Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VMultipleScattering.cc,v 1.41 2007/02/12 17:04:51 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-08-03-patch-02 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4VMultipleScattering 34 // File name: G4VMultipleScattering 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 25.03.2003 38 // Creation date: 25.03.2003 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 41 // >> 42 // 13.04.03 Change printout (V.Ivanchenko) >> 43 // 04-06-03 Fix compilation warnings (V.Ivanchenko) 40 // 16-07-03 Use G4VMscModel interface (V.Ivanc 44 // 16-07-03 Use G4VMscModel interface (V.Ivanchenko) 41 // 03-11-03 Fix initialisation problem in Retr 45 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) 42 // 04-11-03 Update PrintInfoDefinition (V.Ivan 46 // 04-11-03 Update PrintInfoDefinition (V.Ivanchenko) 43 // 01-03-04 SampleCosineTheta signature change 47 // 01-03-04 SampleCosineTheta signature changed 44 // 22-04-04 SampleCosineTheta signature change 48 // 22-04-04 SampleCosineTheta signature changed back to original 45 // 27-08-04 Add InitialiseForRun method (V.Iva 49 // 27-08-04 Add InitialiseForRun method (V.Ivanchneko) 46 // 08-11-04 Migration to new interface of Stor 50 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) 47 // 11-03-05 Shift verbose level by 1 (V.Ivantc 51 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) 48 // 15-04-05 optimize internal interface (V.Iva 52 // 15-04-05 optimize internal interface (V.Ivanchenko) 49 // 15-04-05 remove boundary flag (V.Ivanchenko 53 // 15-04-05 remove boundary flag (V.Ivanchenko) 50 // 27-10-05 introduce virtual function MscStep 54 // 27-10-05 introduce virtual function MscStepLimitation() (V.Ivanchenko) 51 // 12-04-07 Add verbosity at destruction (V.Iv << 52 // 27-10-07 Virtual functions moved to source << 53 // 11-03-08 Set skin value does not effect ste << 54 // 24-06-09 Removed hidden bin in G4PhysicsVec << 55 // 04-06-13 Adoptation to MT mode (V.Ivanchenk << 56 // 55 // >> 56 // Class Description: >> 57 // >> 58 // It is the generic process of multiple scattering it includes common >> 59 // part of calculations for all charged particles 57 60 58 // ------------------------------------------- 61 // ------------------------------------------------------------------- 59 // 62 // 60 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 65 63 #include "G4VMultipleScattering.hh" 66 #include "G4VMultipleScattering.hh" 64 #include "G4PhysicalConstants.hh" << 65 #include "G4SystemOfUnits.hh" << 66 #include "G4LossTableManager.hh" 67 #include "G4LossTableManager.hh" 67 #include "G4MaterialCutsCouple.hh" << 68 #include "G4Step.hh" 68 #include "G4Step.hh" 69 #include "G4ParticleDefinition.hh" 69 #include "G4ParticleDefinition.hh" 70 #include "G4VEmFluctuationModel.hh" 70 #include "G4VEmFluctuationModel.hh" >> 71 #include "G4DataVector.hh" >> 72 #include "G4PhysicsTable.hh" >> 73 #include "G4PhysicsVector.hh" >> 74 #include "G4PhysicsLogVector.hh" 71 #include "G4UnitsTable.hh" 75 #include "G4UnitsTable.hh" 72 #include "G4ProductionCutsTable.hh" 76 #include "G4ProductionCutsTable.hh" 73 #include "G4Electron.hh" << 77 #include "G4Region.hh" >> 78 #include "G4RegionStore.hh" >> 79 #include "G4PhysicsTableHelper.hh" 74 #include "G4GenericIon.hh" 80 #include "G4GenericIon.hh" 75 #include "G4TransportationManager.hh" << 76 #include "G4SafetyHelper.hh" << 77 #include "G4ParticleTable.hh" << 78 #include "G4ProcessVector.hh" << 79 #include "G4ProcessManager.hh" << 