSum += 0.; // ATLAS TB << 609 theta = 0.; << 610 } << 611 if(verboseLevel > 2) << 612 { << 613 G4cout << "iTheta = " << iTheta << "; thet << 614 << "; tmp = " << tmp << "; angle << 615 } 305 } 616 angleVector->PutValue(iTheta, theta, angleSu << 306 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 617 << 307 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 618 return angleVector; << 308 619 } << 309 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 620 << 310 G4double charge = aParticle->GetDefinition()->GetPDGCharge(); 621 ////////////////////////////////////////////// << 311 622 // Build XTR angular distribution based on the << 312 623 // radiator << 313 // Now we are ready to Generate TR photons 624 void G4VXTRenergyLoss::BuildGlobalAngleTable() << 625 { << 626 G4int iTkin, iTR, iPlace; << 627 G4double radiatorCof = 1.0; // for tuning o << 628 G4double angleSum; << 629 fAngleDistrTable = new G4PhysicsTable(fTotBi << 630 << 631 fGammaTkinCut = 0.0; << 632 << 633 // setting of min/max TR energies << 634 if(fGammaTkinCut > fTheMinEnergyTR) << 635 fMinEnergyTR = fGammaTkinCut; << 636 else << 637 fMinEnergyTR = fTheMinEnergyTR; << 638 314 639 if(fGammaTkinCut > fTheMaxEnergyTR) << 315 G4double chargeSq = charge*charge ; 640 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 316 G4double kinEnergy = aParticle->GetKineticEnergy() ; 641 else << 317 G4double mass = aParticle->GetDefinition()->GetPDGMass() ; 642 fMaxEnergyTR = fTheMaxEnergyTR; << 318 G4double gamma = 1.0 + kinEnergy/mass ; 643 319 644 G4cout.precision(4); << 320 if(verboseLevel > 0 ) 645 G4Timer timer; << 646 timer.Start(); << 647 if(verboseLevel > 0) << 648 { 321 { 649 G4cout << G4endl; << 322 G4cout<<"gamma = "<<gamma<<G4endl ; 650 G4cout << "Lorentz Factor" << 651 << "\t" << 652 << "XTR photon number" << G4endl; << 653 G4cout << G4endl; << 654 } 323 } 655 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 324 G4double massRatio = proton_mass_c2/mass ; 656 { << 325 G4double TkinScaled = kinEnergy*massRatio ; 657 fGamma = << 658 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 659 326 660 // fMaxThetaTR = 25.0 / (fGamma * fGamma); << 327 G4ThreeVector startPos = pPreStepPoint->GetPosition(); 661 // fMaxThetaTR = 1.e-4; // theta^2 << 328 G4double startTime = pPreStepPoint->GetGlobalTime(); 662 329 663 if(fMaxThetaTR > fTheMaxAngle) << 330 G4ParticleMomentum direction = aParticle->GetMomentumDirection(); 664 fMaxThetaTR = fTheMaxAngle; << 665 else << 666 { << 667 if(fMaxThetaTR < fTheMinAngle) << 668 fMaxThetaTR = fTheMinAngle; << 669 } << 670 auto angleVector = << 671 // G4PhysicsLogVector* angleVector = << 672 new G4PhysicsLinearVector(0.0, fMaxTheta << 673 // new G4PhysicsLogVector(1.e-8, fMaxThet << 674 << 675 angleSum = 0.0; << 676 331 677 G4Integrator<G4VXTRenergyLoss, G4double (G << 332 G4double distance = aStep.GetStepLength() ; 678 integral; << 679 333 680 angleVector->PutValue(fBinTR - 1, angleSum << 681 334 682 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 335 for(iTkin=0;iTkin<fTotBin;iTkin++) 683 { << 684 angleSum += radiatorCof * fCofTR * << 685 integral.Legendre96(this, &G << 686 angleVec << 687 angleVec << 688 << 689 angleVector->PutValue(iTR, angleSum); << 690 } << 691 if(verboseLevel > 1) << 692 { << 693 G4cout << fGamma << "\t" << angleSum << << 694 } << 695 iPlace = iTkin; << 696 fAngleDistrTable->insertAt(iPlace, angleVe << 697 } << 698 timer.Stop(); << 699 G4cout.precision(6); << 700 if(verboseLevel > 0) << 701 { 336 { 702 G4cout << G4endl; << 337 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ; 703 G4cout << "total time for build X-ray TR a << 704 << timer.GetUserElapsed() << " s" < << 705 } 338 } 706 fGamma = 0.; << 339 iPlace = iTkin - 1 ; 707 340 708 return; << 341 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 709 } << 710 << 711 ////////////////////////////////////////////// << 712 // The main function which is responsible for << 713 // passage through G4Envelope with discrete ge << 714 G4VParticleChange* G4VXTRenergyLoss::PostStepD << 715 << 716 { << 717 G4int iTkin; << 718 G4double energyTR, theta, theta2, phi, dirX, << 719 << 720 fParticleChange.Initialize(aTrack); << 721 << 722 if(verboseLevel > 1) << 723 { 342 { 724 G4cout << "Start of G4VXTRenergyLoss::Post << 343 if(verboseLevel) 725 G4cout << "name of current material = " << 726 << aTrack.GetVolume()->GetLogicalVo << 727 << G4endl; << 728 } << 729 if(aTrack.GetVolume()->GetLogicalVolume() != << 730 { << 731 if(verboseLevel > 0) << 732 { 344 { 733 G4cout << "Go out from G4VXTRenergyLoss: << 345 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt:iTkin = "<<iTkin<<G4endl; 734 << G4endl; << 735 } 346 } 736 return G4VDiscreteProcess::PostStepDoIt(aT << 347 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 737 } << 348 } 738 else << 349 else // general case: Tkin between two vectors of the material 739 { 350 { 740 G4StepPoint* pPostStepPoint = aStep << 351 if(iTkin == fTotBin) 741 const G4DynamicParticle* aParticle = aTrac << 742 << 743 // Now we are ready to Generate one TR pho << 744 G4double kinEnergy = aParticle->GetKinetic << 745 G4double mass = aParticle->GetDefinit << 746 G4double gamma = 1.0 + kinEnergy / mas << 747 << 748 if(verboseLevel > 1) << 749 { 352 { 750 G4cout << "gamma = " << gamma << G4endl; << 353 meanNumOfTR = (*(*fEnergyDistrTable)(iPlace))(0)*chargeSq*distance ; >> 354 numOfTR = RandPoisson::shoot(meanNumOfTR) ; 751 } 355 } 752 G4double massRatio = proton_mass << 356 else 753 G4double TkinScaled = kinEnergy * << 754 G4ThreeVector position = pPostStepPo << 755 G4ParticleMomentum direction = aParticle-> << 756 G4double startTime = pPostStepPo << 757 << 758 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 759 { 357 { 760 if(TkinScaled < fProtonEnergyVector->Get << 358 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 761 break; << 359 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; >> 360 W = 1.0/(E2 - E1) ; >> 361 W1 = (E2 - TkinScaled)*W ; >> 362 W2 = (TkinScaled - E1)*W ; >> 363 meanNumOfTR = ( (*(*fEnergyDistrTable)(iPlace ))(0)*W1+ >> 364 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*chargeSq*distance ; >> 365 >> 366 if(verboseLevel > 0 ) >> 367 { >> 368 G4cout<<iTkin<<" mean TR number = "<<meanNumOfTR >> 369 <<" or mean over