Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VMultipleScattering.cc 88981 2015-03-17 10:14:15Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4VMultipleScattering 33 // File name: G4VMultipleScattering 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 25.03.2003 37 // Creation date: 25.03.2003 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // >> 41 // 13.04.03 Change printout (V.Ivanchenko) >> 42 // 04-06-03 Fix compilation warnings (V.Ivanchenko) 40 // 16-07-03 Use G4VMscModel interface (V.Ivanc 43 // 16-07-03 Use G4VMscModel interface (V.Ivanchenko) 41 // 03-11-03 Fix initialisation problem in Retr 44 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) 42 // 04-11-03 Update PrintInfoDefinition (V.Ivan 45 // 04-11-03 Update PrintInfoDefinition (V.Ivanchenko) 43 // 01-03-04 SampleCosineTheta signature change 46 // 01-03-04 SampleCosineTheta signature changed 44 // 22-04-04 SampleCosineTheta signature change 47 // 22-04-04 SampleCosineTheta signature changed back to original 45 // 27-08-04 Add InitialiseForRun method (V.Iva 48 // 27-08-04 Add InitialiseForRun method (V.Ivanchneko) 46 // 08-11-04 Migration to new interface of Stor 49 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) 47 // 11-03-05 Shift verbose level by 1 (V.Ivantc 50 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) 48 // 15-04-05 optimize internal interface (V.Iva 51 // 15-04-05 optimize internal interface (V.Ivanchenko) 49 // 15-04-05 remove boundary flag (V.Ivanchenko 52 // 15-04-05 remove boundary flag (V.Ivanchenko) 50 // 27-10-05 introduce virtual function MscStep 53 // 27-10-05 introduce virtual function MscStepLimitation() (V.Ivanchenko) 51 // 12-04-07 Add verbosity at destruction (V.Iv 54 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) 52 // 27-10-07 Virtual functions moved to source 55 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 53 // 11-03-08 Set skin value does not effect ste 56 // 11-03-08 Set skin value does not effect step limit type (V.Ivanchenko) 54 // 24-06-09 Removed hidden bin in G4PhysicsVec 57 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) 55 // 04-06-13 Adoptation to MT mode (V.Ivanchenk 58 // 04-06-13 Adoptation to MT mode (V.Ivanchenko) 56 // 59 // >> 60 // Class Description: >> 61 // >> 62 // It is the generic process of multiple scattering it includes common >> 63 // part of calculations for all charged particles 57 64 58 // ------------------------------------------- 65 // ------------------------------------------------------------------- 59 // 66 // 60 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 69 63 #include "G4VMultipleScattering.hh" 70 #include "G4VMultipleScattering.hh" 64 #include "G4PhysicalConstants.hh" 71 #include "G4PhysicalConstants.hh" 65 #include "G4SystemOfUnits.hh" 72 #include "G4SystemOfUnits.hh" 66 #include "G4LossTableManager.hh" 73 #include "G4LossTableManager.hh" 67 #include "G4MaterialCutsCouple.hh" 74 #include "G4MaterialCutsCouple.hh" 68 #include "G4Step.hh" 75 #include "G4Step.hh" 69 #include "G4ParticleDefinition.hh" 76 #include "G4ParticleDefinition.hh" 70 #include "G4VEmFluctuationModel.hh" 77 #include "G4VEmFluctuationModel.hh" 71 #include "G4UnitsTable.hh" 78 #include "G4UnitsTable.hh" 72 #include "G4ProductionCutsTable.hh" 79 #include "G4ProductionCutsTable.hh" 73 #include "G4Electron.hh" 80 #include "G4Electron.hh" 74 #include "G4GenericIon.hh" 81 #include "G4GenericIon.hh" 75 #include "G4TransportationManager.hh" 82 #include "G4TransportationManager.hh" 76 #include "G4SafetyHelper.hh" 83 #include "G4SafetyHelper.hh" 77 #include "G4ParticleTable.hh" 84 #include "G4ParticleTable.hh" 78 #include "G4ProcessVector.hh" 85 #include "G4ProcessVector.hh" 79 #include "G4ProcessManager.hh" 86 #include "G4ProcessManager.hh" 80 #include "G4LossTableBuilder.hh" << 81 #include "G4EmTableUtil.hh" << 82 #include <iostream> << 83 87 84 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 89 86 G4VMultipleScattering::G4VMultipleScattering(c << 90 static const G4double minSafety = 1.20*CLHEP::nm; 87 : G4VContinuousDiscreteProcess("msc", fElect << 91 static const G4double geomMin = 0.05*CLHEP::nm; 88 fNewPosition(0.,0.,0.), << 92 static const G4double minDisplacement2 = geomMin*geomMin; 89 fNewDirection(0.,0.,1.) << 93 >> 94 G4VMultipleScattering::G4VMultipleScattering(const G4String& name, >> 95 G4ProcessType): >> 96 G4VContinuousDiscreteProcess("msc", fElectromagnetic), >> 97 numberOfModels(0), >> 98 firstParticle(0), >> 99 currParticle(0), >> 100 stepLimit(fUseSafety), >> 101 facrange(0.04), >> 102 latDisplacement(true), >> 103 isIon(false), >> 104 fDispBeyondSafety(false) 90 { 105 { 91 theParameters = G4EmParameters::Instance(); 106 theParameters = G4EmParameters::Instance(); 92 SetVerboseLevel(1); 107 SetVerboseLevel(1); 93 SetProcessSubType(fMultipleScattering); 108 SetProcessSubType(fMultipleScattering); >> 109 if("ionmsc" == name) { firstParticle = G4GenericIon::GenericIon(); } 94 110 95 lowestKinEnergy = 10*CLHEP::eV; 111 lowestKinEnergy = 10*CLHEP::eV; 96 112 97 geomMin = 0.05*CLHEP::nm; << 113 physStepLimit = gPathLength = tPathLength = 0.0; 98 minDisplacement2 = geomMin*geomMin; << 114 fIonisation = 0; 99 115 100 pParticleChange = &fParticleChange; 116 pParticleChange = &fParticleChange; 101 << 117 safetyHelper = 0; >> 118 fPositionChanged = false; >> 119 isActive = false; >> 120 actStepLimit = false; >> 121 actFacRange = false; >> 122 actLatDisp = false; >> 123 >> 124 currentModel = 0; 102 modelManager = new G4EmModelManager(); 125 modelManager = new G4EmModelManager(); 103 emManager = G4LossTableManager::Instance(); 126 emManager = G4LossTableManager::Instance(); 104 mscModels.reserve(2); << 105 emManager->Register(this); 127 emManager->Register(this); 106 } 128 } 107 129 108 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 131 110 G4VMultipleScattering::~G4VMultipleScattering( 132 G4VMultipleScattering::~G4VMultipleScattering() 111 { 133 { >> 134 /* >> 135 if(1 < verboseLevel) { >> 136 G4cout << "G4VMultipleScattering destruct " << GetProcessName() >> 137 << G4endl; >> 138 } >> 139 */ 112 delete modelManager; 140 delete modelManager; 113 emManager->DeRegister(this); 141 emManager->DeRegister(this); 114 } 142 } 115 143 116 //....oooOO0OOooo........oooOO0OOooo........oo 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 117 145 118 void G4VMultipleScattering::AddEmModel(G4int o << 146 void G4VMultipleScattering::AddEmModel(G4int order, G4VEmModel* p, 119 const G << 147 const G4Region* region) 120 { 148 { 121 if(nullptr == ptr) { return; } << 149 G4VEmFluctuationModel* fm = 0; 122 G4VEmFluctuationModel* fm = nullptr; << 150 modelManager->AddEmModel(order, p, fm, region); 123 modelManager->AddEmModel(order, ptr, fm, reg << 151 if(p) { p->SetParticleChange(pParticleChange); } 124 ptr->SetParticleChange(pParticleChange); << 125 } 152 } 126 153 127 //....oooOO0OOooo........oooOO0OOooo........oo 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 128 155 129 void G4VMultipleScattering::SetEmModel(G4VMscM << 156 void G4VMultipleScattering::SetEmModel(G4VMscModel* p, G4int index) 130 { 157 { 131 if(nullptr == ptr) { return; } << 158 G4int n = mscModels.size(); 132 if(!mscModels.empty()) { << 159 if(index >= n) { for(G4int i=n; i<=index; ++i) { mscModels.push_back(0); } } 133 for(auto & msc : mscModels) { if(msc == pt << 160 mscModels[index] = p; 134 } << 161 } 135 mscModels.push_back(ptr); << 162 >> 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 164 >> 165 G4VMscModel* G4VMultipleScattering::EmModel(G4int index) const >> 166 { >> 167 G4VMscModel* p = 0; >> 168 if(index >= 0 && index < G4int(mscModels.size())) { p = mscModels[index]; } >> 169 return p; >> 170 } >> 171 >> 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 173 >> 174 G4VEmModel* >> 175 G4VMultipleScattering::GetModelByIndex(G4int idx, G4bool ver) const >> 176 { >> 177 return modelManager->GetModel(idx, ver); 136 } 178 } 137 179 138 //....oooOO0OOooo........oooOO0OOooo........oo 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 181 140 void 182 void 141 G4VMultipleScattering::PreparePhysicsTable(con 183 G4VMultipleScattering::PreparePhysicsTable(const G4ParticleDefinition& part) 142 { 184 { 143 G4bool master = emManager->IsMaster(); << 185 G4bool master = true; 144 if (nullptr == firstParticle) { firstParticl << 186 const G4VMultipleScattering* masterProc = >> 187 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); >> 