Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 11.3.0) and /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 9.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4VEnergyLossProcess.cc,v 1.109 2007/06/20 12:43:55 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-00-patch-01 $
                                                   >>  28 //
 26 // -------------------------------------------     29 // -------------------------------------------------------------------
 27 //                                                 30 //
 28 // GEANT4 Class file                               31 // GEANT4 Class file
 29 //                                                 32 //
 30 //                                                 33 //
 31 // File name:     G4VEnergyLossProcess             34 // File name:     G4VEnergyLossProcess
 32 //                                                 35 //
 33 // Author:        Vladimir Ivanchenko              36 // Author:        Vladimir Ivanchenko
 34 //                                                 37 //
 35 // Creation date: 03.01.2002                       38 // Creation date: 03.01.2002
 36 //                                                 39 //
 37 // Modifications: Vladimir Ivanchenko          <<  40 // Modifications:
 38 //                                                 41 //
                                                   >>  42 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko)
                                                   >>  43 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko)
                                                   >>  44 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
                                                   >>  45 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko)
                                                   >>  46 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko)
                                                   >>  47 // 20-01-03 Migrade to cut per region (V.Ivanchenko)
                                                   >>  48 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko)
                                                   >>  49 // 24-01-03 Make models region aware (V.Ivanchenko)
                                                   >>  50 // 05-02-03 Fix compilation warnings (V.Ivanchenko)
                                                   >>  51 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko)
                                                   >>  52 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko)
                                                   >>  53 // 15-02-03 Lambda table can be scaled (V.Ivanchenko)
                                                   >>  54 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko)
                                                   >>  55 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko)
                                                   >>  56 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko)
                                                   >>  57 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko)
                                                   >>  58 // 10-03-03 Add Ion registration (V.Ivanchenko)
                                                   >>  59 // 22-03-03 Add Initialisation of cash (V.Ivanchenko)
                                                   >>  60 // 26-03-03 Remove finalRange modification (V.Ivanchenko)
                                                   >>  61 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko)
                                                   >>  62 // 26-04-03 Fix retrieve tables (V.Ivanchenko)
                                                   >>  63 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko)
                                                   >>  64 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko)
                                                   >>  65 // 13-05-03 Add calculation of precise range (V.Ivanchenko)
                                                   >>  66 // 23-05-03 Remove tracking cuts (V.Ivanchenko)
                                                   >>  67 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko)
                                                   >>  68 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko)
                                                   >>  69 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko)
                                                   >>  70 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko)
                                                   >>  71 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko)
                                                   >>  72 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko)
                                                   >>  73 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range
                                                   >>  74 //          calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko)
                                                   >>  75 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko)
                                                   >>  76 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko)
                                                   >>  77 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko)
                                                   >>  78 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko)
                                                   >>  79 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko)
                                                   >>  80 // 06-08-04 Clear up names of member functions (V.Ivanchenko)
                                                   >>  81 // 06-08-04 Clear up names of member functions (V.Ivanchenko)
                                                   >>  82 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko)
                                                   >>  83 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko)
                                                   >>  84 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko)
                                                   >>  85 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
                                                   >>  86 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko)
                                                   >>  87 // 25-07-05 Add extra protection PostStep for non-integral mode (V.Ivanchenko)
                                                   >>  88 // 12-08-05 Integral=false; SetStepFunction(0.2, 0.1*mm) (mma)
                                                   >>  89 // 18-08-05 Return back both AlongStep and PostStep from 7.0 (V.Ivanchenko)
                                                   >>  90 // 02-09-05 Default StepFunction 0.2 1 mm + integral (V.Ivanchenko)
                                                   >>  91 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko)
                                                   >>  92 // 05-10-05 protection against 0 energy loss added (L.Urban)
                                                   >>  93 // 17-10-05 protection above has been removed (L.Urban)
                                                   >>  94 // 06-01-06 reset currentCouple when StepFunction is changed (V.Ivanchenko)
                                                   >>  95 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko)
                                                   >>  96 // 18-01-06 Clean up subcutoff including recalculation of presafety (VI)
                                                   >>  97 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI)
                                                   >>  98 // 22-03-06 Add control on warning printout AlongStep (VI)
                                                   >>  99 // 23-03-06 Use isIonisation flag (V.Ivanchenko)
                                                   >> 100 // 07-06-06 Do not reflect AlongStep in subcutoff regime (V.Ivanchenko)
                                                   >> 101 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma)
                                                   >> 102 // 16-01-07 add IonisationTable and IonisationSubTable (V.Ivanchenko)
                                                   >> 103 // 16-02-07 set linLossLimit=1.e-6 (V.Ivanchenko)
                                                   >> 104 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko)
                                                   >> 105 // 10-04-07 use unique SafetyHelper (V.Ivanchenko)
                                                   >> 106 // 12-04-07 Add verbosity at destruction (V.Ivanchenko)
                                                   >> 107 // 25-04-07 move initialisation of safety helper to BuildPhysicsTable (VI)
 39 //                                                108 //
 40 // Class Description:                             109 // Class Description:
 41 //                                                110 //
 42 // It is the unified energy loss process it ca    111 // It is the unified energy loss process it calculates the continuous
 43 // energy loss for charged particles using a s    112 // energy loss for charged particles using a set of Energy Loss
 44 // models valid for different energy regions.     113 // models valid for different energy regions. There are a possibility
 45 // to create and access to dE/dx and range tab    114 // to create and access to dE/dx and range tables, or to calculate
 46 // that information on fly.                       115 // that information on fly.
 47 // -------------------------------------------    116 // -------------------------------------------------------------------
 48 //                                                117 //
 49 //....oooOO0OOooo........oooOO0OOooo........oo    118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50 //....oooOO0OOooo........oooOO0OOooo........oo    119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 51                                                   120 
 52 #include "G4VEnergyLossProcess.hh"                121 #include "G4VEnergyLossProcess.hh"
 53 #include "G4PhysicalConstants.hh"              << 
 54 #include "G4SystemOfUnits.hh"                  << 
 55 #include "G4ProcessManager.hh"                 << 
 56 #include "G4LossTableManager.hh"                  122 #include "G4LossTableManager.hh"
 57 #include "G4LossTableBuilder.hh"               << 
 58 #include "G4Step.hh"                              123 #include "G4Step.hh"
 59 #include "G4ParticleDefinition.hh"                124 #include "G4ParticleDefinition.hh"
 60 #include "G4ParticleTable.hh"                  << 
 61 #include "G4EmParameters.hh"                   << 
 62 #include "G4EmUtility.hh"                      << 
 63 #include "G4EmTableUtil.hh"                    << 
 64 #include "G4VEmModel.hh"                          125 #include "G4VEmModel.hh"
 65 #include "G4VEmFluctuationModel.hh"               126 #include "G4VEmFluctuationModel.hh"
 66 #include "G4DataVector.hh"                        127 #include "G4DataVector.hh"
 67 #include "G4PhysicsLogVector.hh"                  128 #include "G4PhysicsLogVector.hh"
 68 #include "G4VParticleChange.hh"                   129 #include "G4VParticleChange.hh"
                                                   >> 130 #include "G4Gamma.hh"
 69 #include "G4Electron.hh"                          131 #include "G4Electron.hh"
                                                   >> 132 #include "G4Positron.hh"
                                                   >> 133 #include "G4Proton.hh"
 70 #include "G4ProcessManager.hh"                    134 #include "G4ProcessManager.hh"
 71 #include "G4UnitsTable.hh"                        135 #include "G4UnitsTable.hh"
                                                   >> 136 #include "G4GenericIon.hh"
                                                   >> 137 #include "G4ProductionCutsTable.hh"
 72 #include "G4Region.hh"                            138 #include "G4Region.hh"
 73 #include "G4RegionStore.hh"                       139 #include "G4RegionStore.hh"
 74 #include "G4PhysicsTableHelper.hh"                140 #include "G4PhysicsTableHelper.hh"
 75 #include "G4SafetyHelper.hh"                      141 #include "G4SafetyHelper.hh"
 76 #include "G4EmDataHandler.hh"                  << 
 77 #include "G4TransportationManager.hh"             142 #include "G4TransportationManager.hh"
 78 #include "G4VAtomDeexcitation.hh"              << 
 79 #include "G4VSubCutProducer.hh"                << 
 80 #include "G4EmBiasingManager.hh"               << 
 81 #include "G4Log.hh"                            << 
 82 #include <iostream>                            << 
 83                                                   143 
 84 //....oooOO0OOooo........oooOO0OOooo........oo    144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 85                                                   145 
 86 namespace                                      << 
 87 {                                              << 
 88   G4String tnames[7] =                         << 
 89     {"DEDX","Ionisation","DEDXnr","CSDARange", << 
 90 }                                              << 
 91                                                << 
 92                                                << 
 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con    146 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 
 94                                            G4P << 147   G4ProcessType type): G4VContinuousDiscreteProcess(name, type),
 95   G4VContinuousDiscreteProcess(name, type)     << 148   nSCoffRegions(0),
                                                   >> 149   idxSCoffRegions(0),
                                                   >> 150   nProcesses(0),
                                                   >> 151   theDEDXTable(0),
                                                   >> 152   theDEDXSubTable(0),
                                                   >> 153   theDEDXunRestrictedTable(0),
                                                   >> 154   theIonisationTable(0),
                                                   >> 155   theIonisationSubTable(0),
                                                   >> 156   theRangeTableForLoss(0),
                                                   >> 157   theCSDARangeTable(0),
                                                   >> 158   theSecondaryRangeTable(0),
                                                   >> 159   theInverseRangeTable(0),
                                                   >> 160   theLambdaTable(0),
                                                   >> 161   theSubLambdaTable(0),
                                                   >> 162   theDEDXAtMaxEnergy(0),
                                                   >> 163   theRangeAtMaxEnergy(0),
                                                   >> 164   theEnergyOfCrossSectionMax(0),
                                                   >> 165   theCrossSectionMax(0),
                                                   >> 166   particle(0),
                                                   >> 167   baseParticle(0),
                                                   >> 168   secondaryParticle(0),
                                                   >> 169   currentCouple(0),
                                                   >> 170   nBins(120),
                                                   >> 171   nBinsCSDA(70),
                                                   >> 172   nWarnings(0),
                                                   >> 173   linLossLimit(0.05),
                                                   >> 174   minSubRange(0.1),
                                                   >> 175   lambdaFactor(0.8),
                                                   >> 176   mfpKinEnergy(0.0),
                                                   >> 177   lossFluctuationFlag(true),
                                                   >> 178   lossFluctuationArePossible(true),
                                                   >> 179   rndmStepFlag(false),
                                                   >> 180   tablesAreBuilt(false),
                                                   >> 181   integral(true),
                                                   >> 182   isIonisation(true),
                                                   >> 183   useSubCutoff(false)
 96 {                                                 184 {
 97   theParameters = G4EmParameters::Instance();  << 
 98   SetVerboseLevel(1);                             185   SetVerboseLevel(1);
 99                                                   186 
100   // low energy limit                          << 
101   lowestKinEnergy = theParameters->LowestElect << 
102                                                << 
103   // Size of tables                               187   // Size of tables
104   minKinEnergy     = 0.1*CLHEP::keV;           << 188   lowestKinEnergy  = 1.*eV;
105   maxKinEnergy     = 100.0*CLHEP::TeV;         << 189   minKinEnergy     = 0.1*keV;
106   maxKinEnergyCSDA = 1.0*CLHEP::GeV;           << 190   maxKinEnergy     = 100.0*TeV;
107   nBins            = 84;                       << 191   maxKinEnergyCSDA = 1.0*GeV;
108   nBinsCSDA        = 35;                       << 
109                                                   192 
110   invLambdaFactor = 1.0/lambdaFactor;          << 193   // default dRoverRange and finalRange
                                                   >> 194   SetStepFunction(0.2, 1.0*mm);
111                                                   195 
112   // default linear loss limit                 << 196   theElectron = G4Electron::Electron();
113   finalRange = 1.*CLHEP::mm;                   << 197   thePositron = G4Positron::Positron();
114                                                   198 
115   // run time objects                             199   // run time objects
116   pParticleChange = &fParticleChange;             200   pParticleChange = &fParticleChange;
117   fParticleChange.SetSecondaryWeightByProcess( << 
118   modelManager = new G4EmModelManager();          201   modelManager = new G4EmModelManager();
119   safetyHelper = G4TransportationManager::GetT    202   safetyHelper = G4TransportationManager::GetTransportationManager()
120     ->GetSafetyHelper();                          203     ->GetSafetyHelper();
121   aGPILSelection = CandidateForSelection;         204   aGPILSelection = CandidateForSelection;
122                                                   205 
123   // initialise model                             206   // initialise model
124   lManager = G4LossTableManager::Instance();   << 207   (G4LossTableManager::Instance())->Register(this);
125   lManager->Register(this);                    << 208   emModel[0]=emModel[1]=emModel[2]=emModel[3]=emModel[4]=0;
126   isMaster = lManager->IsMaster();             << 209   fluctModel = 0;
127                                                << 210 
128   G4LossTableBuilder* bld = lManager->GetTable << 211   scoffRegions.clear();
129   theDensityFactor = bld->GetDensityFactors(); << 212   scProcesses.clear();
130   theDensityIdx = bld->GetCoupleIndexes();     << 213   scTracks.reserve(5);
131                                                << 214   secParticles.reserve(5);
132   scTracks.reserve(10);                        << 215 
133   secParticles.reserve(12);                    << 216   // Data for stragling of ranges from ICRU'37 report
134   emModels = new std::vector<G4VEmModel*>;     << 217   const G4int nrbins = 7;
                                                   >> 218   vstrag = new G4PhysicsLogVector(keV, GeV, nrbins);
                                                   >> 219   G4double s[nrbins] = {-0.2, -0.85, -1.3, -1.578, -1.76, -1.85, -1.9};
                                                   >> 220   for(G4int i=0; i<nrbins; i++) {vstrag->PutValue(i, s[i]);}
135 }                                                 221 }
136                                                   222 
137 //....oooOO0OOooo........oooOO0OOooo........oo    223 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
138                                                   224 
139 G4VEnergyLossProcess::~G4VEnergyLossProcess()     225 G4VEnergyLossProcess::~G4VEnergyLossProcess()
140 {                                                 226 {
141   if (isMaster) {                              << 227   if(1 < verboseLevel) 
142     if(nullptr == baseParticle) { delete theDa << 228     G4cout << "G4VEnergyLossProcess destruct " << GetProcessName() 
143     delete theEnergyOfCrossSectionMax;         << 229      << G4endl;
144     if(nullptr != fXSpeaks) {                  << 230   delete vstrag;
145       for(auto const & v : *fXSpeaks) { delete << 231   Clear();
146       delete fXSpeaks;                         << 232 
147     }                                          << 233   if ( !baseParticle ) {
                                                   >> 234     if(theDEDXTable && theRangeTableForLoss) {
                                                   >> 235       theDEDXTable->clearAndDestroy();
                                                   >> 236       if(theDEDXSubTable) theDEDXSubTable->clearAndDestroy();
                                                   >> 237     }
                                                   >> 238     if(theIonisationTable) theIonisationTable->clearAndDestroy(); 
                                                   >> 239     if(theIonisationSubTable) theIonisationSubTable->clearAndDestroy(); 
                                                   >> 240     if(theDEDXunRestrictedTable && theCSDARangeTable)
                                                   >> 241        theDEDXunRestrictedTable->clearAndDestroy();
                                                   >> 242     if(theCSDARangeTable) theCSDARangeTable->clearAndDestroy();
                                                   >> 243     if(theRangeTableForLoss) theRangeTableForLoss->clearAndDestroy();
                                                   >> 244     if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy();
                                                   >> 245     if(theLambdaTable) theLambdaTable->clearAndDestroy();
                                                   >> 246     if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy();
148   }                                               247   }
                                                   >> 248 
149   delete modelManager;                            249   delete modelManager;
150   delete biasManager;                          << 250   (G4LossTableManager::Instance())->DeRegister(this);
151   delete scoffRegions;                         << 
152   delete emModels;                             << 
153   lManager->DeRegister(this);                  << 
154 }                                                 251 }
155                                                   252 
156 //....oooOO0OOooo........oooOO0OOooo........oo    253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157                                                   254 
158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 255 void G4VEnergyLossProcess::Clear()
159                                                << 
160                                                << 
161 {                                                 256 {
162   return cut;                                  << 257   if(1 < verboseLevel) 
163 }                                              << 258     G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() 
                                                   >> 259     << G4endl;
164                                                   260 
165 //....oooOO0OOooo........oooOO0OOooo........oo << 261   delete [] theDEDXAtMaxEnergy;
166                                                << 262   delete [] theRangeAtMaxEnergy;
167 void G4VEnergyLossProcess::AddEmModel(G4int or << 263   delete [] theEnergyOfCrossSectionMax;
168                                       G4VEmFlu << 264   delete [] theCrossSectionMax;
169                                       const G4 << 265   delete [] idxSCoffRegions;
170 {                                              << 
171   if(nullptr == ptr) { return; }               << 
172   G4VEmFluctuationModel* afluc = (nullptr == f << 
173   modelManager->AddEmModel(order, ptr, afluc,  << 
174   ptr->SetParticleChange(pParticleChange, aflu << 
175 }                                              << 
176                                                   266 
177 //....oooOO0OOooo........oooOO0OOooo........oo << 267   theDEDXAtMaxEnergy = 0;
                                                   >> 268   theRangeAtMaxEnergy = 0;
                                                   >> 269   theEnergyOfCrossSectionMax = 0;
                                                   >> 270   theCrossSectionMax = 0;
                                                   >> 271   tablesAreBuilt = false;
178                                                   272 
179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 273   scTracks.clear();
180 {                                              << 274   scProcesses.clear();
181   if(nullptr == ptr) { return; }               << 
182   if(!emModels->empty()) {                     << 
183     for(auto & em : *emModels) { if(em == ptr) << 
184   }                                            << 
185   emModels->push_back(ptr);                    << 
186 }                                                 275 }
187                                                   276 
188 //....oooOO0OOooo........oooOO0OOooo........oo    277 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
189                                                   278 
190 void G4VEnergyLossProcess::SetDynamicMassCharg << 279 void G4VEnergyLossProcess::PreparePhysicsTable(
191                                                << 280      const G4ParticleDefinition& part)
192 {                                                 281 {
193   massRatio = massratio;                       << 
194   logMassRatio = G4Log(massRatio);             << 
195   fFactor = charge2ratio*biasFactor;           << 
196   if(baseMat) { fFactor *= (*theDensityFactor) << 
197   chargeSqRatio = charge2ratio;                << 
198   reduceFactor  = 1.0/(fFactor*massRatio);     << 
199 }                                              << 
200                                                   282 
201 //....oooOO0OOooo........oooOO0OOooo........oo << 283   // Are particle defined?