energy-angle tables " >> 370 <<(((*(*fEnergyDistrTable)(iPlace))(0)+ >> 371 (*(*fAngleDistrTable)(iPlace))(0))*W1 + >> 372 ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ >> 373 (*(*fAngleDistrTable)(iPlace + 1))(0))*W2)*chargeSq*0.5 >> 374 <<G4endl ; >> 375 } >> 376 numOfTR = RandPoisson::shoot( meanNumOfTR ) ; 762 } 377 } 763 << 378 if( numOfTR == 0 ) // no change, return 764 if(iTkin == 0) // Tkin is too small, negl << 765 { 379 { 766 if(verboseLevel > 0) << 380 aParticleChange.SetNumberOfSecondaries(0); >> 381 if(verboseLevel) 767 { 382 { 768 G4cout << "Go out from G4VXTRenergyLos << 383 G4cout<<"Go out from G4VXTRenergyLoss::AlongStepDoIt: numOfTR = " 769 << G4endl; << 384 <<numOfTR<<G4endl ; 770 } 385 } 771 return G4VDiscreteProcess::PostStepDoIt( << 386 return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); 772 } 387 } 773 else // general case: Tkin between two ve << 388 else 774 { 389 { 775 fParticleChange.SetNumberOfSecondaries(1 << 390 if(verboseLevel) >> 391 { >> 392 G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 393 } >> 394 aParticleChange.SetNumberOfSecondaries(numOfTR); 776 395 777 energyTR = GetXTRrandomEnergy(TkinScaled << 396 G4double sumEnergyTR = 0.0 ; 778 397 779 if(verboseLevel > 1) << 398 for(iTR=0;iTR<numOfTR;iTR++) 780 { 399 { 781 G4cout << "energyTR = " << energyTR / << 400 782 } << 401 // energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+ 783 if(fAngleRadDistr) << 402 // (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; >> 403 // for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) >> 404 // { >> 405 // if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+ >> 406 // (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; >> 407 // } >> 408 // energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+ >> 409 // ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2 ; >> 410 >> 411 energyTR = GetXTRrandomEnergy(TkinScaled,iTkin) ; >> 412 >> 413 if(verboseLevel) 784 { 414 { 785 theta2 = GetRandomAngle(energyTR, iTki << 415 G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 786 if(theta2 > 0.) << 787 theta = std::sqrt(theta2); << 788 else << 789 theta = 0.; << 790 } 416 } 791 else << 417 sumEnergyTR += energyTR ; 792 theta = std::fabs(G4RandGauss::shoot(0 << 793 418 794 if(theta >= 0.1) << 419 theta = abs(G4RandGauss::shoot(0.0,pi/gamma)) ; 795 theta = 0.1; << 796 420 797 phi = twopi * G4UniformRand(); << 421 if( theta >= 0.1 ) theta = 0.1 ; 798 422 799 dirX = std::sin(theta) * std::cos(phi); << 423 // G4cout<<" : theta = "<<theta<<endl ; 800 dirY = std::sin(theta) * std::sin(phi); << 801 dirZ = std::cos(theta); << 802 424 803 G4ThreeVector directionTR(dirX, dirY, di << 425 phi = twopi*G4UniformRand() ; 804 directionTR.rotateUz(direction); << 805 directionTR.unit(); << 806 426 807 auto aPhotonTR = << 427 dirX = sin(theta)*cos(phi) ; 808 new G4DynamicParticle(G4Gamma::Gamma() << 428 dirY = sin(theta)*sin(phi) ; >> 429 dirZ = cos(theta) ; 809 430 810 // A XTR photon is set on the particle t << 431 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 811 // and is moved to the G4Envelope surfac << 432 directionTR.rotateUz(direction) ; 812 // only. The case of fExitFlux=true << 433 directionTR.unit() ; 813 434 814 if(fExitFlux) << 435 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 815 { << 436 directionTR,energyTR) ; 816 const G4RotationMatrix* rotM = << 817 pPostStepPoint->GetTouchable()->GetR << 818 G4ThreeVector transl = pPostStepPoint- << 819 G4AffineTransform transform = G4Affine << 820 transform.Invert(); << 821 G4ThreeVector localP = transform.Trans << 822 G4ThreeVector localV = transform.Trans << 823 << 824 G4double distance = << 825 fEnvelope->GetSolid()->DistanceToOut << 826 if(verboseLevel > 1) << 827 { << 828 G4cout << "distance to exit = " << d << 829 } << 830 position += distance * directionTR; << 831 startTime += distance / c_light; << 832 } << 833 G4Track* aSecondaryTrack = new G4Track(a << 834 aSecondaryTrack->SetTouchableHandle( << 835 aStep.GetPostStepPoint()->GetTouchable << 836 aSecondaryTrack->SetParentID(aTrack.GetT << 837 437 838 fParticleChange.AddSecondary(aSecondaryT << 438 // A XTR photon is set along the particle track and is not moved to 839 fParticleChange.ProposeEnergy(kinEnergy) << 439 // the G4Envelope surface as in standard X-ray TR models >> 440 >> 441 rand = G4UniformRand(); >> 442 G4double delta = rand*distance ; >> 443 G4double deltaTime = delta / >> 444 ((pPreStepPoint->GetVelocity()+ >> 445 pPostStepPoint->GetVelocity())/2.); >> 446 >> 447 G4double aSecondaryTime = startTime + deltaTime; >> 448 >> 449 G4ThreeVector positionTR = startPos + delta*direction ; >> 450 >> 451 >> 452 G4Track* aSecondaryTrack = new G4Track( aPhotonTR, >> 453 aSecondaryTime,positionTR ) ; >> 454 aSecondaryTrack->SetTouchableHandle(aStep.GetPostStepPoint() >> 455 ->GetTouchableHandle()); >> 456 aSecondaryTrack->SetParentID(aTrack.GetTrackID()); >> 457 >> 458 aParticleChange.AddSecondary(aSecondaryTrack); >> 459 } >> 460 kinEnergy -= sumEnergyTR ; >> 461 aParticleChange.SetEnergyChange(kinEnergy) ; 840 } 462 } 841 } 463 } 842 return G4VDiscreteProcess::PostStepDoIt(aTra << 464 // return G4VContinuousProcess::AlongStepDoIt(aTrack, aStep); >> 465 return &aParticleChange; 843 } 466 } 844 467 845 ////////////////////////////////////////////// 468 /////////////////////////////////////////////////////////////////////// >> 469 // 846 // This function returns the spectral and angl 470 // This function returns the spectral and angle density of TR quanta 847 // in X-ray energy region generated forward wh 471 // in X-ray energy region generated forward when a relativistic 848 // charged particle crosses interface between 472 // charged particle crosses interface between two materials. 849 // The high energy small theta approximation i 473 // The high energy small theta approximation is applied. 