188 if(masterProc && masterProc != this) { master = false; } >> 189 >> 190 if(!firstParticle) { firstParticle = ∂ } >> 191 if(part.GetParticleType() == "nucleus") { >> 192 SetStepLimitType(fMinimal); >> 193 SetLateralDisplasmentFlag(false); >> 194 SetRangeFactor(0.2); >> 195 G4String pname = part.GetParticleName(); >> 196 if(pname != "deuteron" && pname != "triton" && >> 197 pname != "alpha+" && pname != "helium" && >> 198 pname != "alpha" && pname != "He3" && >> 199 pname != "hydrogen") { >> 200 >> 201 const G4ParticleDefinition* theGenericIon = >> 202 G4ParticleTable::GetParticleTable()->FindParticle("GenericIon"); >> 203 >> 204 if(theGenericIon && firstParticle != theGenericIon) { >> 205 G4ProcessManager* pm = theGenericIon->GetProcessManager(); >> 206 G4ProcessVector* v = pm->GetAlongStepProcessVector(); >> 207 size_t n = v->size(); >> 208 for(size_t j=0; j<n; ++j) { >> 209 if((*v)[j] == this) { >> 210 firstParticle = theGenericIon; >> 211 isIon = true; >> 212 break; >> 213 } >> 214 } >> 215 } >> 216 } >> 217 } 145 218 146 emManager->PreparePhysicsTable(&part, this); << 219 emManager->PreparePhysicsTable(&part, this, master); 147 currParticle = nullptr; << 220 currParticle = 0; >> 221 >> 222 if(1 < verboseLevel) { >> 223 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 224 << GetProcessName() >> 225 << " and particle " << part.GetParticleName() >> 226 << " local particle " << firstParticle->GetParticleName() >> 227 << " isIon= " << isIon >> 228 << G4endl; >> 229 } 148 230 149 if(firstParticle == &part) { 231 if(firstParticle == &part) { 150 baseMat = emManager->GetTableBuilder()->Ge << 151 G4EmTableUtil::PrepareMscProcess(this, par << 152 stepLimit, facrange, << 153 latDisplacement, master, << 154 isIon, baseMat); << 155 232 >> 233 // initialise process >> 234 InitialiseProcess(firstParticle); >> 235 if(part.GetPDGMass() > MeV) { >> 236 if(!actStepLimit) { stepLimit = fMinimal; } >> 237 if(!actFacRange) { facrange = 0.2; } >> 238 if(!actLatDisp) { >> 239 latDisplacement = theParameters->MuHadLateralDisplacement(); >> 240 } >> 241 } else { >> 242 if(!actStepLimit) { stepLimit = theParameters->MscStepLimitType(); } >> 243 if(!actFacRange) { facrange = theParameters->MscRangeFactor(); } >> 244 if(!actLatDisp) { >> 245 latDisplacement = theParameters->LateralDisplacement(); >> 246 } >> 247 } >> 248 if(latDisplacement) { >> 249 fDispBeyondSafety = theParameters->LatDisplacementBeyondSafety(); >> 250 } >> 251 if(master) { SetVerboseLevel(theParameters->Verbose()); } >> 252 else { SetVerboseLevel(theParameters->WorkerVerbose()); } >> 253 >> 254 // initialisation of models 156 numberOfModels = modelManager->NumberOfMod 255 numberOfModels = modelManager->NumberOfModels(); 157 currentModel = GetModelByIndex(0); << 256 for(G4int i=0; i<numberOfModels; ++i) { >> 257 G4VMscModel* msc = static_cast<G4VMscModel*>(modelManager->GetModel(i)); >> 258 msc->SetIonisation(0, firstParticle); >> 259 msc->SetMasterThread(master); >> 260 if(0 == i) { currentModel = msc; } >> 261 msc->SetStepLimitType(stepLimit); >> 262 msc->SetLateralDisplasmentFlag(latDisplacement); >> 263 msc->SetSkin(theParameters->MscSkin()); >> 264 msc->SetRangeFactor(facrange); >> 265 msc->SetGeomFactor(theParameters->MscGeomFactor()); >> 266 msc->SetPolarAngleLimit(theParameters->MscThetaLimit()); >> 267 G4double emax = >> 268 std::min(msc->HighEnergyLimit(),theParameters->MaxKinEnergy()); >> 269 msc->SetHighEnergyLimit(emax); >> 270 } 158 271 159 if (nullptr == safetyHelper) { << 272 modelManager->Initialise(firstParticle, G4Electron::Electron(), >> 273 10.0, verboseLevel); >> 274 >> 275 if(!safetyHelper) { 160 safetyHelper = G4TransportationManager:: 276 safetyHelper = G4TransportationManager::GetTransportationManager() 161 ->GetSafetyHelper(); 277 ->GetSafetyHelper(); 162 safetyHelper->InitialiseHelper(); 278 safetyHelper->InitialiseHelper(); 163 } 279 } 164 } 280 } 165 } 281 } 166 282 167 //....oooOO0OOooo........oooOO0OOooo........oo 283 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 168 284 169 void G4VMultipleScattering::BuildPhysicsTable( 285 void G4VMultipleScattering::BuildPhysicsTable(const G4ParticleDefinition& part) 170 { 286 { 171 G4bool master = emManager->IsMaster(); << 287 G4String num = part.GetParticleName(); 172 << 288 if(1 < verboseLevel) { 173 if(firstParticle == &part) { << 289 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " 174 emManager->BuildPhysicsTable(&part); << 290 << GetProcessName() >> 291 << " and particle " << num >> 292 << " IsMaster= " << G4LossTableManager::Instance()->IsMaster() >> 293 << G4endl; 175 } 294 } 176 const G4VMultipleScattering* ptr = this; << 295 G4bool master = true; 177 if(!master) { << 296 const G4VMultipleScattering* masterProcess = 178 ptr = static_cast<const G4VMultipleScatter << 297 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); >> 298 if(masterProcess && masterProcess != this) { master = false; } >> 299 >> 300 if(firstParticle == &part) { >> 301 /* >> 302 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " >> 303 << GetProcessName() >> 304 << " and particle " << num >> 305 << " IsMaster= " << G4LossTableManager::Instance()->IsMaster() >> 306 << " " << this >> 307 << G4endl; >> 308 */ >> 309 emManager->BuildPhysicsTable(firstParticle); >> 310 >> 311 if(!master) { >> 312 // initialisation of models >> 313 G4bool printing = true; >> 314 numberOfModels = modelManager->NumberOfModels(); >> 315 /* >> 316 G4cout << "### G4VMultipleScattering::SlaveBuildPhysicsTable() for " >> 317 << GetProcessName() >> 318 << " and particle " << num >> 319 << " Nmod= " << numberOfModels << " " << this >> 320 << G4endl; >> 321 */ >> 322 for(G4int i=0; i<numberOfModels; ++i) { >> 323 G4VMscModel* msc = >> 324 static_cast<G4VMscModel*>(GetModelByIndex(i, printing)); >> 325 G4VMscModel* msc0= >> 326 static_cast<G4VMscModel*>(masterProcess->GetModelByIndex(i,printing)); >> 327 msc->SetCrossSectionTable(msc0->GetCrossSectionTable(), false); >> 328 msc->InitialiseLocal(firstParticle, msc0); >> 329 } >> 330 } 179 } 331 } 180 332 181 G4EmTableUtil::BuildMscProcess(this, ptr, pa << 333 // explicitly defined printout by particle name 182 numberOfModels, master); << 334 if(1 < verboseLevel || >> 335 (0 < verboseLevel && (num == "e-" || >> 336 num == "e+" || num == "mu+" || >> 337 num == "mu-" || num == "proton"|| >> 338 num == "pi+" || num == "pi-" || >> 339 num == "kaon+" || num == "kaon-" || >> 340 num == "alpha" || num == "anti_proton" || >> 341 num == "GenericIon"))) >> 342 { >> 343 G4cout << G4endl << GetProcessName() >> 344 << ": for " << num >> 345 << " SubType= " << GetProcessSubType() >> 346 << G4endl; >> 347 PrintInfo(); >> 348 modelManager->DumpModelList(verboseLevel); >> 349 } >> 350 >> 351 if(1 < verboseLevel) { >> 352 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() done for " >> 353 << GetProcessName() >> 354 << " and particle " << num >> 355 << G4endl; >> 356 } 183 } 357 } 184 358 185 //....oooOO0OOooo........oooOO0OOooo........oo 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 360 187 void G4VMultipleScattering::StreamInfo(std::os << 361 void G4VMultipleScattering::PrintInfoDefinition() 188 const G4ParticleDefinition& << 189 { 362 { 190 G4String indent = (rst ? " " : ""); << 363 if (0 < verboseLevel) { 191 outFile << G4endl << indent << GetProcessNam << 364 G4cout << G4endl << GetProcessName() 192 if (!rst) outFile << " for " << part.GetPart << 365 << ": for " << firstParticle->GetParticleName() 193 outFile << " SubType= " << GetProcessSubTy << 366 << " SubType= " << GetProcessSubType() 194 modelManager->DumpModelList(outFile, verbose << 367 << G4endl; >> 368 PrintInfo(); >> 369 modelManager->DumpModelList(verboseLevel); >> 370 } 195 } 371 } 196 372 197 //....oooOO0OOooo........oooOO0OOooo........oo 373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 198 374 199 void G4VMultipleScattering::StartTracking(G4Tr 375 void G4VMultipleScattering::StartTracking(G4Track* track) 200 { 376 { 201 G4VEnergyLossProcess* eloss = nullptr; << 377 G4VEnergyLossProcess* eloss = 0; 202 if(track->GetParticleDefinition() != currPar 378 if(track->GetParticleDefinition() != currParticle) { 203 currParticle = track->GetParticleDefinitio 379 currParticle = track->GetParticleDefinition(); 204 fIonisation = emManager->GetEnergyLossProc 380 fIonisation = emManager->GetEnergyLossProcess(currParticle); 205 eloss = fIonisation; 381 eloss = fIonisation; 206 } 