Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VMultipleScattering.cc 81864 2014-06-06 11:30:54Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4VMultipleScattering 33 // File name: G4VMultipleScattering 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 25.03.2003 37 // Creation date: 25.03.2003 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // >> 41 // 13.04.03 Change printout (V.Ivanchenko) >> 42 // 04-06-03 Fix compilation warnings (V.Ivanchenko) 40 // 16-07-03 Use G4VMscModel interface (V.Ivanc 43 // 16-07-03 Use G4VMscModel interface (V.Ivanchenko) 41 // 03-11-03 Fix initialisation problem in Retr 44 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) 42 // 04-11-03 Update PrintInfoDefinition (V.Ivan 45 // 04-11-03 Update PrintInfoDefinition (V.Ivanchenko) 43 // 01-03-04 SampleCosineTheta signature change 46 // 01-03-04 SampleCosineTheta signature changed 44 // 22-04-04 SampleCosineTheta signature change 47 // 22-04-04 SampleCosineTheta signature changed back to original 45 // 27-08-04 Add InitialiseForRun method (V.Iva 48 // 27-08-04 Add InitialiseForRun method (V.Ivanchneko) 46 // 08-11-04 Migration to new interface of Stor 49 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) 47 // 11-03-05 Shift verbose level by 1 (V.Ivantc 50 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) 48 // 15-04-05 optimize internal interface (V.Iva 51 // 15-04-05 optimize internal interface (V.Ivanchenko) 49 // 15-04-05 remove boundary flag (V.Ivanchenko 52 // 15-04-05 remove boundary flag (V.Ivanchenko) 50 // 27-10-05 introduce virtual function MscStep 53 // 27-10-05 introduce virtual function MscStepLimitation() (V.Ivanchenko) 51 // 12-04-07 Add verbosity at destruction (V.Iv 54 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) 52 // 27-10-07 Virtual functions moved to source 55 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 53 // 11-03-08 Set skin value does not effect ste 56 // 11-03-08 Set skin value does not effect step limit type (V.Ivanchenko) 54 // 24-06-09 Removed hidden bin in G4PhysicsVec 57 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) 55 // 04-06-13 Adoptation to MT mode (V.Ivanchenk 58 // 04-06-13 Adoptation to MT mode (V.Ivanchenko) 56 // 59 // >> 60 // Class Description: >> 61 // >> 62 // It is the generic process of multiple scattering it includes common >> 63 // part of calculations for all charged particles 57 64 58 // ------------------------------------------- 65 // ------------------------------------------------------------------- 59 // 66 // 60 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 69 63 #include "G4VMultipleScattering.hh" 70 #include "G4VMultipleScattering.hh" 64 #include "G4PhysicalConstants.hh" 71 #include "G4PhysicalConstants.hh" 65 #include "G4SystemOfUnits.hh" 72 #include "G4SystemOfUnits.hh" 66 #include "G4LossTableManager.hh" 73 #include "G4LossTableManager.hh" 67 #include "G4MaterialCutsCouple.hh" 74 #include "G4MaterialCutsCouple.hh" 68 #include "G4Step.hh" 75 #include "G4Step.hh" 69 #include "G4ParticleDefinition.hh" 76 #include "G4ParticleDefinition.hh" 70 #include "G4VEmFluctuationModel.hh" 77 #include "G4VEmFluctuationModel.hh" 71 #include "G4UnitsTable.hh" 78 #include "G4UnitsTable.hh" 72 #include "G4ProductionCutsTable.hh" 79 #include "G4ProductionCutsTable.hh" 73 #include "G4Electron.hh" 80 #include "G4Electron.hh" 74 #include "G4GenericIon.hh" 81 #include "G4GenericIon.hh" 75 #include "G4TransportationManager.hh" 82 #include "G4TransportationManager.hh" 76 #include "G4SafetyHelper.hh" 83 #include "G4SafetyHelper.hh" 77 #include "G4ParticleTable.hh" 84 #include "G4ParticleTable.hh" 78 #include "G4ProcessVector.hh" 85 #include "G4ProcessVector.hh" 79 #include "G4ProcessManager.hh" 86 #include "G4ProcessManager.hh" 80 #include "G4LossTableBuilder.hh" << 81 #include "G4EmTableUtil.hh" << 82 #include <iostream> << 83 