850 // (matter1 -> matter2, or 2->1) 474 // (matter1 -> matter2, or 2->1) 851 // varAngle =2* (1 - std::cos(theta)) or appro << 475 // varAngle =2* (1 - cos(theta)) or approximately = theta*theta 852 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEd << 476 // 853 << 477 854 { << 478 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEdx( G4double energy, 855 G4complex Z1 = GetPlateComplexFZ(energy, gam << 479 G4double gamma, 856 G4complex Z2 = GetGasComplexFZ(energy, gamma << 480 G4double varAngle ) >> 481 { >> 482 G4complex Z1 = GetPlateComplexFZ(energy,gamma,varAngle) ; >> 483 G4complex Z2 = GetGasComplexFZ(energy,gamma,varAngle) ; >> 484 >> 485 G4complex zOut = (Z1 - Z2)*(Z1 - Z2) >> 486 * (varAngle*energy/hbarc/hbarc) ; >> 487 return zOut ; 857 488 858 G4complex zOut = (Z1 - Z2) * (Z1 - Z2) * (va << 859 return zOut; << 860 } 489 } 861 490 >> 491 862 ////////////////////////////////////////////// 492 ////////////////////////////////////////////////////////////////////////////// >> 493 // 863 // For photon energy distribution tables. Inte 494 // For photon energy distribution tables. Integrate first over angle >> 495 // >> 496 864 G4double G4VXTRenergyLoss::SpectralAngleXTRdEd 497 G4double G4VXTRenergyLoss::SpectralAngleXTRdEdx(G4double varAngle) 865 { 498 { 866 G4double result = GetStackFactor(fEnergy, fG << 499 G4double result = GetStackFactor(fEnergy,fGamma,varAngle) ; 867 if(result < 0.0) << 500 if(result < 0.0) result = 0.0 ; 868 result = 0.0; << 501 return result ; 869 return result; << 870 } 502 } 871 503 872 ////////////////////////////////////////////// 504 ///////////////////////////////////////////////////////////////////////// >> 505 // 873 // For second integration over energy 506 // For second integration over energy >> 507 874 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4d 508 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4double energy) 875 { 509 { 876 G4int i; << 510 fEnergy = energy ; 877 static constexpr G4int iMax = 8; << 511 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 878 G4double angleSum = 0.0; << 512 return integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 879 << 513 0.0,0.3*fMaxThetaTR) + 880 G4double lim[iMax] = { 0.0, 0.01, 0.02, 0.05 << 514 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 881 << 515 0.3*fMaxThetaTR,fMaxThetaTR) ; 882 for(i = 0; i < iMax; ++i) << 516 } 883 lim[i] *= fMaxThetaTR; << 517 884 << 885 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 886 integral; << 887 << 888 fEnergy = energy; << 889 { << 890 for(i = 0; i < iMax - 1; ++i) << 891 { << 892 angleSum += integral.Legendre96( << 893 this, &G4VXTRenergyLoss::SpectralAngle << 894 } << 895 } << 896 return angleSum; << 897 } << 898 << 899 ////////////////////////////////////////////// 518 ////////////////////////////////////////////////////////////////////////// >> 519 // 900 // for photon angle distribution tables 520 // for photon angle distribution tables >> 521 // >> 522 901 G4double G4VXTRenergyLoss::AngleSpectralXTRdEd 523 G4double G4VXTRenergyLoss::AngleSpectralXTRdEdx(G4double energy) 902 { 524 { 903 G4double result = GetStackFactor(energy, fGa << 525 G4double result = GetStackFactor(energy,fGamma,fVarAngle) ; 904 if(result < 0) << 526 if(result < 0) result = 0.0 ; 905 result = 0.0; << 527 return result ; 906 return result; << 528 } 907 } << 908 529 909 ////////////////////////////////////////////// 530 /////////////////////////////////////////////////////////////////////////// 910 // The XTR angular distribution based on trans << 531 // 911 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4doub << 532 // >> 533 >> 534 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4double varAngle) 912 { 535 { 913 G4double result; << 536 fVarAngle = varAngle ; 914 G4double sum = 0., tmp1, tmp2, tmp = 0., cof << 537 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 915 energy2; << 538 return integral.Legendre10(this,&G4VXTRenergyLoss::AngleSpectralXTRdEdx, 916 G4int k, kMax, kMin, i; << 539 fMinEnergyTR,fMaxEnergyTR) ; >> 540 } 917 541 918 cofPHC = twopi * hbarc; << 919 542 920 cof1 = (fPlateThick + fGasThick) * (1. / fGa << 921 cof2 = fPlateThick * fSigma1 + fGasThick * f << 922 543 923 cofMin = std::sqrt(cof1 * cof2); << 924 cofMin /= cofPHC; << 925 544 926 kMin = G4int(cofMin); << 927 if(cofMin > kMin) << 928 kMin++; << 929 545 930 kMax = kMin + 9; << 931 546 932 for(k = kMin; k <= kMax; ++k) << 933 { << 934 tmp1 = cofPHC * k; << 935 tmp2 = std::sqrt(tmp1 * tmp1 - cof1 * c << 936 energy1 = (tmp1 + tmp2) / cof1; << 937 energy2 = (tmp1 - tmp2) / cof1; << 938 547 939 for(i = 0; i < 2; ++i) << 940 { << 941 if(i == 0) << 942 { << 943 if(energy1 > fTheMaxEnergyTR || energy << 944 continue; << 945 548 946 tmp1 = << 947 (energy1 * energy1 * (1. / fGamma / << 948 fPlateThick / (4 * hbarc * energy1); << 949 tmp2 = std::sin(tmp1); << 950 tmp = energy1 * tmp2 * tmp2; << 951 tmp2 = fPlateThick / (4. * tmp1); << 952 tmp1 = << 953 hbarc * energy1 / << 954 (energy1 * energy1 * (1. / fGamma / << 955 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 956 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 957 tmp2 = std::abs(tmp1); << 958 << 959 if(tmp2 > 0.) << 960 tmp /= tmp2; << 961 else << 962 continue; << 963 } << 964 else << 965 { << 966 if(energy2 > fTheMaxEnergyTR || energy << 967 continue; << 968 549 969 tmp1 = << 970 (energy2 * energy2 * (1. / fGamma / << 971 fPlateThick / (4. * hbarc * energy2) << 972 tmp2 = std::sin(tmp1); << 973 tmp = energy2 * tmp2 * tmp2; << 974 tmp2 = fPlateThick / (4. * tmp1); << 975 tmp1 = << 976 hbarc * energy2 / << 977 (energy2 * energy2 * (1. / fGamma / << 978 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 979 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 980 tmp2 = std::abs(tmp1); << 981 << 982 if(tmp2 > 0.) << 983 tmp /= tmp2; << 984 else << 985 continue; << 986 } << 987 sum += tmp; << 988 } << 989 } << 990 result = 4. * pi * fPlateNumber * sum * varA << 991 result /= hbarc * hbarc; << 992 550 993 return result; << 994 } << 995 551 >> 552 >> 553 >> 554 >> 555 >> 556 ////////////////////////////////////////////////////////////////////// >> 557 ////////////////////////////////////////////////////////////////////// 996 ////////////////////////////////////////////// 558 ////////////////////////////////////////////////////////////////////// >> 559 // 997 // Calculates formation zone for plates. Omega 560 // Calculates formation zone for plates. Omega is energy !!! 