                                                   >> 284   if( !particle ) {
                                                   >> 285     if(part.GetParticleType() == "nucleus" && 
                                                   >> 286        part.GetParticleSubType() == "generic") 
                                                   >> 287          particle = G4GenericIon::GenericIon();
                                                   >> 288     else particle = &part;
                                                   >> 289   }
202                                                   290 
203 void                                           << 291   if(1 < verboseLevel) {
204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 292     G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for "
205 {                                              << 293            << GetProcessName()
206   particle = G4EmTableUtil::CheckIon(this, &pa << 294            << " for " << part.GetParticleName()
207                                      verboseLe << 295            << " local: " << particle->GetParticleName()
                                                   >> 296            << G4endl;
                                                   >> 297   }
208                                                   298 
209   if( particle != &part ) {                    << 299   G4LossTableManager* lManager = G4LossTableManager::Instance();
210     if(!isIon) { lManager->RegisterExtraPartic << 300 
211     if(1 < verboseLevel) {                     << 301   if(&part != particle) {
212       G4cout << "### G4VEnergyLossProcess::Pre << 302     if(part.GetParticleType() == "nucleus") lManager->RegisterIon(&part, this);
213              << " interrupted for " << GetProc << 303     else                          lManager->RegisterExtraParticle(&part, this);
214              << part.GetParticleName() << " is << 
215              << " spline=" << spline << G4endl << 
216     }                                          << 
217     return;                                       304     return;
218   }                                               305   }
219                                                   306 
220   tablesAreBuilt = false;                      << 307   Clear();
221   if (GetProcessSubType() == fIonisation) { Se << 
222                                                   308 
223   G4LossTableBuilder* bld = lManager->GetTable << 309   currentCouple = 0;
224   lManager->PreparePhysicsTable(&part, this);  << 310   preStepLambda = 0.0;
                                                   >> 311   mfpKinEnergy  = DBL_MAX;
                                                   >> 312   fRange        = DBL_MAX;
                                                   >> 313   preStepKinEnergy = 0.0;
225                                                   314 
226   // Base particle and set of models can be de    315   // Base particle and set of models can be defined here
227   InitialiseEnergyLossProcess(particle, basePa    316   InitialiseEnergyLossProcess(particle, baseParticle);
228                                                   317 
229   // parameters of the process                 << 318   // Tables preparation
230   if(!actLossFluc) { lossFluctuationFlag = the << 319   if (!baseParticle) {
231   useCutAsFinalRange = theParameters->UseCutAs << 320     
232   if(!actMinKinEnergy) { minKinEnergy = thePar << 321     theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable);
233   if(!actMaxKinEnergy) { maxKinEnergy = thePar << 322     if (lManager->BuildCSDARange()) {
234   if(!actBinning) { nBins = theParameters->Num << 323       theDEDXunRestrictedTable = 
235   maxKinEnergyCSDA = theParameters->MaxEnergyF << 324   G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable);
236   nBinsCSDA = theParameters->NumberOfBinsPerDe << 325       theCSDARangeTable = 
237     *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 326   G4PhysicsTableHelper::PreparePhysicsTable(theCSDARangeTable);
238   if(!actLinLossLimit) { linLossLimit = thePar << 327     }
239   lambdaFactor = theParameters->LambdaFactor() << 
240   invLambdaFactor = 1.0/lambdaFactor;          << 
241   if(isMaster) { SetVerboseLevel(theParameters << 
242   else { SetVerboseLevel(theParameters->Worker << 
243   // integral option may be disabled           << 
244   if(!theParameters->Integral()) { fXSType = f << 
245                                                << 
246   theParameters->DefineRegParamForLoss(this);  << 
247                                                   328 
248   fRangeEnergy = 0.0;                          << 329     theRangeTableForLoss = 
                                                   >> 330       G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss);
                                                   >> 331     theInverseRangeTable = 
                                                   >> 332       G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable);
                                                   >> 333   
                                                   >> 334     theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable);
                                                   >> 335     if (nSCoffRegions) {
                                                   >> 336       theDEDXSubTable = 
                                                   >> 337   G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable);
                                                   >> 338       theSubLambdaTable = 
                                                   >> 339   G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable);
                                                   >> 340     }
                                                   >> 341   }
249                                                   342 
250   G4double initialCharge = particle->GetPDGCha    343   G4double initialCharge = particle->GetPDGCharge();
251   G4double initialMass   = particle->GetPDGMas    344   G4double initialMass   = particle->GetPDGMass();
                                                   >> 345   chargeSquare = initialCharge*initialCharge/(eplus*eplus);
                                                   >> 346   chargeSqRatio = 1.0;
                                                   >> 347   massRatio = 1.0;
                                                   >> 348   reduceFactor = 1.0;
252                                                   349 
253   theParameters->FillStepFunction(particle, th << 350   if (baseParticle) {
254                                                << 351     massRatio = (baseParticle->GetPDGMass())/initialMass;
255   // parameters for scaling from the base part << 
256   if (nullptr != baseParticle) {               << 
257     massRatio    = (baseParticle->GetPDGMass() << 
258     logMassRatio = G4Log(massRatio);           << 
259     G4double q = initialCharge/baseParticle->G    352     G4double q = initialCharge/baseParticle->GetPDGCharge();
260     chargeSqRatio = q*q;                          353     chargeSqRatio = q*q;
261     if(chargeSqRatio > 0.0) { reduceFactor = 1 << 354     if(chargeSqRatio > 0.0) reduceFactor = 1.0/(chargeSqRatio*massRatio);
262   }                                               355   }
263   lowestKinEnergy = (initialMass < CLHEP::MeV) << 
264     ? theParameters->LowestElectronEnergy()    << 
265     : theParameters->LowestMuHadEnergy();      << 
266                                                   356 
267   // Tables preparation                        << 357   theCuts = modelManager->Initialise(particle, secondaryParticle, 
268   if (isMaster && nullptr == baseParticle) {   << 358              minSubRange, verboseLevel);
269     if(nullptr == theData) { theData = new G4E << 
270                                                   359 
271     if(nullptr != theDEDXTable && isIonisation << 360   // Sub Cutoff Regime
272       if(nullptr != theIonisationTable && theD << 361   scProcesses.clear();
273   theData->CleanTable(0);                      << 362   nProcesses = 0;
274   theDEDXTable = theIonisationTable;           << 363   
275   theIonisationTable = nullptr;                << 364   if (nSCoffRegions>0) {
                                                   >> 365     theSubCuts = modelManager->SubCutoff();
                                                   >> 366 
                                                   >> 367     const G4ProductionCutsTable* theCoupleTable=
                                                   >> 368           G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 369     size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 370     idxSCoffRegions = new G4int[numOfCouples];
                                                   >> 371   
                                                   >> 372     for (size_t j=0; j<numOfCouples; j++) {
                                                   >> 373 
                                                   >> 374       const G4MaterialCutsCouple* couple = 
                                                   >> 375   theCoupleTable->GetMaterialCutsCouple(j);
                                                   >> 376       const G4ProductionCuts* pcuts = couple->GetProductionCuts();
                                                   >> 377       G4int reg = 0;
                                                   >> 378       for(G4int i=0; i<nSCoffRegions; i++) {
                                                   >> 379         if( pcuts == scoffRegions[i]->GetProductionCuts()) reg = 1;
276       }                                           380       }
277     }                                          << 381       idxSCoffRegions[j] = reg;
278                                                << 
279     theDEDXTable = theData->MakeTable(theDEDXT << 
280     bld->InitialiseBaseMaterials(theDEDXTable) << 
281     theData->UpdateTable(theIonisationTable, 1 << 
282                                                << 
283     if (theParameters->BuildCSDARange()) {     << 
284       theDEDXunRestrictedTable = theData->Make << 
285       if(isIonisation) { theCSDARangeTable = t << 
286     }                                          << 
287                                                << 
288     theLambdaTable = theData->MakeTable(4);    << 
289     if(isIonisation) {                         << 
290       theRangeTableForLoss = theData->MakeTabl << 
291       theInverseRangeTable = theData->MakeTabl << 
292     }                                             382     }
293   }                                               383   }
294                                                   384 
295   // forced biasing                            << 385   lManager->EnergyLossProcessIsInitialised(particle, this);
296   if(nullptr != biasManager) {                 << 
297     biasManager->Initialise(part,GetProcessNam << 
298     biasFlag = false;                          << 
299   }                                            << 
300   baseMat = bld->GetBaseMaterialFlag();        << 
301   numberOfModels = modelManager->NumberOfModel << 
302   currentModel = modelManager->GetModel(0);    << 
303   G4EmTableUtil::UpdateModels(this, modelManag << 
304                               numberOfModels,  << 
305                               mainSecondaries, << 
306                               theParameters->U << 
307   theCuts = modelManager->Initialise(particle, << 
308                                      verboseLe << 
309   // subcut processor                          << 
310   if(isIonisation) {                           << 
311     subcutProducer = lManager->SubCutProducer( << 
312   }                                            << 
313   if(1 == nSCoffRegions) {                     << 
314     if((*scoffRegions)[0]->GetName() == "Defau << 
315       delete scoffRegions;                     << 
316       scoffRegions = nullptr;                  << 
317       nSCoffRegions = 0;                       << 
318     }                                          << 
319   }                                            << 
320                                                   386 
321   if(1 < verboseLevel) {                       << 387   if (1 < verboseLevel) {
322     G4cout << "G4VEnergyLossProcess::PrepearPh << 388     G4cout << "G4VEnergyLossProcess::Initialise() is done "
323            << " for " << GetProcessName() << " << 389            << " chargeSqRatio= " << chargeSqRatio
324            << " isIon= " << isIon << " spline= << 
325     if(baseParticle) {                         << 
326       G4cout << "; base: " << baseParticle->Ge << 
327     }                                          << 
328     G4cout << G4endl;                          << 
329     G4cout << " chargeSqRatio= " << chargeSqRa << 
330            << " massRatio= " << massRatio         390            << " massRatio= " << massRatio
331            << " reduceFactor= " << reduceFacto    391            << " reduceFactor= " << reduceFactor << G4endl;
332     if (nSCoffRegions > 0) {                   << 392     if (nSCoffRegions) {
333       G4cout << " SubCut secondary production  << 393       G4cout << " SubCutoff Regime is ON for regions: " << G4endl;
334       for (G4int i=0; i<nSCoffRegions; ++i) {  << 394       for (G4int i=0; i<nSCoffRegions; i++) {
335         const G4Region* r = (*scoffRegions)[i] << 395         const G4Region* r = scoffRegions[i];
336         G4cout << "           " << r->GetName( << 396   G4cout << "           " << r->GetName() << G4endl;
337       }                                           397       }
338     } else if(nullptr != subcutProducer) {     << 
339       G4cout << " SubCut secondary production  << 
340     }                                             398     }
341   }                                               399   }
342 }                                                 400 }
343                                                   401 
344 //....oooOO0OOooo........oooOO0OOooo........oo    402 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
345                                                   403 
346 void G4VEnergyLossProcess::BuildPhysicsTable(c    404 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part)
347 {                                                 405 {
348   if(1 < verboseLevel) {                       << 406   if(1 < verboseLevel) {
349     G4cout << "### G4VEnergyLossProcess::Build    407     G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for "
350            << GetProcessName()                    408            << GetProcessName()
351            << " and particle " << part.GetPart    409            << " and particle " << part.GetParticleName()
352            << "; the first particle " << parti << 410            << "; local: " << particle->GetParticleName();
353     if(baseParticle) {                         << 411     if(baseParticle) G4cout << "; base: " << baseParticle->GetParticleName();
354       G4cout << "; base: " << baseParticle->Ge << 
355     }                                          << 
356     G4cout << G4endl;                             412     G4cout << G4endl;
357     G4cout << "    TablesAreBuilt= " << tables << 
358            << " spline=" << spline << " ptr: " << 
359   }                                               413   }
360                                                   414 
361   if(&part == particle) {                      << 415   if(!tablesAreBuilt && &part == particle)
362     if(isMaster) {                             << 416     G4LossTableManager::Instance()->BuildPhysicsTable(particle, this);
363       lManager->BuildPhysicsTable(particle, th << 417 
364                                                << 418   if(0 < verboseLevel && (&part == particle) && !baseParticle) {
365     } else {                                   << 419     PrintInfoDefinition();
366       const auto masterProcess =               << 
367         static_cast<const G4VEnergyLossProcess << 
368                                                << 
369       numberOfModels = modelManager->NumberOfM << 
370       G4EmTableUtil::BuildLocalElossProcess(th << 
371                                             pa << 
372       tablesAreBuilt = true;                   << 
373       baseMat = masterProcess->UseBaseMaterial << 
374       lManager->LocalPhysicsTables(particle, t << 
375     }                                          << 
376                                                << 
377     // needs to be done only once              << 
378     safetyHelper->InitialiseHelper();             420     safetyHelper->InitialiseHelper();
379   }                                               421   }
380   // Added tracking cut to avoid tracking arti << 
381   // and identified deexcitation flag          << 
382   if(isIonisation) {                           << 
383     atomDeexcitation = lManager->AtomDeexcitat << 
384     if(nullptr != atomDeexcitation) {          << 
385       if(atomDeexcitation->IsPIXEActive()) { u << 
386     }                                          << 
387   }                                            << 
388                                                   422 
389   // protection against double printout        << 
390   if(theParameters->IsPrintLocked()) { return; << 
391                                                << 
392   // explicitly defined printout by particle n << 
393   G4String num = part.GetParticleName();       << 
394   if(1 < verboseLevel ||                       << 
395      (0 < verboseLevel && (num == "e-" ||      << 
396                            num == "e+"    || n << 
397                            num == "mu-"   || n << 
398                            num == "pi+"   || n << 
399                            num == "kaon+" || n << 
400                            num == "alpha" || n << 
401                            num == "GenericIon" << 
402     StreamInfo(G4cout, part);                  << 
403   }                                            << 
404   if(1 < verboseLevel) {                          423   if(1 < verboseLevel) {
405     G4cout << "### G4VEnergyLossProcess::Build    424     G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for "
406            << GetProcessName()                    425            << GetProcessName()
407            << " and particle " << part.GetPart    426            << " and particle " << part.GetParticleName();
408     if(isIonisation) { G4cout << "  isIonisati << 427     if(isIonisation) G4cout << "  isIonisation  flag = 1";
409     G4cout << " baseMat=" << baseMat << G4endl << 428     G4cout << G4endl;
                                                   >> 429   }
                                                   >> 430 }
                                                   >> 431 
                                                   >> 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >> 433 
                                                   >> 434 void G4VEnergyLossProcess::ActivateSubCutoff(G4bool val, const G4Region* r)
                                                   >> 435 {
                                                   >> 436   G4RegionStore* regionStore = G4RegionStore::GetInstance();
                                                   >> 437   if(val) {
                                                   >> 438     useSubCutoff = true;
                                                   >> 439     if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false);
                                                   >> 440     if (nSCoffRegions) {
                                                   >> 441       for (G4int i=0; i<nSCoffRegions; i++) {
                                                   >> 442   if (r == scoffRegions[i]) return;
                                                   >> 443       }
                                                   >> 444     }
                                                   >> 445     scoffRegions.push_back(r);
                                                   >> 446     nSCoffRegions++;
                                                   >> 447   } else {
                                                   >> 448     useSubCutoff = false;
410   }                                               449   }
411 }                                                 450 }
412                                                   451 
413 //....oooOO0OOooo........oooOO0OOooo........oo    452 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   453 
415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED    454 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType)
