Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.cc,v 1.158 2009/10/29 18:07:08 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: Vladimir Ivanchenko << 40 // Modifications: 38 // 41 // >> 42 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 43 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 44 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 45 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 46 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 47 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 48 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 49 // 24-01-03 Make models region aware (V.Ivanchenko) >> 50 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 51 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 52 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 53 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 54 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 55 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 56 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 57 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko) >> 58 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 59 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 60 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 61 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 62 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 63 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 64 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 65 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 66 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 67 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 68 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 69 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 70 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 71 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 72 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko) >> 73 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range >> 74 // calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko) >> 75 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko) >> 76 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko) >> 77 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko) >> 78 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko) >> 79 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko) >> 80 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 81 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 82 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 83 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 84 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) >> 85 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 86 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 87 // 25-07-05 Add extra protection PostStep for non-integral mode (V.Ivanchenko) >> 88 // 12-08-05 Integral=false; SetStepFunction(0.2, 0.1*mm) (mma) >> 89 // 18-08-05 Return back both AlongStep and PostStep from 7.0 (V.Ivanchenko) >> 90 // 02-09-05 Default StepFunction 0.2 1 mm + integral (V.Ivanchenko) >> 91 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 92 // 05-10-05 protection against 0 energy loss added (L.Urban) >> 93 // 17-10-05 protection above has been removed (L.Urban) >> 94 // 06-01-06 reset currentCouple when StepFunction is changed (V.Ivanchenko) >> 95 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 96 // 18-01-06 Clean up subcutoff including recalculation of presafety (VI) >> 97 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 98 // 22-03-06 Add control on warning printout AlongStep (VI) >> 99 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 100 // 07-06-06 Do not reflect AlongStep in subcutoff regime (V.Ivanchenko) >> 101 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 102 // 16-01-07 add IonisationTable and IonisationSubTable (V.Ivanchenko) >> 103 // 16-02-07 set linLossLimit=1.e-6 (V.Ivanchenko) >> 104 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 105 // 10-04-07 use unique SafetyHelper (V.Ivanchenko) >> 106 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) >> 107 // 25-04-07 move initialisation of safety helper to BuildPhysicsTable (VI) >> 108 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 109 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) 39 // 110 // 40 // Class Description: 111 // Class Description: 41 // 112 // 42 // It is the unified energy loss process it ca 113 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 114 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 115 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 116 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 117 // that information on fly. 47 // ------------------------------------------- 118 // ------------------------------------------------------------------- 48 // 119 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 122 52 #include "G4VEnergyLossProcess.hh" 123 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4ProcessManager.hh" << 56 #include "G4LossTableManager.hh" 124 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" << 58 #include "G4Step.hh" 125 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 126 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" << 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 127 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 128 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 129 #include "G4DataVector.hh" 67 #include "G4PhysicsLogVector.hh" 130 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 131 #include "G4VParticleChange.hh" >> 132 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 133 #include "G4Electron.hh" >> 134 #include "G4Positron.hh" >> 135 #include "G4Proton.hh" 70 #include "G4ProcessManager.hh" 136 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 137 #include "G4UnitsTable.hh" >> 138 #include "G4GenericIon.hh" >> 139 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 140 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 141 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 142 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" 143 #include "G4SafetyHelper.hh" 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" 144 #include "G4TransportationManager.hh" 78 #include "G4VAtomDeexcitation.hh" << 145 #include "G4EmConfigurator.hh" 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" << 81 #include "G4Log.hh" << 82 #include <iostream> << 83 146 84 //....oooOO0OOooo........oooOO0OOooo........oo 147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 148 86 namespace << 87 { << 88 G4String tnames[7] = << 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 90 } << 91 << 92 << 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con 149 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 94 G4P << 150 G4ProcessType type): 95 G4VContinuousDiscreteProcess(name, type) << 151 G4VContinuousDiscreteProcess(name, type), >> 152 secondaryParticle(0), >> 153 nSCoffRegions(0), >> 154 nDERegions(0), >> 155 idxSCoffRegions(0), >> 156 idxDERegions(0), >> 157 nProcesses(0), >> 158 theDEDXTable(0), >> 159 theDEDXSubTable(0), >> 160 theDEDXunRestrictedTable(0), >> 161 theIonisationTable(0), >> 162 theIonisationSubTable(0), >> 163 theRangeTableForLoss(0), >> 164 theCSDARangeTable(0), >> 165 theSecondaryRangeTable(0), >> 166 theInverseRangeTable(0), >> 167 theLambdaTable(0), >> 168 theSubLambdaTable(0), >> 169 theDEDXAtMaxEnergy(0), >> 170 theRangeAtMaxEnergy(0), >> 171 theEnergyOfCrossSectionMax(0), >> 172 theCrossSectionMax(0), >> 173 baseParticle(0), >> 174 minSubRange(0.1), >> 175 lossFluctuationFlag(true), >> 176 rndmStepFlag(false), >> 177 tablesAreBuilt(false), >> 178 integral(true), >> 179 isIon(false), >> 180 isIonisation(true), >> 181 useSubCutoff(false), >> 182 useDeexcitation(false), >> 183 particle(0), >> 184 currentCouple(0), >> 185 nWarnings(0), >> 186 mfpKinEnergy(0.0) 96 { 187 { 97 theParameters = G4EmParameters::Instance(); << 98 SetVerboseLevel(1); 188 SetVerboseLevel(1); 99 189 100 // low energy limit 190 // low energy limit 101 lowestKinEnergy = theParameters->LowestElect << 191 lowestKinEnergy = 1.*eV; 102 192 103 // Size of tables << 193 // Size of tables assuming spline 104 minKinEnergy = 0.1*CLHEP::keV; << 194 minKinEnergy = 0.1*keV; 105 maxKinEnergy = 100.0*CLHEP::TeV; << 195 maxKinEnergy = 10.0*TeV; 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 196 nBins = 77; 107 nBins = 84; << 197 maxKinEnergyCSDA = 1.0*GeV; 108 nBinsCSDA = 35; 198 nBinsCSDA = 35; 109 199 110 invLambdaFactor = 1.0/lambdaFactor; << 200 // default linear loss limit for spline >> 201 linLossLimit = 0.01; >> 202 >> 203 // default dRoverRange and finalRange >> 204 SetStepFunction(0.2, 1.0*mm); 111 205 112 // default linear loss limit << 206 // default lambda factor 113 finalRange = 1.*CLHEP::mm; << 207 lambdaFactor = 0.8; >> 208 >> 209 // particle types >> 210 theElectron = G4Electron::Electron(); >> 211 thePositron = G4Positron::Positron(); >> 212 theGenericIon = 0; 114 213 115 // run time objects 214 // run time objects 116 pParticleChange = &fParticleChange; 215 pParticleChange = &fParticleChange; 117 fParticleChange.SetSecondaryWeightByProcess( << 118 modelManager = new G4EmModelManager(); 216 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT 217 safetyHelper = G4TransportationManager::GetTransportationManager() 120 ->GetSafetyHelper(); 218 ->GetSafetyHelper(); 121 aGPILSelection = CandidateForSelection; 219 aGPILSelection = CandidateForSelection; 122 220 123 // initialise model 221 // initialise model 124 lManager = G4LossTableManager::Instance(); << 222 (G4LossTableManager::Instance())->Register(this); 125 lManager->Register(this); << 223 fluctModel = 0; 126 isMaster = lManager->IsMaster(); << 224 127 << 225 scTracks.reserve(5); 128 G4LossTableBuilder* bld = lManager->GetTable << 226 secParticles.reserve(5); 129 theDensityFactor = bld->GetDensityFactors(); << 227 130 theDensityIdx = bld->GetCoupleIndexes(); << 228 // Data for stragling of ranges from ICRU'37 report 131 << 229 const G4int nrbins = 7; 132 scTracks.reserve(10); << 230 vstrag = new G4PhysicsLogVector(keV, GeV, nrbins-1); 133 secParticles.reserve(12); << 231 vstrag->SetSpline(true); 134 emModels = new std::vector<G4VEmModel*>; << 232 G4double s[nrbins] = {-0.2, -0.85, -1.3, -1.578, -1.76, -1.85, -1.9}; >> 233 for(G4int i=0; i<nrbins; ++i) {vstrag->PutValue(i, s[i]);} 135 } 234 } 136 235 137 //....oooOO0OOooo........oooOO0OOooo........oo 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 237 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 238 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 239 { 141 if (isMaster) { << 240 if(1 < verboseLevel) 142 if(nullptr == baseParticle) { delete theDa << 241 G4cout << "G4VEnergyLossProcess destruct " << GetProcessName() 143 delete theEnergyOfCrossSectionMax; << 242 << G4endl; 144 if(nullptr != fXSpeaks) { << 243 delete vstrag; 145 for(auto const & v : *fXSpeaks) { delete << 244 Clean(); 146 delete fXSpeaks; << 245 >> 246 if ( !baseParticle ) { >> 247 if(theDEDXTable && theRangeTableForLoss) { >> 248 if(theIonisationTable == theDEDXTable) theIonisationTable = 0; >> 249 theDEDXTable->clearAndDestroy(); >> 250 delete theDEDXTable; >> 251 if(theDEDXSubTable) { >> 252 if(theIonisationSubTable == theDEDXSubTable) >> 253 theIonisationSubTable = 0; >> 254 theDEDXSubTable->clearAndDestroy(); >> 255 delete theDEDXSubTable; >> 256 } >> 257 } >> 258 if(theIonisationTable) { >> 259 theIonisationTable->clearAndDestroy(); >> 260 delete theIonisationTable; >> 261 } >> 262 if(theIonisationSubTable) { >> 263 theIonisationSubTable->clearAndDestroy(); >> 264 delete theIonisationSubTable; >> 265 } >> 266 if(theDEDXunRestrictedTable && theCSDARangeTable) { >> 267 theDEDXunRestrictedTable->clearAndDestroy(); >> 268 delete theDEDXunRestrictedTable; >> 269 } >> 270 if(theCSDARangeTable) { >> 271 theCSDARangeTable->clearAndDestroy(); >> 272 delete