Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VMultipleScattering.cc,v 1.86 2010-10-26 11:30:46 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04-patch-01 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4VMultipleScattering 34 // File name: G4VMultipleScattering 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 25.03.2003 38 // Creation date: 25.03.2003 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 41 // >> 42 // 13.04.03 Change printout (V.Ivanchenko) >> 43 // 04-06-03 Fix compilation warnings (V.Ivanchenko) 40 // 16-07-03 Use G4VMscModel interface (V.Ivanc 44 // 16-07-03 Use G4VMscModel interface (V.Ivanchenko) 41 // 03-11-03 Fix initialisation problem in Retr 45 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) 42 // 04-11-03 Update PrintInfoDefinition (V.Ivan 46 // 04-11-03 Update PrintInfoDefinition (V.Ivanchenko) 43 // 01-03-04 SampleCosineTheta signature change 47 // 01-03-04 SampleCosineTheta signature changed 44 // 22-04-04 SampleCosineTheta signature change 48 // 22-04-04 SampleCosineTheta signature changed back to original 45 // 27-08-04 Add InitialiseForRun method (V.Iva 49 // 27-08-04 Add InitialiseForRun method (V.Ivanchneko) 46 // 08-11-04 Migration to new interface of Stor 50 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) 47 // 11-03-05 Shift verbose level by 1 (V.Ivantc 51 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) 48 // 15-04-05 optimize internal interface (V.Iva 52 // 15-04-05 optimize internal interface (V.Ivanchenko) 49 // 15-04-05 remove boundary flag (V.Ivanchenko 53 // 15-04-05 remove boundary flag (V.Ivanchenko) 50 // 27-10-05 introduce virtual function MscStep 54 // 27-10-05 introduce virtual function MscStepLimitation() (V.Ivanchenko) 51 // 12-04-07 Add verbosity at destruction (V.Iv 55 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) 52 // 27-10-07 Virtual functions moved to source 56 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 53 // 11-03-08 Set skin value does not effect ste 57 // 11-03-08 Set skin value does not effect step limit type (V.Ivanchenko) 54 // 24-06-09 Removed hidden bin in G4PhysicsVec 58 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) 55 // 04-06-13 Adoptation to MT mode (V.Ivanchenk << 56 // 59 // >> 60 // Class Description: >> 61 // >> 62 // It is the generic process of multiple scattering it includes common >> 63 // part of calculations for all charged particles 57 64 58 // ------------------------------------------- 65 // ------------------------------------------------------------------- 59 // 66 // 60 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 69 63 #include "G4VMultipleScattering.hh" 70 #include "G4VMultipleScattering.hh" 64 #include "G4PhysicalConstants.hh" << 65 #include "G4SystemOfUnits.hh" << 66 #include "G4LossTableManager.hh" 71 #include "G4LossTableManager.hh" 67 #include "G4MaterialCutsCouple.hh" << 68 #include "G4Step.hh" 72 #include "G4Step.hh" 69 #include "G4ParticleDefinition.hh" 73 #include "G4ParticleDefinition.hh" 70 #include "G4VEmFluctuationModel.hh" 74 #include "G4VEmFluctuationModel.hh" >> 75 #include "G4DataVector.hh" >> 76 #include "G4PhysicsTable.hh" >> 77 #include "G4PhysicsVector.hh" >> 78 #include "G4PhysicsLogVector.hh" 71 #include "G4UnitsTable.hh" 79 #include "G4UnitsTable.hh" 72 #include "G4ProductionCutsTable.hh" 80 #include "G4ProductionCutsTable.hh" 73 #include "G4Electron.hh" << 81 #include "G4Region.hh" >> 82 #include "G4RegionStore.hh" >> 83 #include "G4PhysicsTableHelper.hh" 74 #include "G4GenericIon.hh" 84 #include "G4GenericIon.hh" 75 #include "G4TransportationManager.hh" << 85 #include "G4Electron.hh" 76 #include "G4SafetyHelper.hh" << 86 #include "G4EmConfigurator.hh" 77 #include "G4ParticleTable.hh" << 78 #include "G4ProcessVector.hh" << 79 #include "G4ProcessManager.hh" << 80 #include "G4LossTableBuilder.hh" << 81 #include "G4EmTableUtil.hh" << 82 #include <iostream> << 83 87 84 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 89 86 G4VMultipleScattering::G4VMultipleScattering(c << 90 G4VMultipleScattering::G4VMultipleScattering(const G4String& name, 87 : G4VContinuousDiscreteProcess("msc", fElect << 91 G4ProcessType type): 88 fNewPosition(0.,0.,0.), << 92 G4VContinuousDiscreteProcess(name, type), 89 fNewDirection(0.,0.,1.) << 93 buildLambdaTable(true), >> 94 theLambdaTable(0), >> 95 firstParticle(0), >> 96 stepLimit(fUseSafety), >> 97 skin(1.0), >> 98 facrange(0.04), >> 99 facgeom(2.5), >> 100 latDisplasment(true), >> 101 isIon(false), >> 102 currentParticle(0), >> 103 currentCouple(0) 90 { 104 { 91 theParameters = G4EmParameters::Instance(); << 92 SetVerboseLevel(1); 105 SetVerboseLevel(1); 93 SetProcessSubType(fMultipleScattering); 106 SetProcessSubType(fMultipleScattering); 94 107 95 lowestKinEnergy = 10*CLHEP::eV; << 108 // Size of tables assuming spline >> 109 minKinEnergy = 0.1*keV; >> 110 maxKinEnergy = 10.0*TeV; >> 111 nBins = 77; 96 112 97 geomMin = 0.05*CLHEP::nm; << 113 // default limit on polar angle 98 minDisplacement2 = geomMin*geomMin; << 114 polarAngleLimit = 0.0; 99 115 100 pParticleChange = &fParticleChange; 116 pParticleChange = &fParticleChange; 101 117 102 modelManager = new G4EmModelManager(); 118 modelManager = new G4EmModelManager(); 103 emManager = G4LossTableManager::Instance(); << 119 (G4LossTableManager::Instance())->Register(this); 104 mscModels.reserve(2); << 120 105 emManager->Register(this); << 106 } 121 } 107 122 108 //....oooOO0OOooo........oooOO0OOooo........oo 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 124 110 G4VMultipleScattering::~G4VMultipleScattering( 125 G4VMultipleScattering::~G4VMultipleScattering() 111 { 126 { >> 127 if(1 < verboseLevel) { >> 128 G4cout << "G4VMultipleScattering destruct " << GetProcessName() >> 129 << G4endl; >> 130 } 112 delete modelManager; 131 delete modelManager; 113 emManager->DeRegister(this); << 132 if (theLambdaTable) { >> 133 theLambdaTable->clearAndDestroy(); >> 134 delete theLambdaTable; >> 135 } >> 136 (G4LossTableManager::Instance())->DeRegister(this); 114 } 137 } 115 138 116 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 117 140 118 void G4VMultipleScattering::AddEmModel(G4int o << 141 void G4VMultipleScattering::AddEmModel(G4int order, G4VEmModel* p, 119 const G << 142 const G4Region* region) 120 { 143 { 121 if(nullptr == ptr) { return; } << 144 G4VEmFluctuationModel* fm = 0; 122 G4VEmFluctuationModel* fm = nullptr; << 145 modelManager->AddEmModel(order, p, fm, region); 123 modelManager->AddEmModel(order, ptr, fm, reg << 146 if(p) { p->SetParticleChange(pParticleChange); } 124 ptr->SetParticleChange(pParticleChange); << 125 } 147 } 126 << 127 //....oooOO0OOooo........oooOO0OOooo........oo 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 128 149 129 void G4VMultipleScattering::SetEmModel(G4VMscM << 150 void