Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4VXTRenergyLoss.cc 97385 2016-06-02 09:59:53Z gcosmo $ >> 28 // 26 // History: 29 // History: 27 // 2001-2002 R&D by V.Grichine 30 // 2001-2002 R&D by V.Grichine 28 // 19.06.03 V. Grichine, modifications in Buil << 31 // 19.06.03 V. Grichine, modifications in BuildTable for the integration 29 // in respect of angle: 32 // in respect of angle: range is increased, accuracy is 30 // improved 33 // improved 31 // 28.07.05, P.Gumplinger add G4ProcessType to 34 // 28.07.05, P.Gumplinger add G4ProcessType to constructor 32 // 28.09.07, V.Ivanchenko general cleanup with 35 // 28.09.07, V.Ivanchenko general cleanup without change of algorithms 33 // 36 // 34 37 35 #include "G4VXTRenergyLoss.hh" 38 #include "G4VXTRenergyLoss.hh" 36 39 37 #include "G4AffineTransform.hh" << 40 #include "G4Timer.hh" 38 #include "G4DynamicParticle.hh" << 39 #include "G4EmProcessSubType.hh" << 40 #include "G4Integrator.hh" << 41 #include "G4MaterialTable.hh" << 42 #include "G4ParticleMomentum.hh" << 43 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 44 #include "G4PhysicsFreeVector.hh" << 45 #include "G4PhysicsLinearVector.hh" << 46 #include "G4PhysicsLogVector.hh" << 47 #include "G4RotationMatrix.hh" << 48 #include "G4SandiaTable.hh" << 49 #include "G4SystemOfUnits.hh" 42 #include "G4SystemOfUnits.hh" 50 #include "G4ThreeVector.hh" << 43 51 #include "G4Timer.hh" << 44 #include "G4Poisson.hh" >> 45 #include "G4MaterialTable.hh" 52 #include "G4VDiscreteProcess.hh" 46 #include "G4VDiscreteProcess.hh" 53 #include "G4VParticleChange.hh" 47 #include "G4VParticleChange.hh" 54 #include "G4VSolid.hh" 48 #include "G4VSolid.hh" 55 #include "G4PhysicsModelCatalog.hh" << 49 >> 50 #include "G4RotationMatrix.hh" >> 51 #include "G4ThreeVector.hh" >> 52 #include "G4AffineTransform.hh" >> 53 #include "G4SandiaTable.hh" >> 54 >> 55 #include "G4PhysicsVector.hh" >> 56 #include "G4PhysicsFreeVector.hh" >> 57 #include "G4PhysicsLinearVector.hh" >> 58 #include "G4EmProcessSubType.hh" 56 59 57 ////////////////////////////////////////////// 60 //////////////////////////////////////////////////////////////////////////// >> 61 // 58 // Constructor, destructor 62 // Constructor, destructor 59 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVo << 63 60 G4Material* << 64 G4VXTRenergyLoss::G4VXTRenergyLoss(G4LogicalVolume *anEnvelope, 61 G4double a, << 65 G4Material* foilMat,G4Material* gasMat, 62 const G4Str << 66 G4double a, G4double b, 63 G4ProcessTy << 67 G4int n,const G4String& processName, 64 : G4VDiscreteProcess(processName, type) << 68 G4ProcessType type) : 65 , fGammaCutInKineticEnergy(nullptr) << 69 G4VDiscreteProcess(processName, type), 66 , fAngleDistrTable(nullptr) << 70 fGammaCutInKineticEnergy(nullptr), 67 , fEnergyDistrTable(nullptr) << 71 fGammaTkinCut(0.0), 68 , fAngleForEnergyTable(nullptr) << 72 fAngleDistrTable(nullptr), 69 , fPlatePhotoAbsCof(nullptr) << 73 fEnergyDistrTable(nullptr), 70 , fGasPhotoAbsCof(nullptr) << 74 fPlatePhotoAbsCof(nullptr), 71 , fGammaTkinCut(0.0) << 75 fGasPhotoAbsCof(nullptr), >> 76 fAngleForEnergyTable(nullptr) 72 { 77 { 73 verboseLevel = 1; 78 verboseLevel = 1; 74 secID = G4PhysicsModelCatalog::GetModelID("m << 75 SetProcessSubType(fTransitionRadiation); 79 SetProcessSubType(fTransitionRadiation); 76 80 77 fPtrGamma = nullptr; << 81 fPtrGamma = nullptr; 78 fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = << 82 fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = fGamma = fEnergy = fVarAngle 79 fVarAngle = fLambda = fTotalDist = fPlateThi << 83 = fLambda = fTotalDist = fPlateThick = fGasThick = fAlphaPlate = fAlphaGas = 0.0; 80 fAlphaPlate = 100.; << 84 81 fAlphaGas = 40.; << 85 // Initialization of local constants 82 << 86 fTheMinEnergyTR = 1.0*keV; 83 fTheMinEnergyTR = CLHEP::keV * 1.; // 1.; / << 87 fTheMaxEnergyTR = 100.0*keV; 84 fTheMaxEnergyTR = CLHEP::keV * 100.; // 40.; << 88 fTheMaxAngle = 1.0e-2; 85 << 89 fTheMinAngle = 5.0e-6; 86 fTheMinAngle = 1.e-8; // << 90 fBinTR = 50; 87 fTheMaxAngle = 4.e-4; << 91 88 << 92 fMinProtonTkin = 100.0*GeV; 89 fTotBin = 50; // number of bins in log sca << 93 fMaxProtonTkin = 100.0*TeV; 90 fBinTR = 100; // number of bins in TR vec << 94 fTotBin = 50; 91 fKrange = 229; << 92 // min/max angle2 in log-vectors << 93 << 94 fMinThetaTR = 3.0e-9; << 95 fMaxThetaTR = 1.0e-4; << 96 95 97 << 98 // Proton energy vector initialization 96 // Proton energy vector initialization 99 fProtonEnergyVector = << 97 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, 100 new G4PhysicsLogVector(fMinProtonTkin, fMa << 98 fMaxProtonTkin, >> 99 fTotBin ); >> 100 >> 101 fXTREnergyVector = new G4PhysicsLogVector(fTheMinEnergyTR, >> 102 fTheMaxEnergyTR, >> 103 fBinTR ); 101 104 102 fXTREnergyVector = << 105 fPlasmaCof = 4.0*pi*fine_structure_const*hbarc*hbarc*hbarc/electron_mass_c2; 103 new G4PhysicsLogVector(fTheMinEnergyTR, fT << 104 106 105 fEnvelope = anEnvelope; << 107 fCofTR = fine_structure_const/pi; >> 108 >> 109 fEnvelope = anEnvelope; 106 110 107 fPlateNumber = n; 111 fPlateNumber = n; 108 if(verboseLevel > 0) 112 if(verboseLevel > 0) 109 G4cout << "### G4VXTRenergyLoss: the numbe << 113 G4cout<<"### G4VXTRenergyLoss: the number of TR radiator plates = " 110 << fPlateNumber << G4endl; << 114 <<fPlateNumber<<G4endl; 111 if(fPlateNumber == 0) 115 if(fPlateNumber == 0) 112 { 116 { 113 G4Exception("G4VXTRenergyLoss::G4VXTRenerg << 117 G4Exception("G4VXTRenergyLoss::G4VXTRenergyLoss()","VXTRELoss01", 114 FatalException, "No plates in << 118 FatalException,"No plates in X-ray TR radiator"); 115 } 119 } 116 // default is XTR dEdx, not flux after radia 120 // default is XTR dEdx, not flux after radiator >> 121 117 fExitFlux = false; 122 fExitFlux = false; 118 // default angle distribution according nume << 123 fAngleRadDistr = false; 119 fFastAngle = false; // no angle accordin << 120 fAngleRadDistr = true; << 121 fCompton = false; 124 fCompton = false; 122 125 123 fLambda = DBL_MAX; 126 fLambda = DBL_MAX; 124 << 125 // Mean thicknesses of plates and gas gaps 127 // Mean thicknesses of plates and gas gaps >> 128 126 fPlateThick = a; 129 fPlateThick = a; 127 fGasThick = b; 130 fGasThick = b; 128 fTotalDist = fPlateNumber * (fPlateThick + << 131 fTotalDist = fPlateNumber*(fPlateThick+fGasThick); 129 if(verboseLevel > 0) 132 if(verboseLevel > 0) 130 G4cout << "total radiator thickness = " << << 133 G4cout<<"total radiator thickness = "<<fTotalDist/cm<<" cm"<<G4endl; 131 << G4endl; << 132 134 133 // index of plate material 135 // index of plate material 134 fMatIndex1 = (G4int)foilMat->GetIndex(); << 136 fMatIndex1 = foilMat->GetIndex(); 135 if(verboseLevel > 0) 137 if(verboseLevel > 0) 136 G4cout << "plate material = " << foilMat-> << 138 G4cout<<"plate material = "<<foilMat->GetName()<<G4endl; 137 139 138 // index of gas material 140 // index of gas material 139 fMatIndex2 = (G4int)gasMat->GetIndex(); << 141 fMatIndex2 = gasMat->GetIndex(); 140 if(verboseLevel > 0) 142 if(verboseLevel > 0) 141 G4cout << "gas material = " << gasMat->Get << 143 G4cout<<"gas material = "<<gasMat->GetName()<<G4endl; 142 144 143 // plasma energy squared for plate material 145 // plasma energy squared for plate material 144 fSigma1 = fPlasmaCof * foilMat->GetElectronD << 146 >> 147 fSigma1 = fPlasmaCof*foilMat->GetElectronDensity(); >> 148 // fSigma1 = (20.9*eV)*(20.9*eV); 145 if(verboseLevel > 0) 149 if(verboseLevel > 0) 146 G4cout << "plate plasma energy = " << std: << 150 G4cout<<"plate plasma energy = "<<std::sqrt(fSigma1)/eV<<" eV"<<G4endl; 147 << G4endl; << 148 151 149 // plasma energy squared for gas material 152 // plasma energy squared for gas material 150 fSigma2 = fPlasmaCof * gasMat->GetElectronDe << 153 >> 154 fSigma2 = fPlasmaCof*gasMat->GetElectronDensity(); 151 if(verboseLevel > 0) 155 if(verboseLevel > 0) 152 G4cout << "gas plasma energy = " << std::s << 156 G4cout<<"gas plasma energy = "<<std::sqrt(fSigma2)/eV<<" eV"<<G4endl; 153 << G4endl; << 154 157 155 // Compute cofs for preparation of linear ph 158 // Compute cofs for preparation of linear photo absorption >> 159 156 ComputePlatePhotoAbsCof(); 160 ComputePlatePhotoAbsCof(); 157 ComputeGasPhotoAbsCof(); 161 ComputeGasPhotoAbsCof(); 158 162 159 pParticleChange = &fParticleChange; 163 pParticleChange = &fParticleChange; 160 } 164 } 161 165 162 ////////////////////////////////////////////// 166 /////////////////////////////////////////////////////////////////////////// >> 167 163 G4VXTRenergyLoss::~G4VXTRenergyLoss() 168 G4VXTRenergyLoss::~G4VXTRenergyLoss() 164 { 169 { >> 170 if(fEnvelope) delete fEnvelope; 165 delete fProtonEnergyVector; 171 delete fProtonEnergyVector; 166 delete fXTREnergyVector; 172 delete fXTREnergyVector; 167 if(fEnergyDistrTable) << 173 if(fEnergyDistrTable) { 168 { << 174 fEnergyDistrTable->clearAndDestroy(); 169 fEnergyDistrTable->clearAndDestroy(); << 170 delete fEnergyDistrTable; 175 delete fEnergyDistrTable; 171 } 176 } 172 if(fAngleRadDistr) << 177 if(fAngleRadDistr) { 173 { << 174 fAngleDistrTable->clearAndDestroy(); 178 fAngleDistrTable->clearAndDestroy(); 175 delete fAngleDistrTable; 179 delete fAngleDistrTable; 176 } 180 } 177 if(fAngleForEnergyTable) << 181 if(fAngleForEnergyTable) { 178 { << 179 fAngleForEnergyTable->clearAndDestroy(); 182 fAngleForEnergyTable->clearAndDestroy(); 180 delete fAngleForEnergyTable; 183 delete fAngleForEnergyTable; 181 } 184 } 182 } 185 } 183 186 184 void G4VXTRenergyLoss::ProcessDescription(std: << 185 { << 186 out << "Base class for 'fast' parameterisati << 187 "transition\n" << 188 "radiation. Angular distribution is v << 189 } << 190 << 191 ////////////////////////////////////////////// 187 /////////////////////////////////////////////////////////////////////////////// >> 188 // 192 // Returns condition for application of the mo 189 // Returns condition for application of the model depending on particle type >> 190 >> 191 193 G4bool G4VXTRenergyLoss::IsApplicable(const G4 192 G4bool G4VXTRenergyLoss::IsApplicable(const G4ParticleDefinition& particle) 194 { 193 { 195 return (particle.GetPDGCharge() != 0.0); << 194 return ( particle.GetPDGCharge() != 0.0 ); 196 } 195 } 197 196 198 ////////////////////////////////////////////// 197 ///////////////////////////////////////////////////////////////////////////////// >> 198 // 199 // Calculate step size for XTR process inside 199 // Calculate step size for XTR process inside raaditor 200 G4double G4VXTRenergyLoss::GetMeanFreePath(con << 200 201 G4F << 201 G4double G4VXTRenergyLoss::GetMeanFreePath(const G4Track& aTrack, >> 202 G4double, // previousStepSize, >> 203 G4ForceCondition* condition) 202 { 204 { 203 G4int iTkin, iPlace; 205 G4int iTkin, iPlace; 204 G4double lambda, sigma, kinEnergy, mass, gam 206 G4double lambda, sigma, kinEnergy, mass, gamma; 205 G4double charge, chargeSq, massRatio, TkinSc 207 G4double charge, chargeSq, massRatio, TkinScaled; 206 G4double E1, E2, W, W1, W2; << 208 G4double E1,E2,W,W1,W2; 207 209 208 *condition = NotForced; 210 *condition = NotForced; 209 << 211 210 if(aTrack.GetVolume()->GetLogicalVolume() != << 212 if( aTrack.GetVolume()->GetLogicalVolume() != fEnvelope ) lambda = DBL_MAX; 211 lambda = DBL_MAX; << 212 else 213 else 213 { 214 { 214 const G4DynamicParticle* aParticle = aTrac 215 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 