Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4VMultipleScattering 32 // File name: G4VMultipleScattering 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 35 // 36 // Creation date: 25.03.2003 36 // Creation date: 25.03.2003 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 39 // >> 40 // 13.04.03 Change printout (V.Ivanchenko) >> 41 // 04-06-03 Fix compilation warnings (V.Ivanchenko) 40 // 16-07-03 Use G4VMscModel interface (V.Ivanc 42 // 16-07-03 Use G4VMscModel interface (V.Ivanchenko) 41 // 03-11-03 Fix initialisation problem in Retr 43 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) 42 // 04-11-03 Update PrintInfoDefinition (V.Ivan 44 // 04-11-03 Update PrintInfoDefinition (V.Ivanchenko) 43 // 01-03-04 SampleCosineTheta signature change 45 // 01-03-04 SampleCosineTheta signature changed 44 // 22-04-04 SampleCosineTheta signature change 46 // 22-04-04 SampleCosineTheta signature changed back to original 45 // 27-08-04 Add InitialiseForRun method (V.Iva 47 // 27-08-04 Add InitialiseForRun method (V.Ivanchneko) 46 // 08-11-04 Migration to new interface of Stor 48 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) 47 // 11-03-05 Shift verbose level by 1 (V.Ivantc 49 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) 48 // 15-04-05 optimize internal interface (V.Iva 50 // 15-04-05 optimize internal interface (V.Ivanchenko) 49 // 15-04-05 remove boundary flag (V.Ivanchenko 51 // 15-04-05 remove boundary flag (V.Ivanchenko) 50 // 27-10-05 introduce virtual function MscStep 52 // 27-10-05 introduce virtual function MscStepLimitation() (V.Ivanchenko) 51 // 12-04-07 Add verbosity at destruction (V.Iv 53 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) 52 // 27-10-07 Virtual functions moved to source 54 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 53 // 11-03-08 Set skin value does not effect ste 55 // 11-03-08 Set skin value does not effect step limit type (V.Ivanchenko) 54 // 24-06-09 Removed hidden bin in G4PhysicsVec 56 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) 55 // 04-06-13 Adoptation to MT mode (V.Ivanchenk 57 // 04-06-13 Adoptation to MT mode (V.Ivanchenko) 56 // 58 // >> 59 // Class Description: >> 60 // >> 61 // It is the generic process of multiple scattering it includes common >> 62 // part of calculations for all charged particles 57 63 58 // ------------------------------------------- 64 // ------------------------------------------------------------------- 59 // 65 // 60 //....oooOO0OOooo........oooOO0OOooo........oo 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 68 63 #include "G4VMultipleScattering.hh" 69 #include "G4VMultipleScattering.hh" 64 #include "G4PhysicalConstants.hh" 70 #include "G4PhysicalConstants.hh" 65 #include "G4SystemOfUnits.hh" 71 #include "G4SystemOfUnits.hh" 66 #include "G4LossTableManager.hh" 72 #include "G4LossTableManager.hh" 67 #include "G4MaterialCutsCouple.hh" 73 #include "G4MaterialCutsCouple.hh" 68 #include "G4Step.hh" 74 #include "G4Step.hh" 69 #include "G4ParticleDefinition.hh" 75 #include "G4ParticleDefinition.hh" 70 #include "G4VEmFluctuationModel.hh" 76 #include "G4VEmFluctuationModel.hh" 71 #include "G4UnitsTable.hh" 77 #include "G4UnitsTable.hh" 72 #include "G4ProductionCutsTable.hh" 78 #include "G4ProductionCutsTable.hh" 73 #include "G4Electron.hh" 79 #include "G4Electron.hh" 74 #include "G4GenericIon.hh" 80 #include "G4GenericIon.hh" 75 #include "G4TransportationManager.hh" 81 #include "G4TransportationManager.hh" 76 #include "G4SafetyHelper.hh" 82 #include "G4SafetyHelper.hh" 77 #include "G4ParticleTable.hh" 83 #include "G4ParticleTable.hh" 78 #include "G4ProcessVector.hh" 84 #include "G4ProcessVector.hh" 79 #include "G4ProcessManager.hh" 85 #include "G4ProcessManager.hh" 80 #include "G4LossTableBuilder.hh" << 81 #include "G4EmTableUtil.hh" << 82 #include <iostream> 86 #include <iostream> 83 87 84 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 89 86 G4VMultipleScattering::G4VMultipleScattering(c << 90 G4VMultipleScattering::G4VMultipleScattering(const G4String& name, G4ProcessType) 87 : G4VContinuousDiscreteProcess("msc", fElect 91 : G4VContinuousDiscreteProcess("msc", fElectromagnetic), >> 92 numberOfModels(0), >> 93 firstParticle(nullptr), >> 94 currParticle(nullptr), >> 95 stepLimit(fUseSafety), >> 96 facrange(0.04), >> 97 latDisplacement(true), >> 98 isIon(false), >> 99 fDispBeyondSafety(false), 88 fNewPosition(0.,0.,0.), 100 fNewPosition(0.,0.,0.), 89 fNewDirection(0.,0.,1.) 