416 {                                                 455 {
417   G4PhysicsTable* table = nullptr;             << 456   if(1 < verboseLevel) {
                                                   >> 457     G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType
                                                   >> 458      << " for " << GetProcessName()
                                                   >> 459            << " and particle " << particle->GetParticleName()
                                                   >> 460            << G4endl;
                                                   >> 461   }
                                                   >> 462   G4PhysicsTable* table = 0;
                                                   >> 463   G4double emin = minKinEnergy;
418   G4double emax = maxKinEnergy;                   464   G4double emax = maxKinEnergy;
419   G4int bin = nBins;                              465   G4int bin = nBins;
420                                                   466 
421   if(fTotal == tType) {                           467   if(fTotal == tType) {
422     emax  = maxKinEnergyCSDA;                     468     emax  = maxKinEnergyCSDA;
423     bin   = nBinsCSDA;                            469     bin   = nBinsCSDA;
424     table = theDEDXunRestrictedTable;             470     table = theDEDXunRestrictedTable;
425   } else if(fRestricted == tType) {               471   } else if(fRestricted == tType) {
426     table = theDEDXTable;                         472     table = theDEDXTable;
                                                   >> 473     if(theIonisationTable) 
                                                   >> 474       table = G4PhysicsTableHelper::PreparePhysicsTable(theIonisationTable); 
                                                   >> 475   } else if(fSubRestricted == tType) {    
                                                   >> 476     table = theDEDXSubTable;
                                                   >> 477     if(theIonisationSubTable) 
                                                   >> 478       table = G4PhysicsTableHelper::PreparePhysicsTable(theIonisationSubTable); 
427   } else {                                        479   } else {
428     G4cout << "G4VEnergyLossProcess::BuildDEDX    480     G4cout << "G4VEnergyLossProcess::BuildDEDXTable WARNING: wrong type "
429            << tType << G4endl;                 << 481      << tType << G4endl;
430   }                                               482   }
431   if(1 < verboseLevel) {                       << 
432     G4cout << "G4VEnergyLossProcess::BuildDEDX << 
433            << " for " << GetProcessName()      << 
434            << " and " << particle->GetParticle << 
435      << "spline=" << spline << G4endl;         << 
436   }                                            << 
437   if(nullptr == table) { return table; }       << 
438                                                << 
439   G4LossTableBuilder* bld = lManager->GetTable << 
440   G4EmTableUtil::BuildDEDXTable(this, particle << 
441                                 table, minKinE << 
442                                 verboseLevel,  << 
443   return table;                                << 
444 }                                              << 
445                                                << 
446 //....oooOO0OOooo........oooOO0OOooo........oo << 
447                                                   483 
448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 484   // Access to materials
449 {                                              << 485   const G4ProductionCutsTable* theCoupleTable=
450   if(nullptr == theLambdaTable) { return theLa << 486         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 487   size_t numOfCouples = theCoupleTable->GetTableSize();
451                                                   488 
452   G4double scale = theParameters->MaxKinEnergy << 489   if(1 < verboseLevel) {
453   G4int nbin =                                 << 490     G4cout << numOfCouples << " materials"
454     theParameters->NumberOfBinsPerDecade()*G4l << 491            << " minKinEnergy= " << minKinEnergy
455   scale = nbin/G4Log(scale);                   << 492            << " maxKinEnergy= " << maxKinEnergy
456                                                << 493            << " EmTableType= " << tType
457   G4LossTableBuilder* bld = lManager->GetTable << 494            << " table= " << table
458   G4EmTableUtil::BuildLambdaTable(this, partic << 495            << G4endl;
459                                   bld, theLamb << 
460                                   minKinEnergy << 
461                                   verboseLevel << 
462   return theLambdaTable;                       << 
463 }                                              << 
464                                                << 
465 //....oooOO0OOooo........oooOO0OOooo........oo << 
466                                                << 
467 void G4VEnergyLossProcess::StreamInfo(std::ost << 
468                 const G4ParticleDefinition& pa << 
469 {                                              << 
470   G4String indent = (rst ? "  " : "");         << 
471   out << std::setprecision(6);                 << 
472   out << G4endl << indent << GetProcessName()  << 
473   if (!rst) out << " for " << part.GetParticle << 
474   out << "  XStype:" << fXSType                << 
475       << "  SubType=" << GetProcessSubType() < << 
476       << "      dE/dx and range tables from "  << 
477       << G4BestUnit(minKinEnergy,"Energy")     << 
478       << " to " << G4BestUnit(maxKinEnergy,"En << 
479       << " in " << nBins << " bins" << G4endl  << 
480       << "      Lambda tables from threshold t << 
481       << G4BestUnit(maxKinEnergy,"Energy")     << 
482       << ", " << theParameters->NumberOfBinsPe << 
483       << " bins/decade, spline: " << spline    << 
484       << G4endl;                               << 
485   if(nullptr != theRangeTableForLoss && isIoni << 
486     out << "      StepFunction=(" << dRoverRan << 
487         << finalRange/mm << " mm)"             << 
488         << ", integ: " << fXSType              << 
489         << ", fluct: " << lossFluctuationFlag  << 
490         << ", linLossLim= " << linLossLimit    << 
491         << G4endl;                             << 
492   }                                            << 
493   StreamProcessInfo(out);                      << 
494   modelManager->DumpModelList(out, verboseLeve << 
495   if(nullptr != theCSDARangeTable && isIonisat << 
496     out << "      CSDA range table up"         << 
497         << " to " << G4BestUnit(maxKinEnergyCS << 
498         << " in " << nBinsCSDA << " bins" << G << 
499   }                                            << 
500   if(nSCoffRegions>0 && isIonisation) {        << 
501     out << "      Subcutoff sampling in " << n << 
502         << " regions" << G4endl;               << 
503   }                                            << 
504   if(2 < verboseLevel) {                       << 
505     for(std::size_t i=0; i<7; ++i) {           << 
506       auto ta = theData->Table(i);             << 
507       out << "      " << tnames[i] << " addres << 
508       if(nullptr != ta) { out << *ta << G4endl << 
509     }                                          << 
510   }                                               496   }
511 }                                              << 497   if(!table) return table;
512                                                << 
513 //....oooOO0OOooo........oooOO0OOooo........oo << 
514                                                   498 
515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 499   for(size_t i=0; i<numOfCouples; i++) {
516 {                                              << 
517   if(nullptr == scoffRegions) {                << 
518     scoffRegions = new std::vector<const G4Reg << 
519   }                                            << 
520   // the region is in the list                 << 
521   if(!scoffRegions->empty()) {                 << 
522     for (auto & reg : *scoffRegions) {         << 
523       if (reg == r) { return; }                << 
524     }                                          << 
525   }                                            << 
526   // new region                                << 
527   scoffRegions->push_back(r);                  << 
528   ++nSCoffRegions;                             << 
529 }                                              << 
530                                                   500 
531 //....oooOO0OOooo........oooOO0OOooo........oo << 501     if(1 < verboseLevel) 
                                                   >> 502       G4cout << "G4VEnergyLossProcess::BuildDEDXVector flag=  " 
                                                   >> 503        << table->GetFlag(i) << G4endl;
532                                                   504 
533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 505     if (table->GetFlag(i)) {
534 {                                              << 
535   if(0 == nSCoffRegions) { return true; }      << 
536   const G4Region* r = aTrack.GetVolume()->GetL << 
537   for(auto & reg : *scoffRegions) {            << 
538     if(r == reg) { return true; }              << 
539   }                                            << 
540   return false;                                << 
541 }                                              << 
542                                                   506 
543 //....oooOO0OOooo........oooOO0OOooo........oo << 507       // create physics vector and fill it
                                                   >> 508       const G4MaterialCutsCouple* couple = 
                                                   >> 509   theCoupleTable->GetMaterialCutsCouple(i);
                                                   >> 510       G4PhysicsVector* aVector = new G4PhysicsLogVector(emin, emax, bin);
                                                   >> 511       modelManager->FillDEDXVector(aVector, couple, tType);
544                                                   512 
545 void G4VEnergyLossProcess::StartTracking(G4Tra << 513       // Insert vector for this material into the table
546 {                                              << 514       G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector);
547   // reset parameters for the new track        << 
548   theNumberOfInteractionLengthLeft = -1.0;     << 
549   mfpKinEnergy = DBL_MAX;                      << 
550   preStepLambda = 0.0;                         << 
551   currentCouple = nullptr;                     << 
552                                                << 
553   // reset ion                                 << 
554   if(isIon) {                                  << 
555     const G4double newmass = track->GetDefinit << 
556     massRatio = (nullptr == baseParticle) ? CL << 
557       : baseParticle->GetPDGMass()/newmass;    << 
558     logMassRatio = G4Log(massRatio);           << 
559   }                                            << 
560   // forced biasing only for primary particles << 
561   if(nullptr != biasManager) {                 << 
562     if(0 == track->GetParentID()) {            << 
563       biasFlag = true;                         << 
564       biasManager->ResetForcedInteraction();   << 
565     }                                             515     }
566   }                                               516   }
567 }                                              << 
568                                                << 
569 //....oooOO0OOooo........oooOO0OOooo........oo << 
570                                                   517 
571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 518   if(1 < verboseLevel) {
572                              const G4Track& tr << 519     G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for "
573                              G4GPILSelection*  << 520            << particle->GetParticleName()
574 {                                              << 521            << " and process " << GetProcessName()
575   G4double x = DBL_MAX;                        << 522            << G4endl;
576   *selection = aGPILSelection;                 << 523     //    if(2 < verboseLevel) G4cout << (*table) << G4endl;
577   if(isIonisation && currentModel->IsActive(pr << 
578     GetScaledRangeForScaledEnergy(preStepScale << 
579     x = (useCutAsFinalRange) ? std::min(finalR << 
580       currentCouple->GetProductionCuts()->GetP << 
581     x = (fRange > x) ? fRange*dRoverRange + x* << 
582       : fRange;                                << 
583     /*                                         << 
584       G4cout<<"AlongStepGPIL: " << GetProcessN << 
585   << " fRange=" << fRange << " finR=" << finR  << 
586     */                                         << 
587   }                                               524   }
588   return x;                                    << 525 
                                                   >> 526   return table;
589 }                                                 527 }
590                                                   528 
591 //....oooOO0OOooo........oooOO0OOooo........oo    529 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
592                                                   530 
593 G4double G4VEnergyLossProcess::PostStepGetPhys << 531 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType tType)
594                              const G4Track& tr << 
595                              G4double   previo << 
596                              G4ForceCondition* << 
597 {                                                 532 {
598   // condition is set to "Not Forced"          << 533   G4PhysicsTable* table = 0;
599   *condition = NotForced;                      << 
600   G4double x = DBL_MAX;                        << 
601                                                   534 
602   // initialisation of material, mass, charge, << 535   if(fRestricted == tType) {
603   // at the beginning of the step              << 536     table = theLambdaTable;
604   DefineMaterial(track.GetMaterialCutsCouple() << 537   } else if(fSubRestricted == tType) {    
605   preStepKinEnergy       = track.GetKineticEne << 538     table = theSubLambdaTable;
606   preStepScaledEnergy    = preStepKinEnergy*ma << 539   } else {
607   SelectModel(preStepScaledEnergy);            << 540     G4cout << "G4VEnergyLossProcess::BuildLambdaTable WARNING: wrong type "
608                                                << 541      << tType << G4endl;
609   if(!currentModel->IsActive(preStepScaledEner << 
610     theNumberOfInteractionLengthLeft = -1.0;   << 
611     mfpKinEnergy = DBL_MAX;                    << 
612     preStepLambda = 0.0;                       << 
613     currentInteractionLength = DBL_MAX;        << 
614     return x;                                  << 
615   }                                            << 
616                                                << 
617   // change effective charge of a charged part << 
618   if(isIon) {                                  << 
619     const G4double q2 = currentModel->ChargeSq << 
620     fFactor = q2*biasFactor;                   << 
621     if(baseMat) { fFactor *= (*theDensityFacto << 
622     reduceFactor = 1.0/(fFactor*massRatio);    << 
623     if (lossFluctuationFlag) {                 << 
624       auto fluc = currentModel->GetModelOfFluc << 
625       fluc->SetParticleAndCharge(track.GetDefi << 
626     }                                          << 
627   }                                               542   }
628                                                   543 
629   // forced biasing only for primary particles << 544   if(1 < verboseLevel) {
630   if(biasManager) {                            << 545     G4cout << "G4VEnergyLossProcess::BuildLambdaTable() of type "
631     if(0 == track.GetParentID() && biasFlag && << 546      << tType << " for process "
632        biasManager->ForcedInteractionRegion((G << 547            << GetProcessName() << " and particle "
633       return biasManager->GetStepLimit((G4int) << 548            << particle->GetParticleName()
634     }                                          << 549            << " EmTableType= " << tType
                                                   >> 550            << " table= " << table
                                                   >> 551            << G4endl;
635   }                                               552   }
                                                   >> 553   if(!table) return table;
636                                                   554 
637   ComputeLambdaForScaledEnergy(preStepScaledEn << 555   // Access to materials
638                                                << 556   const G4ProductionCutsTable* theCoupleTable=
639   // zero cross section                        << 557         G4ProductionCutsTable::GetProductionCutsTable();
640   if(preStepLambda <= 0.0) {                   << 558   size_t numOfCouples = theCoupleTable->GetTableSize();
641     theNumberOfInteractionLengthLeft = -1.0;   << 559 
642     currentInteractionLength = DBL_MAX;        << 560   for(size_t i=0; i<numOfCouples; i++) {
643   } else {                                     << 561 
644                                                << 562     if (table->GetFlag(i)) {
645     // non-zero cross section                  << 563 
646     if (theNumberOfInteractionLengthLeft < 0.0 << 564       // create physics vector and fill it
647                                                << 565       const G4MaterialCutsCouple* couple = 
648       // beggining of tracking (or just after  << 566   theCoupleTable->GetMaterialCutsCouple(i);
649       theNumberOfInteractionLengthLeft = -G4Lo << 567       G4double cut = (*theCuts)[i];
650       theInitialNumberOfInteractionLength = th << 568       if(fSubRestricted == tType) cut = (*theSubCuts)[i]; 
                                                   >> 569       G4PhysicsVector* aVector = LambdaPhysicsVector(couple, cut);
                                                   >> 570       modelManager->FillLambdaVector(aVector, couple, true, tType);
651                                                   571 
652     } else if(currentInteractionLength < DBL_M << 572       // Insert vector for this material into the table
653                                                << 573       G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector);
654       // subtract NumberOfInteractionLengthLef << 
655       theNumberOfInteractionLengthLeft -=      << 
656         previousStepSize/currentInteractionLen << 
657                                                << 
658       theNumberOfInteractionLengthLeft =       << 
659         std::max(theNumberOfInteractionLengthL << 
660     }                                             574     }
661                                                << 
662     // new mean free path and step limit       << 
663     currentInteractionLength = 1.0/preStepLamb << 
664     x = theNumberOfInteractionLengthLeft * cur << 
665   }                                               575   }
666 #ifdef G4VERBOSE                               << 
667   if (verboseLevel>2) {                        << 
668     G4cout << "G4VEnergyLossProcess::PostStepG << 
669     G4cout << "[ " << GetProcessName() << "]"  << 
670     G4cout << " for " << track.GetDefinition() << 
671            << " in Material  " <<  currentMate << 
672            << " Ekin(MeV)= " << preStepKinEner << 
673            << " track material: " << track.Get << 
674            <<G4endl;                           << 
675     G4cout << "MeanFreePath = " << currentInte << 
676            << "InteractionLength= " << x/cm << << 
677   }                                            << 
678 #endif                                         << 
679   return x;                                    << 
680 }                                              << 
681                                                   576 
682 //....oooOO0OOooo........oooOO0OOooo........oo << 577   if(1 < verboseLevel) {
683                                                << 578     G4cout << "Lambda table is built for "
684 void                                           << 579            << particle->GetParticleName()
685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 580            << G4endl;
686 {                                              << 
687   // cross section increased with energy       << 
688   if(fXSType == fEmIncreasing) {               << 