382 } 207 for(G4int i=0; i<numberOfModels; ++i) { << 383 /* 208 G4VMscModel* msc = GetModelByIndex(i); << 384 G4cout << "G4VMultipleScattering::StartTracking Nmod= " << numberOfModels 209 msc->StartTracking(track); << 385 << " " << currParticle->GetParticleName() 210 if(nullptr != eloss) { << 386 << " E(MeV)= " << track->GetKineticEnergy() 211 msc->SetIonisation(eloss, currParticle); << 387 << " Ion= " << eloss << " " << fIonisation << " IsMaster= " >> 388 << G4LossTableManager::Instance()->IsMaster() >> 389 << G4endl; >> 390 */ >> 391 // one model >> 392 if(1 == numberOfModels) { >> 393 currentModel->StartTracking(track); >> 394 if(eloss) { currentModel->SetIonisation(fIonisation, currParticle); } >> 395 >> 396 // many models >> 397 } else { >> 398 for(G4int i=0; i<numberOfModels; ++i) { >> 399 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i,true)); >> 400 msc->StartTracking(track); >> 401 if(eloss) { msc->SetIonisation(fIonisation, currParticle); } 212 } 402 } 213 } 403 } 214 } << 404 } 215 405 216 //....oooOO0OOooo........oooOO0OOooo........oo 406 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 217 407 218 G4double G4VMultipleScattering::AlongStepGetPh 408 G4double G4VMultipleScattering::AlongStepGetPhysicalInteractionLength( 219 const G4Track& tr 409 const G4Track& track, 220 G4double, 410 G4double, 221 G4double currentM 411 G4double currentMinimalStep, 222 G4double&, 412 G4double&, 223 G4GPILSelection* 413 G4GPILSelection* selection) 224 { 414 { 225 // get Step limit proposed by the process 415 // get Step limit proposed by the process 226 *selection = NotCandidateForSelection; 416 *selection = NotCandidateForSelection; 227 physStepLimit = gPathLength = tPathLength = 417 physStepLimit = gPathLength = tPathLength = currentMinimalStep; 228 418 229 G4double ekin = track.GetKineticEnergy(); 419 G4double ekin = track.GetKineticEnergy(); 230 /* 420 /* 231 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 421 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 232 << " " << currParticle->GetParticleN 422 << " " << currParticle->GetParticleName() 233 << " currMod " << currentModel << 423 << " currMod " << currentModel 234 << G4endl; << 424 << G4endl; 235 */ 425 */ 236 // isIon flag is used only to select a model 426 // isIon flag is used only to select a model 237 if(isIon) { 427 if(isIon) { 238 ekin *= proton_mass_c2/track.GetParticleDe 428 ekin *= proton_mass_c2/track.GetParticleDefinition()->GetPDGMass(); 239 } 429 } 240 const G4MaterialCutsCouple* couple = track.G << 241 430 242 // select new model, static cast is possible << 431 // select new model 243 if(1 < numberOfModels) { 432 if(1 < numberOfModels) { 244 currentModel = << 433 currentModel = static_cast<G4VMscModel*>( 245 static_cast<G4VMscModel*>(SelectModel(ek << 434 SelectModel(ekin,track.GetMaterialCutsCouple()->GetIndex())); 246 } 435 } 247 currentModel->SetCurrentCouple(couple); << 248 // msc is active is model is active, energy 436 // msc is active is model is active, energy above the limit, 249 // and step size is above the limit; 437 // and step size is above the limit; 250 // if it is active msc may limit the step 438 // if it is active msc may limit the step 251 if(currentModel->IsActive(ekin) && tPathLeng 439 if(currentModel->IsActive(ekin) && tPathLength > geomMin 252 && ekin >= lowestKinEnergy) { 440 && ekin >= lowestKinEnergy) { 253 isActive = true; 441 isActive = true; 254 tPathLength = 442 tPathLength = 255 currentModel->ComputeTruePathLengthLimit 443 currentModel->ComputeTruePathLengthLimit(track, gPathLength); 256 if (tPathLength < physStepLimit) { 444 if (tPathLength < physStepLimit) { 257 *selection = CandidateForSelection; 445 *selection = CandidateForSelection; 258 } 446 } 259 } else { << 447 } else { isActive = false; } 260 isActive = false; << 261 gPathLength = DBL_MAX; << 262 } << 263 448 264 //if(currParticle->GetPDGMass() > GeV) 449 //if(currParticle->GetPDGMass() > GeV) 265 /* 450 /* 266 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 451 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 267 << " " << currParticle->GetParticleN 452 << " " << currParticle->GetParticleName() 268 << " gPathLength= " << gPathLength << 453 << " gPathLength= " << gPathLength 269 << " tPathLength= " << tPathLength << 454 << " tPathLength= " << tPathLength 270 << " currentMinimalStep= " << current << 455 << " currentMinimalStep= " << currentMinimalStep 271 << " isActive " << isActive << G4endl << 456 << " isActive " << isActive << G4endl; 272 */ 457 */ 273 return gPathLength; 458 return gPathLength; 274 } 459 } 275 460 276 //....oooOO0OOooo........oooOO0OOooo........oo 461 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 462 278 G4double 463 G4double 279 G4VMultipleScattering::PostStepGetPhysicalInte 464 G4VMultipleScattering::PostStepGetPhysicalInteractionLength( 280 const G4Track&, G4double, G4Forc 465 const G4Track&, G4double, G4ForceCondition* condition) 281 { 466 { 282 *condition = NotForced; << 467 *condition = Forced; >> 468 //*condition = NotForced; 283 return DBL_MAX; 469 return DBL_MAX; 284 } 470 } 285 471 286 //....oooOO0OOooo........oooOO0OOooo........oo 472 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 287 473 288 G4VParticleChange* 474 G4VParticleChange* 289 G4VMultipleScattering::AlongStepDoIt(const G4T 475 G4VMultipleScattering::AlongStepDoIt(const G4Track& track, const G4Step& step) 290 { 476 { 291 fParticleChange.InitialiseMSC(track, step); << 477 fParticleChange.ProposeMomentumDirection( 292 fNewPosition = fParticleChange.GetProposedPo << 478 step.GetPostStepPoint()->GetMomentumDirection()); >> 479 fNewPosition = step.GetPostStepPoint()->GetPosition(); >> 480 fParticleChange.ProposePosition(fNewPosition); 293 fPositionChanged = false; 481 fPositionChanged = false; 294 482 295 G4double geomLength = step.GetStepLength(); 483 G4double geomLength = step.GetStepLength(); 296 484 297 // very small step - no msc 485 // very small step - no msc 298 if(!isActive) { 486 if(!isActive) { 299 tPathLength = geomLength; 487 tPathLength = geomLength; 300 488 301 // sample msc 489 // sample msc 302 } else { 490 } else { 303 G4double range = 491 G4double range = 304 currentModel->GetRange(currParticle,trac 492 currentModel->GetRange(currParticle,track.GetKineticEnergy(), 305 track.GetMaterial << 493 track.GetMaterialCutsCouple()); 306 494 307 tPathLength = currentModel->ComputeTrueSte 495 tPathLength = currentModel->ComputeTrueStepLength(geomLength); 308 496 >> 497 // protection against wrong t->g->t conversion 309 /* 498 /* 310 if(currParticle->GetPDGMass() > 0.9*GeV) 499 if(currParticle->GetPDGMass() > 0.9*GeV) 311 G4cout << "G4VMsc::AlongStepDoIt: GeomLeng 500 G4cout << "G4VMsc::AlongStepDoIt: GeomLength= " 312 << geomLength << 501 << geomLength 313 << " tPathLength= " << tPathLength << 502 << " tPathLength= " << tPathLength 314 << " physStepLimit= " << physStepLi << 503 << " physStepLimit= " << physStepLimit 315 << " dr= " << range - tPathLength << 504 << " dr= " << range - tPathLength 316 << " ekin= " << track.GetKineticEne << 505 << " ekin= " << track.GetKineticEnergy() << G4endl; 317 */ 506 */ 318 // protection against wrong t->g->t conver << 319 tPathLength = std::min(tPathLength, physSt 507 tPathLength = std::min(tPathLength, physStepLimit); 320 508 321 // do not sample scattering at the last or 509 // do not sample scattering at the last or at a small step 322 if(tPathLength < range && tPathLength > ge 510 if(tPathLength < range && tPathLength > geomMin) { 323 511 324 static const G4double minSafety = 1.20*C << 325 static const G4double sFact = 0.99; << 326 << 327 G4ThreeVector displacement = currentMode 512 G4ThreeVector displacement = currentModel->SampleScattering( 328 step.GetPostStepPoint()->GetMomentumDi << 513 step.GetPostStepPoint()->GetMomentumDirection(),minSafety); 329 514 330 G4double r2 = displacement.mag2(); 515 G4double r2 = displacement.mag2(); 331 //G4cout << " R= " << sqrt(r2) << " R 516 //G4cout << " R= " << sqrt(r2) << " Rmin= " << sqrt(minDisplacement2) 332 // << " flag= " << fDispBeyondSafety 517 // << " flag= " << fDispBeyondSafety << G4endl; 333 if(r2 > minDisplacement2) { 518 if(r2 > minDisplacement2) { 334 519 335 fPositionChanged = true; << 520 fPositionChanged = true; 336 G4double dispR = std::sqrt(r2); << 521 const G4double sFact = 0.99; 337 G4double postSafety = << 522 G4double postSafety = 338 sFact*safetyHelper->ComputeSafety(fN << 523 