998 G4double G4VXTRenergyLoss::GetPlateFormationZo << 561 999 << 562 G4double G4VXTRenergyLoss::GetPlateFormationZone( G4double omega , 1000 { << 563 G4double gamma , 1001 G4double cof, lambda; << 564 G4double varAngle ) 1002 lambda = 1.0 / gamma / gamma + varAngle + f << 565 { 1003 cof = 2.0 * hbarc / omega / lambda; << 566 G4double cof, lambda ; 1004 return cof; << 567 lambda = 1.0/gamma/gamma + varAngle + fSigma1/omega/omega ; >> 568 cof = 2.0*hbarc/omega/lambda ; >> 569 return cof ; 1005 } 570 } 1006 571 1007 ///////////////////////////////////////////// 572 ////////////////////////////////////////////////////////////////////// >> 573 // 1008 // Calculates complex formation zone for plat 574 // Calculates complex formation zone for plates. Omega is energy !!! 1009 G4complex G4VXTRenergyLoss::GetPlateComplexFZ << 575 1010 << 576 G4complex G4VXTRenergyLoss::GetPlateComplexFZ( G4double omega , >> 577 G4double gamma , >> 578 G4double varAngle ) 1011 { 579 { 1012 G4double cof, length, delta, real_v, image_ << 580 G4double cof, length,delta, real, image ; 1013 581 1014 length = 0.5 * GetPlateFormationZone(omega, << 582 length = 0.5*GetPlateFormationZone(omega,gamma,varAngle) ; 1015 delta = length * GetPlateLinearPhotoAbs(om << 583 delta = length*GetPlateLinearPhotoAbs(omega) ; 1016 cof = 1.0 / (1.0 + delta * delta); << 584 cof = 1.0/(1.0 + delta*delta) ; 1017 585 1018 real_v = length * cof; << 586 real = length*cof ; 1019 image_v = real_v * delta; << 587 image = real*delta ; 1020 588 1021 G4complex zone(real_v, image_v); << 589 G4complex zone(real,image); 1022 return zone; << 590 return zone ; 1023 } 591 } 1024 592 1025 ///////////////////////////////////////////// 593 //////////////////////////////////////////////////////////////////////// >> 594 // 1026 // Computes matrix of Sandia photo absorption 595 // Computes matrix of Sandia photo absorption cross section coefficients for 1027 // plate material 596 // plate material 1028 void G4VXTRenergyLoss::ComputePlatePhotoAbsCo << 1029 { << 1030 const G4MaterialTable* theMaterialTable = G << 1031 const G4Material* mat = ( << 1032 fPlatePhotoAbsCof = m << 1033 597 1034 return; << 598 void G4VXTRenergyLoss::ComputePlatePhotoAbsCof() >> 599 { >> 600 G4int i, j, numberOfElements ; >> 601 static const G4MaterialTable* >> 602 theMaterialTable = G4Material::GetMaterialTable(); >> 603 >> 604 G4SandiaTable thisMaterialSandiaTable(fMatIndex1) ; >> 605 numberOfElements = (*theMaterialTable)[fMatIndex1]->GetNumberOfElements() ; >> 606 G4int* thisMaterialZ = new G4int[numberOfElements] ; >> 607 >> 608 for(i=0;i<numberOfElements;i++) >> 609 { >> 610 thisMaterialZ[i] = (G4int)(*theMaterialTable)[fMatIndex1]-> >> 611 GetElement(i)->GetZ() ; >> 612 } >> 613 fPlateIntervalNumber = thisMaterialSandiaTable.SandiaIntervals >> 614 (thisMaterialZ,numberOfElements) ; >> 615 >> 616 fPlateIntervalNumber = thisMaterialSandiaTable.SandiaMixing >> 617 ( thisMaterialZ , >> 618 (*theMaterialTable)[fMatIndex1]->GetFractionVector() , >> 619 numberOfElements,fPlateIntervalNumber) ; >> 620 >> 621 fPlatePhotoAbsCof = new G4double*[fPlateIntervalNumber] ; >> 622 >> 623 for(i=0;i<fPlateIntervalNumber;i++) >> 624 { >> 625 fPlatePhotoAbsCof[i] = new G4double[5] ; >> 626 } >> 627 for(i=0;i<fPlateIntervalNumber;i++) >> 628 { >> 629 fPlatePhotoAbsCof[i][0] = thisMaterialSandiaTable. >> 630 GetPhotoAbsorpCof(i+1,0) ; >> 631 >> 632 for(j=1;j<5;j++) >> 633 { >> 634 fPlatePhotoAbsCof[i][j] = thisMaterialSandiaTable. >> 635 GetPhotoAbsorpCof(i+1,j)* >> 636 (*theMaterialTable)[fMatIndex1]->GetDensity() ; >> 637 } >> 638 } >> 639 delete[] thisMaterialZ ; >> 640 return ; 1035 } 641 } 1036 642 1037 ///////////////////////////////////////////// 643 ////////////////////////////////////////////////////////////////////// 1038 // Returns the value of linear photo absorpti << 644 // >> 645 // Returns the value of linear photo absorption coefficient (in reciprocal 1039 // length) for plate for given energy of X-ra 646 // length) for plate for given energy of X-ray photon omega 1040 G4double G4VXTRenergyLoss::GetPlateLinearPhot << 647 >> 648 G4double G4VXTRenergyLoss::GetPlateLinearPhotoAbs(G4double omega) 1041 { 649 { 1042 G4double omega2, omega3, omega4; << 650 G4int i ; >> 651 G4double omega2, omega3, omega4 ; >> 652 >> 653 omega2 = omega*omega ; >> 654 omega3 = omega2*omega ; >> 655 omega4 = omega2*omega2 ; 1043 656 1044 omega2 = omega * omega; << 657 for(i=0;i<fPlateIntervalNumber;i++) 1045 omega3 = omega2 * omega; << 658 { 1046 omega4 = omega2 * omega2; << 659 if( omega < fPlatePhotoAbsCof[i][0] ) break ; 1047 << 660 } 1048 const G4double* SandiaCof = fPlatePhotoAbsC << 661 if( i == 0 ) 1049 G4double cross = SandiaCof[0] / << 662 { 1050 SandiaCof[2] / omega3 + Sa << 663 G4Exception("Invalid (<I1) energy in G4VXTRenergyLoss::GetPlateLinearPhotoAbs"); 1051 return cross; << 664 } >> 665 else i-- ; >> 666 >> 667 return fPlatePhotoAbsCof[i][1]/omega + fPlatePhotoAbsCof[i][2]/omega2 + >> 668 fPlatePhotoAbsCof[i][3]/omega3 + fPlatePhotoAbsCof[i][4]/omega4 ; 1052 } 669 } 1053 670 1054 ///////////////////////////////////////////// 671 ////////////////////////////////////////////////////////////////////// >> 672 // 1055 // Calculates formation zone for gas. Omega i 673 // Calculates formation zone for gas. Omega is energy !!! 1056 G4double G4VXTRenergyLoss::GetGasFormationZon << 674 1057 << 675 G4double G4VXTRenergyLoss::GetGasFormationZone( G4double omega , 1058 { << 676 G4double gamma , 1059 G4double cof, lambda; << 677 G4double varAngle ) 1060 lambda = 1.0 / gamma / gamma + varAngle + f << 678 { 1061 cof = 2.0 * hbarc / omega / lambda; << 679 G4double cof, lambda ; 1062 return cof; << 680 lambda = 1.0/gamma/gamma + varAngle + fSigma2/omega/omega ; >> 681 cof = 2.0*hbarc/omega/lambda ; >> 682 return cof ; >> 683 1063 } 684 } 1064 685 >> 686 1065 ///////////////////////////////////////////// 687 ////////////////////////////////////////////////////////////////////// >> 688 // 1066 // Calculates complex formation zone for gas 689 // Calculates complex formation zone for gas gaps. Omega is energy !!! 