689     if(e*invLambdaFactor < mfpKinEnergy) {     << 
690       preStepLambda = GetLambdaForScaledEnergy << 
691       mfpKinEnergy = (preStepLambda > 0.0) ? e << 
692     }                                          << 
693                                                << 
694     // cross section has one peak              << 
695   } else if(fXSType == fEmOnePeak) {           << 
696     const G4double epeak = (*theEnergyOfCrossS << 
697     if(e <= epeak) {                           << 
698       if(e*invLambdaFactor < mfpKinEnergy) {   << 
699         preStepLambda = GetLambdaForScaledEner << 
700         mfpKinEnergy = (preStepLambda > 0.0) ? << 
701       }                                        << 
702     } else if(e < mfpKinEnergy) {              << 
703       const G4double e1 = std::max(epeak, e*la << 
704       mfpKinEnergy = e1;                       << 
705       preStepLambda = GetLambdaForScaledEnergy << 
706     }                                          << 
707                                                << 
708     // cross section has more than one peaks   << 
709   } else if(fXSType == fEmTwoPeaks) {          << 
710     G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 
711     const G4double e1peak = xs->e1peak;        << 
712                                                << 
713     // below the 1st peak                      << 
714     if(e <= e1peak) {                          << 
715       if(e*invLambdaFactor < mfpKinEnergy) {   << 
716         preStepLambda = GetLambdaForScaledEner << 
717         mfpKinEnergy = (preStepLambda > 0.0) ? << 
718       }                                        << 
719       return;                                  << 
720     }                                          << 
721     const G4double e1deep = xs->e1deep;        << 
722     // above the 1st peak, below the deep      << 
723     if(e <= e1deep) {                          << 
724       if(mfpKinEnergy >= e1deep || e <= mfpKin << 
725         const G4double e1 = std::max(e1peak, e << 
726         mfpKinEnergy = e1;                     << 
727         preStepLambda = GetLambdaForScaledEner << 
728       }                                        << 
729       return;                                  << 
730     }                                          << 
731     const G4double e2peak = xs->e2peak;        << 
732     // above the deep, below 2nd peak          << 
733     if(e <= e2peak) {                          << 
734       if(e*invLambdaFactor < mfpKinEnergy) {   << 
735         mfpKinEnergy = e;                      << 
736         preStepLambda = GetLambdaForScaledEner << 
737       }                                        << 
738       return;                                  << 
739     }                                          << 
740     const G4double e2deep = xs->e2deep;        << 
741     // above the 2nd peak, below the deep      << 
742     if(e <= e2deep) {                          << 
743       if(mfpKinEnergy >= e2deep || e <= mfpKin << 
744         const G4double e1 = std::max(e2peak, e << 
745         mfpKinEnergy = e1;                     << 
746         preStepLambda = GetLambdaForScaledEner << 
747       }                                        << 
748       return;                                  << 
749     }                                          << 
750     const G4double e3peak = xs->e3peak;        << 
751     // above the deep, below 3d peak           << 
752     if(e <= e3peak) {                          << 
753       if(e*invLambdaFactor < mfpKinEnergy) {   << 
754         mfpKinEnergy = e;                      << 
755         preStepLambda = GetLambdaForScaledEner << 
756       }                                        << 
757       return;                                  << 
758     }                                          << 
759     // above 3d peak                           << 
760     if(e <= mfpKinEnergy) {                    << 
761       const G4double e1 = std::max(e3peak, e*l << 
762       mfpKinEnergy = e1;                       << 
763       preStepLambda = GetLambdaForScaledEnergy << 
764     }                                          << 
765     // integral method is not used             << 
766   } else {                                     << 
767     preStepLambda = GetLambdaForScaledEnergy(e << 
768   }                                               581   }
                                                   >> 582 
                                                   >> 583   return table;
769 }                                                 584 }
770                                                   585 
771 //....oooOO0OOooo........oooOO0OOooo........oo    586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
772                                                   587 
773 G4VParticleChange* G4VEnergyLossProcess::Along    588 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track,
774                                                   589                                                        const G4Step& step)
775 {                                                 590 {
776   fParticleChange.InitializeForAlongStep(track    591   fParticleChange.InitializeForAlongStep(track);
777   // The process has range table - calculate e    592   // The process has range table - calculate energy loss
778   if(!isIonisation || !currentModel->IsActive( << 593   if(!isIonisation) return &fParticleChange;
779     return &fParticleChange;                   << 
780   }                                            << 
781                                                   594 
                                                   >> 595   // Get the actual (true) Step length
782   G4double length = step.GetStepLength();         596   G4double length = step.GetStepLength();
                                                   >> 597   if(length <= DBL_MIN) return &fParticleChange;
783   G4double eloss  = 0.0;                          598   G4double eloss  = 0.0;
784                                                << 599 
785   /*                                              600   /*  
786   if(-1 < verboseLevel) {                         601   if(-1 < verboseLevel) {
787     const G4ParticleDefinition* d = track.GetP << 602     const G4ParticleDefinition* d = track.GetDefinition();
788     G4cout << "AlongStepDoIt for "                603     G4cout << "AlongStepDoIt for "
789            << GetProcessName() << " and partic << 604            << GetProcessName() << " and particle "
790            << "  eScaled(MeV)=" << preStepScal << 605            << d->GetParticleName()
791            << "  range(mm)=" << fRange/mm << " << 606            << "  eScaled(MeV)= " << preStepScaledEnergy/MeV
792            << "  rf=" << reduceFactor << "  q^ << 607            << "  range(mm)= " << fRange/mm
793            << " md=" << d->GetPDGMass() << "   << 608            << "  s(mm)= " << length/mm
794            << "  " << track.GetMaterial()->Get << 609            << "  q^2= " << chargeSqRatio
                                                   >> 610            << " md= " << d->GetPDGMass()
                                                   >> 611            << "  status= " << track.GetTrackStatus()
                                                   >> 612            << G4endl;
795   }                                               613   }
796   */                                              614   */
797   const G4DynamicParticle* dynParticle = track << 
798                                                << 
799   // define new weight for primary and seconda << 
800   G4double weight = fParticleChange.GetParentW << 
801   if(weightFlag) {                             << 
802     weight /= biasFactor;                      << 
803     fParticleChange.ProposeWeight(weight);     << 
804   }                                            << 
805                                                   615 
806   // stopping, check actual range and kinetic  << 616   // stopping
807   if (length >= fRange || preStepKinEnergy <=  << 617   if (length >= fRange) {
808     eloss = preStepKinEnergy;                  << 
809     if (useDeexcitation) {                     << 
810       atomDeexcitation->AlongStepDeexcitation( << 
811                                                << 
812       if(scTracks.size() > 0) { FillSecondarie << 
813       eloss = std::max(eloss, 0.0);            << 
814     }                                          << 
815     fParticleChange.SetProposedKineticEnergy(0    618     fParticleChange.SetProposedKineticEnergy(0.0);
816     fParticleChange.ProposeLocalEnergyDeposit( << 619     fParticleChange.ProposeLocalEnergyDeposit(preStepKinEnergy);
817     return &fParticleChange;                      620     return &fParticleChange;
818   }                                               621   }
819   // zero step length with non-zero range      << 
820   if(length <= 0.0) { return &fParticleChange; << 
821                                                   622 
822   // Short step                                   623   // Short step
823   eloss = length*GetDEDXForScaledEnergy(preSte << 624   eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length;
824                                         LogSca << 625 
825   /*                                           << 626   //  if( length <= linLossLimit * fRange ) {
826   G4cout << "##### Short STEP: eloss= " << elo << 627   //  eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length;
827    << " Escaled=" << preStepScaledEnergy       << 628 
828    << " R=" << fRange                          << 
829    << " L=" << length                          << 
830    << " fFactor=" << fFactor << " minE=" << mi << 
831    << " idxBase=" << basedCoupleIndex << G4end << 
832   */                                           << 
833   // Long step                                    629   // Long step
                                                   >> 630   //} else {
834   if(eloss > preStepKinEnergy*linLossLimit) {     631   if(eloss > preStepKinEnergy*linLossLimit) {
                                                   >> 632     G4double r = GetScaledRangeForScaledEnergy(preStepScaledEnergy);
                                                   >> 633     G4double x = r - length/reduceFactor;
                                                   >> 634     eloss = (ScaledKinEnergyForLoss(r) - ScaledKinEnergyForLoss(x))/massRatio;
835                                                   635 
836     const G4double x = (fRange - length)/reduc << 
837     const G4double de = preStepKinEnergy - Sca << 
838     if(de > 0.0) { eloss = de; }               << 
839     /*                                            636     /*
840     if(-1 < verboseLevel)                         637     if(-1 < verboseLevel) 
841       G4cout << "  Long STEP: rPre(mm)="       << 638       G4cout << "Long STEP: rPre(mm)= " << r/mm
842              << GetScaledRangeForScaledEnergy( << 639              << " rPost(mm)= " << x/mm
843              << " x(mm)=" << x/mm              << 640              << " ePre(MeV)= " << preStepScaledEnergy/MeV
844              << " eloss(MeV)=" << eloss/MeV    << 641              << " eloss(MeV)= " << eloss/MeV
845        << " rFactor=" << reduceFactor          << 642              << " eloss0(MeV)= "
846        << " massRatio=" << massRatio           << 643              << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV
847              << G4endl;                           644              << G4endl;
848     */                                            645     */
849   }                                               646   }
850                                                   647 
851   /*                                           << 648   const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
                                                   >> 649   G4VEmModel* currentModel = SelectModel(preStepScaledEnergy);
                                                   >> 650   /*  
                                                   >> 651   G4double eloss0 = eloss;
852   if(-1 < verboseLevel ) {                        652   if(-1 < verboseLevel ) {
853     G4cout << "Before fluct: eloss(MeV)= " <<     653     G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV
854            << " e-eloss= " << preStepKinEnergy    654            << " e-eloss= " << preStepKinEnergy-eloss
855            << " step(mm)= " << length/mm << "  << 655            << " step(mm)= " << length/mm
856            << " fluct= " << lossFluctuationFla << 656            << " range(mm)= " << fRange/mm
                                                   >> 657            << " fluct= " << lossFluctuationFlag
                                                   >> 658            << G4endl;
857   }                                               659   }
858   */                                           << 660   */  
859                                                   661 
860   const G4double cut = (*theCuts)[currentCoupl << 662   G4double cut  = (*theCuts)[currentMaterialIndex];
861   G4double esec = 0.0;                            663   G4double esec = 0.0;
                                                   >> 664   G4double esecdep = 0.0;
                                                   >> 665 
                                                   >> 666   // SubCutOff 
                                                   >> 667   if(useSubCutoff) {
                                                   >> 668     if(idxSCoffRegions[currentMaterialIndex]) {
                                                   >> 669 
                                                   >> 670       G4double currentMinSafety = 0.0; 
                                                   >> 671       G4StepPoint* prePoint  = step.GetPreStepPoint();
                                                   >> 672       G4StepPoint* postPoint = step.GetPostStepPoint();
                                                   >> 673       G4double preSafety  = prePoint->GetSafety();
                                                   >> 674       G4double postSafety = preSafety - length; 
                                                   >> 675       G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1);
                                                   >> 676 
                                                   >> 677       // recompute safety
                                                   >> 678       if(prePoint->GetStepStatus() != fGeomBoundary &&
                                                   >> 679    postPoint->GetStepStatus() != fGeomBoundary) {
                                                   >> 680 
                                                   >> 681   /*
                                                   >> 682   //      G4bool yes = (track.GetTrackID() == 5512);
                                                   >> 683         G4bool yes = false;
                                                   >> 684   if(yes)
                                                   >> 685     G4cout << "G4VEnergyLoss: presafety= " << preSafety
                                                   >> 686      << " rcut= " << rcut << "  length= " << length 
                                                   >> 687      << " dir " << track.GetMomentumDirection()
                                                   >> 688      << G4endl;
                                                   >> 689   */
                                                   >> 690 
                                                   >> 691   if(preSafety < rcut) 
                                                   >> 692     preSafety = safetyHelper->ComputeSafety(prePoint->GetPosition());
                                                   >> 693 
                                                   >> 694   //if(yes) {
                                                   >> 695   //  G4cout << "G4VEnergyLoss: newsafety= " << preSafety << G4endl;
                                                   >> 696     //     if(preSafety==0.0 && track.GetTrackID() == 5512 ) exit(1);
                                                   >> 697   //}
                                                   >> 698   if(postSafety < rcut) 
                                                   >> 699     postSafety = safetyHelper->ComputeSafety(postPoint->GetPosition());
                                                   >> 700   /*  
                                                   >> 701     if(-1 < verboseLevel) 
                                                   >> 702     G4cout << "Subcutoff: presafety(mm)= " << preSafety/mm
                                                   >> 703            << " postsafety(mm)= " << postSafety/mm
                                                   >> 704            << " rcut(mm)= " << rcut/mm 
                                                   >> 705            << G4endl;
                                                   >> 706   */
                                                   >> 707   currentMinSafety = std::min(preSafety,postSafety); 
                                                   >> 708       }
                                                   >> 709 
                                                   >> 710       // Decide to start subcut sampling
                                                   >> 711       if(currentMinSafety < rcut) {
                                                   >> 712 
                                                   >> 713         cut = (*theSubCuts)[currentMaterialIndex];
                                                   >> 714   eloss -= GetSubDEDXForScaledEnergy(preStepScaledEnergy)*length;
                                                   >> 715   if(eloss < 0.0) eloss = 0.0;
                                                   >> 716   scTracks.clear();
                                                   >> 717   SampleSubCutSecondaries(scTracks, step, 
                                                   >> 718         currentModel,currentMaterialIndex, 
                                                   >> 719         esecdep);
                                                   >> 720   /*
                                                   >> 721   if(nProcesses > 0) {
                                                   >> 722     for(G4int i=0; i<nProcesses; i++) {
                                                   >> 723       (scProcesses[i])->SampleSubCutSecondaries(
                                                   >> 724     scTracks, step, (scProcesses[i])->
                                                   >> 725     SelectModelForMaterial(preStepKinEnergy, currentMaterialIndex),
                                                   >> 726     currentMaterialIndex,esecdep);
                                                   >> 727     }
                                                   >> 728   } 
                                                   >> 729   */   
                                                   >> 730   G4int n = scTracks.size();
                                                   >> 731   if(n>0) {
                                                   >> 732     G4ThreeVector mom = dynParticle->GetMomentum();
                                                   >> 733     fParticleChange.SetNumberOfSecondaries(n);
                                                   >> 734     for(G4int i=0; i<n; i++) {
                                                   >> 735       G4Track* t = scTracks[i];
                                                   >> 736       G4double e = t->GetKineticEnergy();
                                                   >> 737       if (t->GetDefinition() == thePositron) e += 2.0*electron_mass_c2;
                                                   >> 738       esec += e;
                                                   >> 739       pParticleChange->AddSecondary(t);
                                                   >> 740       //  mom -= t->GetMomentum();
                                                   >> 741     }      
                                                   >> 742     //      fParticleChange.SetProposedMomentum(mom);            
                                                   >> 743   }
                                                   >> 744       }
                                                   >> 745     }
                                                   >> 746   }
862                                                   747 