80 #include "G4LossTableBuilder.hh" << 81 #include "G4EmTableUtil.hh" << 82 #include <iostream> << 83 81 84 //....oooOO0OOooo........oooOO0OOooo........oo 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 83 86 G4VMultipleScattering::G4VMultipleScattering(c << 84 G4VMultipleScattering::G4VMultipleScattering(const G4String& name, G4ProcessType type): 87 : G4VContinuousDiscreteProcess("msc", fElect << 85 G4VContinuousDiscreteProcess(name, type), 88 fNewPosition(0.,0.,0.), << 86 theLambdaTable(0), 89 fNewDirection(0.,0.,1.) << 87 firstParticle(0), >> 88 currentParticle(0), >> 89 currentCouple(0), >> 90 nBins(120), >> 91 skin(0.0), >> 92 latDisplasment(true), >> 93 buildLambdaTable(true) 90 { 94 { 91 theParameters = G4EmParameters::Instance(); << 95 minKinEnergy = 100.0*eV; >> 96 maxKinEnergy = 100.0*TeV; 92 SetVerboseLevel(1); 97 SetVerboseLevel(1); 93 SetProcessSubType(fMultipleScattering); << 94 << 95 lowestKinEnergy = 10*CLHEP::eV; << 96 << 97 geomMin = 0.05*CLHEP::nm; << 98 minDisplacement2 = geomMin*geomMin; << 99 98 100 pParticleChange = &fParticleChange; 99 pParticleChange = &fParticleChange; 101 100 102 modelManager = new G4EmModelManager(); 101 modelManager = new G4EmModelManager(); 103 emManager = G4LossTableManager::Instance(); << 102 (G4LossTableManager::Instance())->Register(this); 104 mscModels.reserve(2); << 103 105 emManager->Register(this); << 106 } 104 } 107 105 108 //....oooOO0OOooo........oooOO0OOooo........oo 106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 107 110 G4VMultipleScattering::~G4VMultipleScattering( 108 G4VMultipleScattering::~G4VMultipleScattering() 111 { 109 { 112 delete modelManager; 110 delete modelManager; 113 emManager->DeRegister(this); << 111 if (theLambdaTable) theLambdaTable->clearAndDestroy(); >> 112 (G4LossTableManager::Instance())->DeRegister(this); 114 } 113 } 115 114 116 //....oooOO0OOooo........oooOO0OOooo........oo 115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 117 116 118 void G4VMultipleScattering::AddEmModel(G4int o << 117 void G4VMultipleScattering::BuildPhysicsTable(const G4ParticleDefinition& part) 119 const G << 120 { 118 { 121 if(nullptr == ptr) { return; } << 119 G4String num = part.GetParticleName(); 122 G4VEmFluctuationModel* fm = nullptr; << 120 if(1 < verboseLevel) { 123 modelManager->AddEmModel(order, ptr, fm, reg << 121 // G4cout << "========================================================" << G4endl; 124 ptr->SetParticleChange(pParticleChange); << 122 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " 125 } << 123 << GetProcessName() >> 124 << " and particle " << num >> 125 << G4endl; >> 126 } >> 127 >> 128 if (buildLambdaTable && firstParticle == &part) { >> 129 >> 130 const G4ProductionCutsTable* theCoupleTable= >> 131 G4ProductionCutsTable::GetProductionCutsTable(); >> 132 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 133 >> 134 for (size_t i=0; i<numOfCouples; i++) { >> 135 >> 136 if (theLambdaTable->GetFlag(i)) { >> 137 // create physics vector and fill it >> 138 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 139 G4PhysicsVector* aVector = PhysicsVector(couple); >> 140 modelManager->FillLambdaVector(aVector, couple, false); >> 141 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 142 } >> 143 } 126 144 127 //....oooOO0OOooo........oooOO0OOooo........oo << 145 if(1 < verboseLevel) { >> 146 G4cout << "Lambda table is built for " >> 147 << num >> 148 << G4endl; >> 149 } >> 150 } >> 151 if(verboseLevel>0 && ( num == "e-" || num == "mu+" || >> 