G4VMultipleScattering::SetModel(G4VMscModel* p, G4int index) 130 { 151 { 131 if(nullptr == ptr) { return; } << 152 G4int n = mscModels.size(); 132 if(!mscModels.empty()) { << 153 if(index >= n) { for(G4int i=n; i<=index; ++i) {mscModels.push_back(0);} } 133 for(auto & msc : mscModels) { if(msc == pt << 154 mscModels[index] = p; 134 } << 135 mscModels.push_back(ptr); << 136 } 155 } 137 156 138 //....oooOO0OOooo........oooOO0OOooo........oo 157 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 158 140 void << 159 G4VMscModel* G4VMultipleScattering::Model(G4int index) 141 G4VMultipleScattering::PreparePhysicsTable(con << 142 { 160 { 143 G4bool master = emManager->IsMaster(); << 161 G4VMscModel* p = 0; 144 if (nullptr == firstParticle) { firstParticl << 162 if(index >= 0 && index < G4int(mscModels.size())) { p = mscModels[index]; } >> 163 return p; >> 164 } 145 165 146 emManager->PreparePhysicsTable(&part, this); << 166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 147 currParticle = nullptr; << 148 167 149 if(firstParticle == &part) { << 168 G4VEmModel* 150 baseMat = emManager->GetTableBuilder()->Ge << 169 G4VMultipleScattering::GetModelByIndex(G4int idx, G4bool ver) const 151 G4EmTableUtil::PrepareMscProcess(this, par << 170 { 152 stepLimit, facrange, << 171 return modelManager->GetModel(idx, ver); 153 latDisplacement, master, << 154 isIon, baseMat); << 155 << 156 numberOfModels = modelManager->NumberOfMod << 157 currentModel = GetModelByIndex(0); << 158 << 159 if (nullptr == safetyHelper) { << 160 safetyHelper = G4TransportationManager:: << 161 ->GetSafetyHelper(); << 162 safetyHelper->InitialiseHelper(); << 163 } << 164 } << 165 } 172 } 166 173 167 //....oooOO0OOooo........oooOO0OOooo........oo 174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 168 175 169 void G4VMultipleScattering::BuildPhysicsTable( << 176 void G4VMultipleScattering::PreparePhysicsTable(const G4ParticleDefinition& part) 170 { 177 { 171 G4bool master = emManager->IsMaster(); << 178 if (!firstParticle) { 172 << 179 currentCouple = 0; 173 if(firstParticle == &part) { << 180 if(part.GetParticleType() == "nucleus" && 174 emManager->BuildPhysicsTable(&part); << 181 part.GetParticleSubType() == "generic") { >> 182 firstParticle = G4GenericIon::GenericIon(); >> 183 isIon = true; >> 184 } else { >> 185 firstParticle = ∂ >> 186 if(part.GetParticleType() == "nucleus" || >> 187 part.GetPDGMass() > GeV) {isIon = true;} >> 188 } >> 189 // limitations for ions >> 190 if(isIon) { >> 191 SetStepLimitType(fMinimal); >> 192 SetLateralDisplasmentFlag(false); >> 193 SetBuildLambdaTable(false); >> 194 } >> 195 currentParticle = ∂ 175 } 196 } 176 const G4VMultipleScattering* ptr = this; << 197 177 if(!master) { << 198 (G4LossTableManager::Instance())->PreparePhysicsTable(&part, this); 178 ptr = static_cast<const G4VMultipleScatter << 199 >> 200 if(1 < verboseLevel) { >> 201 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 202 << GetProcessName() >> 203 << " and particle " << part.GetParticleName() >> 204 << " local particle " << firstParticle->GetParticleName() >> 205 << G4endl; 179 } 206 } 180 207 181 G4EmTableUtil::BuildMscProcess(this, ptr, pa << 208 if(firstParticle == &part) { 182 numberOfModels, master); << 209 >> 210 InitialiseProcess(firstParticle); >> 211 >> 212 // initialisation of models >> 213 G4int nmod = modelManager->NumberOfModels(); >> 214 for(G4int i=0; i<nmod; ++i) { >> 215 