101 fNewDirection(0.,0.,1.) 90 { 102 { 91 theParameters = G4EmParameters::Instance(); 103 theParameters = G4EmParameters::Instance(); 92 SetVerboseLevel(1); 104 SetVerboseLevel(1); 93 SetProcessSubType(fMultipleScattering); 105 SetProcessSubType(fMultipleScattering); >> 106 if("ionmsc" == name) { firstParticle = G4GenericIon::GenericIon(); } 94 107 95 lowestKinEnergy = 10*CLHEP::eV; 108 lowestKinEnergy = 10*CLHEP::eV; 96 109 97 geomMin = 0.05*CLHEP::nm; << 110 physStepLimit = gPathLength = tPathLength = 0.0; >> 111 fIonisation = nullptr; >> 112 >> 113 geomMin = 0.05*CLHEP::nm; 98 minDisplacement2 = geomMin*geomMin; 114 minDisplacement2 = geomMin*geomMin; 99 115 100 pParticleChange = &fParticleChange; 116 pParticleChange = &fParticleChange; >> 117 safetyHelper = nullptr; >> 118 fPositionChanged = false; >> 119 isActive = false; 101 120 >> 121 currentModel = nullptr; 102 modelManager = new G4EmModelManager(); 122 modelManager = new G4EmModelManager(); 103 emManager = G4LossTableManager::Instance(); 123 emManager = G4LossTableManager::Instance(); 104 mscModels.reserve(2); 124 mscModels.reserve(2); 105 emManager->Register(this); 125 emManager->Register(this); 106 } 126 } 107 127 108 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 129 110 G4VMultipleScattering::~G4VMultipleScattering( 130 G4VMultipleScattering::~G4VMultipleScattering() 111 { 131 { >> 132 /* >> 133 if(1 < verboseLevel) { >> 134 G4cout << "G4VMultipleScattering destruct " << GetProcessName() >> 135 << G4endl; >> 136 } >> 137 */ 112 delete modelManager; 138 delete modelManager; 113 emManager->DeRegister(this); 139 emManager->DeRegister(this); 114 } 140 } 115 141 116 //....oooOO0OOooo........oooOO0OOooo........oo 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 117 143 118 void G4VMultipleScattering::AddEmModel(G4int o << 144 void G4VMultipleScattering::AddEmModel(G4int order, G4VEmModel* p, 119 const G 145 const G4Region* region) 120 { 146 { 121 if(nullptr == ptr) { return; } << 147 if(!p) { return; } 122 G4VEmFluctuationModel* fm = nullptr; 148 G4VEmFluctuationModel* fm = nullptr; 123 modelManager->AddEmModel(order, ptr, fm, reg << 149 modelManager->AddEmModel(order, p, fm, region); 124 ptr->SetParticleChange(pParticleChange); << 150 p->SetParticleChange(pParticleChange); 125 } 151 } 126 152 127 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 128 154 129 void G4VMultipleScattering::SetEmModel(G4VMscM << 155 void G4VMultipleScattering::SetEmModel(G4VMscModel* p, size_t) 130 { 156 { 131 if(nullptr == ptr) { return; } << 157 for(auto & msc : mscModels) { if(msc == p) { return; } } 132 if(!mscModels.empty()) { << 158 mscModels.push_back(p); 133 for(auto & msc : mscModels) { if(msc == pt << 159 } 134 } << 160 135 mscModels.push_back(ptr); << 161 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 162 >> 163 G4VMscModel* G4VMultipleScattering::EmModel(size_t index) const >> 164 { >> 165 return (index < mscModels.size()) ? mscModels[index] : nullptr; 136 } 166 } 137 167 138 //....oooOO0OOooo........oooOO0OOooo........oo 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 169 140 void 170 void 141 G4VMultipleScattering::PreparePhysicsTable(con 171 G4VMultipleScattering::PreparePhysicsTable(const G4ParticleDefinition& part) 142 { 172 { >> 173 if(1 < verboseLevel) { >> 174 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 175 << GetProcessName() >> 176 << " and particle " << part.GetParticleName() >> 177 << G4endl; >> 178 } 143 G4bool master = emManager->IsMaster(); 179 G4bool master = emManager->IsMaster(); 144 if (nullptr == firstParticle) { firstParticl << 145 180 146 emManager->PreparePhysicsTable(&part, this); << 181 if(!firstParticle) { firstParticle = ∂ } >> 182 if(part.GetParticleType() == "nucleus") { >> 183 stepLimit = fMinimal; >> 184 latDisplacement = false; >> 185 facrange = 0.2; >> 186 G4String pname = part.GetParticleName(); >> 187 if(pname != "deuteron" && pname != "triton" && >> 188 pname != "alpha+" && pname != "helium" && >> 189 pname != "alpha" && pname != "He3" && >> 190 pname != "hydrogen") { >> 191 >> 192 const G4ParticleDefinition* theGenericIon = >> 193 G4ParticleTable::GetParticleTable()->FindParticle("GenericIon"); >> 194 if(&part == theGenericIon) { isIon = true; } >> 195 >> 196 if(theGenericIon && firstParticle != theGenericIon) { >> 197 G4ProcessManager* pm = theGenericIon->GetProcessManager(); >> 198 G4ProcessVector* v = pm->GetAlongStepProcessVector(); >> 199 size_t n = v->size(); >> 200 for(size_t j=0; j<n; ++j) { >> 201 if((*v)[j] == this) { >> 202 firstParticle = theGenericIon; >> 203 isIon = true; >> 204 break; >> 205 } >> 206 } >> 207 } >> 208 } >> 209 } >> 210 >> 211 emManager->PreparePhysicsTable(&part, this, master); 147 currParticle = nullptr; 212 currParticle = nullptr; 148 213 >> 214 if(1 < verboseLevel) { >> 215 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 216 << GetProcessName() >> 217 << " and particle " << part.GetParticleName() >> 218 << " local particle " << firstParticle->GetParticleName() >> 219 << " isIon: " << isIon << " isMaster: " << master >> 220 << G4endl; >> 221 } >> 222 149 if(firstParticle == &part) { 223 if(firstParticle == &part) { 150 baseMat = emManager->GetTableBuilder()->Ge << 151 G4EmTableUtil::PrepareMscProcess(this, par << 152 stepLimit, facrange, << 153 latDisplacement, master, << 154 isIon, baseMat); << 155 224 >> 225 // initialise process >> 226 InitialiseProcess(firstParticle); >> 227 >> 228 // heavy particles and not ions >> 229 if(!isIon) { >> 230 if(part.GetPDGMass() > MeV) { >> 231 stepLimit = theParameters->MscMuHadStepLimitType(); >> 232 facrange = theParameters->MscMuHadRangeFactor(); >> 233 latDisplacement = theParameters->MuHadLateralDisplacement(); >> 234 } else { >> 235 stepLimit = theParameters->MscStepLimitType(); >> 236 facrange = theParameters->MscRangeFactor(); >> 237 latDisplacement = theParameters->LateralDisplacement(); >> 238 } >> 239 if(latDisplacement) { >> 240 fDispBeyondSafety = theParameters->LatDisplacementBeyondSafety(); >> 241 } >> 242 } >> 243 if(master) { SetVerboseLevel(theParameters->Verbose()); } >> 244 else { SetVerboseLevel(theParameters->WorkerVerbose()); } >> 245 >> 246 // initialisation of models 156 numberOfModels = modelManager->NumberOfMod 247 numberOfModels = modelManager->NumberOfModels(); 157 currentModel = GetModelByIndex(0); << 248 /* >> 249 G4cout << "### G4VMultipleScattering::PreparePhysicsTable() for " >> 250 << GetProcessName() >> 251 << " and particle " << part.GetParticleName() >> 252 << " Nmod= " << numberOfModels << " " << this >> 253 << G4endl; >> 254 */ >> 255 for(G4int i=0; i<numberOfModels; ++i) { >> 256 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i)); >> 257 if(!msc) { continue; } >> 258 msc->SetIonisation(nullptr, firstParticle); >> 259 msc->SetMasterThread(master); >> 260 currentModel = msc; >> 261 msc->SetPolarAngleLimit(theParameters->MscThetaLimit()); >> 262 G4double emax = >> 263 std::min(msc->HighEnergyLimit(),theParameters->MaxKinEnergy()); >> 264 msc->SetHighEnergyLimit(emax); >> 265 } 158 266 159 if (nullptr == safetyHelper) { << 267 modelManager->Initialise(firstParticle, G4Electron::Electron(), >> 268 10.0, verboseLevel); >> 269 >> 270 if(!safetyHelper) { 160 safetyHelper = G4TransportationManager:: 271 safetyHelper = G4TransportationManager::GetTransportationManager() 161 ->GetSafetyHelper(); << 272 ->GetSafetyHelper(); 162 safetyHelper->InitialiseHelper(); 273 safetyHelper->InitialiseHelper(); 163 } 274 } 164 } 275 } 165 } 276 } 166 277 167 //....oooOO0OOooo........oooOO0OOooo........oo 278 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 168 279 169 void G4VMultipleScattering::BuildPhysicsTable( 280 void G4VMultipleScattering::BuildPhysicsTable(const G4ParticleDefinition& part) 170 { 281 { >> 282 G4String num = part.GetParticleName(); 171 G4bool master = emManager->IsMaster(); 283 G4bool master = emManager->IsMaster(); 172 << 284 if(1 < verboseLevel) { 173 if(firstParticle == &part) { << 285 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " 174 emManager->BuildPhysicsTable(&part); << 286 << GetProcessName() >> 287 << " and particle " << num << " isIon: " << isIon >> 288 << " IsMaster: " << master << G4endl; 175 } 289 } 176 const G4VMultipleScattering* ptr = this; << 290 const G4VMultipleScattering* masterProcess = 177 if(!master) { << 291 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); 