152 num == "proton" || num == "pi-" || num == "GenericIon")) { >> 153 PrintInfoDefinition(); >> 154 if(2 < verboseLevel && theLambdaTable) G4cout << *theLambdaTable << G4endl; >> 155 } 128 156 129 void G4VMultipleScattering::SetEmModel(G4VMscM << 157 if(1 < verboseLevel) { 130 { << 158 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() done for " 131 if(nullptr == ptr) { return; } << 159 << GetProcessName() 132 if(!mscModels.empty()) { << 160 << " and particle " << num 133 for(auto & msc : mscModels) { if(msc == pt << 161 << G4endl; 134 } 162 } 135 mscModels.push_back(ptr); << 136 } 163 } 137 164 138 //....oooOO0OOooo........oooOO0OOooo........oo 165 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 166 140 void << 167 void G4VMultipleScattering::PreparePhysicsTable(const G4ParticleDefinition& part) 141 G4VMultipleScattering::PreparePhysicsTable(con << 142 { 168 { 143 G4bool master = emManager->IsMaster(); << 169 if (!firstParticle) { 144 if (nullptr == firstParticle) { firstParticl << 170 currentCouple = 0; >> 171 if(part.GetParticleType() == "nucleus" && >> 172 part.GetParticleSubType() == "generic") >> 173 firstParticle = G4GenericIon::GenericIon(); >> 174 else firstParticle = ∂ >> 175 currentParticle = ∂ >> 176 } 145 177 146 emManager->PreparePhysicsTable(&part, this); << 178 if(1 < verboseLevel) { 147 currParticle = nullptr; << 179 // G4cout << "========================================================" << G4endl; >> 180 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 181 << GetProcessName() >> 182 << " and particle " << part.GetParticleName() >> 183 << " local particle " << firstParticle->GetParticleName() >> 184 << G4endl; >> 185 } 148 186 149 if(firstParticle == &part) { 187 if(firstParticle == &part) { 150 baseMat = emManager->GetTableBuilder()->Ge << 151 G4EmTableUtil::PrepareMscProcess(this, par << 152 stepLimit, facrange, << 153 latDisplacement, master, << 154 isIon, baseMat); << 155 << 156 numberOfModels = modelManager->NumberOfMod << 157 currentModel = GetModelByIndex(0); << 158 << 159 if (nullptr == safetyHelper) { << 160 safetyHelper = G4TransportationManager:: << 161 ->GetSafetyHelper(); << 162 safetyHelper->InitialiseHelper(); << 163 } << 164 } << 165 } << 166 188 167 //....oooOO0OOooo........oooOO0OOooo........oo << 189 InitialiseProcess(firstParticle); >> 190 if(buildLambdaTable) >> 191 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 192 const G4DataVector* theCuts = >> 193 modelManager->Initialise(firstParticle, 0, 10.0, verboseLevel); 168 194 169 void G4VMultipleScattering::BuildPhysicsTable( << 195 if(2 < verboseLevel) G4cout << theCuts << G4endl; 170 { << 171 G4bool master = emManager->IsMaster(); << 172 196 173 if(firstParticle == &part) { << 174 emManager->BuildPhysicsTable(&part); << 175 } << 176 const G4VMultipleScattering* ptr = this; << 177 if(!master) { << 178 ptr = static_cast<const G4VMultipleScatter << 179 } 197 } 180 << 181 G4EmTableUtil::BuildMscProcess(this, ptr, pa << 182 numberOfModels, master); << 183 } 198 } 184 199 185 //....oooOO0OOooo........oooOO0OOooo........oo 200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 201 187 void G4VMultipleScattering::StreamInfo(std::os << 202 void G4VMultipleScattering::AddEmModel(G4int order, G4VEmModel* p, 188 const G4ParticleDefinition& << 203 const G4Region* region) 189 { 204 { 190 G4String indent = (rst ? " " : ""); << 205 G4VEmFluctuationModel* fm = 0; 191 outFile << G4endl << indent << GetProcessNam << 206 modelManager->AddEmModel(order, p, fm, region); 