1067 G4complex G4VXTRenergyLoss::GetGasComplexFZ(G << 690 1068 G << 691 G4complex G4VXTRenergyLoss::GetGasComplexFZ( G4double omega , >> 692 G4double gamma , >> 693 G4double varAngle ) 1069 { 694 { 1070 G4double cof, length, delta, real_v, image_ << 695 G4double cof, length,delta, real, image ; 1071 696 1072 length = 0.5 * GetGasFormationZone(omega, g << 697 length = 0.5*GetGasFormationZone(omega,gamma,varAngle) ; 1073 delta = length * GetGasLinearPhotoAbs(omeg << 698 delta = length*GetGasLinearPhotoAbs(omega) ; 1074 cof = 1.0 / (1.0 + delta * delta); << 699 cof = 1.0/(1.0 + delta*delta) ; 1075 700 1076 real_v = length * cof; << 701 real = length*cof ; 1077 image_v = real_v * delta; << 702 image = real*delta ; 1078 703 1079 G4complex zone(real_v, image_v); << 704 G4complex zone(real,image); 1080 return zone; << 705 return zone ; 1081 } 706 } 1082 707 >> 708 >> 709 1083 ///////////////////////////////////////////// 710 //////////////////////////////////////////////////////////////////////// >> 711 // 1084 // Computes matrix of Sandia photo absorption 712 // Computes matrix of Sandia photo absorption cross section coefficients for 1085 // gas material 713 // gas material 1086 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof( << 714 >> 715 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof() 1087 { 716 { 1088 const G4MaterialTable* theMaterialTable = G << 717 G4int i, j, numberOfElements ; 1089 const G4Material* mat = ( << 718 static const G4MaterialTable* 1090 fGasPhotoAbsCof = m << 719 theMaterialTable = G4Material::GetMaterialTable(); 1091 return; << 720 >> 721 G4SandiaTable thisMaterialSandiaTable(fMatIndex2) ; >> 722 numberOfElements = (*theMaterialTable)[fMatIndex2]->GetNumberOfElements() ; >> 723 G4int* thisMaterialZ = new G4int[numberOfElements] ; >> 724 >> 725 for(i=0;i<numberOfElements;i++) >> 726 { >> 727 thisMaterialZ[i] = (G4int)(*theMaterialTable)[fMatIndex2]-> >> 728 GetElement(i)->GetZ() ; >> 729 } >> 730 fGasIntervalNumber = thisMaterialSandiaTable.SandiaIntervals >> 731 (thisMaterialZ,numberOfElements) ; >> 732 >> 733 fGasIntervalNumber = thisMaterialSandiaTable.SandiaMixing >> 734 ( thisMaterialZ , >> 735 (*theMaterialTable)[fMatIndex2]->GetFractionVector() , >> 736 numberOfElements,fGasIntervalNumber) ; >> 737 >> 738 fGasPhotoAbsCof = new G4double*[fGasIntervalNumber] ; >> 739 >> 740 for(i=0;i<fGasIntervalNumber;i++) >> 741 { >> 742 fGasPhotoAbsCof[i] = new G4double[5] ; >> 743 } >> 744 for(i=0;i<fGasIntervalNumber;i++) >> 745 { >> 746 fGasPhotoAbsCof[i][0] = thisMaterialSandiaTable. >> 747 GetPhotoAbsorpCof(i+1,0) ; >> 748 >> 749 for(j=1;j<5;j++) >> 750 { >> 751 fGasPhotoAbsCof[i][j] = thisMaterialSandiaTable. >> 752 GetPhotoAbsorpCof(i+1,j)* >> 753 (*theMaterialTable)[fMatIndex2]->GetDensity() ; >> 754 } >> 755 } >> 756 delete[] thisMaterialZ ; >> 757 return ; 1092 } 758 } 1093 759 1094 ///////////////////////////////////////////// 760 ////////////////////////////////////////////////////////////////////// 1095 // Returns the value of linear photo absorpti << 761 // >> 762 // Returns the value of linear photo absorption coefficient (in reciprocal 1096 // length) for gas 763 // length) for gas 1097 G4double G4VXTRenergyLoss::GetGasLinearPhotoA << 764 >> 765 G4double G4VXTRenergyLoss::GetGasLinearPhotoAbs(G4double omega) 1098 { 766 { 1099 G4double omega2, omega3, omega4; << 767 G4int i ; >> 768 G4double omega2, omega3, omega4 ; >> 769 >> 770 omega2 = omega*omega ; >> 771 omega3 = omega2*omega ; >> 772 omega4 = omega2*omega2 ; >> 773 >> 774 for(i=0;i<fGasIntervalNumber;i++) >> 775 { >> 776 if( omega < fGasPhotoAbsCof[i][0] ) break ; >> 777 } >> 778 if( i == 0 ) >> 779 { >> 780 G4Exception("Invalid (<I1) energy in G4VXTRenergyLoss::GetGasLinearPhotoAbs"); >> 781 } >> 782 else i-- ; >> 783 >> 784 return fGasPhotoAbsCof[i][1]/omega + fGasPhotoAbsCof[i][2]/omega2 + >> 785 fGasPhotoAbsCof[i][3]/omega3 + fGasPhotoAbsCof[i][4]/omega4 ; 1100 786 1101 omega2 = omega * omega; << 1102 omega3 = omega2 * omega; << 1103 omega4 = omega2 * omega2; << 1104 << 1105 const G4double* SandiaCof = fGasPhotoAbsCof << 1106 G4double cross = SandiaCof[0] / << 1107 SandiaCof[2] / omega3 + Sa << 1108 return cross; << 1109 } 787 } 1110 788 1111 ///////////////////////////////////////////// 789 ////////////////////////////////////////////////////////////////////// 1112 // Calculates the product of linear cof by fo << 790 // >> 791 // Calculates the product of linear cof by formation zone for plate. 1113 // Omega is energy !!! 792 // Omega is energy !!! 1114 G4double G4VXTRenergyLoss::GetPlateZmuProduct << 793 1115 << 794 G4double G4VXTRenergyLoss::GetPlateZmuProduct( G4double omega , >> 795 G4double gamma , >> 796 G4double varAngle ) 1116 { 797 { 1117 return GetPlateFormationZone(omega, gamma, << 798 return GetPlateFormationZone(omega,gamma,varAngle)*GetPlateLinearPhotoAbs(omega) ; 1118 GetPlateLinearPhotoAbs(omega); << 1119 } 799 } 1120 ///////////////////////////////////////////// 800 ////////////////////////////////////////////////////////////////////// 1121 // Calculates the product of linear cof by fo << 801 // >> 802 // Calculates the product of linear cof by formation zone for plate. 1122 // G4cout and output in file in some energy r 803 // G4cout and output in file in some energy range. 1123 void G4VXTRenergyLoss::GetPlateZmuProduct() << 804 >> 805 void G4VXTRenergyLoss::GetPlateZmuProduct() 1124 { 806 { 1125 std::ofstream outPlate("plateZmu.dat", std: << 807 G4std::ofstream outPlate("plateZmu.dat", G4std::ios::out ) ; 1126 outPlate.setf(std::ios::scientific, std::io << 808 outPlate.setf( G4std::ios::scientific, G4std::ios::floatfield ); 1127 809 1128 G4int i; << 810 G4int i ; 1129 G4double omega, varAngle, gamma; << 811 G4double omega, varAngle, gamma ; 1130 gamma = 10000.; << 812 gamma = 10000. ; 1131 varAngle = 1 / gamma / gamma; << 813 varAngle = 1/gamma/gamma ; 1132 if(verboseLevel > 0) << 814 G4cout<<"energy, keV"<<"\t"<<"Zmu for plate"<<G4endl ; 1133 G4cout << "energy, keV" << "\t" << "Zmu f << 815 for(i=0;i<100;i++) 1134 for(i = 0; i < 100; ++i) << 816 { 1135 { << 817 omega = (1.0 + i)*keV ; 1136 omega = (1.0 + i) * keV; << 818 G4cout<<omega/keV<<"\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<"\t" ; 1137 if(verboseLevel > 1) << 819 outPlate<<omega/keV<<"\t\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<G4endl ; 1138 G4cout << omega / keV << "\t" << 1139 << GetPlateZmuProduct(omega, gam << 1140 if(verboseLevel > 0) << 1141 outPlate << omega / keV << "\t\t" << 1142 << GetPlateZmuProduct(omega, g << 1143 } 820 } 1144 return; << 821 return ; 1145 } 822 } 1146 823 1147 ///////////////////////////////////////////// 824 ////////////////////////////////////////////////////////////////////// 1148 // Calculates the product of linear cof by fo << 825 // >> 826 // Calculates the product of linear cof by formation zone for gas. 1149 // Omega is energy !!! 