theCSDARangeTable; >> 273 } >> 274 if(theRangeTableForLoss) { >> 275 theRangeTableForLoss->clearAndDestroy(); >> 276 delete theRangeTableForLoss; >> 277 } >> 278 if(theInverseRangeTable) { >> 279 theInverseRangeTable->clearAndDestroy(); >> 280 delete theInverseRangeTable; >> 281 } >> 282 if(theLambdaTable) { >> 283 theLambdaTable->clearAndDestroy(); >> 284 delete theLambdaTable; >> 285 } >> 286 if(theSubLambdaTable) { >> 287 theSubLambdaTable->clearAndDestroy(); >> 288 delete theSubLambdaTable; 147 } 289 } 148 } 290 } >> 291 149 delete modelManager; 292 delete modelManager; 150 delete biasManager; << 293 (G4LossTableManager::Instance())->DeRegister(this); 151 delete scoffRegions; << 294 } 152 delete emModels; << 295 153 lManager->DeRegister(this); << 296 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 297 >> 298 void G4VEnergyLossProcess::Clean() >> 299 { >> 300 if(1 < verboseLevel) { >> 301 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() >> 302 << G4endl; >> 303 } >> 304 delete [] theDEDXAtMaxEnergy; >> 305 delete [] theRangeAtMaxEnergy; >> 306 delete [] theEnergyOfCrossSectionMax; >> 307 delete [] theCrossSectionMax; >> 308 delete [] idxSCoffRegions; >> 309 delete [] idxDERegions; >> 310 >> 311 theDEDXAtMaxEnergy = 0; >> 312 theRangeAtMaxEnergy = 0; >> 313 theEnergyOfCrossSectionMax = 0; >> 314 theCrossSectionMax = 0; >> 315 tablesAreBuilt = false; >> 316 >> 317 //scTracks.clear(); >> 318 scProcesses.clear(); >> 319 nProcesses = 0; 154 } 320 } 155 321 156 //....oooOO0OOooo........oooOO0OOooo........oo 322 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 323 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg 324 G4double G4VEnergyLossProcess::MinPrimaryEnergy(const G4ParticleDefinition*, 159 << 325 const G4Material*, 160 << 326 G4double cut) 161 { 327 { 162 return cut; 328 return cut; 163 } 329 } 164 330 165 //....oooOO0OOooo........oooOO0OOooo........oo 331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 332 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 333 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, 168 G4VEmFlu << 334 G4VEmFluctuationModel* fluc, 169 const G4 << 335 const G4Region* region) 170 { 336 { 171 if(nullptr == ptr) { return; } << 337 modelManager->AddEmModel(order, p, fluc, region); 172 G4VEmFluctuationModel* afluc = (nullptr == f << 338 if(p) p->SetParticleChange(pParticleChange, fluc); 173 modelManager->AddEmModel(order, ptr, afluc, << 174 ptr->SetParticleChange(pParticleChange, aflu << 175 } 339 } 176 340 177 //....oooOO0OOooo........oooOO0OOooo........oo 341 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 342 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 343 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 344 G4double emin, G4double emax) 180 { 345 { 181 if(nullptr == ptr) { return; } << 346 modelManager->UpdateEmModel(nam, emin, emax); 182 if(!emModels->empty()) { << 347 } 183 for(auto & em : *emModels) { if(em == ptr) << 348 184 } << 349 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 185 emModels->push_back(ptr); << 350 >> 351 void G4VEnergyLossProcess::SetEmModel(G4VEmModel* p, G4int index) >> 352 { >> 353 G4int n = emModels.size(); >> 354 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } >> 355 emModels[index] = p; 186 } 356 } 187 357 188 //....oooOO0OOooo........oooOO0OOooo........oo 358 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 189 359 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 360 G4VEmModel* G4VEnergyLossProcess::EmModel(G4int index) 191 << 192 { 361 { 193 massRatio = massratio; << 362 G4VEmModel* p = 0; 194 logMassRatio = G4Log(massRatio); << 363 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } 195 fFactor = charge2ratio*biasFactor; << 364 return p; 196 if(baseMat) { fFactor *= (*theDensityFactor) << 365 } 197 chargeSqRatio = charge2ratio; << 366 198 reduceFactor = 1.0/(fFactor*massRatio); << 367 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 368 >> 369 G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx, G4bool ver) >> 370 { >> 371 return modelManager->GetModel(idx, ver); >> 372 } >> 373 >> 374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 375 >> 376 G4int G4VEnergyLossProcess::NumberOfModels() >> 377 { >> 378 return modelManager->NumberOfModels(); 199 } 379 } 200 380 201 //....oooOO0OOooo........oooOO0OOooo........oo 381 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 202 382 203 void 383 void 204 G4VEnergyLossProcess::PreparePhysicsTable(cons 384 G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 205 { 385 { 206 particle = G4EmTableUtil::CheckIon(this, &pa << 386 if(1 < verboseLevel) { 207 verboseLe << 387 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " >> 388 << GetProcessName() >> 389 << " for " << part.GetParticleName() >> 390 << G4endl; >> 391 } 208 392 209 if( particle != &part ) { << 393 currentCouple = 0; 210 if(!isIon) { lManager->RegisterExtraPartic << 394 preStepLambda = 0.0; 211 if(1 < verboseLevel) { << 395 mfpKinEnergy = DBL_MAX; 212 G4cout << "### G4VEnergyLossProcess::Pre << 396 fRange = DBL_MAX; 213 << " interrupted for " << GetProc << 397 preStepKinEnergy = 0.0; 214 << part.GetParticleName() << " is << 398 chargeSqRatio = 1.0; 215 << " spline=" << spline << G4endl << 399 massRatio = 1.0; >> 400 reduceFactor = 1.0; >> 401 >> 402 G4LossTableManager* lManager = G4LossTableManager::Instance(); >> 403 >> 404 // Are particle defined? >> 405 if( !particle ) { >> 406 particle = ∂ >> 407 if(part.GetParticleType() == "nucleus") { >> 408 if(!theGenericIon) theGenericIon = G4GenericIon::GenericIon(); >> 409 if(particle == theGenericIon) { isIon = true; } >> 410 else if(part.GetPDGCharge() > eplus) { >> 411 isIon = true; >> 412 >> 413 // generic ions created on-fly >> 414 if(part.GetPDGCharge() > 2.5*eplus) { >> 415 particle = theGenericIon; >> 416 } >> 417 } 216 } 418 } 217 return; << 218 } 419 } 219 420 220 tablesAreBuilt = false; << 421 if( particle != &part) { 221 if (GetProcessSubType() == fIonisation) { Se << 422 if(part.GetParticleType() == "nucleus") { >> 423 isIon = true; >> 424 lManager->RegisterIon(&part, this); >> 425 } else { >> 426 lManager->RegisterExtraParticle(&part, this); >> 427 } >> 428 return; >> 429 } 222 430 223 G4LossTableBuilder* bld = lManager->GetTable << 431 Clean(); 224 lManager->PreparePhysicsTable(&part, this); << 432 lManager->EmConfigurator()->AddModels(); 225 433 226 // Base particle and set of models can be de 434 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 435 InitialiseEnergyLossProcess(particle, baseParticle); 228 436 229 // parameters of the process << 437 // Tables preparation 230 if(!actLossFluc) { lossFluctuationFlag = the << 438 if (!baseParticle) { 231 useCutAsFinalRange = theParameters->UseCutAs << 439 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 440 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 441 if (lManager->BuildCSDARange()) { 234 if(!actBinning) { nBins = theParameters->Num << 442 theDEDXunRestrictedTable = 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 443 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 444 theCSDARangeTable = 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 445 G4PhysicsTableHelper::PreparePhysicsTable(theCSDARangeTable); 238 if(!actLinLossLimit) { linLossLimit = thePar << 446 } 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 << 246 theParameters->DefineRegParamForLoss(this); << 247 447 248 fRangeEnergy = 0.0; << 448 theRangeTableForLoss = >> 449 G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 450 theInverseRangeTable = >> 451 G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); >> 452 >> 453 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 454 if (nSCoffRegions) { >> 455 theDEDXSubTable = >> 456 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); >> 457 theSubLambdaTable = >> 458 G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); >> 459 } >> 460 } 249 461 250 G4double initialCharge = particle->GetPDGCha 462 G4double initialCharge = particle->GetPDGCharge(); 251 G4double initialMass = particle->GetPDGMas 463 G4double initialMass = particle->GetPDGMass(); 252 464 253 theParameters->FillStepFunction(particle, th << 465 if (baseParticle) { 254 << 466 massRatio = (baseParticle->GetPDGMass())/initialMass; 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G 467 G4double q = initialCharge/baseParticle->GetPDGCharge(); 260 chargeSqRatio = q*q; 468 chargeSqRatio = q*q; 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 469 if(chargeSqRatio > 0.0) { reduceFactor = 1.0/(chargeSqRatio*massRatio); } 262 } 470 } 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 471 267 // Tables preparation << 472 // initialisation of models 268 if (isMaster && nullptr == baseParticle) { << 473 G4int nmod = modelManager->NumberOfModels(); 269 if(nullptr == theData) { theData = new G4E << 474 for(G4int i=0; i<nmod; ++i) { 270 << 475 G4VEmModel* mod = modelManager->GetModel(i); 271 if(nullptr != theDEDXTable && isIonisation << 476 if(mod->HighEnergyLimit() > maxKinEnergy) { 272 if(nullptr != theIonisationTable && theD << 477 mod->SetHighEnergyLimit(maxKinEnergy); 273 theData->CleanTable(0); << 274 theDEDXTable = theIonisationTable; << 275 theIonisationTable = nullptr; << 276 } << 277 } << 278 << 279 theDEDXTable = theData->MakeTable(theDEDXT << 280 bld->InitialiseBaseMaterials(theDEDXTable) << 281 theData->UpdateTable(theIonisationTable, 1 << 282 << 283 if (theParameters->BuildCSDARange()) { << 284 theDEDXunRestrictedTable = theData->Make << 285 if(isIonisation) { theCSDARangeTable = t << 286 } << 287 << 288 theLambdaTable = theData->MakeTable(4); << 289 if(isIonisation) { << 290 theRangeTableForLoss = theData->MakeTabl << 291 theInverseRangeTable = theData->MakeTabl << 292 } 478 } 293 } 479 } 294 480 295 // forced biasing << 481 theCuts = modelManager->Initialise(particle, secondaryParticle, 296 if(nullptr != biasManager) { << 482 minSubRange, verboseLevel); 297 biasManager->Initialise(part,GetProcessNam << 483 298 biasFlag = false; << 484 // Sub Cutoff and Deexcitation 299 } << 485 if (nSCoffRegions>0 || nDERegions>0) { 300 baseMat = bld->GetBaseMaterialFlag(); << 486 theSubCuts = modelManager->SubCutoff(); 301 numberOfModels = modelManager->NumberOfModel << 487 302 currentModel = modelManager->GetModel(0); << 488 const G4ProductionCutsTable* theCoupleTable= 303 G4EmTableUtil::UpdateModels(this, modelManag << 489 G4ProductionCutsTable::GetProductionCutsTable(); 304 numberOfModels, << 490 size_t numOfCouples = theCoupleTable->GetTableSize(); 305 mainSecondaries, << 491 306 theParameters->U << 492 if(nSCoffRegions>0) idxSCoffRegions = new G4bool[numOfCouples]; 307 theCuts = modelManager->Initialise(particle, << 493 if(nDERegions>0) idxDERegions = new G4bool[numOfCouples]; 308 verboseLe << 494 309 // subcut processor << 495 for (size_t j=0; j<numOfCouples; ++j) { 310 if(isIonisation) { << 496 311 subcutProducer = lManager->SubCutProducer( << 497 const G4MaterialCutsCouple* couple = 312 } << 498 theCoupleTable->GetMaterialCutsCouple(j); 313 if(1 == nSCoffRegions) { << 499 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); 314 if((*scoffRegions)[0]->GetName() == "Defau << 500 315 delete scoffRegions; << 501 if(nSCoffRegions>0) { 316 scoffRegions = nullptr; << 502 G4bool reg = false; 317 nSCoffRegions = 0; << 503 for(G4int i=0; i<nSCoffRegions; ++i) { >> 504 if( pcuts == scoffRegions[i]->GetProductionCuts()) reg = true; >> 505 } >> 506 idxSCoffRegions[j] = reg; >> 507 } >> 508 if(nDERegions>0) { >> 509 G4bool reg = false; >> 510 for(G4int i=0; i<nDERegions; ++i) { >> 511 if( pcuts == deRegions[i]->GetProductionCuts()) reg = true; >> 512 } >> 513 idxDERegions[j] = reg; >> 514 } 318 } 515 } 319 } 516 } 320 517 321 if(1 < verboseLevel) { << 518 lManager->EnergyLossProcessIsInitialised(particle, this); 322 G4cout << "G4VEnergyLossProcess::PrepearPh << 519 323 << " for " << GetProcessName() << " << 520 if (1 < verboseLevel) { 324 << " isIon= " << isIon << " spline= << 521 G4cout << "G4VEnergyLossProcess::Initialise() is done " 325 if(baseParticle) { << 522 << " for local " << particle->GetParticleName() 326 G4cout << "; base: " << baseParticle->Ge << 523 << " isIon= " << isIon 327 } << 524 << " chargeSqRatio= " << chargeSqRatio 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa << 330 << " massRatio= " << massRatio 525 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 526 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 527 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 528 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { 529 for (G4int i=0; i<nSCoffRegions; ++i) { 335 const G4Region* r = (*scoffRegions)[i] << 530 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 531 G4cout << " " << r->GetName() << G4endl; >> 532 } >> 533 } >> 534 if (nDERegions) { >> 535 G4cout << " Deexcitation is ON for regions: " << G4endl; >> 536 for (G4int i=0; i<nDERegions; ++i) { >> 537 const G4Region* r = deRegions[i]; >> 538 G4cout << " " << r->GetName() << G4endl; 337 } 539 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 540 } 341 } 541 } 342 } 542 } 343 543 344 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 545 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 546 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 547 { 348 if(1 < verboseLevel) { << 548 if(1 < verboseLevel) { 349 G4cout << "### G4VEnergyLossProcess::Build 549 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 550 << GetProcessName() 351 << " and particle " << part.GetPart 551 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 552 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { << 553 if(baseParticle) G4cout << "; base: " << baseParticle->GetParticleName(); 354 G4cout << "; base: " << baseParticle->Ge << 355 } << 356 G4cout << G4endl; 554 G4cout << G4endl; 357 G4cout << " TablesAreBuilt= " << tables << 358 << " spline=" << spline << " ptr: " << 359 } 555 } 360 556 361 if(&part == particle) { 557 if(&part == particle) { 362 if(isMaster) { << 558 if(!tablesAreBuilt) { 363 lManager->BuildPhysicsTable(particle, th << 559 G4LossTableManager::Instance()->BuildPhysicsTable(particle, this); 364 << 365 } else { << 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 << 369 numberOfModels = modelManager->NumberOfM << 370 G4EmTableUtil::BuildLocalElossProcess(th << 371 pa << 372 tablesAreBuilt = true; << 373 baseMat = masterProcess->UseBaseMaterial << 374 lManager->LocalPhysicsTables(particle, t << 375 } 560 } 376 << 561 if(!baseParticle) { 377 // needs to be done only once << 562 if(0 < verboseLevel) PrintInfoDefinition(); 378 safetyHelper->InitialiseHelper(); << 563 379 } << 564 // needs to be done only once 380 // Added tracking cut to avoid tracking arti << 565 safetyHelper->InitialiseHelper(); 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } 566 } 387 } 567 } 388 568 389 // protection against double printout << 569 // Added tracking cut to avoid tracking artifacts 390 if(theParameters->IsPrintLocked()) { return; << 570 if(isIonisation) fParticleChange.SetLowEnergyLimit(lowestKinEnergy); 391 << 571 392 // explicitly defined printout by particle n << 393 G4String num = part.GetParticleName(); << 394 if(1 < verboseLevel || << 395 (0 < verboseLevel && (num == "e-" || << 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } << 404 if(1 < verboseLevel) { 572 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 573 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 574 << GetProcessName() 407 << " and particle " << part.GetPart 575 << " and particle " << part.GetParticleName(); 408 if(isIonisation) { G4cout << " isIonisati << 576 if(isIonisation) G4cout << " isIonisation flag = 1"; 409 G4cout << " baseMat=" << baseMat << G4endl << 577 G4cout << G4endl; 410 } 578 } 411 } 579 } 412 580 413 //....oooOO0OOooo........oooOO0OOooo........oo 581 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 582 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED 583 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType) 416 { 584 { 417 G4PhysicsTable* table = nullptr; << 585 if(1 < verboseLevel) { >> 586 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType >> 587 << " for " << GetProcessName() >> 588 << " and particle " << particle->GetParticleName() >> 589 << G4endl; >> 590 } >> 591 G4PhysicsTable* table = 0; >> 592 G4double emin = minKinEnergy; 418 G4double emax = maxKinEnergy; 593 G4double emax = maxKinEnergy; 419 G4int bin = nBins; 594 G4int bin = nBins; 420 595 421 if(fTotal == tType) { 596 if(fTotal == tType) { 422 emax = maxKinEnergyCSDA; 597 emax = maxKinEnergyCSDA; 423 bin = nBinsCSDA; 598 bin = nBinsCSDA; 424 table = theDEDXunRestrictedTable; 599 table = theDEDXunRestrictedTable; 425 } else if(fRestricted == tType) { 600 } else if(fRestricted == tType) { 426 table = theDEDXTable; 601 table = theDEDXTable; >> 602 if(theIonisationTable) >> 603 table = G4PhysicsTableHelper::PreparePhysicsTable(theIonisationTable); >> 604 } else if(fSubRestricted == tType) { >> 605 table = theDEDXSubTable; >> 606 if(theIonisationSubTable) >> 607 table = G4PhysicsTableHelper::PreparePhysicsTable(theIonisationSubTable); 427 } else { 608 } else { 428 G4cout << "G4VEnergyLossProcess::BuildDEDX 609 G4cout << "G4VEnergyLossProcess::BuildDEDXTable WARNING: wrong type " 429 << tType << G4endl; << 610 << tType << G4endl; 430 } 611 } >> 612 >> 613 // Access to materials >> 614 const G4ProductionCutsTable* theCoupleTable= >> 615 G4ProductionCutsTable::GetProductionCutsTable(); >> 616 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 617 431 if(1 < verboseLevel) { 618 if(1 < verboseLevel) { 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 619 G4cout << numOfCouples << " materials" 433 << " for " << GetProcessName() << 620 << " minKinEnergy= " << minKinEnergy 434 << " and " << particle->GetParticle << 621 << " maxKinEnergy= " << maxKinEnergy 435 << "spline=" << spline << G4endl; << 622 << " EmTableType= " << tType 436 } << 623 << " table= " << table 437 if(nullptr == table) { return table; } << 624 << G4endl; 438 << 625 } 439 G4LossTableBuilder* bld = lManager->GetTable << 626 if(!table) return table; 440 G4EmTableUtil::BuildDEDXTable(this, particle << 627 441 table, minKinE << 628 G4bool splineFlag = (G4LossTableManager::Instance())->SplineFlag(); 442 verboseLevel, << 629 G4PhysicsLogVector* aVector = 0; >> 630 G4PhysicsLogVector* bVector = 0; >> 631 >> 632 for(size_t i=0; i<numOfCouples; ++i) { >> 633 >> 634 if(1 < verboseLevel) { >> 635 G4cout << "G4VEnergyLossProcess::BuildDEDXVector flag= " >> 636 << table->GetFlag(i) << G4endl; >> 637 } >> 638 if (table->GetFlag(i)) { >> 639 >> 640 // create physics vector and fill it >> 641 const G4MaterialCutsCouple* couple = >> 642 theCoupleTable->GetMaterialCutsCouple(i); >> 643 if(!bVector) { >> 644 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 645 bVector = aVector; >> 646 } else { >> 647 aVector = new G4PhysicsLogVector(*bVector); >> 648 } >> 649 // G4PhysicsVector* aVector = new G4PhysicsLogVector(emin, emax, bin); >> 650 aVector->SetSpline(splineFlag); >> 651 >> 652 modelManager->FillDEDXVector(aVector, couple, tType); >> 653 if(splineFlag) aVector->FillSecondDerivatives(); >> 654 >> 655 // Insert vector for this material into the table >> 656 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); >> 657 } >> 658 } >> 659 >> 660 if(1 < verboseLevel) { >> 661 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " >> 662 << particle->GetParticleName() >> 663 << " and process " << GetProcessName() >> 664 << G4endl; >> 665 // if(2 < verboseLevel) G4cout << (*table) << G4endl; >> 666 } >> 667 443 return table; 668 return table; 444 } 669 } 445 670 446 //....oooOO0OOooo........oooOO0OOooo........oo 671 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 672 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 673 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType tType) 449 { 674 { 450 if(nullptr == theLambdaTable) { return theLa << 675 G4PhysicsTable* table = 0; 451 676 452 G4double scale = theParameters->MaxKinEnergy << 677 if(fRestricted == tType) { 453 G4int nbin = << 678 table = theLambdaTable; 454 theParameters->NumberOfBinsPerDecade()*G4l << 679 } else if(fSubRestricted == tType) { 455 scale = nbin/G4Log(scale); << 680 table = theSubLambdaTable; 456 << 681 } else { 457 G4LossTableBuilder* bld = lManager->GetTable << 682 G4cout << "G4VEnergyLossProcess::BuildLambdaTable WARNING: wrong type " 458 G4EmTableUtil::BuildLambdaTable(this, partic << 683 << tType << G4endl; 459 bld, theLamb << 684 } 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } << 464 685 465 //....oooOO0OOooo........oooOO0OOooo........oo << 686 if(1 < verboseLevel) { >> 687 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() of type " >> 688 << tType << " for process " >> 689 << GetProcessName() << " and particle " >> 690 << particle->GetParticleName() >> 691 << " EmTableType= " << tType >> 692 << " table= " << table >> 693 << G4endl; >> 694 } >> 695 if(!table) {return table;} >> 696 >> 697 // Access to materials >> 698 const G4ProductionCutsTable* theCoupleTable= >> 699 G4ProductionCutsTable::GetProductionCutsTable(); >> 700 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 701 >> 702 G4bool splineFlag = (G4LossTableManager::Instance())->SplineFlag(); >> 703 >> 704 for(size_t i=0; i<numOfCouples; ++i) { >> 705 >> 706 if (table->GetFlag(i)) { >> 707 >> 708 // create physics vector and fill it >> 709 const G4MaterialCutsCouple* couple = >> 710 theCoupleTable->GetMaterialCutsCouple(i); >> 711 G4double cut = (*theCuts)[i]; >> 712 if(fSubRestricted == tType) cut = (*theSubCuts)[i]; >> 713 G4PhysicsVector* aVector = LambdaPhysicsVector(couple, cut); >> 714 aVector->SetSpline(splineFlag); >> 715 >> 716 modelManager->FillLambdaVector(aVector, couple, true, tType); >> 717 if(splineFlag) aVector->FillSecondDerivatives(); 466 718 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 719 // Insert vector for this material into the table 468 const G4ParticleDefinition& pa << 720 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); 469 { << 470 G4String indent = (rst ? " " : ""); << 471 out << std::setprecision(6); << 472 out << G4endl << indent << GetProcessName() << 473 if (!rst) out << " for " << part.GetParticle << 474 out << " XStype:" << fXSType << 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " << 477 << G4BestUnit(minKinEnergy,"Energy") << 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } << 504 if(2 < verboseLevel) { << 505 for(std::size_t i=0; i<7; ++i) { << 506 auto ta = theData->Table(i); << 507 out << " " << tnames[i] << " addres << 508 if(nullptr != ta) { out << *ta << G4endl << 509 } 721 } 510 } 722 } >> 723 >> 724 if(1 < verboseLevel) { >> 725 G4cout << "Lambda table is built for " >> 726 << particle->GetParticleName() >> 727 << G4endl; >> 728 } >> 729 >> 730 return table; 511 } 731 } 512 732 513 //....oooOO0OOooo........oooOO0OOooo........oo 733 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 734 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 735 void G4VEnergyLossProcess::PrintInfoDefinition() 516 { 736 { 517 if(nullptr == scoffRegions) { << 737 if(0 < verboseLevel) { 518 scoffRegions = new std::vector<const G4Reg << 738 G4cout << G4endl << GetProcessName() << ": for " 519 } << 739 << particle->GetParticleName() 520 // the region is in the list << 740 << " SubType= " << GetProcessSubType() 521 if(!scoffRegions->empty()) { << 741 << G4endl 522 for (auto & reg : *scoffRegions) { << 742 << " dE/dx and range tables from " 523 if (reg == r) { return; } << 743 << G4BestUnit(minKinEnergy,"Energy") >> 744 << " to " << G4BestUnit(maxKinEnergy,"Energy") >> 745 << " in " << nBins << " bins" << G4endl >> 746 << " Lambda tables from threshold to " >> 747 << G4BestUnit(maxKinEnergy,"Energy") >> 748 << " in " << nBins << " bins, spline: " >> 749 << (G4LossTableManager::Instance())->SplineFlag() >> 750 << G4endl; >> 751 if(theRangeTableForLoss && isIonisation) { >> 752 G4cout << " finalRange(mm)= " << finalRange/mm >> 753 << ", dRoverRange= " << dRoverRange >> 754 << ", integral: " << integral >> 755 << ", fluct: " << lossFluctuationFlag >> 756 << ", linLossLimit= " << linLossLimit >> 757 << G4endl; >> 758 } >> 759 PrintInfo(); >> 760 modelManager->DumpModelList(verboseLevel); >> 761 if(theCSDARangeTable && isIonisation) { >> 762 G4cout << " CSDA range table up" >> 763 << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy") >> 764 << " in " << nBinsCSDA << " bins" << G4endl; >> 765 } >> 766 if(nSCoffRegions>0 && isIonisation) { >> 767 G4cout << " Subcutoff sampling in " << nSCoffRegions >> 768 << " regions" << G4endl; >> 769 } >> 770 if(2 < verboseLevel) { >> 771 G4cout << " DEDXTable address= " << theDEDXTable << G4endl; >> 772 if(theDEDXTable && isIonisation) G4cout << (*theDEDXTable) << G4endl; >> 773 G4cout << "non restricted DEDXTable address= " >> 774 << theDEDXunRestrictedTable << G4endl; >> 775 if(theDEDXunRestrictedTable && isIonisation) { >> 776 G4cout << (*theDEDXunRestrictedTable) << G4endl; >> 777 } >> 778 if(theDEDXSubTable && isIonisation) { >> 779 G4cout << (*theDEDXSubTable) << G4endl; >> 780 } >> 781 G4cout << " CSDARangeTable address= " << theCSDARangeTable >> 782 << G4endl; >> 783 if(theCSDARangeTable && isIonisation) { >> 784 G4cout << (*theCSDARangeTable) << G4endl; >> 785 } >> 786 G4cout << " RangeTableForLoss address= " << theRangeTableForLoss >> 787 << G4endl; >> 788 if(theRangeTableForLoss && isIonisation) { >> 789 G4cout << (*theRangeTableForLoss) << G4endl; >> 790 } >> 791 G4cout << " InverseRangeTable address= " << theInverseRangeTable >> 792 << G4endl; >> 793 if(theInverseRangeTable && isIonisation) { >> 794 G4cout << (*theInverseRangeTable) << G4endl; >> 795 } >> 796 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; >> 797 if(theLambdaTable && isIonisation) { >> 798 G4cout << (*theLambdaTable) << G4endl; >> 799 } >> 800 G4cout << " SubLambdaTable address= " << theSubLambdaTable << G4endl; >> 801 if(theSubLambdaTable && isIonisation) { >> 802 G4cout << (*theSubLambdaTable) << G4endl; >> 803 } 524 } 804 } 525 } 805 } 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } 806 } 530 807 531 //....oooOO0OOooo........oooOO0OOooo........oo 808 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 532 809 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 810 void G4VEnergyLossProcess::ActivateSubCutoff(G4bool val, const G4Region* r) 534 { 811 { 535 if(0 == nSCoffRegions) { return true; } << 812 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 536 const G4Region* r = aTrack.GetVolume()->GetL << 813 const G4Region* reg = r; 537 for(auto & reg : *scoffRegions) { << 814 if (!reg) {reg = regionStore->GetRegion("DefaultRegionForTheWorld", false);} 538 if(r == reg) { return true; } << 815 >> 816 // the region is in the list >> 817 if (nSCoffRegions) { >> 818 for (G4int i=0; i<nSCoffRegions; ++i) { >> 819 if (reg == scoffRegions[i]) { >> 820 if(!val) deRegions[i] = 0; >> 821 return; >> 822 } >> 823 } >> 824 } >> 825 >> 826 // new region >> 827 if(val) { >> 828 useSubCutoff = true; >> 829 scoffRegions.push_back(reg); >> 830 ++nSCoffRegions; >> 831 } else { >> 832 useSubCutoff = false; 539 } 833 } 540 return false; << 541 } 834 } 542 835 543 //....oooOO0OOooo........oooOO0OOooo........oo 836 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 544 837 545 void G4VEnergyLossProcess::StartTracking(G4Tra << 838 void G4VEnergyLossProcess::ActivateDeexcitation(G4bool val, const G4Region* r) 546 { 839 { 547 // reset parameters for the new track << 840 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 548 theNumberOfInteractionLengthLeft = -1.0; << 841 const G4Region* reg = r; 549 mfpKinEnergy = DBL_MAX; << 842 if (!reg) {reg = regionStore->GetRegion("DefaultRegionForTheWorld", false);} 550 preStepLambda = 0.0; << 551 currentCouple = nullptr; << 552 843 553 // reset ion << 844 // the region is in the list 554 if(isIon) { << 845 if (nDERegions) { 555 const G4double newmass = track->GetDefinit << 846 for (G4int i=0; i<nDERegions; ++i) { 556 massRatio = (nullptr == baseParticle) ? CL << 847 if (reg == deRegions[i]) { 557 : baseParticle->GetPDGMass()/newmass; << 848 if(!val) deRegions[i] = 0; 558 logMassRatio = G4Log(massRatio); << 849 return; 559 } << 850 } 560 // forced biasing only for primary particles << 561 if(nullptr != biasManager) { << 562 if(0 == track->GetParentID()) { << 563 biasFlag = true; << 564 biasManager->ResetForcedInteraction(); << 565 } 851 } 566 } 852 } >> 853 >> 854 // new region >> 855 if(val) { >> 856 useDeexcitation = true; >> 857 deRegions.push_back(reg); >> 858 ++nDERegions; >> 859 } else { >> 860 useDeexcitation = false; >> 861 } 567 } 862 } 568 863 569 //....oooOO0OOooo........oooOO0OOooo........oo 864 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 570 865 571 G4double G4VEnergyLossProcess::AlongStepGetPhy 866 G4double G4VEnergyLossProcess::AlongStepGetPhysicalInteractionLength( 572 const G4Track& tr << 867 const G4Track&, >> 868 G4double, >> 869 G4double currentMinStep, >> 870 G4double&, 573 G4GPILSelection* 871 G4GPILSelection* selection) 574 { 872 { 575 G4double x = DBL_MAX; 873 G4double x = DBL_MAX; 576 *selection = aGPILSelection; 874 *selection = aGPILSelection; 577 if(isIonisation && currentModel->IsActive(pr << 875 if(isIonisation) { 578 GetScaledRangeForScaledEnergy(preStepScale << 876 fRange = GetScaledRangeForScaledEnergy(preStepScaledEnergy)*reduceFactor; 579 x = (useCutAsFinalRange) ? std::min(finalR << 877 580 currentCouple->GetProductionCuts()->GetP << 878 x = fRange; 581 x = (fRange > x) ? fRange*dRoverRange + x* << 879 G4double y = x*dRoverRange; 582 : fRange; << 880 583 /* << 881 if(x > finalRange && y < currentMinStep) { 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 882 x = y + finalRange*(1.0 - dRoverRange)*(2.0 - finalRange/fRange); 585 << " fRange=" << fRange << " finR=" << finR << 883 } else if (rndmStepFlag) {x = SampleRange();} 586 */ << 884 //G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 885 // <<" range= "<<fRange <<" cMinSt="<<currentMinStep >> 886 // << " limit= " << x <<G4endl; 587 } 887 } >> 888 //G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 889 // <<" stepLimit= "<<x<<G4endl; 588 return x; 890 return x; 589 } 891 } 590 892 591 //....oooOO0OOooo........oooOO0OOooo........oo 893 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 894 593 G4double G4VEnergyLossProcess::PostStepGetPhys 895 G4double G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength( 594 const G4Track& tr 896 const G4Track& track, 595 G4double previo 897 G4double previousStepSize, 596 G4ForceCondition* 898 G4ForceCondition* condition) 597 { 899 { 598 // condition is set to "Not Forced" 900 // condition is set to "Not Forced" 599 *condition = NotForced; 901 *condition = NotForced; 600 G4double x = DBL_MAX; 902 G4double x = DBL_MAX; 601 903 602 // initialisation of material, mass, charge, << 904 // initialisation of material, mass, charge, model at the beginning of the step 603 // at the beginning of the step << 604 DefineMaterial(track.GetMaterialCutsCouple() 905 DefineMaterial(track.GetMaterialCutsCouple()); 605 preStepKinEnergy = track.GetKineticEne << 606 preStepScaledEnergy = preStepKinEnergy*ma << 607 SelectModel(preStepScaledEnergy); << 608 906 609 if(!currentModel->IsActive(preStepScaledEner << 907 const G4ParticleDefinition* currPart = track.GetDefinition(); 610 theNumberOfInteractionLengthLeft = -1.0; << 908 if(theGenericIon == particle) { 611 mfpKinEnergy = DBL_MAX; << 909 massRatio = proton_mass_c2/currPart->GetPDGMass(); 612 preStepLambda = 0.0; << 910 } 613 currentInteractionLength = DBL_MAX; << 911 preStepKinEnergy = track.GetKineticEnergy(); 614 return x; << 912 preStepScaledEnergy = preStepKinEnergy*massRatio; 615 } << 913 SelectModel(preStepScaledEnergy); >> 914 if(!currentModel->IsActive(preStepScaledEnergy)) return x; 616 915 617 // change effective charge of a charged part << 618 if(isIon) { 916 if(isIon) { 619 const G4double q2 = currentModel->ChargeSq << 917 chargeSqRatio = 620 fFactor = q2*biasFactor; << 918 currentModel->GetChargeSquareRatio(currPart,currentMaterial,preStepKinEnergy); 621 if(baseMat) { fFactor *= (*theDensityFacto << 919 reduceFactor = 1.0/(chargeSqRatio*massRatio); 622 reduceFactor = 1.0/(fFactor*massRatio); << 920 } 623 if (lossFluctuationFlag) { << 921 //G4cout << "q2= " << chargeSqRatio << " massRatio= " << massRatio << G4endl; 624 auto fluc = currentModel->GetModelOfFluc << 922 // initialisation for sampling of the interaction length 625 fluc->SetParticleAndCharge(track.GetDefi << 923 if(previousStepSize <= DBL_MIN) theNumberOfInteractionLengthLeft = -1.0; 626 } << 924 if(theNumberOfInteractionLengthLeft < 0.0) mfpKinEnergy = DBL_MAX; >> 925 >> 926 // compute mean free path >> 927 if(preStepScaledEnergy < mfpKinEnergy) { >> 928 if (integral) ComputeLambdaForScaledEnergy(preStepScaledEnergy); >> 929 else preStepLambda = GetLambdaForScaledEnergy(preStepScaledEnergy); >> 930 if(preStepLambda <= DBL_MIN) mfpKinEnergy = 0.0; 627 } 931 } 628 932 629 // forced biasing only for primary particles << 933 // non-zero cross section 630 if(biasManager) { << 934 if(preStepLambda > DBL_MIN) { 631 if(0 == track.GetParentID() && biasFlag && << 632 biasManager->ForcedInteractionRegion((G << 633 return biasManager->GetStepLimit((G4int) << 634 } << 635 } << 636 << 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 638 << 639 // zero cross section << 640 if(preStepLambda <= 0.0) { << 641 theNumberOfInteractionLengthLeft = -1.0; << 642 currentInteractionLength = DBL_MAX; << 643 } else { << 644 << 645 // non-zero cross section << 646 if (theNumberOfInteractionLengthLeft < 0.0 935 if (theNumberOfInteractionLengthLeft < 0.0) { 647 << 648 // beggining of tracking (or just after 936 // beggining of tracking (or just after DoIt of this process) 649 theNumberOfInteractionLengthLeft = -G4Lo << 937 //G4cout<<"G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength Reset"<<G4endl; 650 theInitialNumberOfInteractionLength = th << 938 ResetNumberOfInteractionLengthLeft(); 651 << 652 } else if(currentInteractionLength < DBL_M 939 } else if(currentInteractionLength < DBL_MAX) { 653 << 940 // subtract NumberOfInteractionLengthLeft 654 // subtract NumberOfInteractionLengthLef << 941 SubtractNumberOfInteractionLengthLeft(previousStepSize); 655 theNumberOfInteractionLengthLeft -= << 942 if(theNumberOfInteractionLengthLeft < 0.) 