215 kinEnergy = aPart << 216 kinEnergy = aParticle->GetKineticEnergy(); 216 mass = aParticle->GetDefinition()->GetPDG << 217 mass = aParticle->GetDefinition()->GetPDGMass(); 217 gamma = 1.0 + kinEnergy / mass; << 218 gamma = 1.0 + kinEnergy/mass; 218 if(verboseLevel > 1) 219 if(verboseLevel > 1) 219 { 220 { 220 G4cout << " gamma = " << gamma << "; f << 221 G4cout<<" gamma = "<<gamma<<"; fGamma = "<<fGamma<<G4endl; 221 } 222 } 222 223 223 if(std::fabs(gamma - fGamma) < 0.05 * gamm << 224 if ( std::fabs( gamma - fGamma ) < 0.05*gamma ) lambda = fLambda; 224 lambda = fLambda; << 225 else 225 else 226 { 226 { 227 charge = aParticle->GetDefinition()- << 227 charge = aParticle->GetDefinition()->GetPDGCharge(); 228 chargeSq = charge * charge; << 228 chargeSq = charge*charge; 229 massRatio = proton_mass_c2 / mass; << 229 massRatio = proton_mass_c2/mass; 230 TkinScaled = kinEnergy * massRatio; << 230 TkinScaled = kinEnergy*massRatio; 231 231 232 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 232 for(iTkin = 0; iTkin < fTotBin; iTkin++) 233 { 233 { 234 if(TkinScaled < fProtonEnergyVector->G << 234 if( TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break; 235 break; << 236 } 235 } 237 iPlace = iTkin - 1; 236 iPlace = iTkin - 1; 238 237 239 if(iTkin == 0) << 238 if(iTkin == 0) lambda = DBL_MAX; // Tkin is too small, neglect of TR photon generation 240 lambda = DBL_MAX; // Tkin is too smal << 239 else // general case: Tkin between two vectors of the material 241 else // general case: Tkin between two << 242 { 240 { 243 if(iTkin == fTotBin) << 241 if(iTkin == fTotBin) 244 { 242 { 245 sigma = (*(*fEnergyDistrTable)(iPlac << 243 sigma = (*(*fEnergyDistrTable)(iPlace))(0)*chargeSq; 246 } 244 } 247 else 245 else 248 { 246 { 249 E1 = fProtonEnergyVector->GetLowE << 247 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1); 250 E2 = fProtonEnergyVector->GetLowE << 248 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin); 251 W = 1.0 / (E2 - E1); << 249 W = 1.0/(E2 - E1); 252 W1 = (E2 - TkinScaled) * W; << 250 W1 = (E2 - TkinScaled)*W; 253 W2 = (TkinScaled - E1) * W; << 251 W2 = (TkinScaled - E1)*W; 254 sigma = ((*(*fEnergyDistrTable)(iPla << 252 sigma = ( (*(*fEnergyDistrTable)(iPlace ))(0)*W1 + 255 (*(*fEnergyDistrTable)(iPla << 253 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*chargeSq; 256 chargeSq; << 254 257 } 255 } 258 if(sigma < DBL_MIN) << 256 if (sigma < DBL_MIN) lambda = DBL_MAX; 259 lambda = DBL_MAX; << 257 else lambda = 1./sigma; 260 else << 261 lambda = 1. / sigma; << 262 fLambda = lambda; 258 fLambda = lambda; 263 fGamma = gamma; << 259 fGamma = gamma; 264 if(verboseLevel > 1) 260 if(verboseLevel > 1) 265 { 261 { 266 G4cout << " lambda = " << lambda / m << 262 G4cout<<" lambda = "<<lambda/mm<<" mm"<<G4endl; 267 } 263 } 268 } 264 } 269 } 265 } 270 } << 266 } 271 return lambda; 267 return lambda; 272 } 268 } 273 269 274 ////////////////////////////////////////////// 270 ////////////////////////////////////////////////////////////////////////// >> 271 // 275 // Interface for build table from physics list 272 // Interface for build table from physics list >> 273 276 void G4VXTRenergyLoss::BuildPhysicsTable(const 274 void G4VXTRenergyLoss::BuildPhysicsTable(const G4ParticleDefinition& pd) 277 { 275 { 278 if(pd.GetPDGCharge() == 0.) << 276 if(pd.GetPDGCharge() == 0.) 279 { 277 { 280 G4Exception("G4VXTRenergyLoss::BuildPhysic << 278 G4Exception("G4VXTRenergyLoss::BuildPhysicsTable", "Notification", JustWarning, 281 JustWarning, "XTR initialisati << 279 "XTR initialisation for neutral particle ?!" ); 282 } 280 } 283 BuildEnergyTable(); 281 BuildEnergyTable(); 284 282 285 if(fAngleRadDistr) << 283 if (fAngleRadDistr) 286 { 284 { 287 if(verboseLevel > 0) 285 if(verboseLevel > 0) 288 { 286 { 289 G4cout << 287 G4cout<<"Build angle for energy distribution according the current radiator" 290 << "Build angle for energy distributio << 288 <<G4endl; 291 << G4endl; << 292 } 289 } 293 BuildAngleForEnergyBank(); 290 BuildAngleForEnergyBank(); 294 } 291 } 295 } 292 } 296 293 >> 294 297 ////////////////////////////////////////////// 295 ////////////////////////////////////////////////////////////////////////// >> 296 // 298 // Build integral energy distribution of XTR p 297 // Build integral energy distribution of XTR photons >> 298 299 void G4VXTRenergyLoss::BuildEnergyTable() 299 void G4VXTRenergyLoss::BuildEnergyTable() 300 { 300 { 301 G4int iTkin, iTR, iPlace; 301 G4int iTkin, iTR, iPlace; 302 G4double radiatorCof = 1.0; // for tuning o << 302 G4double radiatorCof = 1.0; // for tuning of XTR yield 303 G4double energySum = 0.0; << 303 G4double energySum = 0.0; 304 304 305 fEnergyDistrTable = new G4PhysicsTable(fTotB 305 fEnergyDistrTable = new G4PhysicsTable(fTotBin); 306 if(fAngleRadDistr) << 306 if(fAngleRadDistr) fAngleDistrTable = new G4PhysicsTable(fTotBin); 307 fAngleDistrTable = new G4PhysicsTable(fTot << 308 307 309 fGammaTkinCut = 0.0; 308 fGammaTkinCut = 0.0; 310 << 309 311 // setting of min/max TR energies << 310 // setting of min/max TR energies 312 if(fGammaTkinCut > fTheMinEnergyTR) << 311 313 fMinEnergyTR = fGammaTkinCut; << 312 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut; 314 else << 313 else fMinEnergyTR = fTheMinEnergyTR; 315 fMinEnergyTR = fTheMinEnergyTR; << 314 316 << 315 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut; 317 if(fGammaTkinCut > fTheMaxEnergyTR) << 316 else fMaxEnergyTR = fTheMaxEnergyTR; 318 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 317 319 else << 318 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 320 fMaxEnergyTR = fTheMaxEnergyTR; << 321 << 322 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 323 integral; << 324 319 325 G4cout.precision(4); 320 G4cout.precision(4); 326 G4Timer timer; 321 G4Timer timer; 327 timer.Start(); 322 timer.Start(); 328 323 329 if(verboseLevel > 0) << 324 if(verboseLevel > 0) 330 { 325 { 331 G4cout << G4endl; << 326 G4cout<<G4endl; 332 G4cout << "Lorentz Factor" << 327 G4cout<<"Lorentz Factor"<<"\t"<<"XTR photon number"<<G4endl; 333 << "\t" << 328 G4cout<<G4endl; 334 << "XTR photon number" << G4endl; << 329 } 335 G4cout << G4endl; << 330 for( iTkin = 0; iTkin < fTotBin; iTkin++ ) // Lorentz factor loop 336 } << 337 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 338 { 331 { 339 auto energyVector = << 332 G4PhysicsLogVector* energyVector = new G4PhysicsLogVector( fMinEnergyTR, 340 new G4PhysicsLogVector(fMinEnergyTR, fMa << 333 fMaxEnergyTR, >> 334 fBinTR ); 341 335 342 fGamma = << 336 fGamma = 1.0 + (fProtonEnergyVector-> 343 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 337 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 344 338 345 // if(fMaxThetaTR > fTheMaxAngle) fMax << 339 fMaxThetaTR = 2500.0/(fGamma*fGamma) ; // theta^2 346 // else if(fMaxThetaTR < fTheMinAngle) << 347 340 >> 341 fTheMinAngle = 1.0e-3; // was 5.e-6, e-6 !!!, e-5, e-4 >> 342 >> 343 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle; >> 344 else if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle; >> 345 348 energySum = 0.0; 346 energySum = 0.0; 349 347 350 energyVector->PutValue(fBinTR - 1, energyS << 348 energyVector->PutValue(fBinTR-1,energySum); 351 349 352 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 350 for( iTR = fBinTR - 2; iTR >= 0; iTR-- ) 353 { 351 { 354 // Legendre96 or Legendre10 << 352 // Legendre96 or Legendre10 355 << 356 energySum += radiatorCof * fCofTR * << 357 << 358 // integral.Legendre10(this, &G4VXTRenergyLo << 359 << 360 integral.Legendre96(this, & << 361 << 362 energyV << 363 energyV << 364 353 365 energyVector->PutValue(iTR, energySum / << 354 energySum += radiatorCof*fCofTR*integral.Legendre10( >> 355 this,&G4VXTRenergyLoss::SpectralXTRdEdx, >> 356 energyVector->GetLowEdgeEnergy(iTR), >> 357 energyVector->GetLowEdgeEnergy(iTR+1) ); >> 358 >> 359 energyVector->PutValue(iTR,energySum/fTotalDist); 366 } 360 } 367 iPlace = iTkin; 361 iPlace = iTkin; 368 fEnergyDistrTable->insertAt(iPlace, energy << 362 fEnergyDistrTable->insertAt(iPlace,energyVector); 369 363 370 if(verboseLevel > 0) 364 if(verboseLevel > 0) 371 { 365 { 372 G4cout << fGamma << "\t" << energySum << << 366 G4cout >> 367 // <<iTkin<<"\t" >> 368 // <<"fGamma = " >> 369 <<fGamma<<"\t" // <<" fMaxThetaTR = "<<fMaxThetaTR >> 370 // <<"sumN = " >> 371 <<energySum // <<"; sumA = "<<angleSum >> 372 <<G4endl; 373 } 373 } 374 } << 374 } 375 timer.Stop(); 375 timer.Stop(); 376 G4cout.precision(6); 376 G4cout.precision(6); 377 if(verboseLevel > 0) << 377 if(verboseLevel > 0) 378 { 378 { 379 G4cout << G4endl; << 379 G4cout<<G4endl; 380 G4cout << "total time for build X-ray TR e << 380 G4cout<<"total time for build X-ray TR energy loss tables = " 381 << timer.GetUserElapsed() << " s" < << 381 <<timer.GetUserElapsed()<<" s"<<G4endl; 382 } 382 } 383 fGamma = 0.; 383 fGamma = 0.; 384 return; 384 return; 385 } 385 } 386 386 387 ////////////////////////////////////////////// 387 ////////////////////////////////////////////////////////////////////////// >> 388 // 388 // Bank of angle distributions for given energ 389 // Bank of angle distributions for given energies (slow!) 389 390 390 void G4VXTRenergyLoss::BuildAngleForEnergyBank 391 void G4VXTRenergyLoss::BuildAngleForEnergyBank() 391 { 392 { 392 << 393 if( this->GetProcessName() == "TranspRegXTRadiator" || 393 if( ( this->GetProcessName() == "TranspRegXT << 394 this->GetProcessName() == "TranspRegXTRmodel" || 394 this->GetProcessName() == "TranspRegXT << 395 this->GetProcessName() == "RegularXTRadiator" || 395 this->GetProcessName() == "RegularXTRa << 396 this->GetProcessName() == "RegularXTRmodel" ) 396 this->GetProcessName() == "RegularXTRmodel" << 397 { 397 { 398 BuildAngleTable(); // by sum of delta-func << 398 BuildAngleTable(); 399 return; 399 return; 400 } 400 } 401 G4int i, iTkin, iTR; 401 G4int i, iTkin, iTR; 402 G4double angleSum = 0.0; << 402 G4double angleSum = 0.0; 403 403 404 fGammaTkinCut = 0.0; << 405 404 406 // setting of min/max TR energies << 405 fGammaTkinCut = 0.0; 407 if(fGammaTkinCut > fTheMinEnergyTR) << 406 408 fMinEnergyTR = fGammaTkinCut; << 407 // setting of min/max TR energies 409 else << 408 410 fMinEnergyTR = fTheMinEnergyTR; << 409 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut; 411 << 410 else fMinEnergyTR = fTheMinEnergyTR; 412 if(fGammaTkinCut > fTheMaxEnergyTR) << 411 413 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 412 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut; 414 else << 413 else fMaxEnergyTR = fTheMaxEnergyTR; 415 fMaxEnergyTR = fTheMaxEnergyTR; << 416 414 417 auto energyVector = << 415 G4PhysicsLogVector* energyVector = new G4PhysicsLogVector( fMinEnergyTR, 418 new G4PhysicsLogVector(fMinEnergyTR, fMaxE << 416 fMaxEnergyTR, >> 417 fBinTR ); 419 418 420 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 419 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 421 integral; << 422 420 423 G4cout.precision(4); 421 G4cout.precision(4); 424 G4Timer timer; 422 G4Timer timer; 425 timer.Start(); 423 timer.Start(); 426 424 427 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 425 for( iTkin = 0; iTkin < fTotBin; iTkin++ ) // Lorentz factor loop 428 { 426 { 429 fGamma = << 430 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 431 427 432 if(fMaxThetaTR > fTheMaxAngle) << 