827 // Omega is energy !!! 1150 G4double G4VXTRenergyLoss::GetGasZmuProduct(G << 828 1151 G << 829 G4double G4VXTRenergyLoss::GetGasZmuProduct( G4double omega , >> 830 G4double gamma , >> 831 G4double varAngle ) 1152 { 832 { 1153 return GetGasFormationZone(omega, gamma, va << 833 return GetGasFormationZone(omega,gamma,varAngle)*GetGasLinearPhotoAbs(omega) ; 1154 GetGasLinearPhotoAbs(omega); << 1155 } 834 } 1156 << 1157 ///////////////////////////////////////////// 835 ////////////////////////////////////////////////////////////////////// 1158 // Calculates the product of linear cof by fo << 836 // >> 837 // Calculates the product of linear cof byformation zone for gas. 1159 // G4cout and output in file in some energy r 838 // G4cout and output in file in some energy range. 1160 void G4VXTRenergyLoss::GetGasZmuProduct() << 1161 { << 1162 std::ofstream outGas("gasZmu.dat", std::ios << 1163 outGas.setf(std::ios::scientific, std::ios: << 1164 G4int i; << 1165 G4double omega, varAngle, gamma; << 1166 gamma = 10000.; << 1167 varAngle = 1 / gamma / gamma; << 1168 if(verboseLevel > 0) << 1169 G4cout << "energy, keV" << "\t" << "Zmu f << 1170 for(i = 0; i < 100; ++i) << 1171 { << 1172 omega = (1.0 + i) * keV; << 1173 if(verboseLevel > 1) << 1174 G4cout << omega / keV << "\t" << GetGas << 1175 << "\t"; << 1176 if(verboseLevel > 0) << 1177 outGas << omega / keV << "\t\t" << 1178 << GetGasZmuProduct(omega, gamma << 1179 } << 1180 return; << 1181 } << 1182 839 1183 ///////////////////////////////////////////// << 840 void G4VXTRenergyLoss::GetGasZmuProduct() 1184 // Computes Compton cross section for plate m << 1185 G4double G4VXTRenergyLoss::GetPlateCompton(G4 << 1186 { 841 { 1187 G4int i, numberOfElements; << 842 G4std::ofstream outGas("gasZmu.dat", G4std::ios::out ) ; 1188 G4double xSection = 0., nowZ, sumZ = 0.; << 843 outGas.setf( G4std::ios::scientific, G4std::ios::floatfield ); 1189 << 844 G4int i ; 1190 const G4MaterialTable* theMaterialTable = G << 845 G4double omega, varAngle, gamma ; 1191 numberOfElements = (G4int)(*theMaterialTabl << 846 gamma = 10000. ; 1192 << 847 varAngle = 1/gamma/gamma ; 1193 for(i = 0; i < numberOfElements; ++i) << 848 G4cout<<"energy, keV"<<"\t"<<"Zmu for gas"<<G4endl ; 1194 { << 849 for(i=0;i<100;i++) 1195 nowZ = (*theMaterialTable)[fMatIndex1]->G << 850 { 1196 sumZ += nowZ; << 851 omega = (1.0 + i)*keV ; 1197 xSection += GetComptonPerAtom(omega, nowZ << 852 G4cout<<omega/keV<<"\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<"\t" ; >> 853 outGas<<omega/keV<<"\t\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<G4endl ; 1198 } 854 } 1199 xSection /= sumZ; << 855 return ; 1200 xSection *= (*theMaterialTable)[fMatIndex1] << 1201 return xSection; << 1202 } << 1203 << 1204 ///////////////////////////////////////////// << 1205 // Computes Compton cross section for gas mat << 1206 G4double G4VXTRenergyLoss::GetGasCompton(G4do << 1207 { << 1208 G4double xSection = 0., sumZ = 0.; << 1209 << 1210 const G4MaterialTable* theMaterialTable = G << 1211 G4int numberOfElements = (G4int)(*theMateri << 1212 << 1213 for (G4int i = 0; i < numberOfElements; ++i << 1214 { << 1215 G4double nowZ = (*theMaterialTable)[fMatI << 1216 sumZ += nowZ; << 1217 xSection += GetComptonPerAtom(omega, nowZ << 1218 } << 1219 if (sumZ > 0.0) { xSection /= sumZ; } << 1220 xSection *= (*theMaterialTable)[fMatIndex2] << 1221 return xSection; << 1222 } << 1223 << 1224 ///////////////////////////////////////////// << 1225 // Computes Compton cross section per atom wi << 1226 // the energy GammaEnergy << 1227 G4double G4VXTRenergyLoss::GetComptonPerAtom( << 1228 { << 1229 G4double CrossSection = 0.0; << 1230 if(Z < 0.9999) << 1231 return CrossSection; << 1232 if(GammaEnergy < 0.1 * keV) << 1233 return CrossSection; << 1234 if(GammaEnergy > (100. * GeV / Z)) << 1235 return CrossSection; << 1236 << 1237 static constexpr G4double a = 20.0; << 1238 static constexpr G4double b = 230.0; << 1239 static constexpr G4double c = 440.0; << 1240 << 1241 static constexpr G4double d1 = 2.7965e-1 * << 1242 d3 = 6.7527 * bar << 1243 e1 = 1.9756e-5 * << 1244 e3 = -7.3913e-2 * << 1245 f1 = -3.9178e-7 * << 1246 f3 = 6.0480e-5 * << 1247 << 1248 G4double p1Z = Z * (d1 + e1 * Z + f1 * Z * << 1249 G4double p2Z = Z * (d2 + e2 * Z + f2 * Z * << 1250 G4double p3Z = Z * (d3 + e3 * Z + f3 * Z * << 1251 G4double p4Z = Z * (d4 + e4 * Z + f4 * Z * << 1252 << 1253 G4double T0 = 15.0 * keV; << 1254 if(Z < 1.5) << 1255 T0 = 40.0 * keV; << 1256 << 1257 G4double X = std::max(GammaEnergy, T0) / el << 1258 CrossSection = << 1259 p1Z * std::log(1. + 2. * X) / X + << 1260 (p2Z + p3Z * X + p4Z * X * X) / (1. + a * << 1261 << 1262 // modification for low energy. (special c << 1263 if(GammaEnergy < T0) << 1264 { << 1265 G4double dT0 = 1. * keV; << 1266 X = (T0 + dT0) / electron_mass << 1267 G4double sigma = << 1268 p1Z * std::log(1. + 2. * X) / X + << 1269 (p2Z + p3Z * X + p4Z * X * X) / (1. + a << 1270 G4double c1 = -T0 * (sigma - CrossSection << 1271 G4double c2 = 0.150; << 1272 if(Z > 1.5) << 1273 c2 = 0.375 - 0.0556 * std::log(Z); << 1274 G4double y = std::log(GammaEnergy / T0); << 1275 CrossSection *= std::exp(-y * (c1 + c2 * << 1276 } << 1277 return CrossSection; << 1278 } 856 } 1279 857 1280 ///////////////////////////////////////////// 858 /////////////////////////////////////////////////////////////////////// >> 859 // 1281 // This function returns the spectral and ang 860 // This function returns the spectral and angle density of TR quanta 1282 // in X-ray energy region generated forward w 861 // in X-ray energy region generated forward when a relativistic 1283 // charged particle crosses interface between 862 // charged particle crosses interface between two materials. 1284 // The high energy small theta approximation 863 // The high energy small theta approximation is applied. 