G4VMscModel* msc = static_cast<G4VMscModel*>(modelManager->GetModel(i)); >> 216 if(isIon) { >> 217 msc->SetStepLimitType(fMinimal); >> 218 msc->SetLateralDisplasmentFlag(false); >> 219 msc->SetRangeFactor(0.2); >> 220 } else { >> 221 msc->SetStepLimitType(StepLimitType()); >> 222 msc->SetLateralDisplasmentFlag(LateralDisplasmentFlag()); >> 223 msc->SetSkin(Skin()); >> 224 msc->SetRangeFactor(RangeFactor()); >> 225 msc->SetGeomFactor(GeomFactor()); >> 226 } >> 227 msc->SetPolarAngleLimit(polarAngleLimit); >> 228 if(msc->HighEnergyLimit() > maxKinEnergy) { >> 229 msc->SetHighEnergyLimit(maxKinEnergy); >> 230 } >> 231 } >> 232 >> 233 modelManager->Initialise(firstParticle, G4Electron::Electron(), >> 234 10.0, verboseLevel); >> 235 >> 236 // prepare tables >> 237 if(buildLambdaTable) { >> 238 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 239 } >> 240 } 183 } 241 } 184 242 185 //....oooOO0OOooo........oooOO0OOooo........oo 243 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 244 187 void G4VMultipleScattering::StreamInfo(std::os << 245 void G4VMultipleScattering::BuildPhysicsTable(const G4ParticleDefinition& part) 188 const G4ParticleDefinition& << 189 { 246 { 190 G4String indent = (rst ? " " : ""); << 247 G4String num = part.GetParticleName(); 191 outFile << G4endl << indent << GetProcessNam << 248 if(1 < verboseLevel) { 192 if (!rst) outFile << " for " << part.GetPart << 249 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " 193 outFile << " SubType= " << GetProcessSubTy << 250 << GetProcessName() 194 modelManager->DumpModelList(outFile, verbose << 251 << " and particle " << num >> 252 << G4endl; >> 253 } >> 254 >> 255 (G4LossTableManager::Instance())->BuildPhysicsTable(firstParticle); >> 256 >> 257 if (buildLambdaTable && firstParticle == &part) { >> 258 >> 259 const G4ProductionCutsTable* theCoupleTable= >> 260 G4ProductionCutsTable::GetProductionCutsTable(); >> 261 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 262 >> 263 G4bool splineFlag = (G4LossTableManager::Instance())->SplineFlag(); >> 264 >> 265 G4PhysicsLogVector* aVector = 0; >> 266 G4PhysicsLogVector* bVector = 0; >> 267 >> 268 for (size_t i=0; i<numOfCouples; ++i) { >> 269 >> 270 if (theLambdaTable->GetFlag(i)) { >> 271 // create physics vector and fill it >> 272 const G4MaterialCutsCouple* couple = >> 273 theCoupleTable->GetMaterialCutsCouple(i); >> 274 if(!bVector) { >> 275 aVector = static_cast<G4PhysicsLogVector*>(PhysicsVector(couple)); >> 276 bVector = aVector; >> 277 } else { >> 278 aVector = new G4PhysicsLogVector(*bVector); >> 279 } >> 280 //G4PhysicsVector* aVector = PhysicsVector(couple); >> 281 aVector->SetSpline(splineFlag); >> 282 modelManager->FillLambdaVector(aVector, couple, false); >> 283 if(splineFlag) aVector->FillSecondDerivatives(); >> 284 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 285 } >> 286 } >> 287 >> 288 if(1 < verboseLevel) { >> 289 G4cout << "Lambda table is built for " >> 290 << num >> 291 << G4endl; >> 292 } >> 293 } >> 294 if(verboseLevel>0 && ( num == "e-" || num == "mu+" || >> 295 num == "proton" || num == "pi-" || >> 296 num == "kaon+" || num == "GenericIon")) { >> 297 PrintInfoDefinition(); >> 298 if(2 < verboseLevel && theLambdaTable) G4cout << *theLambdaTable << G4endl; >> 299 } >> 300 >> 301 if(1 < verboseLevel) { >> 302 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() done for " >> 303 << GetProcessName() >> 