sFact*(step.GetPreStepPoint()->GetSafety() - geomLength); 339 //G4cout<<" R= "<< dispR<<" postSaf << 524 //G4cout<<" R= "<<sqrt(r2)<<" postSafety= "<<postSafety<<G4endl; 340 << 525 341 // far away from geometry boundary << 526 // far away from geometry boundary 342 if(postSafety > 0.0 && dispR <= postSa << 527 if(postSafety > 0.0 && r2 <= postSafety*postSafety) { 343 fNewPosition += displacement; << 528 fNewPosition += displacement; 344 << 529 345 //near the boundary << 530 } else { 346 } else { << 531 G4double dispR = std::sqrt(r2); 347 // displaced point is definitely wit << 532 postSafety = 348 //G4cout<<" R= "<<dispR<<" postSa << 533 sFact*safetyHelper->ComputeSafety(fNewPosition, dispR); 349 if(dispR < postSafety) { << 534 350 fNewPosition += displacement; << 535 // displaced point is definitely within the volume 351 << 536 //G4cout<<" R= "<<dispR<<" postSafety= "<<postSafety<<G4endl; 352 // reduced displacement << 537 if(dispR < postSafety) { 353 } else if(postSafety > geomMin) { << 538 fNewPosition += displacement; 354 fNewPosition += displacement*(post << 539 355 << 540 // optional extra mechanism is applied only if a particle 356 // very small postSafety << 541 // is stopped by the boundary 357 } else { << 542 } else if(fDispBeyondSafety && 0.0 == postSafety) { 358 fPositionChanged = false; << 543 fNewPosition += displacement; 359 } << 544 G4double maxshift = 360 } << 545 std::min(2.0*dispR, physStepLimit-tPathLength); 361 if(fPositionChanged) { << 546 G4double dist = 0.0; 362 safetyHelper->ReLocateWithinVolume(f << 547 G4double safety = postSafety + dispR; 363 fParticleChange.ProposePosition(fNew << 548 fNewDirection = *(fParticleChange.GetMomentumDirection()); 364 } << 549 /* >> 550 G4cout << "##MSC before Recheck maxshift= " << maxshift >> 551 << " postsafety= " << postSafety >> 552 << " Ekin= " << track.GetKineticEnergy() >> 553 << " " << track.GetDefinition()->GetParticleName() >> 554 << G4endl; >> 555 */ >> 556 // check if it is possible to shift to the boundary >> 557 if(safetyHelper->RecheckDistanceToCurrentBoundary(fNewPosition, >> 558 fNewDirection, >> 559 maxshift, >> 560 &dist, >> 561 &safety)) >> 562 { >> 563 /* >> 564 G4cout << "##MSC after Recheck dist= " << dist >> 565 << " postsafety= " << postSafety >> 566 << " t= " << tPathLength >> 567 << " g= " << geomLength >> 568 << " p= " << physStepLimit >> 569 << G4endl; >> 570 */ >> 571 G4double tnew = tPathLength*(1.0 + dist/geomLength); >> 572 if(tnew >= 0.0 && tnew < physStepLimit) { >> 573 tPathLength = tnew; >> 574 fNewPosition += dist*fNewDirection; >> 575 } else { >> 576 fNewPosition += displacement*(postSafety/dispR - 1.0); >> 577 } >> 578 } >> 579 else >> 580 // shift on boundary is not possible >> 581 { >> 582 fNewPosition += displacement*(postSafety/dispR - 1.0); >> 583 } >> 584 // reduced displacement >> 585 } else if(postSafety > geomMin) { >> 586 fNewPosition += displacement*(postSafety/dispR); >> 587 >> 588 // very small postSafety >> 589 } else { >> 590 fPositionChanged = false; >> 591 } >> 592 } >> 593 //safetyHelper->ReLocateWithinVolume(fNewPosition); 365 } 594 } 366 } 595 } 367 } 596 } 368 fParticleChange.ProposeTrueStepLength(tPathL 597 fParticleChange.ProposeTrueStepLength(tPathLength); >> 598 //fParticleChange.ProposePosition(fNewPosition); >> 599 return &fParticleChange; >> 600 } >> 601 >> 602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 603 >> 604 G4VParticleChange* >> 605 G4VMultipleScattering::PostStepDoIt(const G4Track& track, const G4Step&) >> 606 { >> 607 fParticleChange.Initialize(track); >> 608 >> 609 if(fPositionChanged) { >> 610 safetyHelper->ReLocateWithinVolume(fNewPosition); >> 611 fParticleChange.ProposePosition(fNewPosition); >> 612 } >> 613 369 return &fParticleChange; 614 return &fParticleChange; 370 } 615 } 371 616 372 //....oooOO0OOooo........oooOO0OOooo........oo 617 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 373 618 374 G4double G4VMultipleScattering::GetContinuousS 619 G4double G4VMultipleScattering::GetContinuousStepLimit( 375 const G 620 const G4Track& track, 376 G4doubl 621 G4double previousStepSize, 377 G4doubl 622 G4double currentMinimalStep, 378 G4doubl 623 G4double& currentSafety) 379 { 624 { 380 