428 fGamma = 1.0 + (fProtonEnergyVector-> 433 fMaxThetaTR = fTheMaxAngle; << 429 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 434 else if(fMaxThetaTR < fTheMinAngle) << 435 fMaxThetaTR = fTheMinAngle; << 436 430 437 fAngleForEnergyTable = new G4PhysicsTable( << 431 fMaxThetaTR = 2500.0/(fGamma*fGamma) ; // theta^2 438 432 439 for(iTR = 0; iTR < fBinTR; ++iTR) << 433 fTheMinAngle = 1.0e-3; // was 5.e-6, e-6 !!!, e-5, e-4 440 { << 441 angleSum = 0.0; << 442 fEnergy = energyVector->GetLowEdgeEnerg << 443 << 444 // log-vector to increase number of thin << 445 auto angleVector = new G4PhysicsLogVecto << 446 434 >> 435 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle; >> 436 else if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle; 447 437 >> 438 fAngleForEnergyTable = new G4PhysicsTable(fBinTR); 448 439 449 angleVector->PutValue(fBinTR - 1, angleS << 440 for( iTR = 0; iTR < fBinTR; iTR++ ) >> 441 { >> 442 angleSum = 0.0; >> 443 fEnergy = energyVector->GetLowEdgeEnergy(iTR); >> 444 G4PhysicsLinearVector* angleVector = new G4PhysicsLinearVector(0.0, >> 445 fMaxThetaTR, >> 446 fBinTR ); >> 447 >> 448 angleVector ->PutValue(fBinTR - 1, angleSum); 450 449 451 for(i = fBinTR - 2; i >= 0; --i) << 450 for( i = fBinTR - 2; i >= 0; i-- ) 452 { 451 { 453 // Legendre96 or Legendre10 << 452 // Legendre96 or Legendre10 454 453 455 angleSum += << 454 angleSum += integral.Legendre10( 456 integral.Legendre10(this, &G4VXTRene << 455 this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 457 angleVector->Get << 456 angleVector->GetLowEdgeEnergy(i), 458 angleVector->Get << 457 angleVector->GetLowEdgeEnergy(i+1) ); 459 458 460 angleVector->PutValue(i, angleSum); << 459 angleVector ->PutValue(i, angleSum); 461 } 460 } 462 fAngleForEnergyTable->insertAt(iTR, angl 461 fAngleForEnergyTable->insertAt(iTR, angleVector); 463 } 462 } 464 fAngleBank.push_back(fAngleForEnergyTable) << 463 fAngleBank.push_back(fAngleForEnergyTable); 465 } << 464 } 466 timer.Stop(); 465 timer.Stop(); 467 G4cout.precision(6); 466 G4cout.precision(6); 468 if(verboseLevel > 0) << 467 if(verboseLevel > 0) 469 { 468 { 470 G4cout << G4endl; << 469 G4cout<<G4endl; 471 G4cout << "total time for build X-ray TR a << 470 G4cout<<"total time for build X-ray TR angle for energy loss tables = " 472 << timer.GetUserElapsed() << " s" < << 471 <<timer.GetUserElapsed()<<" s"<<G4endl; 473 } 472 } 474 fGamma = 0.; 473 fGamma = 0.; 475 delete energyVector; 474 delete energyVector; 476 } 475 } 477 476 478 ////////////////////////////////////////////// 477 //////////////////////////////////////////////////////////////////////// 479 // Build XTR angular distribution at given ene << 478 // >> 479 // Build XTR angular distribution at given energy based on the model 480 // of transparent regular radiator 480 // of transparent regular radiator >> 481 481 void G4VXTRenergyLoss::BuildAngleTable() 482 void G4VXTRenergyLoss::BuildAngleTable() 482 { 483 { 483 G4int iTkin, iTR; 484 G4int iTkin, iTR; 484 G4double energy; << 485 G4double energy; 485 486 486 fGammaTkinCut = 0.0; 487 fGammaTkinCut = 0.0; 487 << 488 488 // setting of min/max TR energies << 489 // setting of min/max TR energies 489 if(fGammaTkinCut > fTheMinEnergyTR) << 490 490 fMinEnergyTR = fGammaTkinCut; << 491 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut; 491 else << 492 else fMinEnergyTR = fTheMinEnergyTR; 492 fMinEnergyTR = fTheMinEnergyTR; << 493 493 << 494 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut; 494 if(fGammaTkinCut > fTheMaxEnergyTR) << 495 else fMaxEnergyTR = fTheMaxEnergyTR; 495 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 496 else << 497 fMaxEnergyTR = fTheMaxEnergyTR; << 498 496 499 G4cout.precision(4); 497 G4cout.precision(4); 500 G4Timer timer; 498 G4Timer timer; 501 timer.Start(); 499 timer.Start(); 502 if(verboseLevel > 0) << 500 if(verboseLevel > 0) 503 { 501 { 504 G4cout << G4endl << "Lorentz Factor" << "\ << 502 G4cout<<G4endl; 505 << "XTR photon number" << G4endl << << 503 G4cout<<"Lorentz Factor"<<"\t"<<"XTR photon number"<<G4endl; >> 504 G4cout<<G4endl; 506 } 505 } 507 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 506 for( iTkin = 0; iTkin < fTotBin; iTkin++ ) // Lorentz factor loop 508 { 507 { 509 fGamma = << 508 510 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 509 fGamma = 1.0 + (fProtonEnergyVector-> >> 510 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 511 511 512 // fMaxThetaTR = 25. * 2500.0 / (fGamma * << 512 fMaxThetaTR = 25.0/(fGamma*fGamma); // theta^2 513 513 514 if(fMaxThetaTR > fTheMaxAngle) << 514 fTheMinAngle = 1.0e-3; // was 5.e-6, e-6 !!!, e-5, e-4 515 fMaxThetaTR = fTheMaxAngle; << 515 >> 516 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle; 516 else 517 else 517 { 518 { 518 if(fMaxThetaTR < fTheMinAngle) << 519 if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle; 519 fMaxThetaTR = fTheMinAngle; << 520 } 520 } 521 521 522 fAngleForEnergyTable = new G4PhysicsTable( 522 fAngleForEnergyTable = new G4PhysicsTable(fBinTR); 523 523 524 for(iTR = 0; iTR < fBinTR; ++iTR) << 524 for( iTR = 0; iTR < fBinTR; iTR++ ) 525 { 525 { >> 526 // energy = fMinEnergyTR*(iTR+1); >> 527 526 energy = fXTREnergyVector->GetLowEdgeEne 528 energy = fXTREnergyVector->GetLowEdgeEnergy(iTR); 527 529 528 G4PhysicsFreeVector* angleVector = GetAn << 530 G4PhysicsFreeVector* angleVector = GetAngleVector(energy,fBinTR); >> 531 // G4cout<<G4endl; 529 532 530 fAngleForEnergyTable->insertAt(iTR, angl << 533 fAngleForEnergyTable->insertAt(iTR,angleVector); 531 } 534 } 532 fAngleBank.push_back(fAngleForEnergyTable) << 535 533 } << 536 fAngleBank.push_back(fAngleForEnergyTable); >> 537 } 534 timer.Stop(); 538 timer.Stop(); 535 G4cout.precision(6); 539 G4cout.precision(6); 536 if(verboseLevel > 0) << 540 if(verboseLevel > 0) 537 { 541 { 538 G4cout << G4endl; << 542 G4cout<<G4endl; 539 G4cout << "total time for build XTR angle << 543 G4cout<<"total time for build XTR angle for given energy tables = " 540 << timer.GetUserElapsed() << " s" < << 544 <<timer.GetUserElapsed()<<" s"<<G4endl; 541 } 545 } 542 fGamma = 0.; 546 fGamma = 0.; 543 << 547 544 return; 548 return; 545 } << 549 } 546 550 547 ////////////////////////////////////////////// 551 ///////////////////////////////////////////////////////////////////////// >> 552 // 548 // Vector of angles and angle integral distrib 553 // Vector of angles and angle integral distributions >> 554 549 G4PhysicsFreeVector* G4VXTRenergyLoss::GetAngl 555 G4PhysicsFreeVector* G4VXTRenergyLoss::GetAngleVector(G4double energy, G4int n) 550 { 556 { 551 G4double theta = 0., result, tmp = 0., cof1, << 557 G4double theta=0., result, tmp=0., cof1, cof2, cofMin, cofPHC, angleSum = 0.; 552 angleSum = 0.; << 558 G4int iTheta, k, /*kMax,*/ kMin; 553 G4int iTheta, k, kMin; << 559 554 << 560 G4PhysicsFreeVector* angleVector = new G4PhysicsFreeVector(n); 555 auto angleVector = new G4PhysicsFreeVector(n << 561 556 << 562 cofPHC = 4.*pi*hbarc; 557 cofPHC = 4. * pi * hbarc; << 563 tmp = (fSigma1 - fSigma2)/cofPHC/energy; 558 tmp = (fSigma1 - fSigma2) / cofPHC / ener << 564 cof1 = fPlateThick*tmp; 559 cof1 = fPlateThick * tmp; << 565 cof2 = fGasThick*tmp; 560 cof2 = fGasThick * tmp; << 561 566 562 cofMin = energy * (fPlateThick + fGasThick) << 567 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma; 563 cofMin += (fPlateThick * fSigma1 + fGasThick << 568 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy; 564 cofMin /= cofPHC; 569 cofMin /= cofPHC; 565 570 566 kMin = G4int(cofMin); 571 kMin = G4int(cofMin); 567 if(cofMin > kMin) << 572 if (cofMin > kMin) kMin++; 568 kMin++; << 573 >> 574 //kMax = kMin + fBinTR -1; 569 575 570 if(verboseLevel > 2) 576 if(verboseLevel > 2) 571 { 577 { 572 G4cout << "n-1 = " << n - 1 << 578 G4cout<<"n-1 = "<<n-1<<"; theta = " 573 << "; theta = " << std::sqrt(fMaxTh << 579 <<std::sqrt(fMaxThetaTR)*fGamma<<"; tmp = " 574 << "; tmp = " << 0. << "; angleS << 580 <<0. >> 581 <<"; angleSum = "<<angleSum<<G4endl; 575 } 582 } >> 583 // angleVector->PutValue(n-1,fMaxThetaTR, angleSum); 576 584 577 for(iTheta = n - 1; iTheta >= 1; --iTheta) << 585 for( iTheta = n - 1; iTheta >= 1; iTheta-- ) 578 { 586 { 579 k = iTheta - 1 + kMin; << 580 tmp = pi * fPlateThick * (k + cof2) / ( << 581 result = (k - cof1) * (k - cof1) * (k + co << 582 tmp = std::sin(tmp) * std::sin(tmp) * s << 583 587 584 if(k == kMin && kMin == G4int(cofMin)) << 588 k = iTheta- 1 + kMin; >> 589 >> 590 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick); >> 591 >> 592 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2); >> 593 >> 594 tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result; >> 595 >> 596 if( k == kMin && kMin == G4int(cofMin) ) 585 { 597 { 586 // angleSum += 0.5 * tmp; << 598 angleSum += 0.5*tmp; // 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result; 587 angleSum += tmp; // ATLAS TB << 588 } 599 } 589 else if(iTheta == n - 1) << 600 else if(iTheta == n-1); 590 ; << 591 else 601 else 592 { 602 { 593 angleSum += tmp; << 603 angleSum += tmp; // std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result; 594 } 604 } 595 theta = std::abs(k - cofMin) * cofPHC / en << 605 theta = std::abs(k-cofMin)*cofPHC/energy/(fPlateThick + fGasThick); 596 606 597 if(verboseLevel > 2) 607 if(verboseLevel > 2) 598 { 608 { 599 G4cout << "iTheta = " << iTheta << "; k << 609 G4cout<<"iTheta = "<<iTheta<<"; k = "<<k<<"; theta = " 600 << "; theta = " << std::sqrt(thet << 610 <<std::sqrt(theta)*fGamma<<"; tmp = " 601 << "; angleSum = " << angleSum << 611 <<tmp // std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result >> 612 <<"; angleSum = "<<angleSum<<G4endl; 602 } 613 } 603 angleVector->PutValue(iTheta, theta, angle << 614 angleVector->PutValue( iTheta, theta, angleSum ); 604 } 615 } 605 if(theta > 0.) << 616 if (theta > 0.) 