304 << " and particle " << num >> 305 << G4endl; >> 306 } 195 } 307 } 196 308 197 //....oooOO0OOooo........oooOO0OOooo........oo 309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 198 310 199 void G4VMultipleScattering::StartTracking(G4Tr << 311 void G4VMultipleScattering::PrintInfoDefinition() 200 { << 312 { 201 G4VEnergyLossProcess* eloss = nullptr; << 313 if (0 < verboseLevel) { 202 if(track->GetParticleDefinition() != currPar << 314 G4cout << G4endl << GetProcessName() 203 currParticle = track->GetParticleDefinitio << 315 << ": for " << firstParticle->GetParticleName() 204 fIonisation = emManager->GetEnergyLossProc << 316 << " SubType= " << GetProcessSubType() 205 eloss = fIonisation; << 317 << G4endl; 206 } << 318 if (theLambdaTable) { 207 for(G4int i=0; i<numberOfModels; ++i) { << 319 G4cout << " Lambda tables from " 208 G4VMscModel* msc = GetModelByIndex(i); << 320 << G4BestUnit(MinKinEnergy(),"Energy") 209 msc->StartTracking(track); << 321 << " to " 210 if(nullptr != eloss) { << 322 << G4BestUnit(MaxKinEnergy(),"Energy") 211 msc->SetIonisation(eloss, currParticle); << 323 << " in " << nBins << " bins, spline: " >> 324 << (G4LossTableManager::Instance())->SplineFlag() >> 325 << G4endl; >> 326 } >> 327 PrintInfo(); >> 328 modelManager->DumpModelList(verboseLevel); >> 329 if (2 < verboseLevel) { >> 330 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; >> 331 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 212 } 332 } 213 } 333 } 214 } 334 } 215 335 216 //....oooOO0OOooo........oooOO0OOooo........oo 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 217 337 218 G4double G4VMultipleScattering::AlongStepGetPh 338 G4double G4VMultipleScattering::AlongStepGetPhysicalInteractionLength( 219 const G4Track& tr 339 const G4Track& track, 220 G4double, 340 G4double, 221 G4double currentM 341 G4double currentMinimalStep, 222 G4double&, 342 G4double&, 223 G4GPILSelection* 343 G4GPILSelection* selection) 224 { 344 { 225 // get Step limit proposed by the process 345 // get Step limit proposed by the process 226 *selection = NotCandidateForSelection; 346 *selection = NotCandidateForSelection; 227 physStepLimit = gPathLength = tPathLength = << 347 G4double x = currentMinimalStep; 228 << 348 DefineMaterial(track.GetMaterialCutsCouple()); 229 G4double ekin = track.GetKineticEnergy(); 349 G4double ekin = track.GetKineticEnergy(); 230 /* << 350 if(isIon) { ekin *= proton_mass_c2/track.GetParticleDefinition()->GetPDGMass(); } 231 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek << 351 currentModel = static_cast<G4VMscModel*>(SelectModel(ekin)); 232 << " " << currParticle->GetParticleN << 352 if(x > 0.0 && ekin > 0.0 && currentModel->IsActive(ekin)) { 233 << " currMod " << currentModel << 353 G4double tPathLength = 234 << G4endl; << 354 currentModel->ComputeTruePathLengthLimit(track, theLambdaTable, x); 235 */ << 355 if (tPathLength < x) { *selection = CandidateForSelection; } 236 // isIon flag is used only to select a model << 356 x = currentModel->ComputeGeomPathLength(tPathLength); 237 if(isIon) { << 357 // G4cout << "tPathLength= " << tPathLength 238 ekin *= proton_mass_c2/track.GetParticleDe << 358 // << " stepLimit= " << x 239 } << 359 // << " currentMinimalStep= " << currentMinimalStep<< G4endl; 240 const G4MaterialCutsCouple* couple = track.G << 360 } 241 << 361 return x; 242 // select new model, static cast is possible << 243 if(1 < numberOfModels) { << 244 currentModel = << 245 static_cast<G4VMscModel*>(SelectModel(ek << 246 } << 247 currentModel->SetCurrentCouple(couple); << 248 // msc is active is model is active, energy << 249 // and step size is above the limit; << 250 // if it is active msc may limit the step << 251 if(currentModel->IsActive(ekin) && tPathLeng << 252 && ekin >= lowestKinEnergy) { << 253 isActive = true; << 254 tPathLength = << 255 currentModel->ComputeTruePathLengthLimit << 256 if (tPathLength < physStepLimit) { << 257 *selection = CandidateForSelection; << 258 } << 259 } else { << 260 isActive = false; << 261 gPathLength = DBL_MAX; << 262 } << 263 << 264 //if(currParticle->GetPDGMass() > GeV) << 265 /* << 266 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek << 267 << " " << currParticle->GetParticleN << 268 << " gPathLength= " << gPathLength << 269 << " tPathLength= " << tPathLength << 270 << " currentMinimalStep= " << current << 271 << " isActive " << isActive << G4endl << 272 */ << 273 return gPathLength; << 274 } 362 } 275 363 276 //....oooOO0OOooo........oooOO0OOooo........oo 364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 365 278 G4double 366 G4double 279 G4VMultipleScattering::PostStepGetPhysicalInte 367 G4VMultipleScattering::PostStepGetPhysicalInteractionLength( 280 const G4Track&, G4double, G4Forc 368 const G4Track&, G4double, G4ForceCondition* condition) 281 { 369 { 282 *condition = NotForced; << 370 *condition = Forced; 283 return DBL_MAX; 371 return DBL_MAX; 284 } 372 } 285 373 286 //....oooOO0OOooo........oooOO0OOooo........oo 374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 287 375 288 G4VParticleChange* 376 G4VParticleChange* 289 G4VMultipleScattering::AlongStepDoIt(const G4T 377 G4VMultipleScattering::AlongStepDoIt(const G4Track& track, const G4Step& step) 290 { 378 { 291 fParticleChange.InitialiseMSC(track, step); << 379 if(currentModel->IsActive(track.GetKineticEnergy())) { 292 fNewPosition = fParticleChange.GetProposedPo << 380 fParticleChange.ProposeTrueStepLength(currentModel->ComputeTrueStepLength(step.GetStepLength())); 293 fPositionChanged = false; << 381 } 294 << 382 return &fParticleChange; 295 G4double geomLength = step.GetStepLength(); << 383 } 296 384 297 // very small step - no msc << 385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 298 if(!isActive) { << 299 tPathLength = geomLength; << 300 386 301 // sample msc << 387 G4VParticleChange* 302 } else { << 388 G4VMultipleScattering::PostStepDoIt(const G4Track& track, const G4Step& step) 303 G4double range = << 389 { 304 currentModel->GetRange(currParticle,trac << 390 fParticleChange.Initialize(track); 305 track.GetMaterial << 391 if(currentModel->IsActive(track.GetKineticEnergy())) { 306 << 392 currentModel->SampleScattering(track.GetDynamicParticle(), 307 tPathLength = currentModel->ComputeTrueSte << 393 step.GetPostStepPoint()->GetSafety()); 308 << 309 /* << 310 if(currParticle->GetPDGMass() > 0.9*GeV) << 311 G4cout << "G4VMsc::AlongStepDoIt: GeomLeng << 312 << geomLength << 313 << " tPathLength= " << tPathLength << 314 << " physStepLimit= " << physStepLi << 315 << " dr= " << range - tPathLength << 316 << " ekin= " << track.GetKineticEne << 317 */ << 318 // protection against wrong t->g->t conver << 319 tPathLength = std::min(tPathLength, physSt << 320 << 321 // do not sample scattering at the last or << 322 if(tPathLength < range && tPathLength > ge << 323 << 324 static const G4double minSafety = 1.20*C << 325 static const G4double sFact = 0.99; << 326 << 327 G4ThreeVector displacement = currentMode << 328 step.GetPostStepPoint()->GetMomentumDi << 329 << 330 G4double r2 = displacement.mag2(); << 331 //G4cout << " R= " << sqrt(r2) << " R << 332 // << " flag= " << fDispBeyondSafety << 333 if(r2 > minDisplacement2) { << 334 << 335 fPositionChanged = true; << 336 G4double dispR = std::sqrt(r2); << 337 G4double postSafety = << 338 sFact*safetyHelper->ComputeSafety(fN << 339 //G4cout<<" R= "<< dispR<<" postSaf << 340 << 341 // far away from geometry boundary << 342 if(postSafety > 0.0 && dispR <= postSa << 343 fNewPosition += displacement; << 344 << 345 //near the boundary << 346 } else { << 347 // displaced point is definitely wit << 348 //G4cout<<" R= "<<dispR<<" postSa << 349 if(dispR < postSafety) { << 350 fNewPosition += displacement; << 351 << 352 // reduced displacement << 353 } else if(postSafety > geomMin) { << 354 fNewPosition += displacement*(post << 355 << 356 // very small postSafety << 357 } else { << 358 fPositionChanged = false; << 359 } << 360 } << 361 if(fPositionChanged) { << 362 safetyHelper->ReLocateWithinVolume(f << 363 fParticleChange.ProposePosition(fNew << 364 } << 365 } << 366 } << 367 } 394 } 368 fParticleChange.ProposeTrueStepLength(tPathL << 369 return &fParticleChange; 395 return &fParticleChange; 370 } 396 } 371 397 372 //....oooOO0OOooo........oooOO0OOooo........oo 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 373 399 374 G4double G4VMultipleScattering::GetContinuousS 400 G4double G4VMultipleScattering::GetContinuousStepLimit( 375 const G 401 const G4Track& track, 376 G4doubl 402 G4double previousStepSize, 377 G4doubl 403 G4double currentMinimalStep, 378 G4doubl 404 G4double& currentSafety) 379 { 405 { 380 G4GPILSelection selection = NotCandidateForS 406 G4GPILSelection selection = NotCandidateForSelection; 381 G4double x = AlongStepGetPhysicalInteraction 407 G4double x = AlongStepGetPhysicalInteractionLength(track,previousStepSize, 382 << 408 currentMinimalStep, 383 << 409 currentSafety, &selection); 384 << 385 return x; 410 return x; 386 } 411 } 387 412 388 //....oooOO0OOooo........oooOO0OOooo........oo 413 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 389 414 390 G4double G4VMultipleScattering::ContinuousStep 415 G4double G4VMultipleScattering::ContinuousStepLimit( 391 const G 416 const G4Track& track, 392 G4doubl 417 G4double previousStepSize, 393 G4doubl 418 G4double currentMinimalStep, 394 G4doubl 419 G4double& currentSafety) 395 { 420 { 396 return GetContinuousStepLimit(track,previous 421 return GetContinuousStepLimit(track,previousStepSize,currentMinimalStep, 397 currentSafety) << 422 currentSafety); 398 } 423 } 399 424 400 //....oooOO0OOooo........oooOO0OOooo........oo 425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 401 426 402 G4double G4VMultipleScattering::GetMeanFreePat 427 G4double G4VMultipleScattering::GetMeanFreePath( 403 const G4Track&, G4double, G4Forc 428 const G4Track&, G4double, G4ForceCondition* condition) 404 { 429 { 405 *condition = Forced; 430 *condition = Forced; 406 return DBL_MAX; 431 return DBL_MAX; 407 } 432 } 408 433 >> 434 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 435 >> 436 G4PhysicsVector* G4VMultipleScattering::PhysicsVector(const G4MaterialCutsCouple* couple) >> 437 { >> 438 G4int nbins = 3; >> 