87 84 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 89 86 G4VMultipleScattering::G4VMultipleScattering(c << 90 G4VMultipleScattering::G4VMultipleScattering(const G4String& name, 87 : G4VContinuousDiscreteProcess("msc", fElect << 91 G4ProcessType): 88 fNewPosition(0.,0.,0.), << 92 G4VContinuousDiscreteProcess("msc", fElectromagnetic), 89 fNewDirection(0.,0.,1.) << 93 numberOfModels(0), >> 94 firstParticle(0), >> 95 currParticle(0), >> 96 stepLimit(fUseSafety), >> 97 skin(1.0), >> 98 facrange(0.04), >> 99 facgeom(2.5), >> 100 latDisplasment(true), >> 101 isIon(false) 90 { 102 { 91 theParameters = G4EmParameters::Instance(); << 92 SetVerboseLevel(1); 103 SetVerboseLevel(1); 93 SetProcessSubType(fMultipleScattering); 104 SetProcessSubType(fMultipleScattering); 94 << 105 if("ionmsc" == name) { firstParticle = G4GenericIon::GenericIon(); } 95 lowestKinEnergy = 10*CLHEP::eV; << 96 106 97 geomMin = 0.05*CLHEP::nm; 107 geomMin = 0.05*CLHEP::nm; 98 minDisplacement2 = geomMin*geomMin; << 108 lowestKinEnergy = 10*eV; >> 109 >> 110 // default limit on polar angle >> 111 polarAngleLimit = 0.0; >> 112 >> 113 physStepLimit = gPathLength = tPathLength = 0.0; >> 114 fIonisation = 0; 99 115 100 pParticleChange = &fParticleChange; 116 pParticleChange = &fParticleChange; >> 117 safetyHelper = 0; >> 118 fPositionChanged = false; >> 119 isActive = false; 101 120 >> 121 currentModel = 0; 102 modelManager = new G4EmModelManager(); 122 modelManager = new G4EmModelManager(); 103 emManager = G4LossTableManager::Instance(); 123 emManager = G4LossTableManager::Instance(); 104 mscModels.reserve(2); << 105 emManager->Register(this); 124 emManager->Register(this); >> 125 >> 126 warn = 0; 106 } 127 } 107 128 108 //....oooOO0OOooo........oooOO0OOooo........oo 129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 109 130 110 G4VMultipleScattering::~G4VMultipleScattering( 131 G4VMultipleScattering::~G4VMultipleScattering() 111 { 132 { >> 133 /* >> 134 if(1 < verboseLevel) { >> 135 G4cout << "G4VMultipleScattering destruct " << GetProcessName() >> 136 << G4endl; >> 137 } >> 138 */ 112 delete modelManager; 139 delete modelManager; 113 emManager->DeRegister(this); 140 emManager->DeRegister(this); 114 } 141 } 115 142 116 //....oooOO0OOooo........oooOO0OOooo........oo 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 117 144 118 void G4VMultipleScattering::AddEmModel(G4int o << 145 void G4VMultipleScattering::AddEmModel(G4int order, G4VEmModel* p, 119 const G << 146 const G4Region* region) 120 { 147 { 121 if(nullptr == ptr) { return; } << 148 G4VEmFluctuationModel* fm = 0; 122 G4VEmFluctuationModel* fm = nullptr; << 149 modelManager->AddEmModel(order, p, fm, region); 123 modelManager->AddEmModel(order, ptr, fm, reg << 150 if(p) { p->SetParticleChange(pParticleChange); } 124 ptr->SetParticleChange(pParticleChange); << 125 } 151 } 126 152 127 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 128 154 129 void G4VMultipleScattering::SetEmModel(G4VMscM << 155 void G4VMultipleScattering::SetEmModel(G4VMscModel* p, G4int index) 130 { 156 { 131 if(nullptr == ptr) { return; } << 157 G4int n = mscModels.size(); 132 if(!mscModels.empty()) { << 158 if(index >= n) { for(G4int i=n; i<=index; ++i) { mscModels.push_back(0); } } 133 for(auto & msc : mscModels) { if(msc == pt << 159 mscModels[index] = p; 134 } << 160 } 135 mscModels.push_back(ptr); << 161 >> 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 163 >> 164 G4VMscModel* G4VMultipleScattering::EmModel(G4int index) const >> 165 { >> 166 G4VMscModel* p = 0; >> 167 if(index >= 0 && index < G4int(mscModels.size())) { p = mscModels[index]; } >> 168 return p; >> 169 } >> 170 >> 171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 172 >> 173 G4VEmModel* >> 174 G4VMultipleScattering::GetModelByIndex(G4int idx, G4bool ver) const >> 175 { >> 176 return modelManager->GetModel(idx, ver); 