606 { 617 { 607 // angleSum += 0.5 * tmp; << 618 angleSum += 0.5*tmp; 608 angleSum += 0.; // ATLAS TB << 619 theta = 0.; 609 theta = 0.; << 610 } 620 } 611 if(verboseLevel > 2) 621 if(verboseLevel > 2) 612 { 622 { 613 G4cout << "iTheta = " << iTheta << "; thet << 623 G4cout<<"iTheta = "<<iTheta<<"; theta = " 614 << "; tmp = " << tmp << "; angle << 624 <<std::sqrt(theta)*fGamma<<"; tmp = " >> 625 <<tmp >> 626 <<"; angleSum = "<<angleSum<<G4endl; 615 } 627 } 616 angleVector->PutValue(iTheta, theta, angleSu << 628 angleVector->PutValue( iTheta, theta, angleSum ); 617 629 618 return angleVector; 630 return angleVector; 619 } 631 } 620 632 621 ////////////////////////////////////////////// 633 //////////////////////////////////////////////////////////////////////// 622 // Build XTR angular distribution based on the << 634 // 623 // radiator << 635 // Build XTR angular distribution based on the model of transparent regular radiator >> 636 624 void G4VXTRenergyLoss::BuildGlobalAngleTable() 637 void G4VXTRenergyLoss::BuildGlobalAngleTable() 625 { 638 { 626 G4int iTkin, iTR, iPlace; 639 G4int iTkin, iTR, iPlace; 627 G4double radiatorCof = 1.0; // for tuning o << 640 G4double radiatorCof = 1.0; // for tuning of XTR yield 628 G4double angleSum; 641 G4double angleSum; 629 fAngleDistrTable = new G4PhysicsTable(fTotBi 642 fAngleDistrTable = new G4PhysicsTable(fTotBin); 630 643 631 fGammaTkinCut = 0.0; 644 fGammaTkinCut = 0.0; 632 << 645 633 // setting of min/max TR energies << 646 // setting of min/max TR energies 634 if(fGammaTkinCut > fTheMinEnergyTR) << 647 635 fMinEnergyTR = fGammaTkinCut; << 648 if(fGammaTkinCut > fTheMinEnergyTR) fMinEnergyTR = fGammaTkinCut; 636 else << 649 else fMinEnergyTR = fTheMinEnergyTR; 637 fMinEnergyTR = fTheMinEnergyTR; << 650 638 << 651 if(fGammaTkinCut > fTheMaxEnergyTR) fMaxEnergyTR = 2.0*fGammaTkinCut; 639 if(fGammaTkinCut > fTheMaxEnergyTR) << 652 else fMaxEnergyTR = fTheMaxEnergyTR; 640 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 641 else << 642 fMaxEnergyTR = fTheMaxEnergyTR; << 643 653 644 G4cout.precision(4); 654 G4cout.precision(4); 645 G4Timer timer; 655 G4Timer timer; 646 timer.Start(); 656 timer.Start(); 647 if(verboseLevel > 0) << 657 if(verboseLevel > 0) { 648 { << 658 G4cout<<G4endl; 649 G4cout << G4endl; << 659 G4cout<<"Lorentz Factor"<<"\t"<<"XTR photon number"<<G4endl; 650 G4cout << "Lorentz Factor" << 660 G4cout<<G4endl; 651 << "\t" << 661 } 652 << "XTR photon number" << G4endl; << 662 for( iTkin = 0; iTkin < fTotBin; iTkin++ ) // Lorentz factor loop 653 G4cout << G4endl; << 654 } << 655 for(iTkin = 0; iTkin < fTotBin; ++iTkin) // << 656 { 663 { 657 fGamma = << 664 658 1.0 + (fProtonEnergyVector->GetLowEdgeEn << 665 fGamma = 1.0 + (fProtonEnergyVector-> >> 666 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 659 667 660 // fMaxThetaTR = 25.0 / (fGamma * fGamma); << 668 fMaxThetaTR = 25.0/(fGamma*fGamma); // theta^2 661 // fMaxThetaTR = 1.e-4; // theta^2 << 662 669 663 if(fMaxThetaTR > fTheMaxAngle) << 670 fTheMinAngle = 1.0e-3; // was 5.e-6, e-6 !!!, e-5, e-4 664 fMaxThetaTR = fTheMaxAngle; << 671 >> 672 if( fMaxThetaTR > fTheMaxAngle ) fMaxThetaTR = fTheMaxAngle; 665 else 673 else 666 { 674 { 667 if(fMaxThetaTR < fTheMinAngle) << 675 if( fMaxThetaTR < fTheMinAngle ) fMaxThetaTR = fTheMinAngle; 668 fMaxThetaTR = fTheMinAngle; << 669 } 676 } 670 auto angleVector = << 677 G4PhysicsLinearVector* angleVector = new G4PhysicsLinearVector(0.0, 671 // G4PhysicsLogVector* angleVector = << 678 fMaxThetaTR, 672 new G4PhysicsLinearVector(0.0, fMaxTheta << 679 fBinTR ); 673 // new G4PhysicsLogVector(1.e-8, fMaxThet << 674 680 675 angleSum = 0.0; << 681 angleSum = 0.0; 676 682 677 G4Integrator<G4VXTRenergyLoss, G4double (G << 683 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 678 integral; << 679 684 680 angleVector->PutValue(fBinTR - 1, angleSum << 685 >> 686 angleVector->PutValue(fBinTR-1,angleSum); 681 687 682 for(iTR = fBinTR - 2; iTR >= 0; --iTR) << 688 for( iTR = fBinTR - 2; iTR >= 0; iTR-- ) 683 { 689 { 684 angleSum += radiatorCof * fCofTR * << 685 integral.Legendre96(this, &G << 686 angleVec << 687 angleVec << 688 690 689 angleVector->PutValue(iTR, angleSum); << 691 angleSum += radiatorCof*fCofTR*integral.Legendre96( >> 692 this,&G4VXTRenergyLoss::AngleXTRdEdx, >> 693 angleVector->GetLowEdgeEnergy(iTR), >> 694 angleVector->GetLowEdgeEnergy(iTR+1) ); >> 695 >> 696 angleVector ->PutValue(iTR,angleSum); 690 } 697 } 691 if(verboseLevel > 1) << 698 if(verboseLevel > 1) { 692 { << 699 G4cout 693 G4cout << fGamma << "\t" << angleSum << << 700 // <<iTkin<<"\t" >> 701 // <<"fGamma = " >> 702 <<fGamma<<"\t" // <<" fMaxThetaTR = "<<fMaxThetaTR >> 703 // <<"sumN = "<<energySum // <<"; sumA = " >> 704 <<angleSum >> 705 <<G4endl; 694 } 706 } 695 iPlace = iTkin; 707 iPlace = iTkin; 696 fAngleDistrTable->insertAt(iPlace, angleVe << 708 fAngleDistrTable->insertAt(iPlace,angleVector); 697 } << 709 } 698 timer.Stop(); 710 timer.Stop(); 699 G4cout.precision(6); 711 G4cout.precision(6); 700 if(verboseLevel > 0) << 712 if(verboseLevel > 0) { 701 { << 713 G4cout<<G4endl; 702 G4cout << G4endl; << 714 G4cout<<"total time for build X-ray TR angle tables = " 703 G4cout << "total time for build X-ray TR a << 715 <<timer.GetUserElapsed()<<" s"<<G4endl; 704 << timer.GetUserElapsed() << " s" < << 705 } 716 } 706 fGamma = 0.; 717 fGamma = 0.; 707 << 718 708 return; 719 return; 709 } << 720 } >> 721 710 722 711 ////////////////////////////////////////////// 723 ////////////////////////////////////////////////////////////////////////////// 712 // The main function which is responsible for << 724 // 713 // passage through G4Envelope with discrete ge << 725 // The main function which is responsible for the treatment of a particle passage 714 G4VParticleChange* G4VXTRenergyLoss::PostStepD << 726 // trough G4Envelope with discrete generation of G4Gamma 715 << 727 >> 728 G4VParticleChange* G4VXTRenergyLoss::PostStepDoIt( const G4Track& aTrack, >> 729 const G4Step& aStep ) 716 { 730 { 717 G4int iTkin; << 731 G4int iTkin /*, iPlace*/; 718 G4double energyTR, theta, theta2, phi, dirX, << 732 G4double energyTR, theta,theta2, phi, dirX, dirY, dirZ; >> 733 719 734 720 fParticleChange.Initialize(aTrack); 735 fParticleChange.Initialize(aTrack); 721 736 722 if(verboseLevel > 1) 737 if(verboseLevel > 1) 723 { 738 { 724 G4cout << "Start of G4VXTRenergyLoss::Post << 739 G4cout<<"Start of G4VXTRenergyLoss::PostStepDoIt "<<G4endl; 725 G4cout << "name of current material = " << 740 G4cout<<"name of current material = " 726 << aTrack.GetVolume()->GetLogicalVo << 741 <<aTrack.GetVolume()->GetLogicalVolume()->GetMaterial()->GetName()<<G4endl; 727 << G4endl; << 728 } 742 } 729 if(aTrack.GetVolume()->GetLogicalVolume() != << 743 if( aTrack.GetVolume()->GetLogicalVolume() != fEnvelope ) 730 { 744 { 731 if(verboseLevel > 0) 745 if(verboseLevel > 0) 732 { 746 { 733 G4cout << "Go out from G4VXTRenergyLoss: << 747 G4cout<<"Go out from G4VXTRenergyLoss::PostStepDoIt: wrong volume "<<G4endl; 734 << G4endl; << 735 } 748 } 736 return G4VDiscreteProcess::PostStepDoIt(aT 749 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 737 } 750 } 738 else 751 else 739 { 752 { 740 G4StepPoint* pPostStepPoint = aStep 753 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 741 const G4DynamicParticle* aParticle = aTrac 754 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 742 << 755 743 // Now we are ready to Generate one TR pho 756 // Now we are ready to Generate one TR photon >> 757 744 G4double kinEnergy = aParticle->GetKinetic 758 G4double kinEnergy = aParticle->GetKineticEnergy(); 745 G4double mass = aParticle->GetDefinit 759 G4double mass = aParticle->GetDefinition()->GetPDGMass(); 746 G4double gamma = 1.0 + kinEnergy / mas << 760 G4double gamma = 1.0 + kinEnergy/mass; 747 761 748 if(verboseLevel > 1) << 762 if(verboseLevel > 1 ) 749 { 763 { 750 G4cout << "gamma = " << gamma << G4endl; << 764 G4cout<<"gamma = "<<gamma<<G4endl; 751 } 765 } 752 G4double massRatio = proton_mass << 766 G4double massRatio = proton_mass_c2/mass; 753 G4double TkinScaled = kinEnergy * << 767 G4double TkinScaled = kinEnergy*massRatio; 754 G4ThreeVector position = pPostStepPo << 768 G4ThreeVector position = pPostStepPoint->GetPosition(); 755 G4ParticleMomentum direction = aParticle-> 769 G4ParticleMomentum direction = aParticle->GetMomentumDirection(); 756 G4double startTime = pPostStepPo << 770 G4double startTime = pPostStepPoint->GetGlobalTime(); 757 771 758 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 772 for( iTkin = 0; iTkin < fTotBin; iTkin++ ) 759 { 773 { 760 if(TkinScaled < fProtonEnergyVector->Get << 774 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break; 761 break; << 762 } 775 } >> 776 //iPlace = iTkin - 1; 763 777 764 if(iTkin == 0) // Tkin is too small, negl << 778 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 765 { 779 { 766 if(verboseLevel > 0) << 780 if( verboseLevel > 0) 767 { 781 { 768 G4cout << "Go out from G4VXTRenergyLos << 782 G4cout<<"Go out from G4VXTRenergyLoss::PostStepDoIt:iTkin = "<<iTkin<<G4endl; 769 << G4endl; << 770 } 783 } 771 return G4VDiscreteProcess::PostStepDoIt( 784 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 772 } << 785 } 773 else // general case: Tkin between two ve << 786 else // general case: Tkin between two vectors of the material 774 { 787 { 775 fParticleChange.SetNumberOfSecondaries(1 788 fParticleChange.SetNumberOfSecondaries(1); 776 789 777 energyTR = GetXTRrandomEnergy(TkinScaled << 790 energyTR = GetXTRrandomEnergy(TkinScaled,iTkin); 778 791 779 if(verboseLevel > 1) << 792 if( verboseLevel > 1) 780 { 793 { 781 G4cout << "energyTR = " << energyTR / << 794 G4cout<<"energyTR = "<<energyTR/keV<<" keV"<<G4endl; 782 } 795 } 783 if(fAngleRadDistr) << 796 if (fAngleRadDistr) 784 { 797 { 785 theta2 = GetRandomAngle(energyTR, iTki << 798 // theta = std::fabs(G4RandGauss::shoot(0.0,pi/gamma)); 786 if(theta2 > 0.) << 799 theta2 = GetRandomAngle(energyTR,iTkin); 787 theta = std::sqrt(theta2); << 800 if(theta2 > 0.) theta = std::sqrt(theta2); 788 else << 801 else theta = 0.; // theta2; 789 theta = 0.; << 790 } 802 } 791 else << 803 else theta = std::fabs(G4RandGauss::shoot(0.0,pi/gamma)); 792 theta = std::fabs(G4RandGauss::shoot(0 << 804 >> 805 // theta = 0.; // check no spread >> 806 >> 807 if( theta >= 0.1 ) theta = 0.1; 793 808 794 if(theta >= 0.1) << 809 // G4cout<<" : theta = "<<theta<<endl; 795 theta = 0.1; << 796 810 797 phi = twopi * G4UniformRand(); << 811 phi = twopi*G4UniformRand(); 798 812 799 dirX = std::sin(theta) * std::cos(phi); << 813 dirX = std::sin(theta)*std::cos(phi); 800 dirY = std::sin(theta) * std::sin(phi); << 814 dirY = std::sin(theta)*std::sin(phi); 801 dirZ = std::cos(theta); 815 dirZ = std::cos(theta); 802 816 803 G4ThreeVector directionTR(dirX, dirY, di << 817 G4ThreeVector directionTR(dirX,dirY,dirZ); 804 directionTR.rotateUz(direction); 818 directionTR.rotateUz(direction); 805 directionTR.unit(); 819 directionTR.unit(); 806 820 807 auto aPhotonTR = << 821 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 808 new G4DynamicParticle(G4Gamma::Gamma() << 822 directionTR, energyTR); 809 823 810 // A XTR photon is set on the particle t << 824 // A XTR photon is set on the particle track inside the radiator 811 // and is moved to the G4Envelope surfac 825 // and is moved to the G4Envelope surface for standard X-ray TR models 812 // only. The case of fExitFlux=true 826 // only. The case of fExitFlux=true 813 827 814 if(fExitFlux) << 828 if( fExitFlux ) 815 { 829 { 816 const G4RotationMatrix* rotM = << 830 const G4RotationMatrix* rotM = pPostStepPoint->GetTouchable()->GetRotation(); 817 pPostStepPoint->GetTouchable()->GetR << 818 G4ThreeVector transl = pPostStepPoint- 831 G4ThreeVector transl = pPostStepPoint->GetTouchable()->GetTranslation(); 819 G4AffineTransform transform = G4Affine << 832 G4AffineTransform transform = G4AffineTransform(rotM,transl); 820 transform.Invert(); 833 transform.Invert(); 821 G4ThreeVector localP = transform.Trans 834 G4ThreeVector localP = transform.TransformPoint(position); 822 G4ThreeVector localV = transform.Trans 835 G4ThreeVector localV = transform.TransformAxis(directionTR); 823 836 824 G4double distance = << 837 G4double distance = fEnvelope->GetSolid()->DistanceToOut(localP, localV); 825 fEnvelope->GetSolid()->DistanceToOut << 826 if(verboseLevel > 1) 838 if(verboseLevel > 1) 827 { 839 { 828 G4cout << "distance to exit = " << d << 840 G4cout<<"distance to exit = "<<distance/mm<<" mm"<<G4endl; 829 } 841 } 830 position += distance * directionTR; << 842 position += distance*directionTR; 831 startTime += distance / c_light; << 843 startTime += distance/c_light; 832 } 844 } 833 G4Track* aSecondaryTrack = new G4Track(a << 845 G4Track* aSecondaryTrack = new G4Track( aPhotonTR, >> 846 startTime, position ); 834 aSecondaryTrack->SetTouchableHandle( 847 aSecondaryTrack->SetTouchableHandle( 835 aStep.GetPostStepPoint()->GetTouchable << 848 aStep.GetPostStepPoint()->GetTouchableHandle()); 836 aSecondaryTrack->SetParentID(aTrack.GetT << 849 aSecondaryTrack->SetParentID( aTrack.GetTrackID() ); 837 850 838 fParticleChange.AddSecondary(aSecondaryT 851 fParticleChange.AddSecondary(aSecondaryTrack); 839 fParticleChange.ProposeEnergy(kinEnergy) << 852 fParticleChange.ProposeEnergy(kinEnergy); 840 } 853 } 841 } 854 } 842 return G4VDiscreteProcess::PostStepDoIt(aTra 855 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 843 } 856 } 844 857 845 ////////////////////////////////////////////// 858 /////////////////////////////////////////////////////////////////////// >> 859 // 846 // This function returns the spectral and angl 860 // This function returns the spectral and angle density of TR quanta 847 // in X-ray energy region generated forward wh 861 // in X-ray energy region generated forward when a relativistic 848 // charged particle crosses interface between 862 // charged particle crosses interface between two materials. 