192 if (!rst) outFile << " for " << part.GetPart << 207 if(p)p->SetParticleChange(pParticleChange); 193 outFile << " SubType= " << GetProcessSubTy << 194 modelManager->DumpModelList(outFile, verbose << 195 } 208 } 196 209 197 //....oooOO0OOooo........oooOO0OOooo........oo 210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 198 211 199 void G4VMultipleScattering::StartTracking(G4Tr << 212 void G4VMultipleScattering::PrintInfoDefinition() 200 { 213 { 201 G4VEnergyLossProcess* eloss = nullptr; << 214 if (0 < verboseLevel) { 202 if(track->GetParticleDefinition() != currPar << 215 G4cout << G4endl << GetProcessName() << ": Model variant of multiple scattering " 203 currParticle = track->GetParticleDefinitio << 216 << "for " << firstParticle->GetParticleName() 204 fIonisation = emManager->GetEnergyLossProc << 217 << G4endl; 205 eloss = fIonisation; << 218 if (theLambdaTable) { 206 } << 219 G4cout << " Lambda tables from " 207 for(G4int i=0; i<numberOfModels; ++i) { << 220 << G4BestUnit(MinKinEnergy(),"Energy") 208 G4VMscModel* msc = GetModelByIndex(i); << 221 << " to " 209 msc->StartTracking(track); << 222 << G4BestUnit(MaxKinEnergy(),"Energy") 210 if(nullptr != eloss) { << 223 << " in " << nBins << " bins." 211 msc->SetIonisation(eloss, currParticle); << 224 << G4endl; 212 } 225 } 213 } << 226 G4cout << " LateralDisplacementFlag= " << latDisplasment 214 } << 227 << " Skin= " << skin << G4endl; 215 << 228 PrintInfo(); 216 //....oooOO0OOooo........oooOO0OOooo........oo << 229 if (2 < verboseLevel) { 217 << 230 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; 218 G4double G4VMultipleScattering::AlongStepGetPh << 231 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 219 const G4Track& tr << 220 G4double, << 221 G4double currentM << 222 G4double&, << 223 G4GPILSelection* << 224 { << 225 // get Step limit proposed by the process << 226 *selection = NotCandidateForSelection; << 227 physStepLimit = gPathLength = tPathLength = << 228 << 229 G4double ekin = track.GetKineticEnergy(); << 230 /* << 231 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek << 232 << " " << currParticle->GetParticleN << 233 << " currMod " << currentModel << 234 << G4endl; << 235 */ << 236 // isIon flag is used only to select a model << 237 if(isIon) { << 238 ekin *= proton_mass_c2/track.GetParticleDe << 239 } << 240 const G4MaterialCutsCouple* couple = track.G << 241 << 242 // select new model, static cast is possible << 243 if(1 < numberOfModels) { << 244 currentModel = << 245 static_cast<G4VMscModel*>(SelectModel(ek << 246 } << 247 currentModel->SetCurrentCouple(couple); << 248 // msc is active is model is active, energy << 249 // and step size is above the limit; << 250 // if it is active msc may limit the step << 251 if(currentModel->IsActive(ekin) && tPathLeng << 252 && ekin >= lowestKinEnergy) { << 253 isActive = true; << 254 tPathLength = << 255 currentModel->ComputeTruePathLengthLimit << 256 if (tPathLength < physStepLimit) { << 257 *selection = CandidateForSelection; << 258 } 232 } 259 } else { << 233 } 260 isActive = false; << 261 gPathLength = DBL_MAX; << 262 } << 263 << 264 //if(currParticle->GetPDGMass() > GeV) << 265 /* << 266 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek << 267 << " " << currParticle->GetParticleN << 268 << " gPathLength= " << gPathLength << 269 << " tPathLength= " << tPathLength << 270 << " currentMinimalStep= " << current << 271 << " isActive " << isActive << G4endl << 272 */ << 273 return gPathLength; << 274 } 234 } 275 235 276 //....oooOO0OOooo........oooOO0OOooo........oo 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 237 278 G4double << 238 G4PhysicsVector* G4VMultipleScattering::PhysicsVector(const G4MaterialCutsCouple* couple) 279 G4VMultipleScattering::PostStepGetPhysicalInte << 280 const G4Track&, G4double, G4Forc << 281 { 239 { 282 *condition = NotForced; << 240 G4int nbins = 3; 283 return DBL_MAX; << 241 if( couple->IsUsed() ) nbins = nBins; >> 242 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins); >> 243 return v; 284 } 244 } 285 245 286 //....oooOO0OOooo........oooOO0OOooo........oo << 246 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 287 247 288 G4VParticleChange* << 248 G4bool G4VMultipleScattering::StorePhysicsTable(const G4ParticleDefinition* part, 289 G4VMultipleScattering::AlongStepDoIt(const G4T << 249 const G4String& directory, >> 250 G4bool ascii) 290 { 251 { 291 fParticleChange.InitialiseMSC(track, step); << 252 G4bool yes = true; 292 fNewPosition = fParticleChange.GetProposedPo << 253 if ( theLambdaTable && part == firstParticle) { 293 fPositionChanged = false; << 254 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 294 << 255 G4bool yes = theLambdaTable->StorePhysicsTable(name,ascii); 295 G4double geomLength = step.GetStepLength(); << 256 296 << 257 if ( yes ) { 297 // very small step - no msc << 258 if ( verboseLevel>0 ) { 298 if(!isActive) { << 259 G4cout << "Physics table are stored for " << part->GetParticleName() 299 tPathLength = geomLength; << 260 << " and process " << GetProcessName() 300 << 261 << " in the directory <" << directory 301 // sample msc << 262 << "> " << G4endl; 302 } else { << 303 G4double range = << 304 currentModel->GetRange(currParticle,trac << 305 track.GetMaterial << 306 << 307 tPathLength = currentModel->ComputeTrueSte << 308 << 309 /* << 310 if(currParticle->GetPDGMass() > 0.9*GeV) << 311 G4cout << "G4VMsc::AlongStepDoIt: GeomLeng << 312 << geomLength << 313 << " tPathLength= " << tPathLength << 314 << " physStepLimit= " << physStepLi << 315 << " dr= " << range - tPathLength << 316 << " ekin= " << track.GetKineticEne << 317 */ << 318 // protection against wrong t->g->t conver << 319 tPathLength = std::min(tPathLength, physSt << 320 << 321 // do not sample scattering at the last or << 322 if(tPathLength < range && tPathLength > ge << 323 << 324 static const G4double minSafety = 1.20*C << 325 static const G4double sFact = 0.99; << 326 << 327 G4ThreeVector displacement = currentMode << 328 step.GetPostStepPoint()->GetMomentumDi << 329 << 330 G4double r2 = displacement.mag2(); << 331 //G4cout << " R= " << sqrt(r2) << " R << 332 // << " flag= " << fDispBeyondSafety << 333 if(r2 > minDisplacement2) { << 334 << 335 fPositionChanged = true; << 336 G4double dispR = std::sqrt(r2); << 337 G4double postSafety = << 338 sFact*safetyHelper->ComputeSafety(fN << 339 //G4cout<<" R= "<< dispR<<" postSaf << 340 << 341 // far away from geometry boundary << 342 if(postSafety > 0.0 && dispR <= postSa << 343 fNewPosition += displacement; << 344 << 345 //near the boundary << 346 } else { << 347 // displaced point is definitely wit << 348 //G4cout<<" R= "<<dispR<<" postSa << 349 if(dispR < postSafety) { << 350 fNewPosition += displacement; << 351 << 352 // reduced displacement << 353 } else if(postSafety > geomMin) { << 354 fNewPosition += displacement*(post << 355 << 356 // very small postSafety << 357 } else { << 358 fPositionChanged = false; << 359 } << 360 } << 361 if(fPositionChanged) { << 362 safetyHelper->ReLocateWithinVolume(f << 363 fParticleChange.ProposePosition(fNew << 364 } << 365 } 263 } >> 264 } else { >> 265 G4cout << "Fail to store Physics Table for " << part->GetParticleName() >> 266 << " and process " << GetProcessName() >> 267 << " in the directory <" << directory >> 268 << "> " << G4endl; 366 } 269 } 367 } 270 } 368 fParticleChange.ProposeTrueStepLength(tPathL << 271 return yes; 369 return &fParticleChange; << 370 } << 371 << 372 //....oooOO0OOooo........oooOO0OOooo........oo << 373 << 374 G4double G4VMultipleScattering::GetContinuousS << 375 const G << 376 G4doubl << 377 G4doubl << 378 G4doubl << 379 { << 380 G4GPILSelection selection = NotCandidateForS << 381 G4double x = AlongStepGetPhysicalInteraction << 382 << 383 << 384 << 385 return x; << 386 } << 387 << 388 //....oooOO0OOooo........oooOO0OOooo........oo << 389 << 390 G4double G4VMultipleScattering::ContinuousStep << 391 const G << 392 G4doubl << 393 G4doubl << 394 G4doubl << 395 { << 396 return GetContinuousStepLimit(track,previous << 397 currentSafety) << 398 } << 399 << 400 //....oooOO0OOooo........oooOO0OOooo........oo << 401 << 402 G4double G4VMultipleScattering::GetMeanFreePat << 403 const G4Track&, G4double, G4Forc << 404 { << 405 *condition = Forced; << 406 return DBL_MAX; << 407 } 272 } 408 273 409 //....oooOO0OOooo........oooOO0OOooo........oo 274 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 410 275 411 G4bool << 276 G4bool G4VMultipleScattering::RetrievePhysicsTable(const G4ParticleDefinition* part, 412 G4VMultipleScattering::StorePhysicsTable(const << 277 const G4String& directory, 413 const << 278 G4bool ascii) 414 G4boo << 279 { 415 { << 280 if(0 < verboseLevel) { >> 281 // G4cout << "========================================================" << G4endl; >> 282 G4cout << "G4VMultipleScattering::RetrievePhysicsTable() for " >> 283 << part->GetParticleName() << " and process " >> 284 << GetProcessName() << G4endl; >> 285 } 416 G4bool yes = true; 286 G4bool yes = true; 417 if(part != firstParticle || !emManager->IsMa << 418 287 419 return G4EmTableUtil::StoreMscTable(this, pa << 288 if(!buildLambdaTable || firstParticle != part) return yes; 420 numberOfModels, verboseLevel, << 421 ascii); << 422 } << 423 289 424 //....oooOO0OOooo........oooOO0OOooo........oo << 290 const G4String particleName = part->GetParticleName(); 425 291 426 G4bool << 292 G4String filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 427 G4VMultipleScattering::RetrievePhysicsTable(co << 293 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable,filename,ascii); 428 co << 294 if ( yes ) { 429 G4 << 295 if (0 < verboseLevel) { 430 { << 296 G4cout << "Lambda table for " << part->GetParticleName() << " is retrieved from <" 431 return true; << 297 << filename << ">" >> 298 << G4endl; >> 299 } >> 300 } else { >> 301 if (1 < verboseLevel) { >> 302 G4cout << "Lambda table for " << part->GetParticleName() << " in file <" >> 303 << filename << "> is not exist" >> 304 << G4endl; >> 305 } >> 306 } >> 307 return yes; 432 } 308 } 433 309 434 //....oooOO0OOooo........oooOO0OOooo........oo 310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 435 311 436 void G4VMultipleScattering::ProcessDescription << 312 void G4VMultipleScattering::MscStepLimitation(G4bool, G4double) 437 { << 313 {} 438 if(nullptr != firstParticle) { << 439 StreamInfo(outFile, *firstParticle, true); << 440 } << 441 } << 442 314 443 //....oooOO0OOooo........oooOO0OOooo........oo 315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 444 316 445 317