136 } 177 } 137 178 138 //....oooOO0OOooo........oooOO0OOooo........oo 179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 180 140 void 181 void 141 G4VMultipleScattering::PreparePhysicsTable(con 182 G4VMultipleScattering::PreparePhysicsTable(const G4ParticleDefinition& part) 142 { 183 { 143 G4bool master = emManager->IsMaster(); << 184 G4bool master = true; 144 if (nullptr == firstParticle) { firstParticl << 185 const G4VMultipleScattering* masterProc = >> 186 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); >> 187 if(masterProc && masterProc != this) { master = false; } >> 188 >> 189 if(!firstParticle) { firstParticle = ∂ } >> 190 if(part.GetParticleType() == "nucleus") { >> 191 SetStepLimitType(fMinimal); >> 192 SetLateralDisplasmentFlag(false); >> 193 SetRangeFactor(0.2); >> 194 G4String pname = part.GetParticleName(); >> 195 if(pname != "deuteron" && pname != "triton" && >> 196 pname != "alpha+" && pname != "helium" && >> 197 pname != "alpha" && pname != "He3" && >> 198 pname != "hydrogen") { >> 199 >> 200 const G4ParticleDefinition* theGenericIon = >> 201 G4ParticleTable::GetParticleTable()->FindParticle("GenericIon"); >> 202 >> 203 if(theGenericIon && firstParticle != theGenericIon) { >> 204 G4ProcessManager* pm = theGenericIon->GetProcessManager(); >> 205 G4ProcessVector* v = pm->GetAlongStepProcessVector(); >> 206 size_t n = v->size(); >> 207 for(size_t j=0; j<n; ++j) { >> 208 if((*v)[j] == this) { >> 209 firstParticle = theGenericIon; >> 210 isIon = true; >> 211 break; >> 212 } >> 213 } >> 214 } >> 215 } >> 216 } 145 217 146 emManager->PreparePhysicsTable(&part, this); << 218 emManager->PreparePhysicsTable(&part, this, master); 147 currParticle = nullptr; << 219 currParticle = 0; >> 220 >> 221 if(1 < verboseLevel) { >> 222 G4cout << "### G4VMultipleScattering::PrepearPhysicsTable() for " >> 223 << GetProcessName() >> 224 << " and particle " << part.GetParticleName() >> 225 << " local particle " << firstParticle->GetParticleName() >> 226 << " isIon= " << isIon >> 227 << G4endl; >> 228 } 148 229 149 if(firstParticle == &part) { 230 if(firstParticle == &part) { 150 baseMat = emManager->GetTableBuilder()->Ge << 151 G4EmTableUtil::PrepareMscProcess(this, par << 152 stepLimit, facrange, << 153 latDisplacement, master, << 154 isIon, baseMat); << 155 231 >> 232 InitialiseProcess(firstParticle); >> 233 >> 234 // initialisation of models 156 numberOfModels = modelManager->NumberOfMod 235 numberOfModels = modelManager->NumberOfModels(); 157 currentModel = GetModelByIndex(0); << 236 for(G4int i=0; i<numberOfModels; ++i) { >> 237 G4VMscModel* msc = static_cast<G4VMscModel*>(modelManager->GetModel(i)); >> 238 msc->SetIonisation(0, firstParticle); >> 239 msc->SetMasterThread(master); >> 240 if(0 == i) { currentModel = msc; } >> 241 if(isIon) { >> 242 msc->SetStepLimitType(fMinimal); >> 243 msc->SetLateralDisplasmentFlag(false); >> 244 msc->SetRangeFactor(0.2); >> 245 } else { >> 246 msc->SetStepLimitType(StepLimitType()); >> 247 msc->SetLateralDisplasmentFlag(LateralDisplasmentFlag()); >> 248 msc->SetSkin(Skin()); >> 249 msc->SetRangeFactor(RangeFactor()); >> 250 msc->SetGeomFactor(GeomFactor()); >> 251 } >> 252 msc->SetPolarAngleLimit(polarAngleLimit); >> 253 G4double emax = >> 254 std::min(msc->HighEnergyLimit(),emManager->MaxKinEnergy()); >> 255 msc->SetHighEnergyLimit(emax); >> 256 } 158 257 159 if (nullptr == safetyHelper) { << 258 modelManager->Initialise(firstParticle, G4Electron::Electron(), >> 259 10.0, verboseLevel); >> 260 >> 261 if(!safetyHelper) { 160 safetyHelper = G4TransportationManager:: 262 safetyHelper = G4TransportationManager::GetTransportationManager() 161 ->GetSafetyHelper(); 263 ->GetSafetyHelper(); 162 safetyHelper->InitialiseHelper(); 264 safetyHelper->InitialiseHelper(); 163 } 265 } 164 } 266 } 165 } 267 } 166 268 167 //....oooOO0OOooo........oooOO0OOooo........oo 269 