863   // Corrections, which cannot be tabulated       748   // Corrections, which cannot be tabulated
864   if(isIon) {                                  << 749   CorrectionsAlongStep(currentCouple, dynParticle, eloss, length);
865     currentModel->CorrectionsAlongStep(current << 750 
866                                        length, << 751   // Sample fluctuations
867     eloss = std::max(eloss, 0.0);              << 752   if (lossFluctuationFlag && 
868   }                                            << 753       (eloss + esec + esecdep + lowestKinEnergy) < preStepKinEnergy) {
869                                                << 754 
870   // Sample fluctuations if not full energy lo << 755     G4double tmax = 
871   if(eloss >= preStepKinEnergy) {              << 756       std::min(currentModel->MaxSecondaryKinEnergy(dynParticle),cut);
872     eloss = preStepKinEnergy;                  << 757     eloss = currentModel->GetModelOfFluctuations()->
873                                                << 758       SampleFluctuations(currentMaterial,dynParticle,tmax,length,eloss);
874   } else if (lossFluctuationFlag) {            << 759 
875     const G4double tmax = currentModel->MaxSec << 760     /*        
876     const G4double tcut = std::min(cut, tmax); << 761       if(-1 < verboseLevel) 
877     G4VEmFluctuationModel* fluc = currentModel << 
878     eloss = fluc->SampleFluctuations(currentCo << 
879                                      tcut, tma << 
880     /*                                         << 
881     if(-1 < verboseLevel)                      << 
882       G4cout << "After fluct: eloss(MeV)= " <<    762       G4cout << "After fluct: eloss(MeV)= " << eloss/MeV
883              << " fluc= " << (eloss-eloss0)/Me    763              << " fluc= " << (eloss-eloss0)/MeV
884              << " ChargeSqRatio= " << chargeSq << 764              << " currentChargeSquare= " << chargeSquare
885              << " massRatio= " << massRatio << << 765              << " massRatio= " << massRatio
                                                   >> 766              << " tmax= " << tmax
                                                   >> 767              << G4endl;
886     */                                            768     */
887   }                                               769   }
                                                   >> 770   // add low-energy subcutoff particles
                                                   >> 771   eloss += esecdep;
888                                                   772 
889   // deexcitation                              << 773   // Energy balanse
890   if (useDeexcitation) {                       << 
891     G4double esecfluo = preStepKinEnergy;      << 
892     G4double de = esecfluo;                    << 
893     atomDeexcitation->AlongStepDeexcitation(sc << 
894                                             de << 
895                                                << 
896     // sum of de-excitation energies           << 
897     esecfluo -= de;                            << 
898                                                << 
899     // subtracted from energy loss             << 
900     if(eloss >= esecfluo) {                    << 
901       esec  += esecfluo;                       << 
902       eloss -= esecfluo;                       << 
903     } else {                                   << 
904       esec += esecfluo;                        << 
905       eloss = 0.0;                             << 
906     }                                          << 
907   }                                            << 
908   if(nullptr != subcutProducer && IsRegionForC << 
909     subcutProducer->SampleSecondaries(step, sc << 
910   }                                            << 
911   // secondaries from atomic de-excitation and << 
912   if(!scTracks.empty()) { FillSecondariesAlong << 
913                                                << 
914   // Energy balance                            << 
915   G4double finalT = preStepKinEnergy - eloss -    774   G4double finalT = preStepKinEnergy - eloss - esec;
916   if (finalT <= lowestKinEnergy) {                775   if (finalT <= lowestKinEnergy) {
917     eloss += finalT;                           << 776     eloss  = preStepKinEnergy - esec;
918     finalT = 0.0;                                 777     finalT = 0.0;
919   } else if(isIon) {                           << 
920     fParticleChange.SetProposedCharge(         << 
921       currentModel->GetParticleCharge(track.Ge << 
922                                       currentM << 
923   }                                               778   }
924   eloss = std::max(eloss, 0.0);                << 
925                                                   779 
926   fParticleChange.SetProposedKineticEnergy(fin    780   fParticleChange.SetProposedKineticEnergy(finalT);
927   fParticleChange.ProposeLocalEnergyDeposit(el    781   fParticleChange.ProposeLocalEnergyDeposit(eloss);
928   /*                                           << 782 
                                                   >> 783   /*  
929   if(-1 < verboseLevel) {                         784   if(-1 < verboseLevel) {
930     G4double del = finalT + eloss + esec - pre << 
931     G4cout << "Final value eloss(MeV)= " << el    785     G4cout << "Final value eloss(MeV)= " << eloss/MeV
932            << " preStepKinEnergy= " << preStep    786            << " preStepKinEnergy= " << preStepKinEnergy
933            << " postStepKinEnergy= " << finalT    787            << " postStepKinEnergy= " << finalT
934            << " de(keV)= " << del/keV          << 
935            << " lossFlag= " << lossFluctuation    788            << " lossFlag= " << lossFluctuationFlag
936            << "  status= " << track.GetTrackSt    789            << "  status= " << track.GetTrackStatus()
937            << G4endl;                             790            << G4endl;
938   }                                               791   }
939   */                                              792   */
                                                   >> 793 
940   return &fParticleChange;                        794   return &fParticleChange;
941 }                                                 795 }
942                                                   796 
943 //....oooOO0OOooo........oooOO0OOooo........oo    797 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
944                                                   798 
945 void G4VEnergyLossProcess::FillSecondariesAlon << 799 void G4VEnergyLossProcess::SampleSubCutSecondaries(
946 {                                              << 800        std::vector<G4Track*>& tracks, 
947   const std::size_t n0 = scTracks.size();      << 801        const G4Step& step, 
948   G4double weight = wt;                        << 802        G4VEmModel* model,
949   // weight may be changed by biasing manager  << 803        G4int idx,
950   if(biasManager) {                            << 804        G4double& extraEdep) 
951     if(biasManager->SecondaryBiasingRegion((G4 << 805 {
952       weight *=                                << 806   // Fast check weather subcutoff can work
953         biasManager->ApplySecondaryBiasing(scT << 807   G4double subcut = (*theSubCuts)[idx];
954     }                                          << 808   G4double cut = (*theCuts)[idx];
955   }                                            << 809   if(cut <= subcut) return;
956                                                << 810 
957   // fill secondaries                          << 811   const G4Track* track = step.GetTrack();
958   const std::size_t n = scTracks.size();       << 812   const G4DynamicParticle* dp = track->GetDynamicParticle();
959   fParticleChange.SetNumberOfSecondaries((G4in << 813   G4bool b;
960                                                << 814   G4double cross = 
961   for(std::size_t i=0; i<n; ++i) {             << 815     chargeSqRatio*(((*theSubLambdaTable)[idx])->GetValue(dp->GetKineticEnergy(),b));
962     G4Track* t = scTracks[i];                  << 816   G4double length = step.GetStepLength();
963     if(nullptr != t) {                         << 817 
964       t->SetWeight(weight);                    << 818   // negligible probability to get any interaction
965       pParticleChange->AddSecondary(t);        << 819   if(length*cross < perMillion) return;
966       G4int pdg = t->GetDefinition()->GetPDGEn << 820   /*    
967       if (i < n0) {                            << 821   if(-1 < verboseLevel) 
968         if (pdg == 22) {                       << 822     G4cout << "<<< Subcutoff for " << GetProcessName()
969     t->SetCreatorModelID(gpixeID);             << 823      << " cross(1/mm)= " << cross*mm << ">>>"
970         } else if (pdg == 11) {                << 824      << " e(MeV)= " << preStepScaledEnergy
971           t->SetCreatorModelID(epixeID);       << 825      << " matIdx= " << currentMaterialIndex
972         } else {                               << 826      << G4endl;
973           t->SetCreatorModelID(biasID);        << 827   */
                                                   >> 828 
                                                   >> 829   // Sample subcutoff secondaries
                                                   >> 830   G4StepPoint* preStepPoint = step.GetPreStepPoint();
                                                   >> 831   G4ThreeVector prepoint = preStepPoint->GetPosition();
                                                   >> 832   G4ThreeVector dr = step.GetPostStepPoint()->GetPosition() - prepoint;
                                                   >> 833   G4double pretime = preStepPoint->GetGlobalTime();
                                                   >> 834   G4double dt = length/preStepPoint->GetVelocity();
                                                   >> 835   G4double fragment = 0.0;
                                                   >> 836 
                                                   >> 837   do {
                                                   >> 838     G4double del = -std::log(G4UniformRand())/cross;
                                                   >> 839     fragment += del/length;
                                                   >> 840     if (fragment > 1.0) break;
                                                   >> 841 
                                                   >> 842     // sample secondaries
                                                   >> 843     secParticles.clear();
                                                   >> 844     model->SampleSecondaries(&secParticles,track->GetMaterialCutsCouple(),dp,subcut,cut);
                                                   >> 845 
                                                   >> 846     // position of subcutoff particles
                                                   >> 847     G4ThreeVector r = prepoint + fragment*dr;
                                                   >> 848     std::vector<G4DynamicParticle*>::iterator it;
                                                   >> 849     for(it=secParticles.begin(); it!=secParticles.end(); it++) {
                                                   >> 850 
                                                   >> 851       G4bool addSec = true;
                                                   >> 852       // do not track very low-energy delta-electrons
                                                   >> 853       if(theSecondaryRangeTable && (*it)->GetDefinition() == theElectron) {
                                                   >> 854   G4bool b;
                                                   >> 855   G4double ekin = (*it)->GetKineticEnergy();
                                                   >> 856   G4double rg = ((*theSecondaryRangeTable)[idx]->GetValue(ekin, b));
                                                   >> 857   //          if(rg < currentMinSafety) {
                                                   >> 858   if(rg < safetyHelper->ComputeSafety(r)) {
                                                   >> 859     extraEdep += ekin;
                                                   >> 860     delete (*it);
                                                   >> 861     addSec = false;
974   }                                               862   }
975       } else {                                 << 863       }
976   t->SetCreatorModelID(biasID);                << 864       if(addSec) {
                                                   >> 865   G4Track* t = new G4Track((*it), pretime + fragment*dt, r);
                                                   >> 866   t->SetTouchableHandle(track->GetTouchableHandle());
                                                   >> 867   tracks.push_back(t);
                                                   >> 868 
                                                   >> 869   /*
                                                   >> 870     if(-1 < verboseLevel) 
                                                   >> 871     G4cout << "New track " << p->GetDefinition()->GetParticleName()
                                                   >> 872     << " e(keV)= " << p->GetKineticEnergy()/keV
                                                   >> 873     << " fragment= " << fragment
                                                   >> 874     << G4endl;
                                                   >> 875   */
977       }                                           876       }
978     }                                             877     }
979   }                                            << 878   } while (fragment <= 1.0);
980   scTracks.clear();                            << 879 } 
981 }                                              << 
982                                                   880 
983 //....oooOO0OOooo........oooOO0OOooo........oo    881 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
984                                                   882 
985 G4VParticleChange* G4VEnergyLossProcess::PostS    883 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track,
986                                                << 884                                                       const G4Step&)
987 {                                                 885 {
988   // clear number of interaction lengths in an << 
989   theNumberOfInteractionLengthLeft = -1.0;     << 
990   mfpKinEnergy = DBL_MAX;                      << 
991                                                << 
992   fParticleChange.InitializeForPostStep(track)    886   fParticleChange.InitializeForPostStep(track);
993   const G4double finalT = track.GetKineticEner << 887   G4double finalT = track.GetKineticEnergy();
                                                   >> 888   if(finalT <= lowestKinEnergy) return &fParticleChange;
994                                                   889 
995   const G4double postStepScaledEnergy = finalT << 890   G4double postStepScaledEnergy = finalT*massRatio;
996   SelectModel(postStepScaledEnergy);           << 
997                                                << 
998   if(!currentModel->IsActive(postStepScaledEne << 
999     return &fParticleChange;                   << 
1000   }                                           << 
1001   /*                                             891   /*
1002   if(1 < verboseLevel) {                      << 892   if(-1 < verboseLevel) {
1003     G4cout<<GetProcessName()<<" PostStepDoIt: << 893     G4cout << GetProcessName()
                                                   >> 894            << "::PostStepDoIt: E(MeV)= " << finalT/MeV
                                                   >> 895      << G4endl;
1004   }                                              896   }
1005   */                                             897   */
1006   // forced process - should happen only once << 
1007   if(biasFlag) {                              << 
1008     if(biasManager->ForcedInteractionRegion(( << 
1009       biasFlag = false;                       << 
1010     }                                         << 
1011   }                                           << 
1012   const G4DynamicParticle* dp = track.GetDyna << 
1013                                               << 
1014   // Integral approach                           898   // Integral approach
1015   if (fXSType != fEmNoIntegral) {             << 899   if (integral) {
1016     const G4double logFinalT = dp->GetLogKine << 900     G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy);
1017     G4double lx = GetLambdaForScaledEnergy(po << 901     /*
1018                                            lo << 902     if(preStepLambda<lx && 1 < verboseLevel && nWarnings<200) {
1019     lx = std::max(lx, 0.0);                   << 903       G4cout << "WARNING: for " << particle->GetParticleName()
1020                                               << 904              << " and " << GetProcessName()
1021     // if both lg and lx are zero then no int << 905              << " E(MeV)= " << finalT/MeV
1022     if(preStepLambda*G4UniformRand() >= lx) { << 906              << " preLambda= " << preStepLambda 
                                                   >> 907        << " < " << lx << " (postLambda) "
                                                   >> 908        << G4endl;
                                                   >> 909       nWarnings++;
                                                   >> 910     }
                                                   >> 911     */
                                                   >> 912     if(preStepLambda*G4UniformRand() > lx) {
                                                   >> 913       ClearNumberOfInteractionLengthLeft();
1023       return &fParticleChange;                   914       return &fParticleChange;
1024     }                                            915     }
1025   }                                              916   }
1026                                                  917 
1027   // define new weight for primary and second << 918   G4VEmModel* currentModel = SelectModel(postStepScaledEnergy);
1028   G4double weight = fParticleChange.GetParent << 919   const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
1029   if(weightFlag) {                            << 920   G4double tcut = (*theCuts)[currentMaterialIndex];
1030     weight /= biasFactor;                     << 
1031     fParticleChange.ProposeWeight(weight);    << 
1032   }                                           << 
1033                                               << 
1034   const G4double tcut = (*theCuts)[currentCou << 
1035                                                  921 
1036   // sample secondaries                          922   // sample secondaries
1037   secParticles.clear();                          923   secParticles.clear();
1038   currentModel->SampleSecondaries(&secParticl << 924   currentModel->SampleSecondaries(&secParticles, currentCouple, dynParticle, tcut);
1039                                               << 
1040   const G4int num0 = (G4int)secParticles.size << 
1041                                               << 
1042   // bremsstrahlung splitting or Russian roul << 
1043   if(biasManager) {                           << 
1044     if(biasManager->SecondaryBiasingRegion((G << 
1045       G4double eloss = 0.0;                   << 
1046       weight *= biasManager->ApplySecondaryBi << 
1047                                       secPart << 
1048                                       track,  << 
1049                                       &fParti << 
1050                                       (G4int) << 
1051                                       step.Ge << 
1052       if(eloss > 0.0) {                       << 
1053         eloss += fParticleChange.GetLocalEner << 
1054         fParticleChange.ProposeLocalEnergyDep << 
1055       }                                       << 
1056     }                                         << 
1057   }                                           << 
1058                                                  925 
1059   // save secondaries                            926   // save secondaries
1060   const G4int num = (G4int)secParticles.size( << 927   G4int num = secParticles.size();
1061   if(num > 0) {                                  928   if(num > 0) {
1062                                               << 
1063     fParticleChange.SetNumberOfSecondaries(nu    929     fParticleChange.SetNumberOfSecondaries(num);
1064     G4double time = track.GetGlobalTime();    << 930     for (G4int i=0; i<num; i++) {