656 previousStepSize/currentInteractionLen << 943 theNumberOfInteractionLengthLeft = perMillion; 657 << 658 theNumberOfInteractionLengthLeft = << 659 std::max(theNumberOfInteractionLengthL << 660 } 944 } 661 945 662 // new mean free path and step limit << 946 // get mean free path and step limit 663 currentInteractionLength = 1.0/preStepLamb 947 currentInteractionLength = 1.0/preStepLambda; 664 x = theNumberOfInteractionLengthLeft * cur 948 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 665 } << 666 #ifdef G4VERBOSE << 667 if (verboseLevel>2) { << 668 G4cout << "G4VEnergyLossProcess::PostStepG << 669 G4cout << "[ " << GetProcessName() << "]" << 670 G4cout << " for " << track.GetDefinition() << 671 << " in Material " << currentMate << 672 << " Ekin(MeV)= " << preStepKinEner << 673 << " track material: " << track.Get << 674 <<G4endl; << 675 G4cout << "MeanFreePath = " << currentInte << 676 << "InteractionLength= " << x/cm << << 677 } << 678 #endif << 679 return x; << 680 } << 681 949 682 //....oooOO0OOooo........oooOO0OOooo........oo << 950 #ifdef G4VERBOSE 683 << 951 if (verboseLevel>2){ 684 void << 952 G4cout << "G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength "; 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 953 G4cout << "[ " << GetProcessName() << "]" << G4endl; 686 { << 954 G4cout << " for " << currPart->GetParticleName() 687 // cross section increased with energy << 955 << " in Material " << currentMaterial->GetName() 688 if(fXSType == fEmIncreasing) { << 956 << " Ekin(MeV)= " << preStepKinEnergy/MeV 689 if(e*invLambdaFactor < mfpKinEnergy) { << 957 <<G4endl; 690 preStepLambda = GetLambdaForScaledEnergy << 958 G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 959 << "InteractionLength= " << x/cm <<"[cm] " <<G4endl; 692 } << 693 << 694 // cross section has one peak << 695 } else if(fXSType == fEmOnePeak) { << 696 const G4double epeak = (*theEnergyOfCrossS << 697 if(e <= epeak) { << 698 if(e*invLambdaFactor < mfpKinEnergy) { << 699 preStepLambda = GetLambdaForScaledEner << 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 701 } << 702 } else if(e < mfpKinEnergy) { << 703 const G4double e1 = std::max(epeak, e*la << 704 mfpKinEnergy = e1; << 705 preStepLambda = GetLambdaForScaledEnergy << 706 } << 707 << 708 // cross section has more than one peaks << 709 } else if(fXSType == fEmTwoPeaks) { << 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } 960 } 765 // integral method is not used << 961 #endif >> 962 // zero cross section case 766 } else { 963 } else { 767 preStepLambda = GetLambdaForScaledEnergy(e << 964 if(theNumberOfInteractionLengthLeft > DBL_MIN && >> 965 currentInteractionLength < DBL_MAX) { >> 966 // subtract NumberOfInteractionLengthLeft >> 967 SubtractNumberOfInteractionLengthLeft(previousStepSize); >> 968 if(theNumberOfInteractionLengthLeft < 0.) >> 969 theNumberOfInteractionLengthLeft = perMillion; >> 970 } >> 971 currentInteractionLength = DBL_MAX; 768 } 972 } >> 973 return x; 769 } 974 } 770 975 771 //....oooOO0OOooo........oooOO0OOooo........oo 976 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 977 773 G4VParticleChange* G4VEnergyLossProcess::Along 978 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 979 const G4Step& step) 775 { 980 { 776 fParticleChange.InitializeForAlongStep(track 981 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 982 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( 983 if(!isIonisation || !currentModel->IsActive(preStepScaledEnergy)) { 779 return &fParticleChange; 984 return &fParticleChange; 780 } 985 } 781 986 >> 987 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 988 G4double length = step.GetStepLength(); >> 989 if(length <= DBL_MIN) return &fParticleChange; 783 G4double eloss = 0.0; 990 G4double eloss = 0.0; >> 991 G4double esecdep = 0.0; 784 992 785 /* 993 /* 786 if(-1 < verboseLevel) { 994 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP << 995 const G4ParticleDefinition* d = track.GetDefinition(); 788 G4cout << "AlongStepDoIt for " 996 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 997 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 998 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 999 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 1000 << " range(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 1001 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 1002 << " q^2= " << chargeSqRatio >> 1003 << " md= " << d->GetPDGMass() >> 1004 << " status= " << track.GetTrackStatus() >> 1005 << G4endl; 795 } 1006 } 796 */ 1007 */ 797 const G4DynamicParticle* dynParticle = track << 798 1008 799 // define new weight for primary and seconda << 1009 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 800 G4double weight = fParticleChange.GetParentW << 801 if(weightFlag) { << 802 weight /= biasFactor; << 803 fParticleChange.ProposeWeight(weight); << 804 } << 805 1010 806 // stopping, check actual range and kinetic << 1011 // stopping 807 if (length >= fRange || preStepKinEnergy <= << 1012 if (length >= fRange) { 808 eloss = preStepKinEnergy; 1013 eloss = preStepKinEnergy; 809 if (useDeexcitation) { 1014 if (useDeexcitation) { 810 atomDeexcitation->AlongStepDeexcitation( << 1015 if(idxDERegions[currentMaterialIndex]) { 811 << 1016 currentModel->SampleDeexcitationAlongStep(currentMaterial, track, eloss); 812 if(scTracks.size() > 0) { FillSecondarie << 1017 if(eloss < 0.0) eloss = 0.0; 813 eloss = std::max(eloss, 0.0); << 1018 } 814 } 1019 } 815 fParticleChange.SetProposedKineticEnergy(0 1020 fParticleChange.SetProposedKineticEnergy(0.0); 816 fParticleChange.ProposeLocalEnergyDeposit( 1021 fParticleChange.ProposeLocalEnergyDeposit(eloss); 817 return &fParticleChange; 1022 return &fParticleChange; 818 } 1023 } 819 // zero step length with non-zero range << 820 if(length <= 0.0) { return &fParticleChange; << 821 1024 822 // Short step 1025 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 1026 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length; 824 LogSca << 1027 825 /* << 826 G4cout << "##### Short STEP: eloss= " << elo << 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 1028 // Long step >> 1029 //} else { 834 if(eloss > preStepKinEnergy*linLossLimit) { 1030 if(eloss > preStepKinEnergy*linLossLimit) { 835 1031 836 const G4double x = (fRange - length)/reduc << 1032 G4double x = 837 const G4double de = preStepKinEnergy - Sca << 1033 GetScaledRangeForScaledEnergy(preStepScaledEnergy) - length/reduceFactor; 838 if(de > 0.0) { eloss = de; } << 1034 eloss = preStepKinEnergy - ScaledKinEnergyForLoss(x)/massRatio; >> 1035 839 /* 1036 /* 840 if(-1 < verboseLevel) 1037 if(-1 < verboseLevel) 841 G4cout << " Long STEP: rPre(mm)=" << 1038 G4cout << "Long STEP: rPre(mm)= " 842 << GetScaledRangeForScaledEnergy( 1039 << GetScaledRangeForScaledEnergy(preStepScaledEnergy)/mm 843 << " x(mm)=" << x/mm << 1040 << " rPost(mm)= " << x/mm 844 << " eloss(MeV)=" << eloss/MeV << 1041 << " ePre(MeV)= " << preStepScaledEnergy/MeV 845 << " rFactor=" << reduceFactor << 1042 << " eloss(MeV)= " << eloss/MeV 846 << " massRatio=" << massRatio << 1043 << " eloss0(MeV)= " >> 1044 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV >> 1045 << " lim(MeV)= " << preStepKinEnergy*linLossLimit/MeV 847 << G4endl; 1046 << G4endl; 848 */ 1047 */ 849 } 1048 } 850 1049 851 /* << 1050 /* >> 1051 G4double eloss0 = eloss; 852 if(-1 < verboseLevel ) { 1052 if(-1 < verboseLevel ) { 853 G4cout << "Before fluct: eloss(MeV)= " << 1053 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV 854 << " e-eloss= " << preStepKinEnergy 1054 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 1055 << " step(mm)= " << length/mm 856 << " fluct= " << lossFluctuationFla << 1056 << " range(mm)= " << fRange/mm >> 1057 << " fluct= " << lossFluctuationFlag >> 1058 << G4endl; 857 } 1059 } 858 */ 1060 */ 859 1061 860 const G4double cut = (*theCuts)[currentCoupl << 1062 G4double cut = (*theCuts)[currentMaterialIndex]; 861 G4double esec = 0.0; 1063 G4double esec = 0.0; 862 1064 863 // Corrections, which cannot be tabulated << 1065 // SubCutOff 864 if(isIon) { << 1066 if(useSubCutoff) { 865 currentModel->CorrectionsAlongStep(current << 1067 if(idxSCoffRegions[currentMaterialIndex]) { 866 length, << 1068 867 eloss = std::max(eloss, 0.0); << 1069 G4bool yes = false; >> 1070 G4StepPoint* prePoint = step.GetPreStepPoint(); >> 1071 >> 1072 // Check boundary >> 1073 if(prePoint->GetStepStatus() == fGeomBoundary) yes = true; >> 1074 >> 1075 // Check PrePoint >> 1076 else { >> 1077 G4double preSafety = prePoint->GetSafety(); >> 1078 G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1); >> 1079 >> 1080 // recompute presafety >> 1081 if(preSafety < rcut) { >> 1082 preSafety = safetyHelper->ComputeSafety(prePoint->GetPosition()); >> 1083 } >> 1084 >> 1085 if(preSafety < rcut) yes = true; >> 1086 >> 1087 // Check PostPoint >> 1088 else { >> 1089 G4double postSafety = preSafety - length; >> 1090 if(postSafety < rcut) { >> 1091 postSafety = >> 1092 safetyHelper->ComputeSafety(step.GetPostStepPoint()->GetPosition()); >> 1093 if(postSafety < rcut) yes = true; >> 1094 } >> 1095 } >> 1096 } >> 1097 >> 1098 // Decide to start subcut sampling >> 1099 if(yes) { >> 1100 >> 1101 cut = (*theSubCuts)[currentMaterialIndex]; >> 1102 eloss -= GetSubDEDXForScaledEnergy(preStepScaledEnergy)*length; >> 1103 scTracks.clear(); >> 1104 SampleSubCutSecondaries(scTracks, step, >> 1105 currentModel,currentMaterialIndex, >> 1106 esecdep); >> 1107 // add bremsstrahlung sampling >> 1108 /* >> 1109 if(nProcesses > 0) { >> 1110 for(G4int i=0; i<nProcesses; ++i) { >> 1111 (scProcesses[i])->SampleSubCutSecondaries( >> 1112 scTracks, step, (scProcesses[i])-> >> 1113 SelectModelForMaterial(preStepKinEnergy, currentMaterialIndex), >> 1114 currentMaterialIndex,esecdep); >> 1115 } >> 1116 } >> 1117 */ >> 1118 G4int n = scTracks.size(); >> 1119 if(n>0) { >> 1120 G4ThreeVector mom = dynParticle->GetMomentum(); >> 1121 fParticleChange.SetNumberOfSecondaries(n); >> 1122 for(G4int i=0; i<n; ++i) { >> 1123 G4Track* t = scTracks[i]; >> 1124 G4double e = t->GetKineticEnergy(); >> 1125 if (t->GetDefinition() == thePositron) e += 2.0*electron_mass_c2; >> 1126 esec += e; >> 1127 pParticleChange->AddSecondary(t); >> 1128 } >> 1129 } >> 1130 } >> 1131 } 868 } 1132 } 869 1133 870 // Sample fluctuations if not full energy lo << 1134 // Corrections, which cannot be tabulated 871 if(eloss >= preStepKinEnergy) { << 1135 currentModel->CorrectionsAlongStep(currentCouple, dynParticle, 872 eloss = preStepKinEnergy; << 1136 eloss, esecdep, length); 873 1137 874 } else if (lossFluctuationFlag) { << 1138 // Sample fluctuations 875 const G4double tmax = currentModel->MaxSec << 1139 if (lossFluctuationFlag) { 876 const G4double tcut = std::min(cut, tmax); << 877 G4VEmFluctuationModel* fluc = currentModel 1140 G4VEmFluctuationModel* fluc = currentModel->GetModelOfFluctuations(); 878 eloss = fluc->SampleFluctuations(currentCo << 1141 if(fluc && 879 tcut, tma << 1142 (eloss + esec + esecdep + lowestKinEnergy) < preStepKinEnergy) { 880 /* << 1143 881 if(-1 < verboseLevel) << 1144 G4double tmax = >> 1145 std::min(currentModel->MaxSecondaryKinEnergy(dynParticle),cut); >> 1146 G4double emean = eloss; >> 1147 eloss = fluc->SampleFluctuations(currentMaterial,dynParticle, >> 1148 tmax,length,emean); >> 1149 /* >> 1150 if(-1 < verboseLevel) 882 G4cout << "After fluct: eloss(MeV)= " << 1151 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 883 << " fluc= " << (eloss-eloss0)/Me 1152 << " fluc= " << (eloss-eloss0)/MeV 884 << " ChargeSqRatio= " << chargeSq 1153 << " ChargeSqRatio= " << chargeSqRatio 885 << " massRatio= " << massRatio << << 1154 << " massRatio= " << massRatio 886 */ << 1155 << " tmax= " << tmax >> 1156 << G4endl; >> 1157 */ >> 1158 } 887 } 1159 } >> 1160 // add low-energy subcutoff particles >> 1161 eloss += esecdep; >> 1162 if(eloss < 0.0) eloss = 0.0; 888 1163 889 // deexcitation 1164 // deexcitation 890 if (useDeexcitation) { << 1165 else if (useDeexcitation) { 891 G4double esecfluo = preStepKinEnergy; << 1166 if(idxDERegions[currentMaterialIndex]) { 892 G4double de = esecfluo; << 1167 currentModel->SampleDeexcitationAlongStep(currentMaterial, track, eloss); 893 atomDeexcitation->AlongStepDeexcitation(sc << 1168 if(eloss < 0.0) eloss = 0.0; 894 de << 1169 } 895 << 896 // sum of de-excitation energies << 897 esecfluo -= de; << 898 << 899 // subtracted from energy loss << 900 if(eloss >= esecfluo) { << 901 esec += esecfluo; << 902 eloss -= esecfluo; << 903 } else { << 904 esec += esecfluo; << 905 eloss = 0.0; << 906 } << 907 } << 908 if(nullptr != subcutProducer && IsRegionForC << 909 subcutProducer->SampleSecondaries(step, sc << 910 } 1170 } 911 // secondaries from atomic de-excitation and << 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 1171 914 // Energy balance << 1172 // Energy balanse 915 G4double finalT = preStepKinEnergy - eloss - 1173 G4double finalT = preStepKinEnergy - eloss - esec; 916 if (finalT <= lowestKinEnergy) { 1174 if (finalT <= lowestKinEnergy) { 917 eloss += finalT; << 1175 eloss = preStepKinEnergy - esec; 918 finalT = 0.0; 1176 finalT = 0.0; 919 } else if(isIon) { 1177 } else if(isIon) { 920 fParticleChange.SetProposedCharge( 1178 fParticleChange.SetProposedCharge( 921 currentModel->GetParticleCharge(track.Ge << 1179 currentModel->GetParticleCharge(track.GetDefinition(),currentMaterial,finalT)); 922 currentM << 923 } 1180 } 924 eloss = std::max(eloss, 0.0); << 925 1181 926 fParticleChange.SetProposedKineticEnergy(fin 1182 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 1183 