178 ptr = static_cast<const G4VMultipleScatter << 292 >> 293 if(firstParticle == &part) { >> 294 /* >> 295 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " >> 296 << GetProcessName() >> 297 << " and particle " << num >> 298 << " IsMaster= " << G4LossTableManager::Instance()->IsMaster() >> 299 << " " << this >> 300 << G4endl; >> 301 */ >> 302 emManager->BuildPhysicsTable(firstParticle); >> 303 >> 304 if(!master) { >> 305 // initialisation of models >> 306 /* >> 307 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " >> 308 << GetProcessName() >> 309 << " and particle " << num >> 310 << " Nmod= " << numberOfModels << " " << this >> 311 << G4endl; >> 312 */ >> 313 for(G4int i=0; i<numberOfModels; ++i) { >> 314 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i)); >> 315 if(!msc) { continue; } >> 316 G4VMscModel* msc0= >> 317 static_cast<G4VMscModel*>(masterProcess->GetModelByIndex(i)); >> 318 msc->SetCrossSectionTable(msc0->GetCrossSectionTable(), false); >> 319 msc->InitialiseLocal(firstParticle, msc0); >> 320 } >> 321 } 179 } 322 } 180 323 181 G4EmTableUtil::BuildMscProcess(this, ptr, pa << 324 // explicitly defined printout by particle name 182 numberOfModels, master); << 325 if(1 < verboseLevel || >> 326 (0 < verboseLevel && (num == "e-" || >> 327 num == "e+" || num == "mu+" || >> 328 num == "mu-" || num == "proton"|| >> 329 num == "pi+" || num == "pi-" || >> 330 num == "kaon+" || num == "kaon-" || >> 331 num == "alpha" || num == "anti_proton" || >> 332 num == "GenericIon" || num == "alpha+" || >> 333 num == "alpha++" ))) >> 334 { >> 335 StreamInfo(G4cout, part); >> 336 } >> 337 >> 338 if(1 < verboseLevel) { >> 339 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() done for " >> 340 << GetProcessName() >> 341 << " and particle " << num >> 342 << G4endl; >> 343 } 183 } 344 } 184 345 185 //....oooOO0OOooo........oooOO0OOooo........oo 346 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 347 187 void G4VMultipleScattering::StreamInfo(std::os 348 void G4VMultipleScattering::StreamInfo(std::ostream& outFile, 188 const G4ParticleDefinition& 349 const G4ParticleDefinition& part, G4bool rst) const 189 { 350 { 190 G4String indent = (rst ? " " : ""); 351 G4String indent = (rst ? " " : ""); 191 outFile << G4endl << indent << GetProcessNam 352 outFile << G4endl << indent << GetProcessName() << ": "; 192 if (!rst) outFile << " for " << part.GetPart 353 if (!rst) outFile << " for " << part.GetParticleName(); 193 outFile << " SubType= " << GetProcessSubTy 354 outFile << " SubType= " << GetProcessSubType() << G4endl; >> 355 StreamProcessInfo(outFile); 194 modelManager->DumpModelList(outFile, verbose 356 modelManager->DumpModelList(outFile, verboseLevel); 195 } 357 } 196 358 197 //....oooOO0OOooo........oooOO0OOooo........oo 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 198 360 199 void G4VMultipleScattering::StartTracking(G4Tr 361 void G4VMultipleScattering::StartTracking(G4Track* track) 200 { 362 { 201 G4VEnergyLossProcess* eloss = nullptr; 363 G4VEnergyLossProcess* eloss = nullptr; 202 if(track->GetParticleDefinition() != currPar 364 if(track->GetParticleDefinition() != currParticle) { 203 currParticle = track->GetParticleDefinitio 365 currParticle = track->GetParticleDefinition(); 204 fIonisation = emManager->GetEnergyLossProc 366 fIonisation = emManager->GetEnergyLossProcess(currParticle); 205 eloss = fIonisation; 367 eloss = fIonisation; 206 } 368 } >> 369 /* >> 370 G4cout << "G4VMultipleScattering::StartTracking Nmod= " << numberOfModels >> 371 << " " << currParticle->GetParticleName() >> 372 << " E(MeV)= " << track->GetKineticEnergy() >> 373 << " Ion= " << eloss << " " << fIonisation << " IsMaster= " >> 374 << G4LossTableManager::Instance()->IsMaster() >> 375 << G4endl; >> 376 */ 207 for(G4int i=0; i<numberOfModels; ++i) { 377 for(G4int i=0; i<numberOfModels; ++i) { 208 G4VMscModel* msc = GetModelByIndex(i); << 378 /* >> 379 G4cout << "Next model " << i << " " << msc >> 380 << " Emin= " << msc->LowEnergyLimit() >> 381 << " Emax= " << msc->HighEnergyLimit() >> 382 << " Eact= " << msc->LowEnergyActivationLimit() << G4endl; >> 383 */ >> 384 G4VEmModel* msc = GetModelByIndex(i); 209 msc->StartTracking(track); 385 msc->StartTracking(track); 210 if(nullptr != eloss) { << 386 if(eloss) { 211 