1285 // (matter1 -> matter2, or 2->1) 864 // (matter1 -> matter2, or 2->1) 1286 // varAngle =2* (1 - std::cos(theta)) or appr << 865 // varAngle =2* (1 - cos(theta)) or approximately = theta*theta 1287 G4double G4VXTRenergyLoss::OneBoundaryXTRNden << 866 // 1288 << 867 1289 << 868 G4double 1290 { << 869 G4VXTRenergyLoss::OneBoundaryXTRNdensity( G4double energy,G4double gamma, 1291 G4double formationLength1, formationLength2 << 870 G4double varAngle ) const 1292 formationLength1 = << 871 { 1293 1.0 / (1.0 / (gamma * gamma) + fSigma1 / << 872 G4double formationLength1, formationLength2 ; 1294 formationLength2 = << 873 formationLength1 = 1.0/ 1295 1.0 / (1.0 / (gamma * gamma) + fSigma2 / << 874 (1.0/(gamma*gamma) 1296 return (varAngle / energy) * (formationLeng << 875 + fSigma1/(energy*energy) 1297 (formationLength1 - formationLength2 << 876 + varAngle) ; 1298 } << 877 formationLength2 = 1.0/ >> 878 (1.0/(gamma*gamma) >> 879 + fSigma2/(energy*energy) >> 880 + varAngle) ; >> 881 return (varAngle/energy)*(formationLength1 - formationLength2) >> 882 *(formationLength1 - formationLength2) ; 1299 883 1300 G4double G4VXTRenergyLoss::GetStackFactor(G4d << 1301 G4d << 1302 { << 1303 // return stack factor corresponding to one << 1304 return std::real(OneInterfaceXTRdEdx(energy << 1305 } 884 } 1306 885 >> 886 1307 ///////////////////////////////////////////// 887 ////////////////////////////////////////////////////////////////////////////// >> 888 // 1308 // For photon energy distribution tables. Int 889 // For photon energy distribution tables. Integrate first over angle >> 890 // >> 891 1309 G4double G4VXTRenergyLoss::XTRNSpectralAngleD 892 G4double G4VXTRenergyLoss::XTRNSpectralAngleDensity(G4double varAngle) 1310 { 893 { 1311 return OneBoundaryXTRNdensity(fEnergy, fGam << 894 return OneBoundaryXTRNdensity(fEnergy,fGamma,varAngle)* 1312 GetStackFactor(fEnergy, fGamma, varA << 895 GetStackFactor(fEnergy,fGamma,varAngle) ; 1313 } 896 } 1314 897 1315 ///////////////////////////////////////////// 898 ///////////////////////////////////////////////////////////////////////// >> 899 // 1316 // For second integration over energy 900 // For second integration over energy >> 901 1317 G4double G4VXTRenergyLoss::XTRNSpectralDensit 902 G4double G4VXTRenergyLoss::XTRNSpectralDensity(G4double energy) 1318 { 903 { 1319 fEnergy = energy; << 904 fEnergy = energy ; 1320 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 905 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 1321 integral; << 906 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1322 return integral.Legendre96(this, &G4VXTRene << 907 0.0,0.2*fMaxThetaTR) + 1323 0.0, 0.2 * fMaxT << 908 integral.Legendre10(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1324 integral.Legendre10(this, &G4VXTRene << 909 0.2*fMaxThetaTR,fMaxThetaTR) ; 1325 0.2 * fMaxThetaT << 910 } 1326 } << 911 1327 << 1328 ///////////////////////////////////////////// 912 ////////////////////////////////////////////////////////////////////////// >> 913 // 1329 // for photon angle distribution tables 914 // for photon angle distribution tables >> 915 // >> 916 1330 G4double G4VXTRenergyLoss::XTRNAngleSpectralD 917 G4double G4VXTRenergyLoss::XTRNAngleSpectralDensity(G4double energy) 1331 { 918 { 1332 return OneBoundaryXTRNdensity(energy, fGamm << 919 return OneBoundaryXTRNdensity(energy,fGamma,fVarAngle)* 1333 GetStackFactor(energy, fGamma, fVarA << 920 GetStackFactor(energy,fGamma,fVarAngle) ; 1334 } << 921 } 1335 922 1336 ///////////////////////////////////////////// 923 /////////////////////////////////////////////////////////////////////////// 1337 G4double G4VXTRenergyLoss::XTRNAngleDensity(G << 924 // >> 925 // >> 926 >> 927 G4double G4VXTRenergyLoss::XTRNAngleDensity(G4double varAngle) 1338 { 928 { 1339 fVarAngle = varAngle; << 929 fVarAngle = varAngle ; 1340 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 930 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral ; 1341 integral; << 931 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNAngleSpectralDensity, 1342 return integral.Legendre96(this, &G4VXTRene << 932 fMinEnergyTR,fMaxEnergyTR) ; 1343 fMinEnergyTR, fM << 1344 } 933 } 1345 934 1346 ///////////////////////////////////////////// 935 ////////////////////////////////////////////////////////////////////////////// 1347 // Check number of photons for a range of Lor << 936 // >> 937 // Check number of photons for a range of Lorentz factors from both energy 1348 // and angular tables 938 // and angular tables >> 939 1349 void G4VXTRenergyLoss::GetNumberOfPhotons() 940 void G4VXTRenergyLoss::GetNumberOfPhotons() 1350 { 941 { 1351 G4int iTkin; << 942 G4int iTkin ; 1352 G4double gamma, numberE; << 943 G4double gamma, numberE ; 1353 944 1354 std::ofstream outEn("numberE.dat", std::ios << 945 G4std::ofstream outEn("numberE.dat", G4std::ios::out ) ; 1355 outEn.setf(std::ios::scientific, std::ios:: << 946 outEn.setf( G4std::ios::scientific, G4std::ios::floatfield ); 1356 947 1357 std::ofstream outAng("numberAng.dat", std:: << 948 G4std::ofstream outAng("numberAng.dat", G4std::ios::out ) ; 1358 outAng.setf(std::ios::scientific, std::ios: << 949 outAng.setf( G4std::ios::scientific, G4std::ios::floatfield ); 1359 950 1360 for(iTkin = 0; iTkin < fTotBin; ++iTkin) / << 951 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 1361 { << 952 { 1362 gamma = << 953 gamma = 1.0 + (fProtonEnergyVector-> 1363 1.0 + (fProtonEnergyVector->GetLowEdgeE << 954 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 1364 numberE = (*(*fEnergyDistrTable)(iTkin))( << 955 numberE = (*(*fEnergyDistrTable)(iTkin))(0) ; 1365 if(verboseLevel > 1) << 956 // numberA = (*(*fAngleDistrTable)(iTkin))(0) ; 1366 G4cout << gamma << "\t\t" << numberE << << 957 G4cout<<gamma<<"\t\t"<<numberE<<"\t" // <<numberA 1367 if(verboseLevel > 0) << 958 <<G4endl ; 1368 outEn << gamma << "\t\t" << numberE << << 959 outEn<<gamma<<"\t\t"<<numberE<<G4endl ; >> 960 // outAng<<gamma<<"\t\t"<<numberA<<G4endl ; 1369 } 961 } 1370 return; << 962 return ; 1371 } << 963 } 1372 964 1373 ///////////////////////////////////////////// 965 ///////////////////////////////////////////////////////////////////////// 1374 // Returns random energy of a X-ray TR photon << 966 // >> 967 // Returns randon energy of a X-ray TR photon for given scaled kinetic energy 1375 // of a charged particle 968 // of a charged particle 1376 G4double G4VXTRenergyLoss::GetXTRrandomEnergy << 969 >> 970 G4double G4VXTRenergyLoss::GetXTRrandomEnergy( G4double