fParticleChange.ProposeLocalEnergyDeposit(eloss); 928 /* << 1184 >> 1185 /* 929 if(-1 < verboseLevel) { 1186 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre << 931 G4cout << "Final value eloss(MeV)= " << el 1187 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 1188 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 1189 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV << 935 << " lossFlag= " << lossFluctuation 1190 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt 1191 << " status= " << track.GetTrackStatus() 937 << G4endl; 1192 << G4endl; 938 } 1193 } 939 */ << 1194 */ >> 1195 940 return &fParticleChange; 1196 return &fParticleChange; 941 } 1197 } 942 1198 943 //....oooOO0OOooo........oooOO0OOooo........oo 1199 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 944 1200 945 void G4VEnergyLossProcess::FillSecondariesAlon << 1201 void G4VEnergyLossProcess::SampleSubCutSecondaries( 946 { << 1202 std::vector<G4Track*>& tracks, 947 const std::size_t n0 = scTracks.size(); << 1203 const G4Step& step, 948 G4double weight = wt; << 1204 G4VEmModel* model, 949 // weight may be changed by biasing manager << 1205 G4int idx, 950 if(biasManager) { << 1206 G4double& /*extraEdep*/) 951 if(biasManager->SecondaryBiasingRegion((G4 << 1207 { 952 weight *= << 1208 // Fast check weather subcutoff can work 953 biasManager->ApplySecondaryBiasing(scT << 1209 G4double subcut = (*theSubCuts)[idx]; 954 } << 1210 G4double cut = (*theCuts)[idx]; 955 } << 1211 if(cut <= subcut) return; 956 << 1212 957 // fill secondaries << 1213 const G4Track* track = step.GetTrack(); 958 const std::size_t n = scTracks.size(); << 1214 const G4DynamicParticle* dp = track->GetDynamicParticle(); 959 fParticleChange.SetNumberOfSecondaries((G4in << 1215 G4double e = dp->GetKineticEnergy()*massRatio; 960 << 1216 G4double cross = chargeSqRatio*(((*theSubLambdaTable)[idx])->Value(e)); 961 for(std::size_t i=0; i<n; ++i) { << 1217 G4double length = step.GetStepLength(); 962 G4Track* t = scTracks[i]; << 1218 963 if(nullptr != t) { << 1219 // negligible probability to get any interaction 964 t->SetWeight(weight); << 1220 if(length*cross < perMillion) return; 965 pParticleChange->AddSecondary(t); << 1221 /* 966 G4int pdg = t->GetDefinition()->GetPDGEn << 1222 if(-1 < verboseLevel) 967 if (i < n0) { << 1223 G4cout << "<<< Subcutoff for " << GetProcessName() 968 if (pdg == 22) { << 1224 << " cross(1/mm)= " << cross*mm << ">>>" 969 t->SetCreatorModelID(gpixeID); << 1225 << " e(MeV)= " << preStepScaledEnergy 970 } else if (pdg == 11) { << 1226 << " matIdx= " << currentMaterialIndex 971 t->SetCreatorModelID(epixeID); << 1227 << G4endl; 972 } else { << 1228 */ 973 t->SetCreatorModelID(biasID); << 1229 >> 1230 // Sample subcutoff secondaries >> 1231 G4StepPoint* preStepPoint = step.GetPreStepPoint(); >> 1232 G4StepPoint* postStepPoint = step.GetPostStepPoint(); >> 1233 G4ThreeVector prepoint = preStepPoint->GetPosition(); >> 1234 G4ThreeVector dr = postStepPoint->GetPosition() - prepoint; >> 1235 G4double pretime = preStepPoint->GetGlobalTime(); >> 1236 G4double dt = postStepPoint->GetGlobalTime() - pretime; >> 1237 //G4double dt = length/preStepPoint->GetVelocity(); >> 1238 G4double fragment = 0.0; >> 1239 >> 1240 do { >> 1241 G4double del = -std::log(G4UniformRand())/cross; >> 1242 fragment += del/length; >> 1243 if (fragment > 1.0) break; >> 1244 >> 1245 // sample secondaries >> 1246 secParticles.clear(); >> 1247 model->SampleSecondaries(&secParticles,track->GetMaterialCutsCouple(), >> 1248 dp,subcut,cut); >> 1249 >> 1250 // position of subcutoff particles >> 1251 G4ThreeVector r = prepoint + fragment*dr; >> 1252 std::vector<G4DynamicParticle*>::iterator it; >> 1253 for(it=secParticles.begin(); it!=secParticles.end(); ++it) { >> 1254 >> 1255 G4bool addSec = true; >> 1256 /* >> 1257 // do not track very low-energy delta-electrons >> 1258 if(theSecondaryRangeTable && (*it)->GetDefinition() == theElectron) { >> 1259 G4double ekin = (*it)->GetKineticEnergy(); >> 1260 G4double rg = ((*theSecondaryRangeTable)[idx]->Value(ekin)); >> 1261 // if(rg < currentMinSafety) { >> 1262 if(rg < safetyHelper->ComputeSafety(r)) { >> 1263 extraEdep += ekin; >> 1264 delete (*it); >> 1265 addSec = false; 974 } 1266 } 975 } else { << 1267 } 976 t->SetCreatorModelID(biasID); << 1268 */ >> 1269 if(addSec) { >> 1270 G4Track* t = new G4Track((*it), pretime + fragment*dt, r); >> 1271 //G4Track* t = new G4Track((*it), pretime, r); >> 1272 t->SetTouchableHandle(track->GetTouchableHandle()); >> 1273 tracks.push_back(t); >> 1274 >> 1275 /* >> 1276 if(-1 < verboseLevel) >> 1277 G4cout << "New track " << t->GetDefinition()->GetParticleName() >> 1278 << " e(keV)= " << t->GetKineticEnergy()/keV >> 1279 << " fragment= " << fragment >> 1280 << G4endl; >> 1281 */ 977 } 1282 } 978 } 1283 } 979 } << 1284 } while (fragment <= 1.0); 980 scTracks.clear(); << 1285 } 981 } << 982 1286 983 //....oooOO0OOooo........oooOO0OOooo........oo 1287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 1288 985 G4VParticleChange* G4VEnergyLossProcess::PostS 1289 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 << 1290 const G4Step&) 987 { 1291 { 988 // clear number of interaction lengths in an << 989 theNumberOfInteractionLengthLeft = -1.0; << 990 mfpKinEnergy = DBL_MAX; << 991 << 992 fParticleChange.InitializeForPostStep(track) 1292 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 1293 G4double finalT = track.GetKineticEnergy(); >> 1294 if(finalT <= lowestKinEnergy) return &fParticleChange; 994 1295 995 const G4double postStepScaledEnergy = finalT << 1296 G4double postStepScaledEnergy = finalT*massRatio; 996 SelectModel(postStepScaledEnergy); << 997 1297 998 if(!currentModel->IsActive(postStepScaledEne << 1298 if(!currentModel->IsActive(postStepScaledEnergy)) return &fParticleChange; 999 return &fParticleChange; << 1000 } << 1001 /* 1299 /* 1002 if(1 < verboseLevel) { << 1300 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 1301 G4cout << GetProcessName() >> 1302 << "::PostStepDoIt: E(MeV)= " << finalT/MeV >> 1303 << G4endl; 1004 } 1304 } 1005 */ 1305 */ 1006 // forced process - should happen only once << 1007 if(biasFlag) { << 1008 if(biasManager->ForcedInteractionRegion(( << 1009 biasFlag = false; << 1010 } << 1011 } << 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 << 1014 // Integral approach 1306 // Integral approach 1015 if (fXSType != fEmNoIntegral) { << 1307 if (integral) { 1016 const G4double logFinalT = dp->GetLogKine << 1308 G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy); 1017 G4double lx = GetLambdaForScaledEnergy(po << 1309 /* 1018 lo << 1310 if(preStepLambda<lx && 1 < verboseLevel && nWarnings<200) { 1019 lx = std::max(lx, 0.0); << 1311 G4cout << "WARNING: for " << particle->GetParticleName() 1020 << 1312 << " and " << GetProcessName() 1021 // if both lg and lx are zero then no int << 1313 << " E(MeV)= " << finalT/MeV 1022 if(preStepLambda*G4UniformRand() >= lx) { << 1314 << " preLambda= " << preStepLambda >> 1315 << " < " << lx << " (postLambda) " >> 1316 << G4endl; >> 1317 ++nWarnings; >> 1318 } >> 1319 */ >> 1320 if(preStepLambda*G4UniformRand() > lx) { >> 1321 ClearNumberOfInteractionLengthLeft(); 1023 return &fParticleChange; 1322 return &fParticleChange; 1024 } 1323 } 1025 } 1324 } 1026 1325 1027 // define new weight for primary and second << 1326 SelectModel(postStepScaledEnergy); 1028 G4double weight = fParticleChange.GetParent << 1327 if(useDeexcitation) { 1029 if(weightFlag) { << 1328 currentModel->SetDeexcitationFlag(idxDERegions[currentMaterialIndex]); 1030 weight /= biasFactor; << 1031 fParticleChange.ProposeWeight(weight); << 1032 } 1329 } 1033 1330 1034 const G4double tcut = (*theCuts)[currentCou << 1331 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); >> 1332 G4double tcut = (*theCuts)[currentMaterialIndex]; 1035 1333 1036 // sample secondaries 1334 // sample secondaries 1037 secParticles.clear(); 1335 secParticles.clear(); 1038 currentModel->SampleSecondaries(&secParticl << 1336 currentModel->SampleSecondaries(&secParticles, currentCouple, dynParticle, tcut); 1039 << 1040 const G4int num0 = (G4int)secParticles.size << 1041 << 1042 // bremsstrahlung splitting or Russian roul << 1043 if(biasManager) { << 1044 if(biasManager->SecondaryBiasingRegion((G << 1045 G4double eloss = 0.0; << 1046 weight *= biasManager->ApplySecondaryBi << 1047 secPart << 1048 track, << 1049 &fParti << 1050 (G4int) << 1051 step.Ge << 1052 if(eloss > 0.0) { << 1053 eloss += fParticleChange.GetLocalEner << 1054 fParticleChange.ProposeLocalEnergyDep << 1055 } << 1056 } << 1057 } << 1058 1337 1059 // save secondaries 1338 // save secondaries 1060 const G4int num = (G4int)secParticles.size( << 1339 G4int num = secParticles.size(); 1061 if(num > 0) { 1340 if(num > 0) { 1062 << 1063 fParticleChange.SetNumberOfSecondaries(nu 1341 fParticleChange.SetNumberOfSecondaries(num); 1064 G4double time = track.GetGlobalTime(); << 1065 << 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 << 1071 for (G4int i=0; i<num; ++i) { 1342 for (G4int i=0; i<num; ++i) { 1072 if(nullptr != secParticles[i]) { << 1343 fParticleChange.AddSecondary(secParticles[i]); 1073 G4Track* t = new G4Track(secParticles << 1074 t->SetTouchableHandle(track.GetToucha << 1075 if (biasManager) { << 1076 t->SetWeight(weight * biasManager-> << 1077 } else { << 1078 t->SetWeight(weight); << 1079 } << 1080 if(i < num0) { << 1081 t->SetCreatorModelID(secID); << 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 << 1088 //G4cout << "Secondary(post step) has << 1089 // << ", kenergy " << t->GetKin << 1090 // << " time= " << time/ns << " << 1091 pParticleChange->AddSecondary(t); << 1092 } << 1093 } 1344 } 1094 } 1345 } 1095 1346 1096 if(0.0 == fParticleChange.GetProposedKineti << 1097 fAlive == fParticleChange.GetTrackStatus << 1098 if(particle->GetProcessManager()->GetAtRe << 1099 { fParticleChange.ProposeTrackStatus << 1100 else { fParticleChange.ProposeTrackStatus << 1101 } << 1102 << 1103 /* 1347 /* 1104 if(-1 < verboseLevel) { 1348 if(-1 < verboseLevel) { 1105 G4cout << "::PostStepDoIt: Sample seconda 1349 G4cout << "::PostStepDoIt: Sample secondary; Efin= " 1106 << fParticleChange.GetProposedKineticEner 1350 << fParticleChange.GetProposedKineticEnergy()/MeV 1107 << " MeV; model= (" << currentMode 1351 << " MeV; model= (" << currentModel->LowEnergyLimit() 1108 << ", " << currentModel->HighEner 1352 << ", " << currentModel->HighEnergyLimit() << ")" 1109 << " preStepLambda= " << preStepL 1353 << " preStepLambda= " << preStepLambda 1110 << " dir= " << track.GetMomentumD 1354 << " dir= " << track.GetMomentumDirection() 1111 << " status= " << track.GetTrackS 1355 << " status= " << track.GetTrackStatus() 1112 << G4endl; 1356 << G4endl; 1113 } 1357 } 1114 */ 1358 */ >> 1359 ClearNumberOfInteractionLengthLeft(); 1115 return &fParticleChange; 1360 return &fParticleChange; 1116 } 1361 } 1117 1362 1118 //....oooOO0OOooo........oooOO0OOooo........o 1363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 1364 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl 1365 G4bool G4VEnergyLossProcess::StorePhysicsTable( 1121 const G4ParticleDefinition* part, cons << 1366 const G4ParticleDefinition* part, const G4String& directory, >> 1367 G4bool ascii) 1122 { 1368 { 1123 if (!isMaster || nullptr != baseParticle || << 1369 G4bool res = true; 1124 for(std::size_t i=0; i<7; ++i) { << 1370 if ( baseParticle || part != particle ) return res; 1125 // ionisation table only for ionisation p << 1371 1126 if (nullptr == theData->Table(i) || (!isI << 1372 if(!StoreTable(part,theDEDXTable,ascii,directory,"DEDX")) 1127 continue; << 1373 {res = false;} 1128 } << 1374 1129 if (-1 < verboseLevel) { << 1375 if(!StoreTable(part,theDEDXunRestrictedTable,ascii,directory,"DEDXnr")) 1130 G4cout << "G4VEnergyLossProcess::StoreP << 1376 {res = false;} 1131 << " " << particle->GetParticleName() << 1377 1132 << " " << GetProcessName() << 1378 if(!StoreTable(part,theDEDXSubTable,ascii,directory,"SubDEDX")) 1133 << " " << tnames[i] << " " << theDat << 1379 {res = false;} 1134 } << 1380 1135 if (!G4EmTableUtil::StoreTable(this, part << 1381 if(!StoreTable(part,theIonisationTable,ascii,directory,"Ionisation")) 1136 dir, tnames[i], verboseLevel, asci << 1382 {res = false;} 1137 return false; << 1383 >> 1384 if(!StoreTable(part,theIonisationSubTable,ascii,directory,"SubIonisation")) >> 1385 {res = false;} >> 1386 >> 1387 if(isIonisation && >> 1388 !StoreTable(part,theCSDARangeTable,ascii,directory,"CSDARange")) >> 1389 {res = false;} >> 1390 >> 1391 if(isIonisation && >> 1392 !StoreTable(part,theRangeTableForLoss,ascii,directory,"Range")) >> 1393 {res = false;} >> 1394 >> 1395 if(isIonisation && >> 1396 !StoreTable(part,theInverseRangeTable,ascii,directory,"InverseRange")) >> 1397 {res = false;} >> 1398 >> 1399 if(!StoreTable(part,theLambdaTable,ascii,directory,"Lambda")) >> 1400 {res = false;} >> 1401 >> 1402 if(!StoreTable(part,theSubLambdaTable,ascii,directory,"SubLambda")) >> 1403 {res = false;} >> 1404 >> 1405 if ( res ) { >> 1406 if(0 < verboseLevel) { >> 1407 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 1408 << " and process " << GetProcessName() >> 1409 << " in the directory <" << directory >> 1410 << "> " << G4endl; 1138 } 1411 } >> 1412 } else { >> 1413 G4cout << "Fail to store Physics Tables for " >> 1414 << particle->GetParticleName() >> 1415 << " and process " << GetProcessName() >> 1416 << " in the directory <" << directory >> 1417 << "> " << G4endl; 1139 } 1418 } 1140 return true; << 1419 return res; 1141 } 1420 } 1142 1421 1143 //....oooOO0OOooo........oooOO0OOooo........o 1422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 1144 1423 1145 G4bool 1424 G4bool 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co 1425 G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 1147 co << 1426 const G4String& directory, >> 1427 G4bool ascii) 1148 { 1428 { 1149 if (!isMaster || nullptr != baseParticle || << 1429 G4bool res = true; 1150 for(std::size_t i=0; i<7; ++i) { << 1430 const G4String particleName = part->GetParticleName(); 1151 // ionisation table only for ionisation p << 1431 1152 if (!isIonisation && 1 == i) { continue; << 1432 if(1 < verboseLevel) { 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 1433 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1154 verboseL << 1434 << particleName << " and process " << GetProcessName() 1155 return false; << 1435 << "; tables_are_built= " << tablesAreBuilt >> 1436 << G4endl; >> 1437 } >> 1438 if(particle == part) { >> 1439 >> 1440 if ( !baseParticle ) { >> 1441 >> 1442 G4bool fpi = true; >> 1443 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"DEDX",fpi)) >> 1444 {fpi = false;} >> 1445 >> 1446 // ionisation table keeps individual dEdx and not sum of sub-processes >> 1447 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"Ionisation",false)) >> 1448 {fpi = false;} >> 1449 >> 1450 if(!RetrieveTable(part,theRangeTableForLoss,ascii,directory,"Range",fpi)) >> 1451 {res = false;} >> 1452 >> 1453 if(!RetrieveTable(part,theDEDXunRestrictedTable,ascii,directory,"DEDXnr",false)) >> 1454 {res = false;} >> 1455 >> 1456 if(!RetrieveTable(part,theCSDARangeTable,ascii,directory,"CSDARange",false)) >> 1457 {res = false;} >> 1458 >> 1459 if(!RetrieveTable(part,theInverseRangeTable,ascii,directory,"InverseRange",fpi)) >> 1460 {res = false;} >> 1461 >> 1462 if(!RetrieveTable(part,theLambdaTable,ascii,directory,"Lambda",true)) >> 1463 {res = false;} >> 1464 >> 1465 G4bool yes = false; >> 1466 if(nSCoffRegions > 0) {yes = true;} >> 1467 >> 1468 if(!RetrieveTable(part,theDEDXSubTable,ascii,directory,"SubDEDX",yes)) >> 1469 {res = false;} >> 1470 >> 1471 if(!RetrieveTable(part,theSubLambdaTable,ascii,directory,"SubLambda",yes)) >> 1472 {res = false;} >> 1473 >> 1474 if(!fpi) yes = false; >> 1475 if(!RetrieveTable(part,theIonisationSubTable,ascii,directory,"SubIonisation",yes)) >> 1476 {res = false;} 1156 } 1477 } 1157 } 1478 } 1158 return true; << 1479 >> 1480 return res; >> 1481 } >> 1482 >> 1483 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1484 >> 1485 G4bool G4VEnergyLossProcess::StoreTable(const G4ParticleDefinition* part, >> 1486 G4PhysicsTable* aTable, G4bool ascii, >> 1487 const G4String& directory, >> 1488 const G4String& tname) >> 1489 { >> 1490 G4bool res = true; >> 1491 if ( aTable ) { >> 1492 const G4String name = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1493 if( !aTable->StorePhysicsTable(name,ascii)) res = false; >> 1494 } >> 1495 return res; >> 1496 } >> 1497 >> 1498 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1499 >> 1500 G4bool >> 1501 G4VEnergyLossProcess::RetrieveTable(const G4ParticleDefinition* part, >> 1502 G4PhysicsTable* aTable, >> 1503 G4bool ascii, >> 1504 const G4String& directory, >> 1505 const G4String& tname, >> 1506 G4bool mandatory) >> 1507 { >> 1508 G4bool res = true; >> 1509 G4String filename = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1510 G4bool yes = aTable->ExistPhysicsTable(filename); >> 1511 if(yes) { >> 1512 if(!aTable) aTable = G4PhysicsTableHelper::PreparePhysicsTable(0); >> 1513 yes = G4PhysicsTableHelper::RetrievePhysicsTable(aTable,filename,ascii); >> 1514 >> 1515 if((G4LossTableManager::Instance())->SplineFlag()) { >> 1516 size_t n = aTable->length(); >> 1517 for(size_t i=0; i<n; ++i) { >> 1518 if((*aTable)[i]) { >> 1519 (*aTable)[i]->SetSpline(true); >> 1520 } >> 1521 } >> 1522 } >> 1523 } >> 1524 if(yes) { >> 1525 if (0 < verboseLevel) { >> 1526 G4cout << tname << " table for " << part->GetParticleName() >> 1527 << " is Retrieved from <" << filename << ">" >> 1528 << G4endl; >> 1529 } >> 1530 } else { >> 1531 if(mandatory) res = false; >> 1532 if(mandatory || 1 < verboseLevel) { >> 1533 G4cout << tname << " table for " << part->GetParticleName() >> 1534 << " from file <" >> 1535 << filename << "> is not Retrieved" >> 1536 << G4endl; >> 1537 } >> 1538 } >> 1539 return res; 1159 } 1540 } 1160 1541 1161 //....oooOO0OOooo........oooOO0OOooo........o 1542 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 1543 1163 G4double G4VEnergyLossProcess::GetDEDXDispers 1544 G4double G4VEnergyLossProcess::GetDEDXDispersion( 1164 const G4Mat 1545 const G4MaterialCutsCouple *couple, 1165 const G4Dyn 1546 const G4DynamicParticle* dp, 1166 G4dou 1547 G4double length) 1167 { 1548 { 1168 DefineMaterial(couple); 1549 DefineMaterial(couple); 1169 G4double ekin = dp->GetKineticEnergy(); 1550 G4double ekin = dp->GetKineticEnergy(); 1170 SelectModel(ekin*massRatio); 1551 SelectModel(ekin*massRatio); 1171 G4double tmax = currentModel->MaxSecondaryK 1552 G4double tmax = currentModel->MaxSecondaryKinEnergy(dp); 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 1553 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); 1173 G4double d = 0.0; 1554 G4double d = 0.0; 1174 G4VEmFluctuationModel* fm = currentModel->G 1555 G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations(); 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 1556 if(fm) d = fm->Dispersion(currentMaterial,dp,tmax,length); 1176 return d; 1557 return d; 1177 } 1558 } 1178 1559 1179 //....oooOO0OOooo........oooOO0OOooo........o 1560 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 1561 1181 G4double << 1562 G4double G4VEnergyLossProcess::CrossSectionPerVolume( 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1563 G4double kineticEnergy, const G4MaterialCutsCouple* couple) 1183 c << 1184 G << 1185 { 1564 { 1186 // Cross section per volume is calculated 1565 // Cross section per volume is calculated 1187 DefineMaterial(couple); 1566 DefineMaterial(couple); 1188 G4double cross = 0.0; 1567 G4double cross = 0.0; 1189 if (nullptr != theLambdaTable) { << 1568 if(theLambdaTable) { 1190 cross = GetLambdaForScaledEnergy(kineticE << 1569 cross = ((*theLambdaTable)[currentMaterialIndex])->Value(kineticEnergy); 1191 logKinet << 1192 } else { 1570 } else { 1193 SelectModel(kineticEnergy*massRatio); << 1571 SelectModel(kineticEnergy); 1194 cross = (!baseMat) ? biasFactor : biasFac << 1572 cross = currentModel->CrossSectionPerVolume(currentMaterial, 1195 cross *= (currentModel->CrossSectionPerVo << 1573 particle, kineticEnergy, 1196 << 1574 (*theCuts)[currentMaterialIndex]); 1197 } 1575 } 1198 return std::max(cross, 0.0); << 1576 >> 1577 return cross; 1199 } 1578 } 1200 1579 1201 //....oooOO0OOooo........oooOO0OOooo........o 1580 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 1581 1203 G4double G4VEnergyLossProcess::MeanFreePath(c 1582 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track) 1204 { 1583 { 1205 DefineMaterial(track.GetMaterialCutsCouple( 1584 DefineMaterial(track.GetMaterialCutsCouple()); 1206 const G4double kinEnergy = track.GetKine << 1585 preStepLambda = GetLambdaForScaledEnergy(track.GetKineticEnergy()*massRatio); 1207 const G4double logKinEnergy = track.GetDyna << 1586 G4double x = DBL_MAX; 1208 const G4double cs = GetLambdaForScaledEnerg << 1587 if(DBL_MIN < preStepLambda) x = 1.0/preStepLambda; 1209 << 1588 return x; 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 1211 } 1589 } 1212 1590 1213 //....oooOO0OOooo........oooOO0OOooo........o 1591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 1592 1215 G4double G4VEnergyLossProcess::ContinuousStep 1593 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, 1216 << 1594 G4double x, G4double y, 1217 << 1595 G4double& z) 1218 { 1596 { 1219 return AlongStepGetPhysicalInteractionLengt << 1597 G4GPILSelection sel; >> 1598 return AlongStepGetPhysicalInteractionLength(track, x, y, z, &sel); 1220 } 1599 } 1221 1600 1222 //....oooOO0OOooo........oooOO0OOooo........o 1601 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 1602 1224 G4double G4VEnergyLossProcess::GetMeanFreePat 1603 G4double G4VEnergyLossProcess::GetMeanFreePath( 1225 const G4Track& t 1604 const G4Track& track, 1226 G4double, 1605 G4double, 1227 G4ForceCondition 1606 G4ForceCondition* condition) 1228 1607 1229 { 1608 { 1230 *condition = NotForced; 1609 *condition = NotForced; 1231 return MeanFreePath(track); 1610 return MeanFreePath(track); 1232 } 1611 } 1233 1612 1234 //....oooOO0OOooo........oooOO0OOooo........o 1613 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 1614 1236 G4double G4VEnergyLossProcess::GetContinuousS 1615 G4double G4VEnergyLossProcess::GetContinuousStepLimit( 1237 const G4Track&, << 1616 const G4Track&, 1238 G4double, G4double, G4double& 1617 G4double, G4double, G4double&) 1239 { 1618 { 1240 return DBL_MAX; 1619 return DBL_MAX; 1241 } 1620 } 1242 1621 1243 //....oooOO0OOooo........oooOO0OOooo........o 1622 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1623 1245 G4PhysicsVector* << 1624 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector( 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1625 const G4MaterialCutsCouple* couple, G4double cut) 1247 G4d << 1248 { 1626 { 1249 DefineMaterial(couple); << 1627 G4double tmin = 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1628 std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), 1251 return new G4PhysicsVector(*v); << 1629 minKinEnergy); >> 1630 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; >> 1631 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nBins); >> 1632 v->SetSpline((G4LossTableManager::Instance())->SplineFlag()); >> 1633 return v; 1252 } 1634 } 1253 1635 1254 //....oooOO0OOooo........oooOO0OOooo........o 1636 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 << 1637 1256 void << 1638 void G4VEnergyLossProcess::AddCollaborativeProcess( 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 1639 G4VEnergyLossProcess* p) 1258 { 1640 { 1259 if(1 < verboseLevel) { << 1641 G4bool add = true; 1260 G4cout << "### Set DEDX table " << p << " << 1642 if(p->GetProcessName() != "eBrem") add = false; 1261 << " " << theDEDXunRestrictedTable << << 1643 if(add && nProcesses > 0) { 1262 << " for " << particle->GetParticl << 1644 for(G4int i=0; i<nProcesses; ++i) { 1263 << " and process " << GetProcessNa << 1645 if(p == scProcesses[i]) { 1264 << " type=" << tType << " isIonisation:" << 1646 add = false; 1265 } << 1647 break; 1266 if(fTotal == tType) { << 1648 } 1267 theDEDXunRestrictedTable = p; << 1268 } else if(fRestricted == tType) { << 1269 theDEDXTable = p; << 1270 if(isMaster && nullptr == baseParticle) { << 1271 theData->UpdateTable(theDEDXTable, 0); << 1272 } 1649 } 1273 } else if(fIsIonisation == tType) { << 1650 } 1274 theIonisationTable = p; << 1651 if(add) { 1275 if(isMaster && nullptr == baseParticle) { << 1652 scProcesses.push_back(p); 1276 theData->UpdateTable(theIonisationTable << 1653 ++nProcesses; >> 1654 if (1 < verboseLevel) { >> 1655 G4cout << "### The process " << p->GetProcessName() >> 1656 << " is added to the list of collaborative processes of " >> 1657 << GetProcessName() << G4endl; 1277 } 1658 } 1278 } 1659 } 1279 } 1660 } 1280 1661 1281 //....oooOO0OOooo........oooOO0OOooo........o 1662 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 1663 1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 1664 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType) 1284 { 1665 { 1285 theCSDARangeTable = p; << 1666 if(fTotal == tType && theDEDXunRestrictedTable != p) { 1286 } << 1667 if(theDEDXunRestrictedTable) theDEDXunRestrictedTable->clearAndDestroy(); 1287 << 1668 theDEDXunRestrictedTable = p; 1288 //....oooOO0OOooo........oooOO0OOooo........o << 1669 if(p) { 1289 << 1670 size_t n = p->length(); 1290 void G4VEnergyLossProcess::SetRangeTableForLo << 1671 G4PhysicsVector* pv = (*p)[0]; 1291 { << 1672 G4double emax = maxKinEnergyCSDA; 1292 theRangeTableForLoss = p; << 1673 theDEDXAtMaxEnergy = new G4double [n]; 1293 } << 1674 1294 << 1675 for (size_t i=0; i<n; ++i) { 1295 //....oooOO0OOooo........oooOO0OOooo........o << 1676 pv = (*p)[i]; >> 1677 G4double dedx = pv->Value(emax); >> 1678 theDEDXAtMaxEnergy[i] = dedx; >> 1679 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " >> 1680 //<< dedx << G4endl; >> 1681 } >> 1682 } 1296 1683 1297 void G4VEnergyLossProcess::SetInverseRangeTab << 1684 } else if(fRestricted == tType) { 1298 { << 1685 theDEDXTable = p; 1299 theInverseRangeTable = p; << 1686 } else if(fSubRestricted == tType) { >> 1687 theDEDXSubTable = p; >> 1688 } else if(fIsIonisation == tType && theIonisationTable != p) { >> 1689 if(theIonisationTable) theIonisationTable->clearAndDestroy(); >> 1690 theIonisationTable = p; >> 1691 } else if(fIsSubIonisation == tType && theIonisationSubTable != p) { >> 1692 if(theIonisationSubTable) theIonisationSubTable->clearAndDestroy(); >> 1693 theIonisationSubTable = p; >> 1694 } 1300 } 1695 } 1301 1696 1302 //....oooOO0OOooo........oooOO0OOooo........o 1697 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 1698 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 1699 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p) 1305 { 1700 { 1306 if(1 < verboseLevel) { << 1701 if(theCSDARangeTable != p) theCSDARangeTable = p; 1307 G4cout << "### Set Lambda table " << p << << 1308 << " for " << particle->GetParticl << 1309 << " and process " << GetProcessNa << 1310 } << 1311 theLambdaTable = p; << 1312 tablesAreBuilt = true; << 1313 1702 1314 if(isMaster && nullptr != p) { << 1703 if(p) { 1315 delete theEnergyOfCrossSectionMax; << 1704 size_t n = p->length(); 1316 theEnergyOfCrossSectionMax = nullptr; << 1705 G4PhysicsVector* pv = (*p)[0]; 1317 if(fEmTwoPeaks == fXSType) { << 1706 G4double emax = maxKinEnergyCSDA; 1318 if(nullptr != fXSpeaks) { << 1707 theRangeAtMaxEnergy = new G4double [n]; 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 1708 1320 delete fXSpeaks; << 1709 for (size_t i=0; i<n; ++i) { 1321 } << 1710 pv = (*p)[i]; 1322 G4LossTableBuilder* bld = lManager->Get << 1711 G4double r2 = pv->Value(emax); 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1712 theRangeAtMaxEnergy[i] = r2; 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1713 //G4cout << "i= " << i << " e2(MeV)= " << emax/MeV << " r2= " 1325 } << 1714 //<< r2<< G4endl; 1326 if(fXSType == fEmOnePeak) { << 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 1328 if(nullptr == theEnergyOfCrossSectionMa << 1329 } 1715 } 1330 } 1716 } 1331 } 1717 } 1332 1718 1333 //....oooOO0OOooo........oooOO0OOooo........o 1719 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 1720 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 1721 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1336 { << 1337 theEnergyOfCrossSectionMax = p; << 1338 } << 1339 << 1340 //....oooOO0OOooo........oooOO0OOooo........o << 1341 << 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 1343 { 1722 { 1344 fXSpeaks = ptr; << 1723 if(theRangeTableForLoss != p) { >> 1724 theRangeTableForLoss = p; >> 1725 if(1 < verboseLevel) { >> 1726 G4cout << "### Set Range table " << p >> 1727 << " for " << particle->GetParticleName() >> 1728 << " and process " << GetProcessName() << G4endl; >> 1729 } >> 1730 } 1345 } 1731 } 1346 1732 1347 //....oooOO0OOooo........oooOO0OOooo........o 1733 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 1734 1349 const G4Element* G4VEnergyLossProcess::GetCur << 1735 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) 1350 { 1736 { 1351 return (nullptr != currentModel) << 1737 if(theSecondaryRangeTable != p) { 1352 ? currentModel->GetCurrentElement(current << 1738 theSecondaryRangeTable = p; >> 1739 if(1 < verboseLevel) { >> 1740 G4cout << "### Set SecondaryRange table " << p >> 1741 << " for " << particle->GetParticleName() >> 1742 << " and process " << GetProcessName() << G4endl; >> 1743 } >> 1744 } 1353 } 1745 } 1354 1746 1355 //....oooOO0OOooo........oooOO0OOooo........o 1747 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 1748 1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1749 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1358 << 1359 { 1750 { 1360 if(f > 0.0) { << 1751 if(theInverseRangeTable != p) { 1361 biasFactor = f; << 1752 theInverseRangeTable = p; 1362 weightFlag = flag; << 1363 if(1 < verboseLevel) { 1753 if(1 < verboseLevel) { 1364 G4cout << "### SetCrossSectionBiasingFa << 1754 G4cout << "### Set InverseRange table " << p 1365 << " process " << GetProcessName << 1755 << " for " << particle->GetParticleName() 1366 << " biasFactor= " << f << " wei << 1756 << " and process " << GetProcessName() << G4endl; 1367 << G4endl; << 1368 } 1757 } 1369 } 1758 } 1370 } 1759 } 1371 1760 1372 //....oooOO0OOooo........oooOO0OOooo........o 1761 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 1762 1374 void G4VEnergyLossProcess::ActivateForcedInte << 1763 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1375 << 1376 << 1377 { 1764 { 1378 if(nullptr == biasManager) { biasManager = << 1379 if(1 < verboseLevel) { 1765 if(1 < verboseLevel) { 1380 G4cout << "### ActivateForcedInteraction: << 1766 G4cout << "### Set Lambda table " << p 1381 << " process " << GetProcessName() << 1767 << " for " << particle->GetParticleName() 1382 << " length(mm)= " << length/mm << 1768 << " and process " << GetProcessName() << G4endl; 1383 << " in G4Region <" << region << 1384 << "> weightFlag= " << flag << 1385 << G4endl; << 1386 } 1769 } 1387 weightFlag = flag; << 1770 if(theLambdaTable != p) theLambdaTable = p; 1388 biasManager->ActivateForcedInteraction(leng << 1771 tablesAreBuilt = true; 1389 } << 1390 << 1391 //....oooOO0OOooo........oooOO0OOooo........o << 1392 << 1393 void << 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1395 << 1396 << 1397 { << 1398 if (0.0 <= factor) { << 1399 // Range cut can be applied only for e- << 1400 if(0.0 == factor && secondaryParticle != << 1401 { return; } << 1402 1772 1403 if(nullptr == biasManager) { biasManager << 1773 if(p) { 1404 biasManager->ActivateSecondaryBiasing(reg << 1774 size_t n = p->length(); 1405 if(1 < verboseLevel) { << 1775 G4PhysicsVector* pv = (*p)[0]; 1406 G4cout << "### ActivateSecondaryBiasing << 1776 G4double e, s, smax, emax; 1407 << " process " << GetProcessName << 1777 theEnergyOfCrossSectionMax = new G4double [n]; 1408 << " factor= " << factor << 1778 theCrossSectionMax = new G4double [n]; 1409 << " in G4Region <" << region << 1779 1410 << "> energyLimit(MeV)= " << ene << 1780 for (size_t i=0; i<n; ++i) { 1411 << G4endl; << 1781 pv = (*p)[i]; >> 1782 emax = DBL_MAX; >> 1783 smax = 0.0; >> 1784 if(pv) { >> 1785 size_t nb = pv->GetVectorLength(); >> 1786 if(nb > 0) { >> 1787 for (size_t j=0; j<nb; ++j) { >> 1788 e = pv->Energy(j); >> 1789 s = (*pv)(j); >> 1790 if(s > smax) { >> 1791 smax = s; >> 1792 emax = e; >> 1793 } >> 1794 } >> 1795 } >> 1796 } >> 1797 theEnergyOfCrossSectionMax[i] = emax; >> 1798 theCrossSectionMax[i] = smax; >> 1799 if(1 < verboseLevel) { >> 1800 G4cout << "For " << particle->GetParticleName() >> 1801 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 1802 << " lambda= " << smax << G4endl; >> 1803 } 1412 } 1804 } 1413 } 1805 } 1414 } 1806 } 1415 1807 1416 //....oooOO0OOooo........oooOO0OOooo........o 1808 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 1809 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1810 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1419 { 1811 { 1420 isIonisation = val; << 1812 if(theSubLambdaTable != p) { 1421 aGPILSelection = (val) ? CandidateForSelect << 1813 theSubLambdaTable = p; 1422 } << 1814 if(1 < verboseLevel) { 1423 << 1815 G4cout << "### Set SebLambda table " << p 1424 //....oooOO0OOooo........oooOO0OOooo........o << 1816 << " for " << particle->GetParticleName() 1425 << 1817 << " and process " << GetProcessName() << G4endl; 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1818 } 1427 { << 1428 if(0.0 < val && val < 1.0) { << 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } << 1433 << 1434 //....oooOO0OOooo........oooOO0OOooo........o << 1435 << 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1437 { << 1438 if(0.0 < v1 && 0.0 < v2) { << 1439 dRoverRange = std::min(1.0, v1); << 1440 finalRange = std::min(v2, 1.e+50); << 1441 } else { << 1442 PrintWarning("SetStepFunctionV1", v1); << 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } 1819 } 1445 } 1820 } 1446 1821 1447 //....oooOO0OOooo........oooOO0OOooo........o 1822 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1448 1823 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1450 { << 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1452 else { PrintWarning("SetLowestEnergyLimit", << 1453 } << 1454 << 1455 //....oooOO0OOooo........oooOO0OOooo........o << 1456 << 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1458 { << 1459 if(2 < n && n < 1000000000) { << 1460 nBins = n; << 1461 actBinning = true; << 1462 } else { << 1463 G4double e = (G4double)n; << 1464 PrintWarning("SetDEDXBinning", e); << 1465 } << 1466 } << 1467 << 1468 //....oooOO0OOooo........oooOO0OOooo........o << 1469 << 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1471 { << 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1473 minKinEnergy = e; << 1474 actMinKinEnergy = true; << 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1476 } << 1477 << 1478 //....oooOO0OOooo........oooOO0OOooo........o << 1479 << 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1481 { << 1482 if(minKinEnergy < e && e < 1.e+50) { << 1483 maxKinEnergy = e; << 1484 actMaxKinEnergy = true; << 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1487 } << 1488 << 1489 //....oooOO0OOooo........oooOO0OOooo........o << 1490 << 1491 void G4VEnergyLossProcess::PrintWarning(const << 1492 { << 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1494 G4ExceptionDescription ed; << 1495 ed << "Parameter is out of range: " << val << 1496 << " it will have no effect!\n" << " Pr << 1497 << GetProcessName() << " nbins= " << nB << 1498 << " Emin(keV)= " << minKinEnergy/keV << 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1501 } << 1502 << 1503 //....oooOO0OOooo........oooOO0OOooo........o << 1504 << 1505 void G4VEnergyLossProcess::ProcessDescription << 1506 { << 1507 if(nullptr != particle) { StreamInfo(out, * << 1508 } << 1509 << 1510 //....oooOO0OOooo........oooOO0OOooo........o << 1511 1824