msc->SetIonisation(eloss, currParticle); << 387 G4VMscModel* mscmod = static_cast<G4VMscModel*>(msc); >> 388 if(mscmod) { mscmod->SetIonisation(fIonisation, currParticle); } 212 } 389 } 213 } 390 } 214 } << 391 } 215 392 216 //....oooOO0OOooo........oooOO0OOooo........oo 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 217 394 218 G4double G4VMultipleScattering::AlongStepGetPh 395 G4double G4VMultipleScattering::AlongStepGetPhysicalInteractionLength( 219 const G4Track& tr 396 const G4Track& track, 220 G4double, 397 G4double, 221 G4double currentM 398 G4double currentMinimalStep, 222 G4double&, 399 G4double&, 223 G4GPILSelection* 400 G4GPILSelection* selection) 224 { 401 { 225 // get Step limit proposed by the process 402 // get Step limit proposed by the process 226 *selection = NotCandidateForSelection; 403 *selection = NotCandidateForSelection; 227 physStepLimit = gPathLength = tPathLength = 404 physStepLimit = gPathLength = tPathLength = currentMinimalStep; 228 405 229 G4double ekin = track.GetKineticEnergy(); 406 G4double ekin = track.GetKineticEnergy(); 230 /* 407 /* 231 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 408 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 232 << " " << currParticle->GetParticleN 409 << " " << currParticle->GetParticleName() 233 << " currMod " << currentModel 410 << " currMod " << currentModel 234 << G4endl; 411 << G4endl; 235 */ 412 */ 236 // isIon flag is used only to select a model 413 // isIon flag is used only to select a model 237 if(isIon) { 414 if(isIon) { 238 ekin *= proton_mass_c2/track.GetParticleDe 415 ekin *= proton_mass_c2/track.GetParticleDefinition()->GetPDGMass(); 239 } 416 } 240 const G4MaterialCutsCouple* couple = track.G << 241 417 242 // select new model, static cast is possible << 418 // select new model 243 if(1 < numberOfModels) { 419 if(1 < numberOfModels) { 244 currentModel = << 420 currentModel = static_cast<G4VMscModel*>( 245 static_cast<G4VMscModel*>(SelectModel(ek << 421 SelectModel(ekin,track.GetMaterialCutsCouple()->GetIndex())); 246 } 422 } 247 currentModel->SetCurrentCouple(couple); << 248 // msc is active is model is active, energy 423 // msc is active is model is active, energy above the limit, 249 // and step size is above the limit; 424 // and step size is above the limit; 250 // if it is active msc may limit the step 425 // if it is active msc may limit the step 251 if(currentModel->IsActive(ekin) && tPathLeng 426 if(currentModel->IsActive(ekin) && tPathLength > geomMin 252 && ekin >= lowestKinEnergy) { 427 && ekin >= lowestKinEnergy) { 253 isActive = true; 428 isActive = true; 254 tPathLength = 429 tPathLength = 255 currentModel->ComputeTruePathLengthLimit 430 currentModel->ComputeTruePathLengthLimit(track, gPathLength); 256 if (tPathLength < physStepLimit) { 431 if (tPathLength < physStepLimit) { 257 *selection = CandidateForSelection; 432 *selection = CandidateForSelection; 258 } 433 } 259 } else { << 434 } else { isActive = false; } 260 isActive = false; << 261 gPathLength = DBL_MAX; << 262 } << 263 435 264 //if(currParticle->GetPDGMass() > GeV) 436 //if(currParticle->GetPDGMass() > GeV) 265 /* 437 /* 266 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 438 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 267 << " " << currParticle->GetParticleN 439 << " " << currParticle->GetParticleName() 268 << " gPathLength= " << gPathLength 440 << " gPathLength= " << gPathLength 269 << " tPathLength= " << tPathLength 441 << " tPathLength= " << tPathLength 270 << " currentMinimalStep= " << current 442 << " currentMinimalStep= " << currentMinimalStep 271 << " isActive " << isActive << G4endl 443 << " isActive " << isActive << G4endl; 272 */ 444 */ 273 return gPathLength; 445 return gPathLength; 274 } 446 } 275 447 276 //....oooOO0OOooo........oooOO0OOooo........oo 448 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 449 278 G4double 450 G4double 279 G4VMultipleScattering::PostStepGetPhysicalInte 451 G4VMultipleScattering::PostStepGetPhysicalInteractionLength( 280 const G4Track&, G4double, G4Forc 452 const G4Track&, G4double, G4ForceCondition* condition) 281 { 453 { 282 *condition = NotForced; 454 *condition = NotForced; 283 return DBL_MAX; 455 return DBL_MAX; 284 } 456 } 285 457 286 //....oooOO0OOooo........oooOO0OOooo........oo 