439 if( couple->IsUsed() ) nbins = nBins; >> 440 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins); >> 441 v->SetSpline((G4LossTableManager::Instance())->SplineFlag()); >> 442 return v; >> 443 } >> 444 409 //....oooOO0OOooo........oooOO0OOooo........oo 445 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 410 446 411 G4bool << 447 G4bool G4VMultipleScattering::StorePhysicsTable(const G4ParticleDefinition* part, 412 G4VMultipleScattering::StorePhysicsTable(const << 448 const G4String& directory, 413 const << 449 G4bool ascii) 414 G4boo << 415 { 450 { 416 G4bool yes = true; 451 G4bool yes = true; 417 if(part != firstParticle || !emManager->IsMa << 452 if ( theLambdaTable && part == firstParticle) { 418 << 453 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 419 return G4EmTableUtil::StoreMscTable(this, pa << 454 G4bool yes = theLambdaTable->StorePhysicsTable(name,ascii); 420 numberOfModels, verboseLevel, << 455 421 ascii); << 456 if ( yes ) { >> 457 if ( verboseLevel>0 ) { >> 458 G4cout << "Physics table are stored for " << part->GetParticleName() >> 459 << " and process " << GetProcessName() >> 460 << " in the directory <" << directory >> 461 << "> " << G4endl; >> 462 } >> 463 } else { >> 464 G4cout << "Fail to store Physics Table for " << part->GetParticleName() >> 465 << " and process " << GetProcessName() >> 466 << " in the directory <" << directory >> 467 << "> " << G4endl; >> 468 } >> 469 } >> 470 return yes; 422 } 471 } 423 472 424 //....oooOO0OOooo........oooOO0OOooo........oo 473 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 425 474 426 G4bool 475 G4bool 427 G4VMultipleScattering::RetrievePhysicsTable(co << 476 G4VMultipleScattering::RetrievePhysicsTable(const G4ParticleDefinition* part, 428 co << 477 const G4String& directory, 429 G4 << 478 G4bool ascii) 430 { << 479 { 431 return true; << 480 if(0 < verboseLevel) { 432 } << 481 G4cout << "G4VMultipleScattering::RetrievePhysicsTable() for " >> 482 << part->GetParticleName() << " and process " >> 483 << GetProcessName() << G4endl; >> 484 } >> 485 G4bool yes = true; 433 486 434 //....oooOO0OOooo........oooOO0OOooo........oo << 487 if(!buildLambdaTable || firstParticle != part) return yes; 435 488 436 void G4VMultipleScattering::ProcessDescription << 489 const G4String particleName = part->GetParticleName(); 437 { << 490 438 if(nullptr != firstParticle) { << 491 G4String filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 439 StreamInfo(outFile, *firstParticle, true); << 492 yes = >> 493 G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable,filename,ascii); >> 494 if ( yes ) { >> 495 if (0 < verboseLevel) { >> 496 G4cout << "Lambda table for " << part->GetParticleName() >> 497 << " is retrieved from <" >> 498 << filename << ">" >> 499 << G4endl; >> 500 } >> 501 if((G4LossTableManager::Instance())->SplineFlag()) { >> 502 size_t n = theLambdaTable->length(); >> 503 for(size_t i=0; i<n; ++i) { >> 504 if((* theLambdaTable)[i]) { >> 505 (* theLambdaTable)[i]->SetSpline(true); >> 506 } >> 507 } >> 508 } >> 509 } else { >> 510 if (1 < verboseLevel) { >> 511 G4cout << "Lambda table for " << part->GetParticleName() >> 512 << " in file <" >> 513 << filename << "> is not exist" >> 514 << G4endl; >> 515 } 440 } 516 } >> 517 return yes; 441 } 518 } 442 519 443 //....oooOO0OOooo........oooOO0OOooo........oo 520 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 444 521 445 522