849 // The high energy small theta approximation i 863 // The high energy small theta approximation is applied. 850 // (matter1 -> matter2, or 2->1) 864 // (matter1 -> matter2, or 2->1) 851 // varAngle =2* (1 - std::cos(theta)) or appro 865 // varAngle =2* (1 - std::cos(theta)) or approximately = theta*theta 852 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEd << 866 // 853 << 867 854 { << 868 G4complex G4VXTRenergyLoss::OneInterfaceXTRdEdx( G4double energy, 855 G4complex Z1 = GetPlateComplexFZ(energy, gam << 869 G4double gamma, 856 G4complex Z2 = GetGasComplexFZ(energy, gamma << 870 G4double varAngle ) >> 871 { >> 872 G4complex Z1 = GetPlateComplexFZ(energy,gamma,varAngle); >> 873 G4complex Z2 = GetGasComplexFZ(energy,gamma,varAngle); >> 874 >> 875 G4complex zOut = (Z1 - Z2)*(Z1 - Z2) >> 876 * (varAngle*energy/hbarc/hbarc); >> 877 return zOut; 857 878 858 G4complex zOut = (Z1 - Z2) * (Z1 - Z2) * (va << 859 return zOut; << 860 } 879 } 861 880 >> 881 862 ////////////////////////////////////////////// 882 ////////////////////////////////////////////////////////////////////////////// >> 883 // 863 // For photon energy distribution tables. Inte 884 // For photon energy distribution tables. Integrate first over angle >> 885 // >> 886 864 G4double G4VXTRenergyLoss::SpectralAngleXTRdEd 887 G4double G4VXTRenergyLoss::SpectralAngleXTRdEdx(G4double varAngle) 865 { 888 { 866 G4double result = GetStackFactor(fEnergy, fG << 889 G4double result = GetStackFactor(fEnergy,fGamma,varAngle); 867 if(result < 0.0) << 890 if(result < 0.0) result = 0.0; 868 result = 0.0; << 869 return result; 891 return result; 870 } 892 } 871 893 872 ////////////////////////////////////////////// 894 ///////////////////////////////////////////////////////////////////////// >> 895 // 873 // For second integration over energy 896 // For second integration over energy >> 897 874 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4d 898 G4double G4VXTRenergyLoss::SpectralXTRdEdx(G4double energy) 875 { 899 { 876 G4int i; << 900 G4int i, iMax = 8; 877 static constexpr G4int iMax = 8; << 901 G4double angleSum = 0.0; 878 G4double angleSum = 0.0; << 879 902 880 G4double lim[iMax] = { 0.0, 0.01, 0.02, 0.05 << 903 G4double lim[8] = { 0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 }; 881 904 882 for(i = 0; i < iMax; ++i) << 905 for( i = 0; i < iMax; i++ ) lim[i] *= fMaxThetaTR; 883 lim[i] *= fMaxThetaTR; << 884 906 885 G4Integrator<G4VXTRenergyLoss, G4double (G4V << 907 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 886 integral; << 887 908 888 fEnergy = energy; 909 fEnergy = energy; >> 910 /* >> 911 if( fAngleRadDistr && ( fEnergy == fEnergyForAngle ) ) >> 912 { >> 913 fAngleVector ->PutValue(fBinTR - 1, angleSum); >> 914 >> 915 for( i = fBinTR - 2; i >= 0; i-- ) >> 916 { >> 917 >> 918 angleSum += integral.Legendre10( >> 919 this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, >> 920 fAngleVector->GetLowEdgeEnergy(i), >> 921 fAngleVector->GetLowEdgeEnergy(i+1) ); >> 922 >> 923 fAngleVector ->PutValue(i, angleSum); >> 924 } >> 925 } >> 926 else >> 927 */ 889 { 928 { 890 for(i = 0; i < iMax - 1; ++i) << 929 for( i = 0; i < iMax-1; i++ ) 891 { 930 { 892 angleSum += integral.Legendre96( << 931 angleSum += integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, 893 this, &G4VXTRenergyLoss::SpectralAngle << 932 lim[i],lim[i+1]); >> 933 // result += integral.Legendre10(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx, >> 934 // lim[i],lim[i+1]); 894 } 935 } 895 } 936 } 896 return angleSum; 937 return angleSum; 897 } << 938 } 898 << 939 899 ////////////////////////////////////////////// 940 ////////////////////////////////////////////////////////////////////////// >> 941 // 900 // for photon angle distribution tables 942 // for photon angle distribution tables >> 943 // >> 944 901 G4double G4VXTRenergyLoss::AngleSpectralXTRdEd 945 G4double G4VXTRenergyLoss::AngleSpectralXTRdEdx(G4double energy) 902 { 946 { 903 G4double result = GetStackFactor(energy, fGa << 947 G4double result = GetStackFactor(energy,fGamma,fVarAngle); 904 if(result < 0) << 948 if(result < 0) result = 0.0; 905 result = 0.0; << 906 return result; 949 return result; 907 } << 950 } 908 951 909 ////////////////////////////////////////////// 952 /////////////////////////////////////////////////////////////////////////// >> 953 // 910 // The XTR angular distribution based on trans 954 // The XTR angular distribution based on transparent regular radiator 911 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4doub << 955 >> 956 G4double G4VXTRenergyLoss::AngleXTRdEdx(G4double varAngle) 912 { 957 { >> 958 // G4cout<<"angle2 = "<<varAngle<<"; fGamma = "<<fGamma<<G4endl; >> 959 913 G4double result; 960 G4double result; 914 G4double sum = 0., tmp1, tmp2, tmp = 0., cof << 961 G4double sum = 0., tmp1, tmp2, tmp=0., cof1, cof2, cofMin, cofPHC, energy1, energy2; 915 energy2; << 916 G4int k, kMax, kMin, i; 962 G4int k, kMax, kMin, i; 917 963 918 cofPHC = twopi * hbarc; << 964 cofPHC = twopi*hbarc; >> 965 >> 966 cof1 = (fPlateThick + fGasThick)*(1./fGamma/fGamma + varAngle); >> 967 cof2 = fPlateThick*fSigma1 + fGasThick*fSigma2; 919 968 920 cof1 = (fPlateThick + fGasThick) * (1. / fGa << 969 // G4cout<<"cof1 = "<<cof1<<"; cof2 = "<<cof2<<"; cofPHC = "<<cofPHC<<G4endl; 921 cof2 = fPlateThick * fSigma1 + fGasThick * f << 922 970 923 cofMin = std::sqrt(cof1 * cof2); << 971 cofMin = std::sqrt(cof1*cof2); 924 cofMin /= cofPHC; 972 cofMin /= cofPHC; 925 973 926 kMin = G4int(cofMin); 974 kMin = G4int(cofMin); 927 if(cofMin > kMin) << 975 if (cofMin > kMin) kMin++; 928 kMin++; << 929 976 930 kMax = kMin + 9; << 977 kMax = kMin + 9; // 9; // kMin + G4int(tmp); 931 978 932 for(k = kMin; k <= kMax; ++k) << 979 // G4cout<<"cofMin = "<<cofMin<<"; kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl; >> 980 >> 981 for( k = kMin; k <= kMax; k++ ) 933 { 982 { 934 tmp1 = cofPHC * k; << 983 tmp1 = cofPHC*k; 935 tmp2 = std::sqrt(tmp1 * tmp1 - cof1 * c << 984 tmp2 = std::sqrt(tmp1*tmp1-cof1*cof2); 936 energy1 = (tmp1 + tmp2) / cof1; << 985 energy1 = (tmp1+tmp2)/cof1; 937 energy2 = (tmp1 - tmp2) / cof1; << 986 energy2 = (tmp1-tmp2)/cof1; 938 987 939 for(i = 0; i < 2; ++i) << 988 for(i = 0; i < 2; i++) 940 { 989 { 941 if(i == 0) << 990 if( i == 0 ) 942 { 991 { 943 if(energy1 > fTheMaxEnergyTR || energy << 992 if (energy1 > fTheMaxEnergyTR || energy1 < fTheMinEnergyTR) continue; 944 continue; << 993 tmp1 = ( energy1*energy1*(1./fGamma/fGamma + varAngle) + fSigma1 ) 945 << 994 * fPlateThick/(4*hbarc*energy1); 946 tmp1 = << 947 (energy1 * energy1 * (1. / fGamma / << 948 fPlateThick / (4 * hbarc * energy1); << 949 tmp2 = std::sin(tmp1); 995 tmp2 = std::sin(tmp1); 950 tmp = energy1 * tmp2 * tmp2; << 996 tmp = energy1*tmp2*tmp2; 951 tmp2 = fPlateThick / (4. * tmp1); << 997 tmp2 = fPlateThick/(4.*tmp1); 952 tmp1 = << 998 tmp1 = hbarc*energy1/( energy1*energy1*(1./fGamma/fGamma + varAngle) + fSigma2 ); 953 hbarc * energy1 / << 999 tmp *= (tmp1-tmp2)*(tmp1-tmp2); 954 (energy1 * energy1 * (1. / fGamma / << 1000 tmp1 = cof1/(4.*hbarc) - cof2/(4.*hbarc*energy1*energy1); 955 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 1001 tmp2 = std::abs(tmp1); 956 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 1002 if(tmp2 > 0.) tmp /= tmp2; 957 tmp2 = std::abs(tmp1); << 1003 else continue; 958 << 959 if(tmp2 > 0.) << 960 tmp /= tmp2; << 961 else << 962 continue; << 963 } 1004 } 964 else 1005 else 965 { 1006 { 966 if(energy2 > fTheMaxEnergyTR || energy << 1007 if (energy2 > fTheMaxEnergyTR || energy2 < fTheMinEnergyTR) continue; 967 continue; << 1008 tmp1 = ( energy2*energy2*(1./fGamma/fGamma + varAngle) + fSigma1 ) 968 << 1009 * fPlateThick/(4.*hbarc*energy2); 969 tmp1 = << 970 (energy2 * energy2 * (1. / fGamma / << 971 fPlateThick / (4. * hbarc * energy2) << 972 tmp2 = std::sin(tmp1); 1010 tmp2 = std::sin(tmp1); 973 tmp = energy2 * tmp2 * tmp2; << 1011 tmp = energy2*tmp2*tmp2; 974 tmp2 = fPlateThick / (4. * tmp1); << 1012 tmp2 = fPlateThick/(4.*tmp1); 975 tmp1 = << 1013 tmp1 = hbarc*energy2/( energy2*energy2*(1./fGamma/fGamma + varAngle) + fSigma2 ); 976 hbarc * energy2 / << 1014 tmp *= (tmp1-tmp2)*(tmp1-tmp2); 977 (energy2 * energy2 * (1. / fGamma / << 1015 tmp1 = cof1/(4.*hbarc) - cof2/(4.*hbarc*energy2*energy2); 978 tmp *= (tmp1 - tmp2) * (tmp1 - tmp2); << 1016 tmp2 = std::abs(tmp1); 979 tmp1 = cof1 / (4. * hbarc) - cof2 / (4 << 1017 if(tmp2 > 0.) tmp /= tmp2; 980 tmp2 = std::abs(tmp1); << 1018 else continue; 981 << 982 if(tmp2 > 0.) << 983 tmp /= tmp2; << 984 else << 985 continue; << 986 } 1019 } 987 sum += tmp; 1020 sum += tmp; 988 } 1021 } >> 1022 // G4cout<<"k = "<<k<<"; energy1 = "<<energy1/keV<<" keV; energy2 = "<<energy2/keV >> 1023 // <<" keV; tmp = "<<tmp<<"; sum = "<<sum<<G4endl; 989 } 1024 } 990 result = 4. * pi * fPlateNumber * sum * varA << 1025 result = 4.*pi*fPlateNumber*sum*varAngle; 991 result /= hbarc * hbarc; << 1026 result /= hbarc*hbarc; 992 1027 >> 1028 // old code based on general numeric integration >> 1029 // fVarAngle = varAngle; >> 1030 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; >> 1031 // result = integral.Legendre10(this,&G4VXTRenergyLoss::AngleSpectralXTRdEdx, >> 1032 // fMinEnergyTR,fMaxEnergyTR); 993 return result; 1033 return result; 994 } 1034 } 995 1035 >> 1036 >> 1037 ////////////////////////////////////////////////////////////////////// 996 ////////////////////////////////////////////// 1038 ////////////////////////////////////////////////////////////////////// >> 1039 ////////////////////////////////////////////////////////////////////// >> 1040 // 997 // Calculates formation zone for plates. Omega 1041 // Calculates formation zone for plates. Omega is energy !!! 998 G4double G4VXTRenergyLoss::GetPlateFormationZo << 1042 999 << 1043 G4double G4VXTRenergyLoss::GetPlateFormationZone( G4double omega , >> 1044 G4double gamma , >> 1045 G4double varAngle ) 1000 { 1046 { 1001 G4double cof, lambda; 1047 G4double cof, lambda; 1002 lambda = 1.0 / gamma / gamma + varAngle + f << 1048 lambda = 1.0/gamma/gamma + varAngle + fSigma1/omega/omega; 1003 cof = 2.0 * hbarc / omega / lambda; << 1049 cof = 2.0*hbarc/omega/lambda; 1004 return cof; 1050 return cof; 1005 } 1051 } 1006 1052 1007 ///////////////////////////////////////////// 1053 ////////////////////////////////////////////////////////////////////// >> 1054 // 1008 // Calculates complex formation zone for plat 1055 // Calculates complex formation zone for plates. Omega is energy !!! 