458 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 287 459 288 G4VParticleChange* 460 G4VParticleChange* 289 G4VMultipleScattering::AlongStepDoIt(const G4T 461 G4VMultipleScattering::AlongStepDoIt(const G4Track& track, const G4Step& step) 290 { 462 { 291 fParticleChange.InitialiseMSC(track, step); << 463 fParticleChange.ProposeMomentumDirection( 292 fNewPosition = fParticleChange.GetProposedPo << 464 step.GetPostStepPoint()->GetMomentumDirection()); >> 465 fNewPosition = step.GetPostStepPoint()->GetPosition(); >> 466 fParticleChange.ProposePosition(fNewPosition); 293 fPositionChanged = false; 467 fPositionChanged = false; 294 468 295 G4double geomLength = step.GetStepLength(); 469 G4double geomLength = step.GetStepLength(); 296 470 297 // very small step - no msc 471 // very small step - no msc 298 if(!isActive) { 472 if(!isActive) { 299 tPathLength = geomLength; 473 tPathLength = geomLength; 300 474 301 // sample msc 475 // sample msc 302 } else { 476 } else { 303 G4double range = 477 G4double range = 304 currentModel->GetRange(currParticle,trac 478 currentModel->GetRange(currParticle,track.GetKineticEnergy(), 305 track.GetMaterial 479 track.GetMaterialCutsCouple()); 306 480 307 tPathLength = currentModel->ComputeTrueSte 481 tPathLength = currentModel->ComputeTrueStepLength(geomLength); 308 482 309 /* 483 /* 310 if(currParticle->GetPDGMass() > 0.9*GeV) 484 if(currParticle->GetPDGMass() > 0.9*GeV) 311 G4cout << "G4VMsc::AlongStepDoIt: GeomLeng 485 G4cout << "G4VMsc::AlongStepDoIt: GeomLength= " 312 << geomLength 486 << geomLength 313 << " tPathLength= " << tPathLength 487 << " tPathLength= " << tPathLength 314 << " physStepLimit= " << physStepLi 488 << " physStepLimit= " << physStepLimit 315 << " dr= " << range - tPathLength 489 << " dr= " << range - tPathLength 316 << " ekin= " << track.GetKineticEne 490 << " ekin= " << track.GetKineticEnergy() << G4endl; 317 */ 491 */ 318 // protection against wrong t->g->t conver 492 // protection against wrong t->g->t conversion 319 tPathLength = std::min(tPathLength, physSt 493 tPathLength = std::min(tPathLength, physStepLimit); 320 494 321 // do not sample scattering at the last or 495 // do not sample scattering at the last or at a small step 322 if(tPathLength < range && tPathLength > ge 496 if(tPathLength < range && tPathLength > geomMin) { 323 497 324 static const G4double minSafety = 1.20*C 498 static const G4double minSafety = 1.20*CLHEP::nm; 325 static const G4double sFact = 0.99; 499 static const G4double sFact = 0.99; 326 500 327 G4ThreeVector displacement = currentMode 501 G4ThreeVector displacement = currentModel->SampleScattering( 328 step.GetPostStepPoint()->GetMomentumDi 502 step.GetPostStepPoint()->GetMomentumDirection(),minSafety); 329 503 330 G4double r2 = displacement.mag2(); 504 G4double r2 = displacement.mag2(); 331 //G4cout << " R= " << sqrt(r2) << " R 505 //G4cout << " R= " << sqrt(r2) << " Rmin= " << sqrt(minDisplacement2) 332 // << " flag= " << fDispBeyondSafety 506 // << " flag= " << fDispBeyondSafety << G4endl; 333 if(r2 > minDisplacement2) { 507 if(r2 > minDisplacement2) { 334 508 335 fPositionChanged = true; 509 fPositionChanged = true; 336 G4double dispR = std::sqrt(r2); 510 G4double dispR = std::sqrt(r2); 337 G4double postSafety = 511 G4double postSafety = 338 sFact*safetyHelper->ComputeSafety(fN 512 sFact*safetyHelper->ComputeSafety(fNewPosition, dispR); 339 //G4cout<<" R= "<< dispR<<" postSaf 513 //G4cout<<" R= "<< dispR<<" postSafety= "<<postSafety<<G4endl; 340 514 341 // far away from geometry boundary 515 // far away from geometry boundary 342 if(postSafety > 0.0 && dispR <= postSa 516 if(postSafety > 0.0 && dispR <= postSafety) { 343 fNewPosition += displacement; 517 fNewPosition += displacement; 344 518 345 //near the boundary 519 //near the boundary 346 } else { 520 } else { 347 // displaced point is definitely wit 521 // displaced point is definitely within the volume 348 //G4cout<<" R= "<<dispR<<" postSa 522 //G4cout<<" R= "<<dispR<<" postSafety= "<<postSafety<<G4endl; 349 if(dispR < postSafety) { 523 if(dispR < postSafety) { 350 fNewPosition += displacement; 524 fNewPosition += displacement; 351 525 >> 526 // optional extra mechanism is applied only if a particle >> 527 // is stopped by the boundary >> 528 } else