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 168 270 169 void G4VMultipleScattering::BuildPhysicsTable( 271 void G4VMultipleScattering::BuildPhysicsTable(const G4ParticleDefinition& part) 170 { 272 { 171 G4bool master = emManager->IsMaster(); << 273 G4String num = part.GetParticleName(); 172 << 274 if(1 < verboseLevel) { 173 if(firstParticle == &part) { << 275 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " 174 emManager->BuildPhysicsTable(&part); << 276 << GetProcessName() >> 277 << " and particle " << num >> 278 << " IsMaster= " << G4LossTableManager::Instance()->IsMaster() >> 279 << G4endl; 175 } 280 } 176 const G4VMultipleScattering* ptr = this; << 281 G4bool master = true; 177 if(!master) { << 282 const G4VMultipleScattering* masterProcess = 178 ptr = static_cast<const G4VMultipleScatter << 283 static_cast<const G4VMultipleScattering*>(GetMasterProcess()); >> 284 if(masterProcess && masterProcess != this) { master = false; } >> 285 >> 286 if(firstParticle == &part) { >> 287 /* >> 288 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() for " >> 289 << GetProcessName() >> 290 << " and particle " << num >> 291 << " IsMaster= " << G4LossTableManager::Instance()->IsMaster() >> 292 << " " << this >> 293 << G4endl; >> 294 */ >> 295 emManager->BuildPhysicsTable(firstParticle); >> 296 >> 297 if(!master) { >> 298 // initialisation of models >> 299 G4bool printing = true; >> 300 numberOfModels = modelManager->NumberOfModels(); >> 301 /* >> 302 G4cout << "### G4VMultipleScattering::SlaveBuildPhysicsTable() for " >> 303 << GetProcessName() >> 304 << " and particle " << num >> 305 << " Nmod= " << numberOfModels << " " << this >> 306 << G4endl; >> 307 */ >> 308 for(G4int i=0; i<numberOfModels; ++i) { >> 309 G4VMscModel* msc = >> 310 static_cast<G4VMscModel*>(GetModelByIndex(i, printing)); >> 311 G4VMscModel* msc0= >> 312 static_cast<G4VMscModel*>(masterProcess->GetModelByIndex(i,printing)); >> 313 msc->SetCrossSectionTable(msc0->GetCrossSectionTable(), false); >> 314 } >> 315 } >> 316 179 } 317 } 180 318 181 G4EmTableUtil::BuildMscProcess(this, ptr, pa << 319 // explicitly defined printout by particle name 182 numberOfModels, master); << 320 if(1 < verboseLevel || >> 321 (0 < verboseLevel && (num == "e-" || >> 322 num == "e+" || num == "mu+" || >> 323 num == "mu-" || num == "proton"|| >> 324 num == "pi+" || num == "pi-" || >> 325 num == "kaon+" || num == "kaon-" || >> 326 num == "alpha" || num == "anti_proton" || >> 327 num == "GenericIon"))) >> 328 { >> 329 G4cout << G4endl << GetProcessName() >> 330 << ": for " << num >> 331 << " SubType= " << GetProcessSubType() >> 332 << G4endl; >> 333 PrintInfo(); >> 334 modelManager->DumpModelList(verboseLevel); >> 335 } >> 336 >> 337 if(1 < verboseLevel) { >> 338 G4cout << "### G4VMultipleScattering::BuildPhysicsTable() done for " >> 339 << GetProcessName() >> 340 << " and particle " << num >> 341 << G4endl; >> 342 } 183 } 343 } 184 344 185 //....oooOO0OOooo........oooOO0OOooo........oo 345 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 346 187 void G4VMultipleScattering::StreamInfo(std::os << 347 void G4VMultipleScattering::PrintInfoDefinition() 188 const G4ParticleDefinition& << 189 { 348 { 190 G4String indent = (rst ? " " : ""); << 349 if (0 < verboseLevel) { 191 outFile << G4endl << indent << GetProcessNam << 350 G4cout << G4endl << GetProcessName() 192 if (!rst) outFile << " for " << part.GetPart << 351 << ": for " << firstParticle->GetParticleName() 193 outFile << " SubType= " << GetProcessSubTy << 352 << " SubType= " << GetProcessSubType() 194 modelManager->DumpModelList(outFile, verbose << 353 << G4endl; >> 354 PrintInfo(); >> 355 modelManager->DumpModelList(verboseLevel); >> 356 } 195 } 357 } 196 358 197 //....oooOO0OOooo........oooOO0OOooo........oo 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 198 360 199 void G4VMultipleScattering::StartTracking(G4Tr 