1009 G4complex G4VXTRenergyLoss::GetPlateComplexFZ << 1056 1010 << 1057 G4complex G4VXTRenergyLoss::GetPlateComplexFZ( G4double omega , >> 1058 G4double gamma , >> 1059 G4double varAngle ) 1011 { 1060 { 1012 G4double cof, length, delta, real_v, image_ << 1061 G4double cof, length,delta, real_v, image_v; 1013 1062 1014 length = 0.5 * GetPlateFormationZone(omega, << 1063 length = 0.5*GetPlateFormationZone(omega,gamma,varAngle); 1015 delta = length * GetPlateLinearPhotoAbs(om << 1064 delta = length*GetPlateLinearPhotoAbs(omega); 1016 cof = 1.0 / (1.0 + delta * delta); << 1065 cof = 1.0/(1.0 + delta*delta); 1017 1066 1018 real_v = length * cof; << 1067 real_v = length*cof; 1019 image_v = real_v * delta; << 1068 image_v = real_v*delta; 1020 1069 1021 G4complex zone(real_v, image_v); << 1070 G4complex zone(real_v,image_v); 1022 return zone; 1071 return zone; 1023 } 1072 } 1024 1073 1025 ///////////////////////////////////////////// 1074 //////////////////////////////////////////////////////////////////////// >> 1075 // 1026 // Computes matrix of Sandia photo absorption 1076 // Computes matrix of Sandia photo absorption cross section coefficients for 1027 // plate material 1077 // plate material 1028 void G4VXTRenergyLoss::ComputePlatePhotoAbsCo << 1078 >> 1079 void G4VXTRenergyLoss::ComputePlatePhotoAbsCof() 1029 { 1080 { 1030 const G4MaterialTable* theMaterialTable = G 1081 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1031 const G4Material* mat = ( << 1082 const G4Material* mat = (*theMaterialTable)[fMatIndex1]; 1032 fPlatePhotoAbsCof = m << 1083 fPlatePhotoAbsCof = mat->GetSandiaTable(); 1033 1084 1034 return; 1085 return; 1035 } 1086 } 1036 1087 >> 1088 >> 1089 1037 ///////////////////////////////////////////// 1090 ////////////////////////////////////////////////////////////////////// 1038 // Returns the value of linear photo absorpti << 1091 // >> 1092 // Returns the value of linear photo absorption coefficient (in reciprocal 1039 // length) for plate for given energy of X-ra 1093 // length) for plate for given energy of X-ray photon omega 1040 G4double G4VXTRenergyLoss::GetPlateLinearPhot << 1094 >> 1095 G4double G4VXTRenergyLoss::GetPlateLinearPhotoAbs(G4double omega) 1041 { 1096 { 1042 G4double omega2, omega3, omega4; << 1097 // G4int i; >> 1098 G4double omega2, omega3, omega4; 1043 1099 1044 omega2 = omega * omega; << 1100 omega2 = omega*omega; 1045 omega3 = omega2 * omega; << 1101 omega3 = omega2*omega; 1046 omega4 = omega2 * omega2; << 1102 omega4 = omega2*omega2; 1047 1103 1048 const G4double* SandiaCof = fPlatePhotoAbsC 1104 const G4double* SandiaCof = fPlatePhotoAbsCof->GetSandiaCofForMaterial(omega); 1049 G4double cross = SandiaCof[0] / << 1105 G4double cross = SandiaCof[0]/omega + SandiaCof[1]/omega2 + 1050 SandiaCof[2] / omega3 + Sa << 1106 SandiaCof[2]/omega3 + SandiaCof[3]/omega4; 1051 return cross; 1107 return cross; 1052 } 1108 } 1053 1109 >> 1110 1054 ///////////////////////////////////////////// 1111 ////////////////////////////////////////////////////////////////////// >> 1112 // 1055 // Calculates formation zone for gas. Omega i 1113 // Calculates formation zone for gas. Omega is energy !!! 1056 G4double G4VXTRenergyLoss::GetGasFormationZon << 1114 1057 << 1115 G4double G4VXTRenergyLoss::GetGasFormationZone( G4double omega , >> 1116 G4double gamma , >> 1117 G4double varAngle ) 1058 { 1118 { 1059 G4double cof, lambda; 1119 G4double cof, lambda; 1060 lambda = 1.0 / gamma / gamma + varAngle + f << 1120 lambda = 1.0/gamma/gamma + varAngle + fSigma2/omega/omega; 1061 cof = 2.0 * hbarc / omega / lambda; << 1121 cof = 2.0*hbarc/omega/lambda; 1062 return cof; 1122 return cof; 1063 } 1123 } 1064 1124 >> 1125 1065 ///////////////////////////////////////////// 1126 ////////////////////////////////////////////////////////////////////// >> 1127 // 1066 // Calculates complex formation zone for gas 1128 // Calculates complex formation zone for gas gaps. Omega is energy !!! 1067 G4complex G4VXTRenergyLoss::GetGasComplexFZ(G << 1129 1068 G << 1130 G4complex G4VXTRenergyLoss::GetGasComplexFZ( G4double omega , >> 1131 G4double gamma , >> 1132 G4double varAngle ) 1069 { 1133 { 1070 G4double cof, length, delta, real_v, image_ << 1134 G4double cof, length,delta, real_v, image_v; 1071 1135 1072 length = 0.5 * GetGasFormationZone(omega, g << 1136 length = 0.5*GetGasFormationZone(omega,gamma,varAngle); 1073 delta = length * GetGasLinearPhotoAbs(omeg << 1137 delta = length*GetGasLinearPhotoAbs(omega); 1074 cof = 1.0 / (1.0 + delta * delta); << 1138 cof = 1.0/(1.0 + delta*delta); 1075 1139 1076 real_v = length * cof; << 1140 real_v = length*cof; 1077 image_v = real_v * delta; << 1141 image_v = real_v*delta; 1078 1142 1079 G4complex zone(real_v, image_v); << 1143 G4complex zone(real_v,image_v); 1080 return zone; 1144 return zone; 1081 } 1145 } 1082 1146 >> 1147 >> 1148 1083 ///////////////////////////////////////////// 1149 //////////////////////////////////////////////////////////////////////// >> 1150 // 1084 // Computes matrix of Sandia photo absorption 1151 // Computes matrix of Sandia photo absorption cross section coefficients for 1085 // gas material 1152 // gas material 1086 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof( << 1153 >> 1154 void G4VXTRenergyLoss::ComputeGasPhotoAbsCof() 1087 { 1155 { 1088 const G4MaterialTable* theMaterialTable = G 1156 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1089 const G4Material* mat = ( << 1157 const G4Material* mat = (*theMaterialTable)[fMatIndex2]; 1090 fGasPhotoAbsCof = m << 1158 fGasPhotoAbsCof = mat->GetSandiaTable(); 1091 return; 1159 return; 1092 } 1160 } 1093 1161 1094 ///////////////////////////////////////////// 1162 ////////////////////////////////////////////////////////////////////// 1095 // Returns the value of linear photo absorpti << 1163 // >> 1164 // Returns the value of linear photo absorption coefficient (in reciprocal 1096 // length) for gas 1165 // length) for gas 1097 G4double G4VXTRenergyLoss::GetGasLinearPhotoA << 1166 >> 1167 G4double G4VXTRenergyLoss::GetGasLinearPhotoAbs(G4double omega) 1098 { 1168 { 1099 G4double omega2, omega3, omega4; << 1169 G4double omega2, omega3, omega4; 1100 1170 1101 omega2 = omega * omega; << 1171 omega2 = omega*omega; 1102 omega3 = omega2 * omega; << 1172 omega3 = omega2*omega; 1103 omega4 = omega2 * omega2; << 1173 omega4 = omega2*omega2; 1104 1174 1105 const G4double* SandiaCof = fGasPhotoAbsCof 1175 const G4double* SandiaCof = fGasPhotoAbsCof->GetSandiaCofForMaterial(omega); 1106 G4double cross = SandiaCof[0] / << 1176 G4double cross = SandiaCof[0]/omega + SandiaCof[1]/omega2 + 1107 SandiaCof[2] / omega3 + Sa << 1177 SandiaCof[2]/omega3 + SandiaCof[3]/omega4; 1108 return cross; 1178 return cross; >> 1179 1109 } 1180 } 1110 1181 1111 ///////////////////////////////////////////// 1182 ////////////////////////////////////////////////////////////////////// 1112 // Calculates the product of linear cof by fo << 1183 // >> 1184 // Calculates the product of linear cof by formation zone for plate. 1113 // Omega is energy !!! 1185 // Omega is energy !!! 1114 G4double G4VXTRenergyLoss::GetPlateZmuProduct << 1186 1115 << 1187 G4double G4VXTRenergyLoss::GetPlateZmuProduct( G4double omega , >> 1188 G4double gamma , >> 1189 G4double varAngle ) 1116 { 1190 { 1117 return GetPlateFormationZone(omega, gamma, << 1191 return GetPlateFormationZone(omega,gamma,varAngle) 1118 GetPlateLinearPhotoAbs(omega); << 1192 * GetPlateLinearPhotoAbs(omega); 1119 } 1193 } 1120 ///////////////////////////////////////////// 1194 ////////////////////////////////////////////////////////////////////// 1121 // Calculates the product of linear cof by fo << 1195 // >> 1196 // Calculates the product of linear cof by formation zone for plate. 1122 // G4cout and output in file in some energy r 1197 // G4cout and output in file in some energy range. 1123 void G4VXTRenergyLoss::GetPlateZmuProduct() << 1198 >> 1199 void G4VXTRenergyLoss::GetPlateZmuProduct() 1124 { 1200 { 1125 std::ofstream outPlate("plateZmu.dat", std: << 1201 std::ofstream outPlate("plateZmu.dat", std::ios::out ); 1126 outPlate.setf(std::ios::scientific, std::io << 1202 outPlate.setf( std::ios::scientific, std::ios::floatfield ); 1127 1203 1128 G4int i; 1204 G4int i; 1129 G4double omega, varAngle, gamma; 1205 G4double omega, varAngle, gamma; 1130 gamma = 10000.; << 1206 gamma = 10000.; 1131 varAngle = 1 / gamma / gamma; << 1207 varAngle = 1/gamma/gamma; 1132 if(verboseLevel > 0) 1208 if(verboseLevel > 0) 1133 G4cout << "energy, keV" << "\t" << "Zmu f << 1209 G4cout<<"energy, keV"<<"\t"<<"Zmu for plate"<<G4endl; 1134 for(i = 0; i < 100; ++i) << 1210 for(i=0;i<100;i++) 1135 { 1211 { 1136 omega = (1.0 + i) * keV; << 1212 omega = (1.0 + i)*keV; 1137 if(verboseLevel > 1) 1213 if(verboseLevel > 1) 1138 G4cout << omega / keV << "\t" << 1214 G4cout<<omega/keV<<"\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<"\t"; 1139 << GetPlateZmuProduct(omega, gam << 1140 if(verboseLevel > 0) 1215 if(verboseLevel > 0) 1141 outPlate << omega / keV << "\t\t" << 1216 outPlate<<omega/keV<<"\t\t"<<GetPlateZmuProduct(omega,gamma,varAngle)<<G4endl; 1142 << GetPlateZmuProduct(omega, g << 1143 } 1217 } 1144 return; 1218 return; 1145 } 1219 } 1146 1220 1147 ///////////////////////////////////////////// 1221 ////////////////////////////////////////////////////////////////////// 1148 // Calculates the product of linear cof by fo << 1222 // >> 1223 // Calculates the product of linear cof by formation zone for gas. 1149 // Omega is energy !!! 1224 // Omega is energy !!! 1150 G4double G4VXTRenergyLoss::GetGasZmuProduct(G << 1225 1151 G << 1226 G4double G4VXTRenergyLoss::GetGasZmuProduct( G4double omega , >> 1227 G4double gamma , >> 1228 G4double varAngle ) 1152 { 1229 { 1153 return GetGasFormationZone(omega, gamma, va << 1230 return GetGasFormationZone(omega,gamma,varAngle)*GetGasLinearPhotoAbs(omega); 1154 GetGasLinearPhotoAbs(omega); << 1155 } 1231 } 1156 << 1157 ///////////////////////////////////////////// 1232 ////////////////////////////////////////////////////////////////////// 1158 // Calculates the product of linear cof by fo << 1233 // >> 1234 // Calculates the product of linear cof byformation zone for gas. 1159 // G4cout and output in file in some energy r 1235 // G4cout and output in file in some energy range. 