1065                                               << 931       fParticleChange.AddSecondary(secParticles[i]);
1066     G4int n1(0), n2(0);                       << 
1067     if(num0 > mainSecondaries) {              << 
1068       currentModel->FillNumberOfSecondaries(n << 
1069     }                                         << 
1070                                               << 
1071     for (G4int i=0; i<num; ++i) {             << 
1072       if(nullptr != secParticles[i]) {        << 
1073         G4Track* t = new G4Track(secParticles << 
1074         t->SetTouchableHandle(track.GetToucha << 
1075         if (biasManager) {                    << 
1076           t->SetWeight(weight * biasManager-> << 
1077         } else {                              << 
1078           t->SetWeight(weight);               << 
1079         }                                     << 
1080         if(i < num0) {                        << 
1081           t->SetCreatorModelID(secID);        << 
1082         } else if(i < num0 + n1) {            << 
1083           t->SetCreatorModelID(tripletID);    << 
1084         } else {                              << 
1085           t->SetCreatorModelID(biasID);       << 
1086         }                                     << 
1087                                               << 
1088         //G4cout << "Secondary(post step) has << 
1089         //       << ", kenergy " << t->GetKin << 
1090         //       << " time= " << time/ns << " << 
1091         pParticleChange->AddSecondary(t);     << 
1092       }                                       << 
1093     }                                            932     }
1094   }                                              933   }
1095                                                  934 
1096   if(0.0 == fParticleChange.GetProposedKineti << 
1097      fAlive == fParticleChange.GetTrackStatus << 
1098     if(particle->GetProcessManager()->GetAtRe << 
1099          { fParticleChange.ProposeTrackStatus << 
1100     else { fParticleChange.ProposeTrackStatus << 
1101   }                                           << 
1102                                               << 
1103   /*                                             935   /*
1104   if(-1 < verboseLevel) {                        936   if(-1 < verboseLevel) {
1105     G4cout << "::PostStepDoIt: Sample seconda    937     G4cout << "::PostStepDoIt: Sample secondary; Efin= " 
1106     << fParticleChange.GetProposedKineticEner    938     << fParticleChange.GetProposedKineticEnergy()/MeV
1107            << " MeV; model= (" << currentMode    939            << " MeV; model= (" << currentModel->LowEnergyLimit()
1108            << ", " <<  currentModel->HighEner    940            << ", " <<  currentModel->HighEnergyLimit() << ")"
1109            << "  preStepLambda= " << preStepL    941            << "  preStepLambda= " << preStepLambda
1110            << "  dir= " << track.GetMomentumD    942            << "  dir= " << track.GetMomentumDirection()
1111            << "  status= " << track.GetTrackS    943            << "  status= " << track.GetTrackStatus()
1112            << G4endl;                            944            << G4endl;
1113   }                                              945   }
1114   */                                             946   */
                                                   >> 947   ClearNumberOfInteractionLengthLeft();
1115   return &fParticleChange;                       948   return &fParticleChange;
1116 }                                                949 }
1117                                                  950 
1118 //....oooOO0OOooo........oooOO0OOooo........o    951 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1119                                                  952 
1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 953 void G4VEnergyLossProcess::PrintInfoDefinition()
1121        const G4ParticleDefinition* part, cons << 
1122 {                                                954 {
1123   if (!isMaster || nullptr != baseParticle || << 955   if(0 < verboseLevel) {
1124   for(std::size_t i=0; i<7; ++i) {            << 956     G4cout << G4endl << GetProcessName() << ":   tables are built for  "
1125     // ionisation table only for ionisation p << 957            << particle->GetParticleName()
1126     if (nullptr == theData->Table(i) || (!isI << 958            << G4endl
1127       continue;                               << 959            << "      dE/dx and range tables from "
1128     }                                         << 960      << G4BestUnit(minKinEnergy,"Energy")
1129     if (-1 < verboseLevel) {                  << 961            << " to " << G4BestUnit(maxKinEnergy,"Energy")
1130       G4cout << "G4VEnergyLossProcess::StoreP << 962            << " in " << nBins << " bins." << G4endl
1131        << "  " << particle->GetParticleName() << 963            << "      Lambda tables from threshold to "
1132        << "  " << GetProcessName()            << 964            << G4BestUnit(maxKinEnergy,"Energy")
1133        << "  " << tnames[i] << "  " << theDat << 965            << " in " << nBins << " bins."
1134     }                                         << 966            << G4endl;
1135     if (!G4EmTableUtil::StoreTable(this, part << 967     PrintInfo();
1136            dir, tnames[i], verboseLevel, asci << 968     if(theRangeTableForLoss && isIonisation) 
1137       return false;                           << 969       G4cout << "      Step function: finalRange(mm)= " << finalRange/mm
1138     }                                         << 970              << ", dRoverRange= " << dRoverRange
1139   }                                           << 971              << ", integral: " << integral
1140   return true;                                << 972              << G4endl;
1141 }                                             << 973     
1142                                               << 974     if(theCSDARangeTable && isIonisation) 
1143 //....oooOO0OOooo........oooOO0OOooo........o << 975       G4cout << "      CSDA range table up"
1144                                               << 976              << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy")
1145 G4bool                                        << 977              << " in " << nBinsCSDA << " bins." << G4endl;
1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 978     
1147                                            co << 979     if(nSCoffRegions>0) 
1148 {                                             << 980       G4cout << "      Subcutoff sampling in " << nSCoffRegions 
1149   if (!isMaster || nullptr != baseParticle || << 981        << " regions" << G4endl;
1150   for(std::size_t i=0; i<7; ++i) {            << 982 
1151     // ionisation table only for ionisation p << 983     if(2 < verboseLevel) {
1152     if (!isIonisation && 1 == i) { continue;  << 984       G4cout << "DEDXTable address= " << theDEDXTable << G4endl;
1153     if(!G4EmTableUtil::RetrieveTable(this, pa << 985       if(theDEDXTable && isIonisation) G4cout << (*theDEDXTable) << G4endl;
1154                                      verboseL << 986       G4cout << "non restricted DEDXTable address= " 
1155       return false;                           << 987        << theDEDXunRestrictedTable << G4endl;
                                                   >> 988       if(theDEDXunRestrictedTable && isIonisation) 
                                                   >> 989            G4cout << (*theDEDXunRestrictedTable) << G4endl;
                                                   >> 990       if(theDEDXSubTable && isIonisation) G4cout << (*theDEDXSubTable) 
                                                   >> 991              << G4endl;
                                                   >> 992       G4cout << "CSDARangeTable address= " << theCSDARangeTable 
                                                   >> 993        << G4endl;
                                                   >> 994       if(theCSDARangeTable && isIonisation) G4cout << (*theCSDARangeTable) 
                                                   >> 995             << G4endl;
                                                   >> 996       G4cout << "RangeTableForLoss address= " << theRangeTableForLoss 
                                                   >> 997        << G4endl;
                                                   >> 998       if(theRangeTableForLoss && isIonisation) 
                                                   >> 999              G4cout << (*theRangeTableForLoss) << G4endl;
                                                   >> 1000       G4cout << "InverseRangeTable address= " << theInverseRangeTable 
                                                   >> 1001        << G4endl;
                                                   >> 1002       if(theInverseRangeTable && isIonisation) 
                                                   >> 1003              G4cout << (*theInverseRangeTable) << G4endl;
                                                   >> 1004       G4cout << "LambdaTable address= " << theLambdaTable << G4endl;
                                                   >> 1005       if(theLambdaTable && isIonisation) G4cout << (*theLambdaTable) << G4endl;
                                                   >> 1006       G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl;
                                                   >> 1007       if(theSubLambdaTable && isIonisation) G4cout << (*theSubLambdaTable) 
                                                   >> 1008              << G4endl;
1156     }                                            1009     }
1157   }                                              1010   }
1158   return true;                                << 
1159 }                                                1011 }
1160                                                  1012 
1161 //....oooOO0OOooo........oooOO0OOooo........o    1013 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162                                                  1014 
1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 1015 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType)
1164                                   const G4Mat << 
1165                                   const G4Dyn << 
1166                                         G4dou << 
1167 {                                                1016 {
1168   DefineMaterial(couple);                     << 1017   if(fTotal == tType && theDEDXunRestrictedTable != p) {
1169   G4double ekin = dp->GetKineticEnergy();     << 1018     if(theDEDXunRestrictedTable) theDEDXunRestrictedTable->clearAndDestroy();
1170   SelectModel(ekin*massRatio);                << 1019     theDEDXunRestrictedTable = p;
1171   G4double tmax = currentModel->MaxSecondaryK << 1020     if(p) {
1172   G4double tcut = std::min(tmax,(*theCuts)[cu << 1021       size_t n = p->length();
1173   G4double d = 0.0;                           << 1022       G4PhysicsVector* pv = (*p)[0];
1174   G4VEmFluctuationModel* fm = currentModel->G << 1023       G4double emax = maxKinEnergyCSDA;
1175   if(nullptr != fm) { d = fm->Dispersion(curr << 1024       G4bool b;
1176   return d;                                   << 1025       theDEDXAtMaxEnergy = new G4double [n];
1177 }                                             << 1026 
1178                                               << 1027       for (size_t i=0; i<n; i++) {
1179 //....oooOO0OOooo........oooOO0OOooo........o << 1028   pv = (*p)[i];
                                                   >> 1029   G4double dedx = pv->GetValue(emax, b);
                                                   >> 1030   theDEDXAtMaxEnergy[i] = dedx;
                                                   >> 1031   //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " 
                                                   >> 1032   //<< dedx << G4endl;
                                                   >> 1033       }
                                                   >> 1034     }
1180                                                  1035 
1181 G4double                                      << 1036   } else if(fRestricted == tType) {
1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1037     theDEDXTable = p;
1183                                             c << 1038   } else if(fSubRestricted == tType) {    
1184                                             G << 1039     theDEDXSubTable = p;
1185 {                                             << 1040   } else if(fIonisation == tType && theIonisationTable != p) {    
1186   // Cross section per volume is calculated   << 1041     if(theIonisationTable) theIonisationTable->clearAndDestroy();
1187   DefineMaterial(couple);                     << 1042     theIonisationTable = p;
1188   G4double cross = 0.0;                       << 1043   } else if(fSubIonisation == tType && theIonisationSubTable != p) {    
1189   if (nullptr != theLambdaTable) {            << 1044     if(theIonisationSubTable) theIonisationSubTable->clearAndDestroy();
1190     cross = GetLambdaForScaledEnergy(kineticE << 1045     theIonisationSubTable = p;
1191                                      logKinet << 
1192   } else {                                    << 
1193     SelectModel(kineticEnergy*massRatio);     << 
1194     cross = (!baseMat) ? biasFactor : biasFac << 
1195     cross *= (currentModel->CrossSectionPerVo << 
1196                                               << 
1197   }                                              1046   }
1198   return std::max(cross, 0.0);                << 
1199 }                                                1047 }
1200                                                  1048 
1201 //....oooOO0OOooo........oooOO0OOooo........o    1049 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1202                                                  1050 
1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 1051 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p)
1204 {                                                1052 {
1205   DefineMaterial(track.GetMaterialCutsCouple( << 1053   if(theCSDARangeTable != p) theCSDARangeTable = p;
1206   const G4double kinEnergy    = track.GetKine << 
1207   const G4double logKinEnergy = track.GetDyna << 
1208   const G4double cs = GetLambdaForScaledEnerg << 
1209                                               << 
1210   return (0.0 < cs) ? 1.0/cs : DBL_MAX;       << 
1211 }                                             << 
1212                                                  1054 
1213 //....oooOO0OOooo........oooOO0OOooo........o << 1055   if(p) {
1214                                               << 1056     size_t n = p->length();
1215 G4double G4VEnergyLossProcess::ContinuousStep << 1057     G4PhysicsVector* pv = (*p)[0];
1216                                               << 1058     G4double emax = maxKinEnergyCSDA;
1217                                               << 1059     G4bool b;
1218 {                                             << 1060     theRangeAtMaxEnergy = new G4double [n];
1219   return AlongStepGetPhysicalInteractionLengt << 1061 
                                                   >> 1062     for (size_t i=0; i<n; i++) {
                                                   >> 1063       pv = (*p)[i];
                                                   >> 1064       G4double r2 = pv->GetValue(emax, b);
                                                   >> 1065       theRangeAtMaxEnergy[i] = r2;
                                                   >> 1066       //G4cout << "i= " << i << " e2(MeV)= " << emax/MeV << " r2= " 
                                                   >> 1067       //<< r2<< G4endl;
                                                   >> 1068     }
                                                   >> 1069   }
1220 }                                                1070 }
1221                                                  1071 
1222 //....oooOO0OOooo........oooOO0OOooo........o    1072 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1223                                                  1073 
1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 1074 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p)
1225                              const G4Track& t << 
1226                              G4double,        << 
1227                              G4ForceCondition << 
1228                                               << 
1229 {                                                1075 {
1230   *condition = NotForced;                     << 1076   if(theRangeTableForLoss != p) {
1231   return MeanFreePath(track);                 << 1077     theRangeTableForLoss = p;
                                                   >> 1078     if(1 < verboseLevel) {
                                                   >> 1079       G4cout << "### Set Range table " << p 
                                                   >> 1080        << " for " << particle->GetParticleName()
                                                   >> 1081              << " and process " << GetProcessName() << G4endl;
                                                   >> 1082     }
                                                   >> 1083   }
1232 }                                                1084 }
1233                                                  1085 
1234 //....oooOO0OOooo........oooOO0OOooo........o    1086 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1235                                                  1087 
1236 G4double G4VEnergyLossProcess::GetContinuousS << 1088 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p)
1237                 const G4Track&,               << 
1238                 G4double, G4double, G4double& << 
1239 {                                                1089 {
1240   return DBL_MAX;                             << 1090   if(theSecondaryRangeTable != p) {
                                                   >> 1091     theSecondaryRangeTable = p;
                                                   >> 1092     if(1 < verboseLevel) {
                                                   >> 1093       G4cout << "### Set SecondaryRange table " << p 
                                                   >> 1094        << " for " << particle->GetParticleName()
                                                   >> 1095              << " and process " << GetProcessName() << G4endl;
                                                   >> 1096     }
                                                   >> 1097   }
1241 }                                                1098 }
1242                                                  1099 
1243 //....oooOO0OOooo........oooOO0OOooo........o    1100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1244                                                  1101 
1245 G4PhysicsVector*                              << 1102 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p)
1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 
1247                                           G4d << 
1248 {                                                1103 {
1249   DefineMaterial(couple);                     << 1104   if(theInverseRangeTable != p) {
1250   G4PhysicsVector* v = (*theLambdaTable)[base << 1105     theInverseRangeTable = p;
1251   return new G4PhysicsVector(*v);             << 1106     if(1 < verboseLevel) {
                                                   >> 1107       G4cout << "### Set InverseRange table " << p 
                                                   >> 1108        << " for " << particle->GetParticleName()
                                                   >> 1109              << " and process " << GetProcessName() << G4endl;
                                                   >> 1110     }
                                                   >> 1111   }
1252 }                                                1112 }
1253                                                  1113 
1254 //....oooOO0OOooo........oooOO0OOooo........o    1114 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1255                                                  1115 
1256 void                                          << 1116 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p)
1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 
1258 {                                                1117 {
1259   if(1 < verboseLevel) {                         1118   if(1 < verboseLevel) {
1260     G4cout << "### Set DEDX table " << p << " << 1119     G4cout << "### Set Lambda table " << p 