if(fDispBeyondSafety && 0.0 == postSafety) { >> 529 fNewPosition += displacement; >> 530 G4double maxshift = >> 531 std::min(2.0*dispR, geomLength*(physStepLimit/tPathLength - 1.0)); >> 532 G4double dist = 0.0; >> 533 G4double safety = postSafety + dispR; >> 534 fNewDirection = *(fParticleChange.GetMomentumDirection()); >> 535 /* >> 536 G4cout << "##MSC before Recheck maxshift= " << maxshift >> 537 << " postsafety= " << postSafety >> 538 << " Ekin= " << track.GetKineticEnergy() >> 539 << " " << track.GetDefinition()->GetParticleName() >> 540 << G4endl; >> 541 */ >> 542 // check if it is possible to shift to the boundary >> 543 // and the shift is not large >> 544 if(safetyHelper->RecheckDistanceToCurrentBoundary(fNewPosition, >> 545 fNewDirection, maxshift, &dist, &safety) >> 546 && std::abs(dist) < maxshift) { >> 547 /* >> 548 G4cout << "##MSC after Recheck dist= " << dist >> 549 << " postsafety= " << postSafety >> 550 << " t= " << tPathLength >> 551 << " g= " << geomLength >> 552 << " p= " << physStepLimit >> 553 << G4endl; >> 554 */ >> 555 // shift is positive >> 556 if(dist >= 0.0) { >> 557 tPathLength *= (1.0 + dist/geomLength); >> 558 fNewPosition += dist*fNewDirection; >> 559 >> 560 // shift is negative cannot be larger than geomLength >> 561 } else { >> 562 maxshift = std::min(maxshift, geomLength); >> 563 if(0.0 < maxshift + dist) { >> 564 const G4ThreeVector& postpoint = >> 565 step.GetPostStepPoint()->GetPosition(); >> 566 G4ThreeVector point = fNewPosition + dist*fNewDirection; >> 567 G4double R2 = (postpoint - point).mag2(); >> 568 G4double newdist = dist; >> 569 // check not more than 10 extra boundaries >> 570 for(G4int i=0; i<10; ++i) { >> 571 dist = 0.0; >> 572 if(safetyHelper->RecheckDistanceToCurrentBoundary( >> 573 point, fNewDirection, maxshift, &dist, &safety) >> 574 && std::abs(newdist + dist) < maxshift) { >> 575 point += dist*fNewDirection; >> 576 G4double R2new = (postpoint - point).mag2(); >> 577 //G4cout << "Backward i= " << i << " dist= " << dist >> 578 // << " R2= " << R2new << G4endl; >> 579 if(dist >= 0.0 || R2new > R2) { break; } >> 580 R2 = R2new; >> 581 fNewPosition = point; >> 582 newdist += dist; >> 583 } else { >> 584 break; >> 585 } >> 586 } >> 587 tPathLength *= (1.0 + newdist/geomLength); >> 588 // shift on boundary is not possible for negative disp >> 589 } else { >> 590 fNewPosition += displacement*(postSafety/dispR - 1.0); >> 591 } >> 592 } >> 593 // shift on boundary is not possible for any disp >> 594 } else { >> 595 fNewPosition += displacement*(postSafety/dispR - 1.0); >> 596 } 352 // reduced displacement 597 // reduced displacement 353 } else if(postSafety > geomMin) { 598 } else if(postSafety > geomMin) { 354 fNewPosition += displacement*(post 599 fNewPosition += displacement*(postSafety/dispR); 355 600 356 // very small postSafety 601 // very small postSafety 357 } else { 602 } else { 358 fPositionChanged = false; 603 fPositionChanged = false; 359 } 604 } 360 } 605 } 361 if(fPositionChanged) { 606 if(fPositionChanged) { 362 safetyHelper->ReLocateWithinVolume(f 607 safetyHelper->ReLocateWithinVolume(fNewPosition); 363 fParticleChange.ProposePosition(fNew 608 fParticleChange.ProposePosition(fNewPosition); 364 } 609 } 365 } 610 } 366 } 611 } 367 } 612 } 368 fParticleChange.ProposeTrueStepLength(tPathL 613 fParticleChange.ProposeTrueStepLength(tPathLength); 369 return &fParticleChange; 614 return &fParticleChange; 370 } 615 } 371 616 372 //....oooOO0OOooo........oooOO0OOooo........oo 617 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 373 618 >> 619 G4VParticleChange* >> 620 G4VMultipleScattering::PostStepDoIt(const G4Track& track, const G4Step&) >> 621 { >> 622 fParticleChange.Initialize(track); >> 623 return &fParticleChange; >> 624 } >> 625 >> 626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 627 374 G4double G4VMultipleScattering::GetContinuousS 628 G4double G4VMultipleScattering::GetContinuousStepLimit( 375 const G 629 const G4Track& track, 376 G4doubl 630 G4double previousStepSize, 377 G4doubl 631 G4double currentMinimalStep, 378 G4doubl 632 G4double& currentSafety) 379 { 633 { 380 G4GPILSelection selection = NotCandidateForS 634 G4GPILSelection selection = NotCandidateForSelection; 381 G4double x = AlongStepGetPhysicalInteraction 635 G4double x = AlongStepGetPhysicalInteractionLength(track,previousStepSize, 382 636 currentMinimalStep, 383 637 currentSafety, 384 638 &selection); 385 return x; 639 return x; 386 } 640 } 387 641 388 //....oooOO0OOooo........oooOO0OOooo........oo 642 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 389 643 390 G4double G4VMultipleScattering::ContinuousStep 644 G4double G4VMultipleScattering::ContinuousStepLimit( 391 const G 645 const G4Track& track, 392 G4doubl 646 G4double previousStepSize, 393 G4doubl 647 G4double currentMinimalStep, 394 G4doubl 648 G4double& currentSafety) 395 { 649 { 396 return GetContinuousStepLimit(track,previous 650 return GetContinuousStepLimit(track,previousStepSize,currentMinimalStep, 397 currentSafety) 651 currentSafety); 398 } 652 } 399 653 400 //....oooOO0OOooo........oooOO0OOooo........oo 654 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 401 655 402 G4double G4VMultipleScattering::GetMeanFreePat 656 G4double G4VMultipleScattering::GetMeanFreePath( 403 const G4Track&, G4double, G4Forc 657 const G4Track&, G4double, G4ForceCondition* condition) 404 { 658 { 405 *condition = Forced; 659 *condition = Forced; 406 return DBL_MAX; 660 return DBL_MAX; 407 } 661 } 408 662 409 //....oooOO0OOooo........oooOO0OOooo........oo 663 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 410 664 411 G4bool 665 G4bool 412 G4VMultipleScattering::StorePhysicsTable(const 666 G4VMultipleScattering::StorePhysicsTable(const G4ParticleDefinition* part, 413 const 667 const G4String& directory, 414 G4boo 668 G4bool ascii) 415 { 669 { 416 G4bool yes = true; 670 G4bool yes = true; 417 if(part != firstParticle || !emManager->IsMa << 671 if(part != firstParticle) { return yes; } 418 << 672 const G4VMultipleScattering* masterProcess = 419 return G4EmTableUtil::StoreMscTable(this, pa << 673 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); 420 numberOfModels, verboseLevel, << 674 if(masterProcess && masterProcess != this) { return yes; } 421 ascii); << 675 >> 676 G4int nmod = modelManager->NumberOfModels(); >> 677 static const G4String ss[4] = {"1","2","3","4"}; >> 678 for(G4int i=0; i<nmod; ++i) { >> 679 G4VEmModel* msc = modelManager->GetModel(i); >> 680 yes = true; >> 681 G4PhysicsTable* table = msc->GetCrossSectionTable(); >> 682 if (table) { >> 683 G4int j = std::min(i,3); >> 684 G4String name = >> 685 GetPhysicsTableFileName(part,directory,"LambdaMod"+ss[j],ascii); >> 686 yes = table->StorePhysicsTable(name,ascii); >> 687 >> 688 if ( yes ) { >> 689 if ( verboseLevel>0 ) { >> 690 G4cout << "Physics table are stored for " >> 691 << part->GetParticleName() >> 692 << " and process " << GetProcessName() >> 693 << " with a name <" << name << "> " << G4endl; >> 694 } >> 695 } else { >> 696 G4cout << "Fail to store Physics Table for " >> 697 << part->GetParticleName() >> 698 << " and process " << GetProcessName() >> 699 << " in the directory <" << directory >> 700 << "> " << G4endl; >> 701 } >> 702 } >> 703 } >> 704 return yes; 422 } 705 } 423 706 424 //....oooOO0OOooo........oooOO0OOooo........oo 707 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 425 708 426 G4bool 709 G4bool 427 G4VMultipleScattering::RetrievePhysicsTable(co 710 G4VMultipleScattering::RetrievePhysicsTable(const G4ParticleDefinition*, 428 co 711 const G4String&, 429 G4 712 G4bool) 430 { 713 { 431 return true; 714 return true; 432 } 715 } 433 716 434 //....oooOO0OOooo........oooOO0OOooo........oo 717 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 435 718 >> 719 void G4VMultipleScattering::SetIonisation(G4VEnergyLossProcess* p) >> 720 { >> 721 for(G4int i=0; i<numberOfModels; ++i) { >> 722 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i, true)); >> 723 if(msc) { msc->SetIonisation(p, firstParticle); } >> 724 } >> 725 } >> 726 >> 727 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 728 436 void G4VMultipleScattering::ProcessDescription 729 void G4VMultipleScattering::ProcessDescription(std::ostream& outFile) const 437 { 730 { 438 if(nullptr != firstParticle) { << 731 if(firstParticle) { 439 StreamInfo(outFile, *firstParticle, true); 732 StreamInfo(outFile, *firstParticle, true); 440 } 733 } 441 } 734 } 442 735 443 //....oooOO0OOooo........oooOO0OOooo........oo 736 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 444 737 445 738