1160 void G4VXTRenergyLoss::GetGasZmuProduct() << 1236 >> 1237 void G4VXTRenergyLoss::GetGasZmuProduct() 1161 { 1238 { 1162 std::ofstream outGas("gasZmu.dat", std::ios << 1239 std::ofstream outGas("gasZmu.dat", std::ios::out ); 1163 outGas.setf(std::ios::scientific, std::ios: << 1240 outGas.setf( std::ios::scientific, std::ios::floatfield ); 1164 G4int i; 1241 G4int i; 1165 G4double omega, varAngle, gamma; 1242 G4double omega, varAngle, gamma; 1166 gamma = 10000.; << 1243 gamma = 10000.; 1167 varAngle = 1 / gamma / gamma; << 1244 varAngle = 1/gamma/gamma; 1168 if(verboseLevel > 0) 1245 if(verboseLevel > 0) 1169 G4cout << "energy, keV" << "\t" << "Zmu f << 1246 G4cout<<"energy, keV"<<"\t"<<"Zmu for gas"<<G4endl; 1170 for(i = 0; i < 100; ++i) << 1247 for(i=0;i<100;i++) 1171 { 1248 { 1172 omega = (1.0 + i) * keV; << 1249 omega = (1.0 + i)*keV; 1173 if(verboseLevel > 1) 1250 if(verboseLevel > 1) 1174 G4cout << omega / keV << "\t" << GetGas << 1251 G4cout<<omega/keV<<"\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<"\t"; 1175 << "\t"; << 1176 if(verboseLevel > 0) 1252 if(verboseLevel > 0) 1177 outGas << omega / keV << "\t\t" << 1253 outGas<<omega/keV<<"\t\t"<<GetGasZmuProduct(omega,gamma,varAngle)<<G4endl; 1178 << GetGasZmuProduct(omega, gamma << 1179 } 1254 } 1180 return; 1255 return; 1181 } 1256 } 1182 1257 1183 ///////////////////////////////////////////// 1258 //////////////////////////////////////////////////////////////////////// >> 1259 // 1184 // Computes Compton cross section for plate m 1260 // Computes Compton cross section for plate material in 1/mm 1185 G4double G4VXTRenergyLoss::GetPlateCompton(G4 << 1261 >> 1262 G4double G4VXTRenergyLoss::GetPlateCompton(G4double omega) 1186 { 1263 { 1187 G4int i, numberOfElements; 1264 G4int i, numberOfElements; 1188 G4double xSection = 0., nowZ, sumZ = 0.; 1265 G4double xSection = 0., nowZ, sumZ = 0.; 1189 1266 1190 const G4MaterialTable* theMaterialTable = G 1267 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1191 numberOfElements = (G4int)(*theMaterialTabl << 1268 numberOfElements = (*theMaterialTable)[fMatIndex1]->GetNumberOfElements(); 1192 1269 1193 for(i = 0; i < numberOfElements; ++i) << 1270 for( i = 0; i < numberOfElements; i++ ) 1194 { 1271 { 1195 nowZ = (*theMaterialTable)[fMatIndex1]->G << 1272 nowZ = (*theMaterialTable)[fMatIndex1]->GetElement(i)->GetZ(); 1196 sumZ += nowZ; << 1273 sumZ += nowZ; 1197 xSection += GetComptonPerAtom(omega, nowZ << 1274 xSection += GetComptonPerAtom(omega,nowZ); // *nowZ; 1198 } 1275 } 1199 xSection /= sumZ; 1276 xSection /= sumZ; 1200 xSection *= (*theMaterialTable)[fMatIndex1] 1277 xSection *= (*theMaterialTable)[fMatIndex1]->GetElectronDensity(); 1201 return xSection; 1278 return xSection; 1202 } 1279 } 1203 1280 >> 1281 1204 ///////////////////////////////////////////// 1282 //////////////////////////////////////////////////////////////////////// >> 1283 // 1205 // Computes Compton cross section for gas mat 1284 // Computes Compton cross section for gas material in 1/mm 1206 G4double G4VXTRenergyLoss::GetGasCompton(G4do << 1285 >> 1286 G4double G4VXTRenergyLoss::GetGasCompton(G4double omega) 1207 { 1287 { 1208 G4double xSection = 0., sumZ = 0.; << 1288 G4int i, numberOfElements; >> 1289 G4double xSection = 0., nowZ, sumZ = 0.; 1209 1290 1210 const G4MaterialTable* theMaterialTable = G 1291 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1211 G4int numberOfElements = (G4int)(*theMateri << 1292 numberOfElements = (*theMaterialTable)[fMatIndex2]->GetNumberOfElements(); 1212 1293 1213 for (G4int i = 0; i < numberOfElements; ++i << 1294 for( i = 0; i < numberOfElements; i++ ) 1214 { 1295 { 1215 G4double nowZ = (*theMaterialTable)[fMatI << 1296 nowZ = (*theMaterialTable)[fMatIndex2]->GetElement(i)->GetZ(); 1216 sumZ += nowZ; << 1297 sumZ += nowZ; 1217 xSection += GetComptonPerAtom(omega, nowZ << 1298 xSection += GetComptonPerAtom(omega,nowZ); // *nowZ; 1218 } 1299 } 1219 if (sumZ > 0.0) { xSection /= sumZ; } << 1300 xSection /= sumZ; 1220 xSection *= (*theMaterialTable)[fMatIndex2] 1301 xSection *= (*theMaterialTable)[fMatIndex2]->GetElectronDensity(); 1221 return xSection; 1302 return xSection; 1222 } 1303 } 1223 1304 1224 ///////////////////////////////////////////// 1305 //////////////////////////////////////////////////////////////////////// >> 1306 // 1225 // Computes Compton cross section per atom wi 1307 // Computes Compton cross section per atom with Z electrons for gamma with 1226 // the energy GammaEnergy 1308 // the energy GammaEnergy 1227 G4double G4VXTRenergyLoss::GetComptonPerAtom( << 1309 >> 1310 G4double G4VXTRenergyLoss::GetComptonPerAtom(G4double GammaEnergy, G4double Z) 1228 { 1311 { 1229 G4double CrossSection = 0.0; 1312 G4double CrossSection = 0.0; 1230 if(Z < 0.9999) << 1313 if ( Z < 0.9999 ) return CrossSection; 1231 return CrossSection; << 1314 if ( GammaEnergy < 0.1*keV ) return CrossSection; 1232 if(GammaEnergy < 0.1 * keV) << 1315 if ( GammaEnergy > (100.*GeV/Z) ) return CrossSection; 1233 return CrossSection; << 1316 1234 if(GammaEnergy > (100. * GeV / Z)) << 1317 static const G4double a = 20.0 , b = 230.0 , c = 440.0; 1235 return CrossSection; << 1318 1236 << 1319 static const G4double 1237 static constexpr G4double a = 20.0; << 1320 d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn, 1238 static constexpr G4double b = 230.0; << 1321 e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn, 1239 static constexpr G4double c = 440.0; << 1322 f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn; 1240 << 1323 1241 static constexpr G4double d1 = 2.7965e-1 * << 1324 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z), 1242 d3 = 6.7527 * bar << 1325 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z); 1243 e1 = 1.9756e-5 * << 1326 1244 e3 = -7.3913e-2 * << 1327 G4double T0 = 15.0*keV; 1245 f1 = -3.9178e-7 * << 1328 if (Z < 1.5) T0 = 40.0*keV; 1246 f3 = 6.0480e-5 * << 1329 1247 << 1330 G4double X = std::max(GammaEnergy, T0) / electron_mass_c2; 1248 G4double p1Z = Z * (d1 + e1 * Z + f1 * Z * << 1331 CrossSection = p1Z*std::log(1.+2.*X)/X 1249 G4double p2Z = Z * (d2 + e2 * Z + f2 * Z * << 1332 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 1250 G4double p3Z = Z * (d3 + e3 * Z + f3 * Z * << 1251 G4double p4Z = Z * (d4 + e4 * Z + f4 * Z * << 1252 << 1253 G4double T0 = 15.0 * keV; << 1254 if(Z < 1.5) << 1255 T0 = 40.0 * keV; << 1256 << 1257 G4double X = std::max(GammaEnergy, T0) / el << 1258 CrossSection = << 1259 p1Z * std::log(1. + 2. * X) / X + << 1260 (p2Z + p3Z * X + p4Z * X * X) / (1. + a * << 1261 1333 1262 // modification for low energy. (special c 1334 // modification for low energy. (special case for Hydrogen) 1263 if(GammaEnergy < T0) << 1335 >> 1336 if (GammaEnergy < T0) 1264 { 1337 { 1265 G4double dT0 = 1. * keV; << 1338 G4double dT0 = 1.*keV; 1266 X = (T0 + dT0) / electron_mass << 1339 X = (T0+dT0) / electron_mass_c2; 1267 G4double sigma = << 1340 G4double sigma = p1Z*std::log(1.+2.*X)/X 1268 p1Z * std::log(1. + 2. * X) / X + << 1341 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 1269 (p2Z + p3Z * X + p4Z * X * X) / (1. + a << 1342 G4double c1 = -T0*(sigma-CrossSection)/(CrossSection*dT0); 1270 G4double c1 = -T0 * (sigma - CrossSection << 1343 G4double c2 = 0.150; 1271 G4double c2 = 0.150; << 1344 if (Z > 1.5) c2 = 0.375-0.0556*std::log(Z); 1272 if(Z > 1.5) << 1345 G4double y = std::log(GammaEnergy/T0); 1273 c2 = 0.375 - 0.0556 * std::log(Z); << 1346 CrossSection *= std::exp(-y*(c1+c2*y)); 1274 G4double y = std::log(GammaEnergy / T0); << 1275 CrossSection *= std::exp(-y * (c1 + c2 * << 1276 } 1347 } 1277 return CrossSection; << 1348 // G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << CrossSection << G4endl; >> 1349 return CrossSection; 1278 } 1350 } 1279 1351 >> 1352 1280 ///////////////////////////////////////////// 1353 /////////////////////////////////////////////////////////////////////// >> 1354 // 1281 // This function returns the spectral and ang 1355 // This function returns the spectral and angle density of TR quanta 1282 // in X-ray energy region generated forward w 1356 // in X-ray energy region generated forward when a relativistic 1283 // charged particle crosses interface between 1357 // charged particle crosses interface between two materials. 1284 // The high energy small theta approximation 1358 // The high energy small theta approximation is applied. 1285 // (matter1 -> matter2, or 2->1) 1359 // (matter1 -> matter2, or 2->1) 1286 // varAngle =2* (1 - std::cos(theta)) or appr 1360 // varAngle =2* (1 - std::cos(theta)) or approximately = theta*theta 1287 G4double G4VXTRenergyLoss::OneBoundaryXTRNden << 1361 // 1288 << 1362 1289 << 1363 G4double 1290 { << 1364 G4VXTRenergyLoss::OneBoundaryXTRNdensity( G4double energy,G4double gamma, 1291 G4double formationLength1, formationLength2 << 1365 G4double varAngle ) const 1292 formationLength1 = << 1366 { 1293 1.0 / (1.0 / (gamma * gamma) + fSigma1 / << 1367 G4double formationLength1, formationLength2; 1294 formationLength2 = << 1368 formationLength1 = 1.0/ 1295 1.0 / (1.0 / (gamma * gamma) + fSigma2 / << 1369 (1.0/(gamma*gamma) 1296 return (varAngle / energy) * (formationLeng << 1370 + fSigma1/(energy*energy) 1297 (formationLength1 - formationLength2 << 1371 + varAngle); >> 1372 formationLength2 = 1.0/ >> 1373 (1.0/(gamma*gamma) >> 1374 + fSigma2/(energy*energy) >> 1375 + varAngle); >> 1376 return (varAngle/energy)*(formationLength1 - formationLength2) >> 1377 *(formationLength1 - formationLength2); >> 1378 1298 } 1379 } 1299 1380 1300 G4double G4VXTRenergyLoss::GetStackFactor(G4d << 1381 G4double G4VXTRenergyLoss::GetStackFactor( G4double energy, G4double gamma, 1301 G4d << 1382 G4double varAngle ) 1302 { 1383 { 1303 // return stack factor corresponding to one 1384 // return stack factor corresponding to one interface 1304 return std::real(OneInterfaceXTRdEdx(energy << 1385 >> 1386 return std::real( OneInterfaceXTRdEdx(energy,gamma,varAngle) ); 1305 } 1387 } 1306 1388 1307 ///////////////////////////////////////////// 1389 ////////////////////////////////////////////////////////////////////////////// >> 1390 // 1308 // For photon energy distribution tables. Int 1391 // For photon energy distribution tables. Integrate first over angle >> 1392 // >> 1393 1309 G4double G4VXTRenergyLoss::XTRNSpectralAngleD 1394 G4double G4VXTRenergyLoss::XTRNSpectralAngleDensity(G4double varAngle) 1310 { 1395 { 1311 return OneBoundaryXTRNdensity(fEnergy, fGam << 1396 return OneBoundaryXTRNdensity(fEnergy,fGamma,varAngle)* 1312 GetStackFactor(fEnergy, fGamma, varA << 1397 GetStackFactor(fEnergy,fGamma,varAngle); 1313 } 1398 } 1314 1399 1315 ///////////////////////////////////////////// 1400 ///////////////////////////////////////////////////////////////////////// >> 1401 // 1316 // For second integration over energy 1402 // For second integration over energy >> 1403 1317 G4double G4VXTRenergyLoss::XTRNSpectralDensit 1404 G4double G4VXTRenergyLoss::XTRNSpectralDensity(G4double energy) 1318 { 1405 { 1319 fEnergy = energy; 1406 fEnergy = energy; 1320 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 1407 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 1321 integral; << 1408 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1322 return integral.Legendre96(this, &G4VXTRene << 1409 0.0,0.2*fMaxThetaTR) + 1323 0.0, 0.2 * fMaxT << 1410 integral.Legendre10(this,&G4VXTRenergyLoss::XTRNSpectralAngleDensity, 1324 integral.Legendre10(this, &G4VXTRene << 1411 0.2*fMaxThetaTR,fMaxThetaTR); 1325 0.2 * fMaxThetaT << 1412 } 1326 } << 1413 1327 << 1328 ///////////////////////////////////////////// 1414 ////////////////////////////////////////////////////////////////////////// >> 1415 // 1329 // for photon angle distribution tables 1416 // for photon angle distribution tables >> 1417 // >> 1418 1330 G4double G4VXTRenergyLoss::XTRNAngleSpectralD 1419 G4double G4VXTRenergyLoss::XTRNAngleSpectralDensity(G4double energy) 