1261      << "  " <<  theDEDXunRestrictedTable <<  << 1120      << " for " << particle->GetParticleName()
1262            << " for " << particle->GetParticl << 1121            << " and process " << GetProcessName() << G4endl;
1263            << " and process " << GetProcessNa << 
1264      << " type=" << tType << " isIonisation:" << 
1265   }                                              1122   }
1266   if(fTotal == tType) {                       << 1123   if(theLambdaTable != p) theLambdaTable = p;
1267     theDEDXunRestrictedTable = p;             << 1124   tablesAreBuilt = true;
1268   } else if(fRestricted == tType) {           << 1125 
1269     theDEDXTable = p;                         << 1126   if(p) {
1270     if(isMaster && nullptr == baseParticle) { << 1127     size_t n = p->length();
1271       theData->UpdateTable(theDEDXTable, 0);  << 1128     G4PhysicsVector* pv = (*p)[0];
1272     }                                         << 1129     G4double e, s, smax, emax;
1273   } else if(fIsIonisation == tType) {         << 1130     theEnergyOfCrossSectionMax = new G4double [n];
1274     theIonisationTable = p;                   << 1131     theCrossSectionMax = new G4double [n];
1275     if(isMaster && nullptr == baseParticle) { << 1132     G4bool b;
1276       theData->UpdateTable(theIonisationTable << 1133 
                                                   >> 1134     for (size_t i=0; i<n; i++) {
                                                   >> 1135       pv = (*p)[i];
                                                   >> 1136       emax = DBL_MAX;
                                                   >> 1137       smax = 0.0;
                                                   >> 1138       if(pv) {
                                                   >> 1139         size_t nb = pv->GetVectorLength();
                                                   >> 1140         emax = pv->GetLowEdgeEnergy(nb);
                                                   >> 1141   for (size_t j=0; j<nb; j++) {
                                                   >> 1142     e = pv->GetLowEdgeEnergy(j);
                                                   >> 1143     s = pv->GetValue(e,b);
                                                   >> 1144     if(s > smax) {
                                                   >> 1145       smax = s;
                                                   >> 1146       emax = e;
                                                   >> 1147     }
                                                   >> 1148   }
                                                   >> 1149       }
                                                   >> 1150       theEnergyOfCrossSectionMax[i] = emax;
                                                   >> 1151       theCrossSectionMax[i] = smax;
                                                   >> 1152       if(1 < verboseLevel) {
                                                   >> 1153         G4cout << "For " << particle->GetParticleName()
                                                   >> 1154                << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV
                                                   >> 1155                << " lambda= " << smax << G4endl;
                                                   >> 1156       }
1277     }                                            1157     }
1278   }                                              1158   }
1279 }                                                1159 }
1280                                                  1160 
1281 //....oooOO0OOooo........oooOO0OOooo........o    1161 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1282                                                  1162 
1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 1163 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p)
1284 {                                                1164 {
1285   theCSDARangeTable = p;                      << 1165   if(theSubLambdaTable != p) {
                                                   >> 1166     theSubLambdaTable = p;
                                                   >> 1167     if(1 < verboseLevel) {
                                                   >> 1168       G4cout << "### Set SebLambda table " << p 
                                                   >> 1169        << " for " << particle->GetParticleName()
                                                   >> 1170              << " and process " << GetProcessName() << G4endl;
                                                   >> 1171     }
                                                   >> 1172   }
1286 }                                                1173 }
1287                                                  1174 
1288 //....oooOO0OOooo........oooOO0OOooo........o    1175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1289                                                  1176 
1290 void G4VEnergyLossProcess::SetRangeTableForLo << 1177 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector(
                                                   >> 1178                  const G4MaterialCutsCouple* couple, G4double cut)
1291 {                                                1179 {
1292   theRangeTableForLoss = p;                   << 1180   //  G4double cut  = (*theCuts)[couple->GetIndex()];
                                                   >> 1181   //  G4int nbins = nLambdaBins;
                                                   >> 1182   G4double tmin = 
                                                   >> 1183     std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut),
                                                   >> 1184        minKinEnergy);
                                                   >> 1185   if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy;
                                                   >> 1186   G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nBins);
                                                   >> 1187   return v;
1293 }                                                1188 }
1294                                                  1189 
1295 //....oooOO0OOooo........oooOO0OOooo........o    1190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1296                                                  1191 
1297 void G4VEnergyLossProcess::SetInverseRangeTab << 1192 G4double G4VEnergyLossProcess::MicroscopicCrossSection(
                                                   >> 1193          G4double kineticEnergy, const G4MaterialCutsCouple* couple)
1298 {                                                1194 {
1299   theInverseRangeTable = p;                   << 1195   // Cross section per atom is calculated
                                                   >> 1196   DefineMaterial(couple);
                                                   >> 1197   G4double cross = 0.0;
                                                   >> 1198   G4bool b;
                                                   >> 1199   if(theLambdaTable) 
                                                   >> 1200     cross = 
                                                   >> 1201       ((*theLambdaTable)[currentMaterialIndex])->GetValue(kineticEnergy, b)/
                                                   >> 1202       currentMaterial->GetTotNbOfAtomsPerVolume();
                                                   >> 1203 
                                                   >> 1204   return cross;
1300 }                                                1205 }
1301                                                  1206 
1302 //....oooOO0OOooo........oooOO0OOooo........o    1207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1303                                                  1208 
1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 1209 G4bool G4VEnergyLossProcess::StorePhysicsTable(
                                                   >> 1210        const G4ParticleDefinition* part, const G4String& directory, 
                                                   >> 1211        G4bool ascii)
1305 {                                                1212 {
1306   if(1 < verboseLevel) {                      << 1213   G4bool res = true;
1307     G4cout << "### Set Lambda table " << p << << 1214   if ( baseParticle || part != particle ) return res;
1308            << " for " << particle->GetParticl << 1215 
1309            << " and process " << GetProcessNa << 1216   if ( theDEDXTable ) {
                                                   >> 1217     const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii);
                                                   >> 1218     if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false;
1310   }                                              1219   }
1311   theLambdaTable = p;                         << 
1312   tablesAreBuilt = true;                      << 
1313                                                  1220 
1314   if(isMaster && nullptr != p) {              << 1221   if ( theDEDXunRestrictedTable ) {
1315     delete theEnergyOfCrossSectionMax;        << 1222     const G4String name = 
1316     theEnergyOfCrossSectionMax = nullptr;     << 1223       GetPhysicsTableFileName(part,directory,"DEDXnr",ascii);
1317     if(fEmTwoPeaks == fXSType) {              << 1224     if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false;
1318       if(nullptr != fXSpeaks) {               << 
1319   for(auto & ptr : *fXSpeaks) { delete ptr; } << 
1320   delete fXSpeaks;                            << 
1321       }                                       << 
1322       G4LossTableBuilder* bld = lManager->Get << 
1323       fXSpeaks = G4EmUtility::FillPeaksStruct << 
1324       if(nullptr == fXSpeaks) { fXSType = fEm << 
1325     }                                         << 
1326     if(fXSType == fEmOnePeak) {               << 
1327       theEnergyOfCrossSectionMax = G4EmUtilit << 
1328       if(nullptr == theEnergyOfCrossSectionMa << 
1329     }                                         << 
1330   }                                              1225   }
1331 }                                             << 
1332                                                  1226 
1333 //....oooOO0OOooo........oooOO0OOooo........o << 1227   if ( theDEDXSubTable ) {
                                                   >> 1228     const G4String name = 
                                                   >> 1229       GetPhysicsTableFileName(part,directory,"SubDEDX",ascii);
                                                   >> 1230     if( !theDEDXSubTable->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1231   }
1334                                                  1232 
1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 1233   if ( theIonisationTable ) {
1336 {                                             << 1234     const G4String name = 
1337   theEnergyOfCrossSectionMax = p;             << 1235       GetPhysicsTableFileName(part,directory,"Ionisation",ascii);
1338 }                                             << 1236     if( !theIonisationTable->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1237   }
1339                                                  1238 
1340 //....oooOO0OOooo........oooOO0OOooo........o << 1239   if ( theIonisationSubTable ) {
                                                   >> 1240     const G4String name = 
                                                   >> 1241       GetPhysicsTableFileName(part,directory,"SubIonisation",ascii);
                                                   >> 1242     if( !theIonisationSubTable->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1243   }
1341                                                  1244 
1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 1245   if ( theCSDARangeTable && isIonisation ) {
1343 {                                             << 1246     const G4String name = 
1344   fXSpeaks = ptr;                             << 1247       GetPhysicsTableFileName(part,directory,"CSDARange",ascii);
1345 }                                             << 1248     if( !theCSDARangeTable->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1249   }
1346                                                  1250 
1347 //....oooOO0OOooo........oooOO0OOooo........o << 1251   if ( theRangeTableForLoss && isIonisation ) {
                                                   >> 1252     const G4String name = 
                                                   >> 1253       GetPhysicsTableFileName(part,directory,"Range",ascii);
                                                   >> 1254     if( !theRangeTableForLoss->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1255   }
1348                                                  1256 
1349 const G4Element* G4VEnergyLossProcess::GetCur << 1257   if ( theInverseRangeTable && isIonisation ) {
1350 {                                             << 1258     const G4String name = 
1351   return (nullptr != currentModel)            << 1259       GetPhysicsTableFileName(part,directory,"InverseRange",ascii);
1352     ? currentModel->GetCurrentElement(current << 1260     if( !theInverseRangeTable->StorePhysicsTable(name,ascii)) res = false;
1353 }                                             << 1261   }
1354                                                  1262 
1355 //....oooOO0OOooo........oooOO0OOooo........o << 1263   if ( theLambdaTable  && isIonisation) {
                                                   >> 1264     const G4String name = 
                                                   >> 1265       GetPhysicsTableFileName(part,directory,"Lambda",ascii);
                                                   >> 1266     if( !theLambdaTable->StorePhysicsTable(name,ascii)) res = false;
                                                   >> 1267   }
1356                                                  1268 
1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1269   if ( theSubLambdaTable  && isIonisation) {
1358                                               << 1270     const G4String name = 
1359 {                                             << 1271       GetPhysicsTableFileName(part,directory,"SubLambda",ascii);
1360   if(f > 0.0) {                               << 1272     if( !theSubLambdaTable->StorePhysicsTable(name,ascii)) res = false;
1361     biasFactor = f;                           << 1273   }
1362     weightFlag = flag;                        << 1274   if ( res ) {
1363     if(1 < verboseLevel) {                    << 1275     if(0 < verboseLevel) {
1364       G4cout << "### SetCrossSectionBiasingFa << 1276       G4cout << "Physics tables are stored for " << particle->GetParticleName()
1365              << " process " << GetProcessName << 1277              << " and process " << GetProcessName()
1366              << " biasFactor= " << f << " wei << 1278        << " in the directory <" << directory
1367              << G4endl;                       << 1279        << "> " << G4endl;
1368     }                                            1280     }
                                                   >> 1281   } else {
                                                   >> 1282     G4cout << "Fail to store Physics Tables for " 
                                                   >> 1283      << particle->GetParticleName()
                                                   >> 1284            << " and process " << GetProcessName()
                                                   >> 1285      << " in the directory <" << directory
                                                   >> 1286      << "> " << G4endl;
1369   }                                              1287   }
                                                   >> 1288   return res;
1370 }                                                1289 }
1371                                                  1290 
1372 //....oooOO0OOooo........oooOO0OOooo........o << 1291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
1373                                                  1292 
1374 void G4VEnergyLossProcess::ActivateForcedInte << 1293 G4bool G4VEnergyLossProcess::RetrievePhysicsTable(
1375                                               << 1294        const G4ParticleDefinition* part, const G4String& directory,
1376                                               << 1295        G4bool ascii)
1377 {                                                1296 {
1378   if(nullptr == biasManager) { biasManager =  << 1297   G4bool res = true;
                                                   >> 1298   const G4String particleName = part->GetParticleName();
                                                   >> 1299 
1379   if(1 < verboseLevel) {                         1300   if(1 < verboseLevel) {
1380     G4cout << "### ActivateForcedInteraction: << 1301     G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for "
1381            << " process " << GetProcessName() << 1302            << particleName << " and process " << GetProcessName()
1382            << " length(mm)= " << length/mm    << 1303            << "; tables_are_built= " << tablesAreBuilt
1383            << " in G4Region <" << region      << 1304            << G4endl;
1384            << "> weightFlag= " << flag        << 
1385            << G4endl;                         << 
1386   }                                              1305   }
1387   weightFlag = flag;                          << 1306   if(particle == part) {
1388   biasManager->ActivateForcedInteraction(leng << 
1389 }                                             << 
1390                                                  1307 
1391 //....oooOO0OOooo........oooOO0OOooo........o << 1308     G4bool yes = true;
1392                                               << 1309     G4bool fpi = true;
1393 void                                          << 1310     if ( !baseParticle ) {
1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1311       G4String filename;
1395                                               << 1312 
1396                                               << 1313       filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii);
1397 {                                             << 1314       yes = theDEDXTable->ExistPhysicsTable(filename);
1398   if (0.0 <= factor) {                        << 1315       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
1399     // Range cut can be applied only for e-   << 1316         theDEDXTable,filename,ascii);
1400     if(0.0 == factor && secondaryParticle !=  << 1317       if(yes) {
1401       { return; }                             << 1318         if (0 < verboseLevel) {
                                                   >> 1319           G4cout << "DEDX table for " << particleName 
                                                   >> 1320      << " is Retrieved from <"
                                                   >> 1321                  << filename << ">"
                                                   >> 1322                  << G4endl;
                                                   >> 1323         }
                                                   >> 1324       } else {
                                                   >> 1325         fpi = false;
                                                   >> 1326         if (1 < verboseLevel) {
                                                   >> 1327           G4cout << "DEDX table for " << particleName << " from file <"
                                                   >> 1328                  << filename << "> is not Retrieved"
                                                   >> 1329                  << G4endl;
                                                   >> 1330         }
                                                   >> 1331       }
1402                                                  1332 
1403     if(nullptr == biasManager) { biasManager  << 1333       filename = GetPhysicsTableFileName(part,directory,"Range",ascii);
1404     biasManager->ActivateSecondaryBiasing(reg << 1334       yes = theRangeTableForLoss->ExistPhysicsTable(filename);
1405     if(1 < verboseLevel) {                    << 1335       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
1406       G4cout << "### ActivateSecondaryBiasing << 1336                     theRangeTableForLoss,filename,ascii);
1407              << " process " << GetProcessName << 1337       if(yes) {
1408              << " factor= " << factor         << 1338         if (0 < verboseLevel) {
1409              << " in G4Region <" << region    << 1339           G4cout << "Range table for loss for " << particleName 