361 void G4VMultipleScattering::StartTracking(G4Track* track) 200 { 362 { 201 G4VEnergyLossProcess* eloss = nullptr; << 363 G4VEnergyLossProcess* eloss = 0; 202 if(track->GetParticleDefinition() != currPar 364 if(track->GetParticleDefinition() != currParticle) { 203 currParticle = track->GetParticleDefinitio 365 currParticle = track->GetParticleDefinition(); 204 fIonisation = emManager->GetEnergyLossProc 366 fIonisation = emManager->GetEnergyLossProcess(currParticle); 205 eloss = fIonisation; 367 eloss = fIonisation; 206 } 368 } 207 for(G4int i=0; i<numberOfModels; ++i) { << 369 /* 208 G4VMscModel* msc = GetModelByIndex(i); << 370 G4cout << "G4VMultipleScattering::StartTracking Nmod= " << numberOfModels 209 msc->StartTracking(track); << 371 << " " << currParticle->GetParticleName() 210 if(nullptr != eloss) { << 372 << " E(MeV)= " << track->GetKineticEnergy() 211 msc->SetIonisation(eloss, currParticle); << 373 << " Ion= " << eloss << " " << fIonisation << " IsMaster= " >> 374 << G4LossTableManager::Instance()->IsMaster() >> 375 << G4endl; >> 376 */ >> 377 // one model >> 378 if(1 == numberOfModels) { >> 379 currentModel->StartTracking(track); >> 380 if(eloss) { currentModel->SetIonisation(fIonisation, currParticle); } >> 381 >> 382 // many models >> 383 } else { >> 384 for(G4int i=0; i<numberOfModels; ++i) { >> 385 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i,true)); >> 386 msc->StartTracking(track); >> 387 if(eloss) { msc->SetIonisation(fIonisation, currParticle); } 212 } 388 } 213 } 389 } 214 } << 390 } 215 391 216 //....oooOO0OOooo........oooOO0OOooo........oo 392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 217 393 218 G4double G4VMultipleScattering::AlongStepGetPh 394 G4double G4VMultipleScattering::AlongStepGetPhysicalInteractionLength( 219 const G4Track& tr 395 const G4Track& track, 220 G4double, 396 G4double, 221 G4double currentM 397 G4double currentMinimalStep, 222 G4double&, 398 G4double&, 223 G4GPILSelection* 399 G4GPILSelection* selection) 224 { 400 { 225 // get Step limit proposed by the process 401 // get Step limit proposed by the process 226 *selection = NotCandidateForSelection; 402 *selection = NotCandidateForSelection; 227 physStepLimit = gPathLength = tPathLength = 403 physStepLimit = gPathLength = tPathLength = currentMinimalStep; 228 404 229 G4double ekin = track.GetKineticEnergy(); 405 G4double ekin = track.GetKineticEnergy(); 230 /* 406 /* 231 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 407 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 232 << " " << currParticle->GetParticleN 408 << " " << currParticle->GetParticleName() 233 << " currMod " << currentModel << 409 << " currMod " << currentModel 234 << G4endl; << 410 << G4endl; 235 */ 411 */ 236 // isIon flag is used only to select a model 412 // isIon flag is used only to select a model 237 if(isIon) { 413 if(isIon) { 238 ekin *= proton_mass_c2/track.GetParticleDe 414 ekin *= proton_mass_c2/track.GetParticleDefinition()->GetPDGMass(); 239 } 415 } 240 const G4MaterialCutsCouple* couple = track.G << 241 416 242 // select new model, static cast is possible << 417 // select new model 243 if(1 < numberOfModels) { 418 if(1 < numberOfModels) { 244 currentModel = << 419 currentModel = static_cast<G4VMscModel*>( 245 static_cast<G4VMscModel*>(SelectModel(ek << 420 SelectModel(ekin,track.GetMaterialCutsCouple()->GetIndex())); 246 } 421 } 247 currentModel->SetCurrentCouple(couple); << 422 // step limit 248 // msc is active is model is active, energy << 423 if(currentModel->IsActive(ekin) && gPathLength >= geomMin 249 // and step size is above the limit; << 250 // if it is active msc may limit the step << 251 if(currentModel->IsActive(ekin) && tPathLeng << 252 && ekin >= lowestKinEnergy) { 424 && ekin >= lowestKinEnergy) { 253 isActive = true; 425 isActive = true; 254 tPathLength = 426 tPathLength = 255 currentModel->ComputeTruePathLengthLimit 427 currentModel->ComputeTruePathLengthLimit(track, gPathLength); 256 if (tPathLength < physStepLimit) { 428 if (tPathLength < physStepLimit) { 257 *selection = CandidateForSelection; 429 *selection = CandidateForSelection; 258 } 430 } 259 } else { << 431 } else { isActive = false; } 260 isActive = false; << 432 261 gPathLength = DBL_MAX; << 262 } << 263 433 264 //if(currParticle->GetPDGMass() > GeV) 434 //if(currParticle->GetPDGMass() > GeV) 265 /* 435 /* 266 G4cout << "MSC::AlongStepGPIL: Ekin= " << ek 436 G4cout << "MSC::AlongStepGPIL: Ekin= " << ekin 267 << " " << currParticle->GetParticleN 437 << " " << currParticle->GetParticleName() 268 << " gPathLength= " << gPathLength << 438 << " gPathLength= " << gPathLength 269 << " tPathLength= " << tPathLength << 439 << " tPathLength= " << tPathLength 270 << " currentMinimalStep= " << current << 440 << " currentMinimalStep= " << currentMinimalStep 271 << " isActive " << isActive << G4endl << 441 << " isActive " << isActive << G4endl; 272 */ 442 */ 273 return gPathLength; 443 return gPathLength; 274 } 444 } 275 445 276 //....oooOO0OOooo........oooOO0OOooo........oo 446 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 447 278 G4double 448 G4double 279 G4VMultipleScattering::PostStepGetPhysicalInte 449 G4VMultipleScattering::PostStepGetPhysicalInteractionLength( 280 const G4Track&, G4double, G4Forc 450 const G4Track&, G4double, G4ForceCondition* condition) 281 { 451 { 282 *condition = NotForced; << 452 *condition = Forced; >> 453 //*condition = NotForced; 283 return DBL_MAX; 454 return DBL_MAX; 284 } 455 } 285 456 286 //....oooOO0OOooo........oooOO0OOooo........oo 457 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 287 458 288 G4VParticleChange* 459 G4VParticleChange* 289 G4VMultipleScattering::AlongStepDoIt(const G4T 460 G4VMultipleScattering::AlongStepDoIt(const G4Track& track, const G4Step& step) 290 { 461 { 291 fParticleChange.InitialiseMSC(track, step); << 462 fParticleChange.ProposeMomentumDirection( 292 fNewPosition = fParticleChange.GetProposedPo << 463 step.GetPostStepPoint()->GetMomentumDirection()); >> 464 fNewPosition = step.GetPostStepPoint()->GetPosition(); >> 465 fParticleChange.ProposePosition(fNewPosition); 293 fPositionChanged = false; 466 fPositionChanged = false; 294 467 295 G4double geomLength = step.GetStepLength(); 468 G4double geomLength = step.GetStepLength(); 296 469 297 // very small step - no msc 470 // very small step - no msc 298 if(!isActive) { 471 if(!isActive) { 299 tPathLength = geomLength; 472 tPathLength = geomLength; 300 473 301 // sample msc 474 // sample msc 302 } else { 475 } else { 303 G4double range = 476 G4double range = 304 currentModel->GetRange(currParticle,trac 477 currentModel->GetRange(currParticle,track.GetKineticEnergy(), 305 track.GetMaterial << 478 track.GetMaterialCutsCouple()); 306 479 307 tPathLength = currentModel->ComputeTrueSte 480 tPathLength = currentModel->ComputeTrueStepLength(geomLength); 308 481 309 /* << 482 // protection against wrong t->g->t conversion 310 if(currParticle->GetPDGMass() > 0.9*GeV) << 483 /* >> 484 if(currParticle->GetPDGMass() > GeV) 311 G4cout << "G4VMsc::AlongStepDoIt: GeomLeng 485 G4cout << "G4VMsc::AlongStepDoIt: GeomLength= " 312 << geomLength << 486 << geomLength 313 << " tPathLength= " << tPathLength << 487 << " tPathLength= " << tPathLength 314 << " physStepLimit= " << physStepLi << 488 << " physStepLimit= " << physStepLimit 315 << " dr= " << range - tPathLength << 489 << " dr= " << range - trueLength 316 << " ekin= " << track.GetKineticEne << 490 << " ekin= " << track.GetKineticEnergy() << G4endl; 317 */ 491 */ 318 // protection against wrong t->g->t conver << 492 if (tPathLength > physStepLimit) { 319 tPathLength = std::min(tPathLength, physSt << 493 tPathLength = physStepLimit; >> 494 } 320 495 321 // do not