1331 { 1420 { 1332 return OneBoundaryXTRNdensity(energy, fGamm << 1421 return OneBoundaryXTRNdensity(energy,fGamma,fVarAngle)* 1333 GetStackFactor(energy, fGamma, fVarA << 1422 GetStackFactor(energy,fGamma,fVarAngle); 1334 } << 1423 } 1335 1424 1336 ///////////////////////////////////////////// 1425 /////////////////////////////////////////////////////////////////////////// 1337 G4double G4VXTRenergyLoss::XTRNAngleDensity(G << 1426 // >> 1427 // >> 1428 >> 1429 G4double G4VXTRenergyLoss::XTRNAngleDensity(G4double varAngle) 1338 { 1430 { 1339 fVarAngle = varAngle; 1431 fVarAngle = varAngle; 1340 G4Integrator<G4VXTRenergyLoss, G4double (G4 << 1432 G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral; 1341 integral; << 1433 return integral.Legendre96(this,&G4VXTRenergyLoss::XTRNAngleSpectralDensity, 1342 return integral.Legendre96(this, &G4VXTRene << 1434 fMinEnergyTR,fMaxEnergyTR); 1343 fMinEnergyTR, fM << 1344 } 1435 } 1345 1436 1346 ///////////////////////////////////////////// 1437 ////////////////////////////////////////////////////////////////////////////// 1347 // Check number of photons for a range of Lor << 1438 // >> 1439 // Check number of photons for a range of Lorentz factors from both energy 1348 // and angular tables 1440 // and angular tables >> 1441 1349 void G4VXTRenergyLoss::GetNumberOfPhotons() 1442 void G4VXTRenergyLoss::GetNumberOfPhotons() 1350 { 1443 { 1351 G4int iTkin; 1444 G4int iTkin; 1352 G4double gamma, numberE; 1445 G4double gamma, numberE; 1353 1446 1354 std::ofstream outEn("numberE.dat", std::ios << 1447 std::ofstream outEn("numberE.dat", std::ios::out ); 1355 outEn.setf(std::ios::scientific, std::ios:: << 1448 outEn.setf( std::ios::scientific, std::ios::floatfield ); 1356 1449 1357 std::ofstream outAng("numberAng.dat", std:: << 1450 std::ofstream outAng("numberAng.dat", std::ios::out ); 1358 outAng.setf(std::ios::scientific, std::ios: << 1451 outAng.setf( std::ios::scientific, std::ios::floatfield ); 1359 1452 1360 for(iTkin = 0; iTkin < fTotBin; ++iTkin) / << 1453 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 1361 { 1454 { 1362 gamma = << 1455 gamma = 1.0 + (fProtonEnergyVector-> 1363 1.0 + (fProtonEnergyVector->GetLowEdgeE << 1456 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 1364 numberE = (*(*fEnergyDistrTable)(iTkin))( << 1457 numberE = (*(*fEnergyDistrTable)(iTkin))(0); 1365 if(verboseLevel > 1) << 1458 // numberA = (*(*fAngleDistrTable)(iTkin))(0); 1366 G4cout << gamma << "\t\t" << numberE << << 1459 if(verboseLevel > 1) 1367 if(verboseLevel > 0) << 1460 G4cout<<gamma<<"\t\t"<<numberE<<"\t" // <<numberA 1368 outEn << gamma << "\t\t" << numberE << << 1461 <<G4endl; >> 1462 if(verboseLevel > 0) >> 1463 outEn<<gamma<<"\t\t"<<numberE<<G4endl; 1369 } 1464 } 1370 return; 1465 return; 1371 } << 1466 } 1372 1467 1373 ///////////////////////////////////////////// 1468 ///////////////////////////////////////////////////////////////////////// 1374 // Returns random energy of a X-ray TR photon << 1469 // >> 1470 // Returns randon energy of a X-ray TR photon for given scaled kinetic energy 1375 // of a charged particle 1471 // of a charged particle 1376 G4double G4VXTRenergyLoss::GetXTRrandomEnergy << 1472 >> 1473 G4double G4VXTRenergyLoss::GetXTRrandomEnergy( G4double scaledTkin, G4int iTkin ) 1377 { 1474 { 1378 G4int iTransfer, iPlace; 1475 G4int iTransfer, iPlace; 1379 G4double transfer = 0.0, position, E1, E2, 1476 G4double transfer = 0.0, position, E1, E2, W1, W2, W; 1380 1477 1381 iPlace = iTkin - 1; 1478 iPlace = iTkin - 1; 1382 1479 1383 if(iTkin == fTotBin) // relativistic plato << 1480 // G4cout<<"iPlace = "<<iPlace<<endl; >> 1481 >> 1482 if(iTkin == fTotBin) // relativistic plato, try from left 1384 { 1483 { 1385 position = (*(*fEnergyDistrTable)(iPlace) << 1484 position = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand(); 1386 1485 1387 for(iTransfer = 0;; ++iTransfer) << 1486 for(iTransfer=0;;iTransfer++) 1388 { << 1487 { 1389 if(position >= (*(*fEnergyDistrTable)(i << 1488 if(position >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break; 1390 break; << 1489 } 1391 } << 1490 transfer = GetXTRenergy(iPlace,position,iTransfer); 1392 transfer = GetXTRenergy(iPlace, position, << 1393 } 1491 } 1394 else 1492 else 1395 { 1493 { 1396 E1 = fProtonEnergyVector->GetLowEdgeEnerg << 1494 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1); 1397 E2 = fProtonEnergyVector->GetLowEdgeEnerg 1495 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin); 1398 W = 1.0 / (E2 - E1); << 1496 W = 1.0/(E2 - E1); 1399 W1 = (E2 - scaledTkin) * W; << 1497 W1 = (E2 - scaledTkin)*W; 1400 W2 = (scaledTkin - E1) * W; << 1498 W2 = (scaledTkin - E1)*W; 1401 << 1499 1402 position = ((*(*fEnergyDistrTable)(iPlace << 1500 position =( (*(*fEnergyDistrTable)(iPlace))(0)*W1 + 1403 (*(*fEnergyDistrTable)(iPlace << 1501 (*(*fEnergyDistrTable)(iPlace+1))(0)*W2 )*G4UniformRand(); 1404 G4UniformRand(); << 1502 1405 << 1503 // G4cout<<position<<"\t"; 1406 for(iTransfer = 0;; ++iTransfer) << 1504 1407 { << 1505 for(iTransfer=0;;iTransfer++) 1408 if(position >= ((*(*fEnergyDistrTable)( << 1506 { 1409 (*(*fEnergyDistrTable)( << 1507 if( position >= 1410 break; << 1508 ( (*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1 + 1411 } << 1509 (*(*fEnergyDistrTable)(iPlace+1))(iTransfer)*W2) ) break; 1412 transfer = GetXTRenergy(iPlace, position, << 1510 } 1413 } << 1511 transfer = GetXTRenergy(iPlace,position,iTransfer); 1414 if(transfer < 0.0) << 1512 1415 transfer = 0.0; << 1513 } >> 1514 // G4cout<<"XTR transfer = "<<transfer/keV<<" keV"<<endl; >> 1515 if(transfer < 0.0 ) transfer = 0.0; 1416 return transfer; 1516 return transfer; 1417 } 1517 } 1418 1518 1419 ///////////////////////////////////////////// 1519 //////////////////////////////////////////////////////////////////////// >> 1520 // 1420 // Returns approximate position of X-ray phot 1521 // Returns approximate position of X-ray photon energy during random sampling 1421 // over integral energy distribution 1522 // over integral energy distribution 1422 G4double G4VXTRenergyLoss::GetXTRenergy(G4int << 1523 >> 1524 G4double G4VXTRenergyLoss::GetXTRenergy( G4int iPlace, >> 1525 G4double /* position */, >> 1526 G4int iTransfer ) 1423 { 1527 { 1424 G4double x1, x2, y1, y2, result; 1528 G4double x1, x2, y1, y2, result; 1425 1529 1426 if(iTransfer == 0) 1530 if(iTransfer == 0) 1427 { 1531 { 1428 result = (*fEnergyDistrTable)(iPlace)->Ge 1532 result = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer); 1429 } << 1533 } 1430 else 1534 else 1431 { 1535 { 1432 y1 = (*(*fEnergyDistrTable)(iPlace))(iTra << 1536 y1 = (*(*fEnergyDistrTable)(iPlace))(iTransfer-1); 1433 y2 = (*(*fEnergyDistrTable)(iPlace))(iTra 1537 y2 = (*(*fEnergyDistrTable)(iPlace))(iTransfer); 1434 1538 1435 x1 = (*fEnergyDistrTable)(iPlace)->GetLow << 1539 x1 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1); 1436 x2 = (*fEnergyDistrTable)(iPlace)->GetLow 1540 x2 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer); 1437 1541 1438 if(x1 == x2) << 1542 if ( x1 == x2 ) result = x2; 1439 result = x2; << 1440 else 1543 else 1441 { 1544 { 1442 if(y1 == y2) << 1545 if ( y1 == y2 ) result = x1 + (x2 - x1)*G4UniformRand(); 1443 result = x1 + (x2 - x1) * G4UniformRa << 1444 else 1546 else 1445 { 1547 { 1446 result = x1 + (x2 - x1) * G4UniformRa << 1548 // result = x1 + (position - y1)*(x2 - x1)/(y2 - y1); >> 1549 result = x1 + (x2 - x1)*G4UniformRand(); 1447 } 1550 } 1448 } 1551 } 1449 } 1552 } 1450 return result; 1553 return result; 1451 } 1554 } 1452 1555 1453 ///////////////////////////////////////////// 1556 ///////////////////////////////////////////////////////////////////////// >> 1557 // 1454 // Get XTR photon angle at given energy and 1558 // Get XTR photon angle at given energy and Tkin 1455 1559 1456 G4double G4VXTRenergyLoss::GetRandomAngle(G4d << 1560 G4double G4VXTRenergyLoss::GetRandomAngle( G4double energyXTR, G4int iTkin ) 1457 { 1561 { 1458 G4int iTR, iAngle; 1562 G4int iTR, iAngle; 1459 G4double position, angle; 1563 G4double position, angle; 1460 1564 1461 if(iTkin == fTotBin) << 1565 if (iTkin == fTotBin) iTkin--; 1462 --iTkin; << 1463 1566 1464 fAngleForEnergyTable = fAngleBank[iTkin]; 1567 fAngleForEnergyTable = fAngleBank[iTkin]; 1465 1568 1466 for(iTR = 0; iTR < fBinTR; ++iTR) << 1569 for( iTR = 0; iTR < fBinTR; iTR++ ) 1467 { 1570 { 1468 if(energyXTR < fXTREnergyVector->GetLowEd << 1571 if( energyXTR < fXTREnergyVector->GetLowEdgeEnergy(iTR) ) break; 1469 break; << 1470 } 1572 } 1471 if(iTR == fBinTR) << 1573 if (iTR == fBinTR) iTR--; 1472 --iTR; << 1574 1473 << 1575 position = (*(*fAngleForEnergyTable)(iTR))(0)*G4UniformRand(); 1474 position = (*(*fAngleForEnergyTable)(iTR))( << 1475 // position = (*(*fAngleForEnergyTable)(iTR << 1476 1576 1477 for(iAngle = 0;; ++iAngle) << 1577 for(iAngle = 0;;iAngle++) 1478 // for(iAngle = 1;; ++iAngle) // ATLAS TB << 1479 { 1578 { 1480 if(position >= (*(*fAngleForEnergyTable)( << 1579 if(position >= (*(*fAngleForEnergyTable)(iTR))(iAngle)) break; 1481 break; << 1482 } 1580 } 1483 angle = GetAngleXTR(iTR, position, iAngle); << 1581 angle = GetAngleXTR(iTR,position,iAngle); 1484 return angle; 1582 return angle; 1485 } 1583 } 1486 1584 1487 ///////////////////////////////////////////// 1585 //////////////////////////////////////////////////////////////////////// 1488 // Returns approximate position of X-ray phot << 1586 // 1489 // random sampling over integral energy distr << 1587 // Returns approximate position of X-ray photon angle at given energy during random sampling >> 1588 // over integral energy distribution 1490 1589 1491 G4double G4VXTRenergyLoss::GetAngleXTR(G4int << 1590 G4double G4VXTRenergyLoss::GetAngleXTR( G4int iPlace, 1492 G4int << 1591 G4double position, >> 1592 G4int iTransfer ) 1493 { 1593 { 1494 G4double x1, x2, y1, y2, result; 1594 G4double x1, x2, y1, y2, result; 1495 1595 1496 if( iTransfer == 0 ) << 1596 if(iTransfer == 0) 1497 // if( iTransfer == 1 ) // ATLAS TB << 1498 { 1597 { 1499 result = (*fAngleForEnergyTable)(iPlace)- 1598 result = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer); 1500 } << 1599 } 1501 else 1600 else 1502 { 1601 { 1503 y1 = (*(*fAngleForEnergyTable)(iPlace))(i << 1602 y1 = (*(*fAngleForEnergyTable)(iPlace))(iTransfer-1); 1504 y2 = (*(*fAngleForEnergyTable)(iPlace))(i 1603 y2 = (*(*fAngleForEnergyTable)(iPlace))(iTransfer); 1505 1604 1506 x1 = (*fAngleForEnergyTable)(iPlace)->Get << 1605 x1 = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1); 1507 x2 = (*fAngleForEnergyTable)(iPlace)->Get 1606 x2 = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer); 1508 1607 1509 if(x1 == x2) result = x2; << 1608 if ( x1 == x2 ) result = x2; 1510 else 1609 else 1511 { 1610 { 1512 if( y1 == y2 ) result = x1 + (x2 - x1) << 1611 if ( y1 == y2 ) result = x1 + (x2 - x1)*G4UniformRand(); 1513 else 1612 else 1514 { 1613 { 1515 result = x1 + (position - y1) * (x2 - << 1614 result = x1 + (position - y1)*(x2 - x1)/(y2 - y1); 1516 // result = x1 + 0.1*(position - y1) << 1517 // result = x1 + 0.05*(position - y1) << 1518 } 1615 } 1519 } 1616 } 1520 } 1617 } 1521 return result; 1618 return result; 1522 } 1619 } >> 1620 >> 1621 >> 1622 // >> 1623 // >> 1624 /////////////////////////////////////////////////////////////////////// >> 1625 1523 1626