scaledTkin, G4int iTkin ) 1377 { 971 { 1378 G4int iTransfer, iPlace; << 972 G4int iTransfer, iPlace ; 1379 G4double transfer = 0.0, position, E1, E2, << 973 G4double transfer = 0.0, position, E1, E2, W1, W2, W ; >> 974 >> 975 iPlace = iTkin - 1 ; 1380 976 1381 iPlace = iTkin - 1; << 977 // G4cout<<"iPlace = "<<iPlace<<endl ; 1382 978 1383 if(iTkin == fTotBin) // relativistic plato << 979 if(iTkin == fTotBin) // relativistic plato, try from left 1384 { 980 { 1385 position = (*(*fEnergyDistrTable)(iPlace) << 981 position = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand() ; 1386 982 1387 for(iTransfer = 0;; ++iTransfer) << 983 for(iTransfer=0;;iTransfer++) 1388 { << 984 { 1389 if(position >= (*(*fEnergyDistrTable)(i << 985 if(position >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break ; 1390 break; << 986 } 1391 } << 987 transfer = GetXTRenergy(iPlace,position,iTransfer); 1392 transfer = GetXTRenergy(iPlace, position, << 1393 } 988 } 1394 else 989 else 1395 { 990 { 1396 E1 = fProtonEnergyVector->GetLowEdgeEnerg << 991 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 1397 E2 = fProtonEnergyVector->GetLowEdgeEnerg << 992 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; 1398 W = 1.0 / (E2 - E1); << 993 W = 1.0/(E2 - E1) ; 1399 W1 = (E2 - scaledTkin) * W; << 994 W1 = (E2 - scaledTkin)*W ; 1400 W2 = (scaledTkin - E1) * W; << 995 W2 = (scaledTkin - E1)*W ; 1401 << 996 1402 position = ((*(*fEnergyDistrTable)(iPlace << 997 position =( (*(*fEnergyDistrTable)(iPlace))(0)*W1 + 1403 (*(*fEnergyDistrTable)(iPlace << 998 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*G4UniformRand() ; 1404 G4UniformRand(); << 999 1405 << 1000 // G4cout<<position<<"\t" ; 1406 for(iTransfer = 0;; ++iTransfer) << 1001 1407 { << 1002 for(iTransfer=0;;iTransfer++) 1408 if(position >= ((*(*fEnergyDistrTable)( << 1003 { 1409 (*(*fEnergyDistrTable)( << 1004 if( position >= 1410 break; << 1005 ( (*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1 + 1411 } << 1006 (*(*fEnergyDistrTable)(iPlace+1))(iTransfer)*W2) ) break ; 1412 transfer = GetXTRenergy(iPlace, position, << 1007 } 1413 } << 1008 transfer = GetXTRenergy(iPlace,position,iTransfer); 1414 if(transfer < 0.0) << 1009 1415 transfer = 0.0; << 1010 } 1416 return transfer; << 1011 // G4cout<<"XTR transfer = "<<transfer/keV<<" keV"<<endl ; >> 1012 if(transfer < 0.0 ) transfer = 0.0 ; >> 1013 return transfer ; 1417 } 1014 } 1418 1015 1419 ///////////////////////////////////////////// 1016 //////////////////////////////////////////////////////////////////////// >> 1017 // 1420 // Returns approximate position of X-ray phot 1018 // Returns approximate position of X-ray photon energy during random sampling 1421 // over integral energy distribution 1019 // over integral energy distribution 1422 G4double G4VXTRenergyLoss::GetXTRenergy(G4int << 1020 >> 1021 G4double G4VXTRenergyLoss::GetXTRenergy( G4int iPlace, >> 1022 G4double position, >> 1023 G4int iTransfer ) 1423 { 1024 { 1424 G4double x1, x2, y1, y2, result; << 1025 G4double x1, x2, y1, y2, result ; 1425 1026 1426 if(iTransfer == 0) 1027 if(iTransfer == 0) 1427 { 1028 { 1428 result = (*fEnergyDistrTable)(iPlace)->Ge << 1029 result = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 1429 } << 1030 } 1430 else 1031 else 1431 { 1032 { 1432 y1 = (*(*fEnergyDistrTable)(iPlace))(iTra << 1033 y1 = (*(*fEnergyDistrTable)(iPlace))(iTransfer-1) ; 1433 y2 = (*(*fEnergyDistrTable)(iPlace))(iTra << 1034 y2 = (*(*fEnergyDistrTable)(iPlace))(iTransfer) ; 1434 1035 1435 x1 = (*fEnergyDistrTable)(iPlace)->GetLow << 1036 x1 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ; 1436 x2 = (*fEnergyDistrTable)(iPlace)->GetLow << 1037 x2 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 1437 1038 1438 if(x1 == x2) << 1039 if ( x1 == x2 ) result = x2 ; 1439 result = x2; << 1440 else 1040 else 1441 { 1041 { 1442 if(y1 == y2) << 1042 if ( y1 == y2 ) result = x1 + (x2 - x1)*G4UniformRand() ; 1443 result = x1 + (x2 - x1) * G4UniformRa << 1444 else 1043 else 1445 { 1044 { 1446 result = x1 + (x2 - x1) * G4UniformRa << 1045 result = x1 + (position - y1)*(x2 - x1)/(y2 - y1) ; 1447 } 1046 } 1448 } 1047 } 1449 } 1048 } 1450 return result; << 1049 return result ; 1451 } << 1452 << 1453 ///////////////////////////////////////////// << 1454 // Get XTR photon angle at given energy and << 1455 << 1456 G4double G4VXTRenergyLoss::GetRandomAngle(G4d << 1457 { << 1458 G4int iTR, iAngle; << 1459 G4double position, angle; << 1460 << 1461 if(iTkin == fTotBin) << 1462 --iTkin; << 1463 << 1464 fAngleForEnergyTable = fAngleBank[iTkin]; << 1465 << 1466 for(iTR = 0; iTR < fBinTR; ++iTR) << 1467 { << 1468 if(energyXTR < fXTREnergyVector->GetLowEd << 1469 break; << 1470 } << 1471 if(iTR == fBinTR) << 1472 --iTR; << 1473 << 1474 position = (*(*fAngleForEnergyTable)(iTR))( << 1475 // position = (*(*fAngleForEnergyTable)(iTR << 1476 << 1477 for(iAngle = 0;; ++iAngle) << 1478 // for(iAngle = 1;; ++iAngle) // ATLAS TB << 1479 { << 1480 if(position >= (*(*fAngleForEnergyTable)( << 1481 break; << 1482 } << 1483 angle = GetAngleXTR(iTR, position, iAngle); << 1484 return angle; << 1485 } 1050 } 1486 1051 1487 ///////////////////////////////////////////// << 1488 // Returns approximate position of X-ray phot << 1489 // random sampling over integral energy distr << 1490 1052 1491 G4double G4VXTRenergyLoss::GetAngleXTR(G4int << 1492 G4int << 1493 { << 1494 G4double x1, x2, y1, y2, result; << 1495 1053 1496 if( iTransfer == 0 ) << 1054 // 1497 // if( iTransfer == 1 ) // ATLAS TB << 1055 // 1498 { << 1056 /////////////////////////////////////////////////////////////////////// 1499 result = (*fAngleForEnergyTable)(iPlace)- << 1500 } << 1501 else << 1502 { << 1503 y1 = (*(*fAngleForEnergyTable)(iPlace))(i << 1504 y2 = (*(*fAngleForEnergyTable)(iPlace))(i << 1505 << 1506 x1 = (*fAngleForEnergyTable)(iPlace)->Get << 1507 x2 = (*fAngleForEnergyTable)(iPlace)->Get << 1508 1057 1509 if(x1 == x2) result = x2; << 1510 else << 1511 { << 1512 if( y1 == y2 ) result = x1 + (x2 - x1) << 1513 else << 1514 { << 1515 result = x1 + (position - y1) * (x2 - << 1516 // result = x1 + 0.1*(position - y1) << 1517 // result = x1 + 0.05*(position - y1) << 1518 } << 1519 } << 1520 } << 1521 return result; << 1522 } << 1523 1058