1410              << "> energyLimit(MeV)= " << ene << 1340      << " is Retrieved from <"
1411              << G4endl;                       << 1341                  << filename << ">"
1412     }                                         << 1342                  << G4endl;
1413   }                                           << 1343         }
1414 }                                             << 1344       } else {
                                                   >> 1345         if(fpi) {
                                                   >> 1346           res = false;
                                                   >> 1347     G4cout << "Range table for loss for " << particleName 
                                                   >> 1348      << " from file <"
                                                   >> 1349      << filename << "> is not Retrieved"
                                                   >> 1350      << G4endl;
                                                   >> 1351         }
                                                   >> 1352       }
1415                                                  1353 
1416 //....oooOO0OOooo........oooOO0OOooo........o << 1354       filename = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii);
                                                   >> 1355       yes = theDEDXunRestrictedTable->ExistPhysicsTable(filename);
                                                   >> 1356       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1357                     theDEDXunRestrictedTable,filename,ascii);
                                                   >> 1358       if(yes) {
                                                   >> 1359         if (0 < verboseLevel) {
                                                   >> 1360           G4cout << "Non-restricted DEDX table for " << particleName 
                                                   >> 1361      << " is Retrieved from <"
                                                   >> 1362                  << filename << ">"
                                                   >> 1363                  << G4endl;
                                                   >> 1364         }
                                                   >> 1365       } else {
                                                   >> 1366         if (1 < verboseLevel) {
                                                   >> 1367           G4cout << "Non-restricted DEDX table for " << particleName 
                                                   >> 1368      << " from file <"
                                                   >> 1369                  << filename << "> is not Retrieved"
                                                   >> 1370                  << G4endl;
                                                   >> 1371         }
                                                   >> 1372       }
1417                                                  1373 
1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1374       filename = GetPhysicsTableFileName(part,directory,"CSDARange",ascii);
1419 {                                             << 1375       yes = theCSDARangeTable->ExistPhysicsTable(filename);
1420   isIonisation = val;                         << 1376       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
1421   aGPILSelection = (val) ? CandidateForSelect << 1377                     theCSDARangeTable,filename,ascii);
1422 }                                             << 1378       if(yes) {
                                                   >> 1379         if (0 < verboseLevel) {
                                                   >> 1380           G4cout << "CSDA Range table for " << particleName 
                                                   >> 1381      << " is Retrieved from <"
                                                   >> 1382                  << filename << ">"
                                                   >> 1383                  << G4endl;
                                                   >> 1384         }
                                                   >> 1385       } else {
                                                   >> 1386   G4cout << "CSDA Range table for loss for " << particleName 
                                                   >> 1387          << " does not exist"
                                                   >> 1388          << G4endl;
                                                   >> 1389       }
1423                                                  1390 
1424 //....oooOO0OOooo........oooOO0OOooo........o << 1391       filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii);
                                                   >> 1392       yes = theInverseRangeTable->ExistPhysicsTable(filename);
                                                   >> 1393       if(yes)  yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1394                      theInverseRangeTable,filename,ascii);
                                                   >> 1395       if(yes) {
                                                   >> 1396         if (0 < verboseLevel) {
                                                   >> 1397           G4cout << "InverseRange table for " << particleName 
                                                   >> 1398      << " is Retrieved from <"
                                                   >> 1399                  << filename << ">"
                                                   >> 1400                  << G4endl;
                                                   >> 1401         }
                                                   >> 1402       } else {
                                                   >> 1403         if(fpi) {
                                                   >> 1404           res = false;
                                                   >> 1405           G4cout << "InverseRange table for " << particleName 
                                                   >> 1406      << " from file <"
                                                   >> 1407                  << filename << "> is not Retrieved"
                                                   >> 1408                  << G4endl;
1425                                                  1409 
1426  void G4VEnergyLossProcess::SetLinearLossLimi << 1410         }
1427 {                                             << 1411       }
1428   if(0.0 < val && val < 1.0) {                << 
1429     linLossLimit = val;                       << 
1430     actLinLossLimit = true;                   << 
1431   } else { PrintWarning("SetLinearLossLimit", << 
1432 }                                             << 
1433                                                  1412 
1434 //....oooOO0OOooo........oooOO0OOooo........o << 1413       filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii);
                                                   >> 1414       yes = theLambdaTable->ExistPhysicsTable(filename);
                                                   >> 1415       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1416                     theLambdaTable,filename,ascii);
                                                   >> 1417       if(yes) {
                                                   >> 1418         if (0 < verboseLevel) {
                                                   >> 1419           G4cout << "Lambda table for " << particleName 
                                                   >> 1420      << " is Retrieved from <"
                                                   >> 1421                  << filename << ">"
                                                   >> 1422                  << G4endl;
                                                   >> 1423         }
                                                   >> 1424       } else {
                                                   >> 1425         if(fpi) {
                                                   >> 1426           res = false;
                                                   >> 1427           G4cout << "Lambda table for " << particleName << " from file <"
                                                   >> 1428                  << filename << "> is not Retrieved"
                                                   >> 1429                  << G4endl;
                                                   >> 1430         }
                                                   >> 1431       }
1435                                                  1432 
1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1433       filename = GetPhysicsTableFileName(part,directory,"SubDEDX",ascii);
1437 {                                             << 1434       yes = theDEDXSubTable->ExistPhysicsTable(filename);
1438   if(0.0 < v1 && 0.0 < v2) {                  << 1435       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
1439     dRoverRange = std::min(1.0, v1);          << 1436                     theDEDXSubTable,filename,ascii);
1440     finalRange = std::min(v2, 1.e+50);        << 1437       if(yes) {
1441   } else {                                    << 1438         if (0 < verboseLevel) {
1442     PrintWarning("SetStepFunctionV1", v1);    << 1439           G4cout << "SubDEDX table for " << particleName 
1443     PrintWarning("SetStepFunctionV2", v2);    << 1440      << " is Retrieved from <"
1444   }                                           << 1441                  << filename << ">"
1445 }                                             << 1442                  << G4endl;
                                                   >> 1443         }
                                                   >> 1444       } else {
                                                   >> 1445         if(nSCoffRegions) {
                                                   >> 1446           res=false;
                                                   >> 1447           G4cout << "SubDEDX table for " << particleName << " from file <"
                                                   >> 1448                  << filename << "> is not Retrieved"
                                                   >> 1449                  << G4endl;
                                                   >> 1450   }
                                                   >> 1451       }
1446                                                  1452 
1447 //....oooOO0OOooo........oooOO0OOooo........o << 1453       filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii);
                                                   >> 1454       yes = theSubLambdaTable->ExistPhysicsTable(filename);
                                                   >> 1455       if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1456                     theSubLambdaTable,filename,ascii);
                                                   >> 1457       if(yes) {
                                                   >> 1458         if (0 < verboseLevel) {
                                                   >> 1459           G4cout << "SubLambda table for " << particleName 
                                                   >> 1460      << " is Retrieved from <"
                                                   >> 1461                  << filename << ">"
                                                   >> 1462                  << G4endl;
                                                   >> 1463   }
                                                   >> 1464       } else {
                                                   >> 1465         if(nSCoffRegions) {
                                                   >> 1466           res=false;
                                                   >> 1467           G4cout << "SubLambda table for " << particleName << " from file <"
                                                   >> 1468                  << filename << "> is not Retrieved"
                                                   >> 1469                  << G4endl;
                                                   >> 1470   }
                                                   >> 1471       }
1448                                                  1472 
1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1473       filename = GetPhysicsTableFileName(part,directory,"Ionisation",ascii);
1450 {                                             << 1474       yes = theIonisationTable->ExistPhysicsTable(filename);
1451   if(1.e-18 < val && val < 1.e+50) { lowestKi << 1475       if(yes) {
1452   else { PrintWarning("SetLowestEnergyLimit", << 1476   theIonisationTable = 
1453 }                                             << 1477     G4PhysicsTableHelper::PreparePhysicsTable(theIonisationTable);
                                                   >> 1478         
                                                   >> 1479   yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1480                     theIonisationTable,filename,ascii);
                                                   >> 1481       }
                                                   >> 1482       if(yes) {
                                                   >> 1483         if (0 < verboseLevel) {
                                                   >> 1484           G4cout << "Ionisation table for " << particleName 
                                                   >> 1485      << " is Retrieved from <"
                                                   >> 1486                  << filename << ">"
                                                   >> 1487                  << G4endl;
                                                   >> 1488         }
                                                   >> 1489       } 
1454                                                  1490 
1455 //....oooOO0OOooo........oooOO0OOooo........o << 1491       filename = GetPhysicsTableFileName(part,directory,"SubIonisation",ascii);
                                                   >> 1492       yes = theIonisationSubTable->ExistPhysicsTable(filename);
                                                   >> 1493       if(yes) {
                                                   >> 1494   theIonisationSubTable = 
                                                   >> 1495     G4PhysicsTableHelper::PreparePhysicsTable(theIonisationSubTable);
                                                   >> 1496         yes = G4PhysicsTableHelper::RetrievePhysicsTable(
                                                   >> 1497                     theIonisationSubTable,filename,ascii);
                                                   >> 1498       }
                                                   >> 1499       if(yes) {
                                                   >> 1500         if (0 < verboseLevel) {
                                                   >> 1501           G4cout << "SubIonisation table for " << particleName 
                                                   >> 1502      << " is Retrieved from <"
                                                   >> 1503                  << filename << ">"
                                                   >> 1504                  << G4endl;
                                                   >> 1505         }
                                                   >> 1506       } 
                                                   >> 1507     }
                                                   >> 1508   }
1456                                                  1509 
1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1510   return res;
1458 {                                             << 
1459   if(2 < n && n < 1000000000) {               << 
1460     nBins = n;                                << 
1461     actBinning = true;                        << 
1462   } else {                                    << 
1463     G4double e = (G4double)n;                 << 
1464     PrintWarning("SetDEDXBinning", e);        << 
1465   }                                           << 
1466 }                                                1511 }
1467                                                  1512 
1468 //....oooOO0OOooo........oooOO0OOooo........o    1513 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1469                                               << 1514   
1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1515 void G4VEnergyLossProcess::AddCollaborativeProcess(
                                                   >> 1516             G4VEnergyLossProcess* p)
1471 {                                                1517 {
1472   if(1.e-18 < e && e < maxKinEnergy) {        << 1518   scProcesses.push_back(p);
1473     minKinEnergy = e;                         << 1519   nProcesses++;
1474     actMinKinEnergy = true;                   << 1520   if (0 < verboseLevel) 
1475   } else { PrintWarning("SetMinKinEnergy", e) << 1521     G4cout << "### The process " << p->GetProcessName() 
                                                   >> 1522      << " is added to the list of collaborative processes of "
                                                   >> 1523      << GetProcessName() << G4endl; 
1476 }                                                1524 }
1477                                                  1525 
1478 //....oooOO0OOooo........oooOO0OOooo........o    1526 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1479                                                  1527 
1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1528 G4double G4VEnergyLossProcess::GetDEDXDispersion(
                                                   >> 1529                                   const G4MaterialCutsCouple *couple,
                                                   >> 1530                                   const G4DynamicParticle* dp,
                                                   >> 1531                                         G4double length)
1481 {                                                1532 {
1482   if(minKinEnergy < e && e < 1.e+50) {        << 1533   DefineMaterial(couple);
1483     maxKinEnergy = e;                         << 1534   G4double ekin = dp->GetKineticEnergy();
1484     actMaxKinEnergy = true;                   << 1535   G4VEmModel* currentModel = SelectModel(ekin*massRatio);
1485     if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1536   G4double tmax = currentModel->MaxSecondaryKinEnergy(dp);
1486   } else { PrintWarning("SetMaxKinEnergy", e) << 1537   tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]);
                                                   >> 1538   G4double d = 0.0;
                                                   >> 1539   G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations();
                                                   >> 1540   if(fm) d = fm->Dispersion(currentMaterial,dp,tmax,length);
                                                   >> 1541   return d;
1487 }                                                1542 }
1488                                                  1543 
1489 //....oooOO0OOooo........oooOO0OOooo........o    1544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1490                                                  1545 
1491 void G4VEnergyLossProcess::PrintWarning(const << 1546 void G4VEnergyLossProcess::ActivateDeexcitation(G4bool, const G4Region*)
1492 {                                             << 1547 {}
1493   G4String ss = "G4VEnergyLossProcess::" + ti << 
1494   G4ExceptionDescription ed;                  << 
1495   ed << "Parameter is out of range: " << val  << 
1496      << " it will have no effect!\n" << "  Pr << 
1497      << GetProcessName() << "  nbins= " << nB << 
1498      << " Emin(keV)= " << minKinEnergy/keV    << 
1499      << " Emax(GeV)= " << maxKinEnergy/GeV;   << 
1500   G4Exception(ss, "em0044", JustWarning, ed); << 
1501 }                                             << 
1502                                                  1548 
1503 //....oooOO0OOooo........oooOO0OOooo........o    1549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1504                                                  1550 
1505 void G4VEnergyLossProcess::ProcessDescription << 
1506 {                                             << 
1507   if(nullptr != particle) { StreamInfo(out, * << 
1508 }                                             << 
1509                                               << 
1510 //....oooOO0OOooo........oooOO0OOooo........o << 
1511                                                  1551