G4GPILSelection selection = NotCandidateForS 625 G4GPILSelection selection = NotCandidateForSelection; 381 G4double x = AlongStepGetPhysicalInteraction 626 G4double x = AlongStepGetPhysicalInteractionLength(track,previousStepSize, 382 << 627 currentMinimalStep, 383 << 628 currentSafety, 384 << 629 &selection); 385 return x; 630 return x; 386 } 631 } 387 632 388 //....oooOO0OOooo........oooOO0OOooo........oo 633 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 389 634 390 G4double G4VMultipleScattering::ContinuousStep 635 G4double G4VMultipleScattering::ContinuousStepLimit( 391 const G 636 const G4Track& track, 392 G4doubl 637 G4double previousStepSize, 393 G4doubl 638 G4double currentMinimalStep, 394 G4doubl 639 G4double& currentSafety) 395 { 640 { 396 return GetContinuousStepLimit(track,previous 641 return GetContinuousStepLimit(track,previousStepSize,currentMinimalStep, 397 currentSafety) << 642 currentSafety); 398 } 643 } 399 644 400 //....oooOO0OOooo........oooOO0OOooo........oo 645 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 401 646 402 G4double G4VMultipleScattering::GetMeanFreePat 647 G4double G4VMultipleScattering::GetMeanFreePath( 403 const G4Track&, G4double, G4Forc 648 const G4Track&, G4double, G4ForceCondition* condition) 404 { 649 { 405 *condition = Forced; 650 *condition = Forced; 406 return DBL_MAX; 651 return DBL_MAX; 407 } 652 } 408 653 409 //....oooOO0OOooo........oooOO0OOooo........oo 654 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 410 655 411 G4bool 656 G4bool 412 G4VMultipleScattering::StorePhysicsTable(const 657 G4VMultipleScattering::StorePhysicsTable(const G4ParticleDefinition* part, 413 const << 658 const G4String& directory, 414 G4boo << 659 G4bool ascii) 415 { 660 { 416 G4bool yes = true; 661 G4bool yes = true; 417 if(part != firstParticle || !emManager->IsMa << 662 if(part != firstParticle) { return yes; } 418 << 663 const G4VMultipleScattering* masterProcess = 419 return G4EmTableUtil::StoreMscTable(this, pa << 664 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); 420 numberOfModels, verboseLevel, << 665 if(masterProcess && masterProcess != this) { return yes; } 421 ascii); << 666 >> 667 G4int nmod = modelManager->NumberOfModels(); >> 668 static const G4String ss[4] = {"1","2","3","4"}; >> 669 for(G4int i=0; i<nmod; ++i) { >> 670 G4VEmModel* msc = modelManager->GetModel(i); >> 671 yes = true; >> 672 G4PhysicsTable* table = msc->GetCrossSectionTable(); >> 673 if (table) { >> 674 G4int j = std::min(i,3); >> 675 G4String name = >> 676 GetPhysicsTableFileName(part,directory,"LambdaMod"+ss[j],ascii); >> 677 yes = table->StorePhysicsTable(name,ascii); >> 678 >> 679 if ( yes ) { >> 680 if ( verboseLevel>0 ) { >> 681 G4cout << "Physics table are stored for " >> 682 << part->GetParticleName() >> 683 << " and process " << GetProcessName() >> 684 << " with a name <" << name << "> " << G4endl; >> 685 } >> 686 } else { >> 687 G4cout << "Fail to store Physics Table for " >> 688 << part->GetParticleName() >> 689 << " and process " << GetProcessName() >> 690 << " in the directory <" << directory >> 691 << "> " << G4endl; >> 692 } >> 693 } >> 694 } >> 695 return yes; 422 } 696 } 423 697 424 //....oooOO0OOooo........oooOO0OOooo........oo 698 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 425 699 426 G4bool 700 G4bool 427 G4VMultipleScattering::RetrievePhysicsTable(co 701 G4VMultipleScattering::RetrievePhysicsTable(const G4ParticleDefinition*, 428 co << 702 const G4String&, 429 G4 << 703 G4bool) 430 { 704 { 431 return true; 705 return true; 432 } 706 } 433 707 434 //....oooOO0OOooo........oooOO0OOooo........oo 708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 435 709 436 void G4VMultipleScattering::ProcessDescription << 710 void G4VMultipleScattering::SetIonisation(G4VEnergyLossProcess* p) 437 { 711 { 438 if(nullptr != firstParticle) { << 712 for(G4int i=0; i<numberOfModels; ++i) { 439 StreamInfo(outFile, *firstParticle, true); << 713 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i, true)); >> 714 msc->SetIonisation(p, firstParticle); 440 } 715 } 441 } 716 } 442 717 443 //....oooOO0OOooo........oooOO0OOooo........oo 718 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 444 719 445 720