sample scattering at the last or 496 // do not sample scattering at the last or at a small step 322 if(tPathLength < range && tPathLength > ge << 497 if(tPathLength + geomMin < range && tPathLength > geomMin) { 323 << 324 static const G4double minSafety = 1.20*C << 325 static const G4double sFact = 0.99; << 326 498 >> 499 G4double preSafety = step.GetPreStepPoint()->GetSafety(); >> 500 G4double maxDisp = (tPathLength + geomLength)*0.5; >> 501 G4double postSafety= preSafety - maxDisp; >> 502 G4bool safetyRecomputed = false; >> 503 if(postSafety < maxDisp) { >> 504 safetyRecomputed = true; >> 505 postSafety = safetyHelper->ComputeSafety(fNewPosition,maxDisp); >> 506 } 327 G4ThreeVector displacement = currentMode 507 G4ThreeVector displacement = currentModel->SampleScattering( 328 step.GetPostStepPoint()->GetMomentumDi << 508 step.GetPostStepPoint()->GetMomentumDirection(), postSafety); 329 509 330 G4double r2 = displacement.mag2(); 510 G4double r2 = displacement.mag2(); 331 //G4cout << " R= " << sqrt(r2) << " R << 511 332 // << " flag= " << fDispBeyondSafety << 512 //G4cout << "R= " << sqrt(r2) << " postSafety= " << postSafety 333 if(r2 > minDisplacement2) { << 513 // << G4endl; 334 << 514 335 fPositionChanged = true; << 515 // make correction for displacement 336 G4double dispR = std::sqrt(r2); << 516 if(r2 > 0.0) { 337 G4double postSafety = << 517 338 sFact*safetyHelper->ComputeSafety(fN << 518 fPositionChanged = true; 339 //G4cout<<" R= "<< dispR<<" postSaf << 519 G4double fac = 1.0; 340 << 520 341 // far away from geometry boundary << 521 // displaced point is definitely within the volume 342 if(postSafety > 0.0 && dispR <= postSa << 522 if(r2 > postSafety*postSafety) { 343 fNewPosition += displacement; << 523 G4double dispR = std::sqrt(r2); 344 << 524 if(!safetyRecomputed) { 345 //near the boundary << 525 postSafety = safetyHelper->ComputeSafety(fNewPosition, dispR); 346 } else { << 526 } 347 // displaced point is definitely wit << 527 348 //G4cout<<" R= "<<dispR<<" postSa << 528 if(dispR > postSafety) { 349 if(dispR < postSafety) { << 529 fac = 0.99*postSafety/dispR; 350 fNewPosition += displacement; << 530 } 351 << 531 } 352 // reduced displacement << 532 // compute new endpoint of the Step 353 } else if(postSafety > geomMin) { << 533 fNewPosition += fac*displacement; 354 fNewPosition += displacement*(post << 534 //safetyHelper->ReLocateWithinVolume(fNewPosition); 355 << 356 // very small postSafety << 357 } else { << 358 fPositionChanged = false; << 359 } << 360 } << 361 if(fPositionChanged) { << 362 safetyHelper->ReLocateWithinVolume(f << 363 fParticleChange.ProposePosition(fNew << 364 } << 365 } 535 } 366 } 536 } 367 } 537 } 368 fParticleChange.ProposeTrueStepLength(tPathL 538 fParticleChange.ProposeTrueStepLength(tPathLength); >> 539 //fParticleChange.ProposePosition(fNewPosition); >> 540 return &fParticleChange; >> 541 } >> 542 >> 543 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 544 >> 545 G4VParticleChange* >> 546 G4VMultipleScattering::PostStepDoIt(const G4Track& track, const G4Step&) >> 547 { >> 548 fParticleChange.Initialize(track); >> 549 >> 550 if(fPositionChanged) { >> 551 safetyHelper->ReLocateWithinVolume(fNewPosition); >> 552 fParticleChange.ProposePosition(fNewPosition); >> 553 } >> 554 369 return &fParticleChange; 555 return &fParticleChange; 370 } 556 } 371 557 372 //....oooOO0OOooo........oooOO0OOooo........oo 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 373 559 374 G4double G4VMultipleScattering::GetContinuousS 560 G4double G4VMultipleScattering::GetContinuousStepLimit( 375 const G 561 const G4Track& track, 376 G4doubl 562 G4double previousStepSize, 377 G4doubl 563 G4double currentMinimalStep, 378 G4doubl 564 G4double& currentSafety) 379 { 565 { 380 G4GPILSelection selection = NotCandidateForS 566 G4GPILSelection selection = NotCandidateForSelection; 381 G4double x = AlongStepGetPhysicalInteraction 567 G4double x = AlongStepGetPhysicalInteractionLength(track,previousStepSize, 382 << 568 currentMinimalStep, 383 << 569 currentSafety, 384 << 570 &selection); 385 return x; 571 return x; 386 } 572 } 387 573 388 //....oooOO0OOooo........oooOO0OOooo........oo 574 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 389 575 390 G4double G4VMultipleScattering::ContinuousStep 576 G4double G4VMultipleScattering::ContinuousStepLimit( 391 const G 577 const G4Track& track, 392 G4doubl 578 G4double previousStepSize, 393 G4doubl 579 G4double currentMinimalStep, 394 G4doubl 580 G4double& currentSafety) 395 { 581 { 396 return GetContinuousStepLimit(track,previous 582 return GetContinuousStepLimit(track,previousStepSize,currentMinimalStep, 397 currentSafety) << 583 currentSafety); 398 } 584 } 399 585 400 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 401 587 402 G4double G4VMultipleScattering::GetMeanFreePat 588 G4double G4VMultipleScattering::GetMeanFreePath( 403 const G4Track&, G4double, G4Forc 589 const G4Track&, G4double, G4ForceCondition* condition) 404 { 590 { 405 *condition = Forced; 591 *condition = Forced; 406 return DBL_MAX; 592 return DBL_MAX; 407 } 593 } 408 594 409 //....oooOO0OOooo........oooOO0OOooo........oo 595 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 410 596 411 G4bool 597 G4bool 412 G4VMultipleScattering::StorePhysicsTable(const 598 G4VMultipleScattering::StorePhysicsTable(const G4ParticleDefinition* part, 413 const << 599 const G4String& directory, 414 G4boo << 600 G4bool ascii) 415 { 601 { 416 G4bool yes = true; 602 G4bool yes = true; 417 if(part != firstParticle || !emManager->IsMa << 603 if(part != firstParticle) { return yes; } 418 << 604 G4int nmod = modelManager->NumberOfModels(); 419 return G4EmTableUtil::StoreMscTable(this, pa << 605 static const G4String ss[4] = {"1","2","3","4"}; 420 numberOfModels, verboseLevel, << 606 for(G4int i=0; i<nmod; ++i) { 421 ascii); << 607 G4VEmModel* msc = modelManager->GetModel(i); >> 608 yes = true; >> 609 G4PhysicsTable* table = msc->GetCrossSectionTable(); >> 610 if (table) { >> 611 G4int j = std::min(i,3); >> 612 G4String name = >> 613 GetPhysicsTableFileName(part,directory,"LambdaMod"+ss[j],ascii); >> 614 yes = table->StorePhysicsTable(name,ascii); >> 615 >> 616 if ( yes ) { >> 617 if ( verboseLevel>0 ) { >> 618 G4cout << "Physics table are stored for " >> 619 << part->GetParticleName() >> 620 << " and process " << GetProcessName() >> 621 << " with a name <" << name << "> " << G4endl; >> 622 } >> 623 } else { >> 624 G4cout << "Fail to store Physics Table for " >> 625 << part->GetParticleName() >> 626 << " and process " << GetProcessName() >> 627 << " in the directory <" << directory >> 628 << "> " << G4endl; >> 629 } >> 630 } >> 631 } >> 632 return yes; 422 } 633 } 423 634 424 //....oooOO0OOooo........oooOO0OOooo........oo 635 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 425 636 426 G4bool 637 G4bool 427 G4VMultipleScattering::RetrievePhysicsTable(co 638 G4VMultipleScattering::RetrievePhysicsTable(const G4ParticleDefinition*, 428 co << 639 const G4String&, 429 G4 << 640 G4bool) 430 { 641 { 431 return true; 642 return true; 432 } 643 } 433 644 434 //....oooOO0OOooo........oooOO0OOooo........oo 645 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 435 646 436 void G4VMultipleScattering::ProcessDescription << 647 void G4VMultipleScattering::SetIonisation(G4VEnergyLossProcess* p) 437 { 648 { 438 if(nullptr != firstParticle) { << 649 for(G4int i=0; i<numberOfModels; ++i) { 439 StreamInfo(outFile, *firstParticle, true); << 650 G4VMscModel* msc = static_cast<G4VMscModel*>(GetModelByIndex(i, true)); >> 651 msc->SetIonisation(p, firstParticle); 440 } 652 } 441 } 653 } 442 654 443 //....oooOO0OOooo........oooOO0OOooo........oo 655 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 444 656 445 657