Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.cc,v 1.90 2006/06/29 19:55:23 gunter Exp $ >> 27 // GEANT4 tag $Name: geant4-08-02 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: Vladimir Ivanchenko << 40 // Modifications: 38 // 41 // >> 42 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 43 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 44 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 45 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 46 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 47 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 48 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 49 // 24-01-03 Make models region aware (V.Ivanchenko) >> 50 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 51 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 52 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 53 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 54 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 55 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 56 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 57 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko) >> 58 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 59 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 60 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 61 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 62 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 63 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 64 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 65 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 66 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 67 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 68 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 69 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 70 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 71 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 72 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko) >> 73 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range >> 74 // calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko) >> 75 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko) >> 76 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko) >> 77 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko) >> 78 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko) >> 79 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko) >> 80 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 81 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 82 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 83 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 84 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) >> 85 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 86 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 87 // 25-07-05 Add extra protection PostStep for non-integral mode (V.Ivanchenko) >> 88 // 12-08-05 Integral=false; SetStepFunction(0.2, 0.1*mm) (mma) >> 89 // 18-08-05 Return back both AlongStep and PostStep from 7.0 (V.Ivanchenko) >> 90 // 02-09-05 Default StepFunction 0.2 1 mm + integral (V.Ivanchenko) >> 91 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 92 // 05-10-05 protection against 0 energy loss added (L.Urban) >> 93 // 17-10-05 protection above has been removed (L.Urban) >> 94 // 06-01-06 reset currentCouple when StepFunction is changed (V.Ivanchenko) >> 95 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 96 // 18-01-06 Clean up subcutoff including recalculation of presafety (VI) >> 97 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 98 // 22-03-06 Add control on warning printout AlongStep (VI) >> 99 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 100 // 07-06-06 Do not reflect AlongStep in subcutoff regime (V.Ivanchenko) 39 // 101 // 40 // Class Description: 102 // Class Description: 41 // 103 // 42 // It is the unified energy loss process it ca 104 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 105 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 106 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 107 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 108 // that information on fly. 47 // ------------------------------------------- 109 // ------------------------------------------------------------------- 48 // 110 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 112 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 113 52 #include "G4VEnergyLossProcess.hh" 114 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4ProcessManager.hh" << 56 #include "G4LossTableManager.hh" 115 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" << 58 #include "G4Step.hh" 116 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 117 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" << 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 118 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 119 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 120 #include "G4DataVector.hh" 67 #include "G4PhysicsLogVector.hh" 121 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 122 #include "G4VParticleChange.hh" >> 123 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 124 #include "G4Electron.hh" >> 125 #include "G4Positron.hh" >> 126 #include "G4Proton.hh" 70 #include "G4ProcessManager.hh" 127 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 128 #include "G4UnitsTable.hh" >> 129 #include "G4GenericIon.hh" >> 130 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 131 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 132 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 133 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" << 134 #include "G4Navigator.hh" 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" 135 #include "G4TransportationManager.hh" 78 #include "G4VAtomDeexcitation.hh" << 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" << 81 #include "G4Log.hh" << 82 #include <iostream> << 83 136 84 //....oooOO0OOooo........oooOO0OOooo........oo 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 138 86 namespace << 87 { << 88 G4String tnames[7] = << 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 90 } << 91 << 92 << 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con 139 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 94 G4P << 140 G4ProcessType type): G4VContinuousDiscreteProcess(name, type), 95 G4VContinuousDiscreteProcess(name, type) << 141 nSCoffRegions(0), 96 { << 142 idxSCoffRegions(0), 97 theParameters = G4EmParameters::Instance(); << 143 nProcesses(0), 98 SetVerboseLevel(1); << 144 theDEDXTable(0), 99 << 145 theDEDXSubTable(0), 100 // low energy limit << 146 theDEDXunRestrictedTable(0), 101 lowestKinEnergy = theParameters->LowestElect << 147 theRangeTableForLoss(0), 102 << 148 theCSDARangeTable(0), 103 // Size of tables << 149 theSecondaryRangeTable(0), 104 minKinEnergy = 0.1*CLHEP::keV; << 150 theInverseRangeTable(0), 105 maxKinEnergy = 100.0*CLHEP::TeV; << 151 theLambdaTable(0), 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 152 theSubLambdaTable(0), 107 nBins = 84; << 153 theDEDXAtMaxEnergy(0), 108 nBinsCSDA = 35; << 154 theRangeAtMaxEnergy(0), >> 155 theEnergyOfCrossSectionMax(0), >> 156 theCrossSectionMax(0), >> 157 particle(0), >> 158 baseParticle(0), >> 159 secondaryParticle(0), >> 160 currentCouple(0), >> 161 nBins(90), >> 162 nBinsCSDA(70), >> 163 nWarnings(0), >> 164 linLossLimit(0.05), >> 165 minSubRange(0.1), >> 166 lambdaFactor(0.8), >> 167 mfpKinEnergy(0.0), >> 168 lossFluctuationFlag(true), >> 169 lossFluctuationArePossible(true), >> 170 rndmStepFlag(false), >> 171 tablesAreBuilt(false), >> 172 integral(true), >> 173 meanFreePath(false), >> 174 aboveCSmax(true), >> 175 isIonisation(true), >> 176 useSubCutoff(false) >> 177 { >> 178 >> 179 lowestKinEnergy = 1.*eV; >> 180 minKinEnergy = 0.1*keV; >> 181 maxKinEnergy = 100.0*GeV; >> 182 maxKinEnergyCSDA = 1.0*GeV; 109 183 110 invLambdaFactor = 1.0/lambdaFactor; << 184 pParticleChange = &fParticleChange; 111 185 112 // default linear loss limit << 186 // default dRoverRange and finalRange 113 finalRange = 1.*CLHEP::mm; << 187 SetStepFunction(0.2, 1.0*mm); >> 188 SetVerboseLevel(1); >> 189 thePositron = G4Positron::Positron(); 114 190 115 // run time objects << 116 pParticleChange = &fParticleChange; << 117 fParticleChange.SetSecondaryWeightByProcess( << 118 modelManager = new G4EmModelManager(); 191 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT << 192 (G4LossTableManager::Instance())->Register(this); 120 ->GetSafetyHelper(); << 193 scoffRegions.clear(); 121 aGPILSelection = CandidateForSelection; << 194 scProcesses.clear(); 122 << 195 123 // initialise model << 196 navigator = (G4TransportationManager::GetTransportationManager()) 124 lManager = G4LossTableManager::Instance(); << 197 ->GetNavigatorForTracking(); 125 lManager->Register(this); << 198 const G4int n = 7; 126 isMaster = lManager->IsMaster(); << 199 vstrag = new G4PhysicsLogVector(keV, GeV, n); 127 << 200 G4double s[n] = {-0.2, -0.85, -1.3, -1.578, -1.76, -1.85, -1.9}; 128 G4LossTableBuilder* bld = lManager->GetTable << 201 for(G4int i=0; i<n; i++) {vstrag->PutValue(i, s[i]);} 129 theDensityFactor = bld->GetDensityFactors(); << 130 theDensityIdx = bld->GetCoupleIndexes(); << 131 << 132 scTracks.reserve(10); << 133 secParticles.reserve(12); << 134 emModels = new std::vector<G4VEmModel*>; << 135 } 202 } 136 203 137 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 205 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 206 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 207 { 141 if (isMaster) { << 208 delete vstrag; 142 if(nullptr == baseParticle) { delete theDa << 209 Clear(); 143 delete theEnergyOfCrossSectionMax; << 210 144 if(nullptr != fXSpeaks) { << 211 if ( !baseParticle ) { 145 for(auto const & v : *fXSpeaks) { delete << 212 if(theDEDXTable && theRangeTableForLoss) { 146 delete fXSpeaks; << 213 theDEDXTable->clearAndDestroy(); 147 } << 214 if(theDEDXSubTable) theDEDXSubTable->clearAndDestroy(); >> 215 } >> 216 if(theDEDXunRestrictedTable && theCSDARangeTable) >> 217 theDEDXunRestrictedTable->clearAndDestroy(); >> 218 if(theCSDARangeTable) theCSDARangeTable->clearAndDestroy(); >> 219 if(theRangeTableForLoss) theRangeTableForLoss->clearAndDestroy(); >> 220 if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy(); >> 221 if(theLambdaTable) theLambdaTable->clearAndDestroy(); >> 222 if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy(); 148 } 223 } >> 224 149 delete modelManager; 225 delete modelManager; 150 delete biasManager; << 226 (G4LossTableManager::Instance())->DeRegister(this); 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); << 154 } 227 } 155 228 156 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 230 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 231 void G4VEnergyLossProcess::Clear() 159 << 160 << 161 { 232 { 162 return cut; << 233 if(1 < verboseLevel) 163 } << 234 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() >> 235 << G4endl; 164 236 165 //....oooOO0OOooo........oooOO0OOooo........oo << 237 if(theDEDXAtMaxEnergy) delete [] theDEDXAtMaxEnergy; >> 238 if(theRangeAtMaxEnergy) delete [] theRangeAtMaxEnergy; >> 239 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; >> 240 if(theCrossSectionMax) delete [] theCrossSectionMax; >> 241 if(idxSCoffRegions) delete [] idxSCoffRegions; 166 242 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 243 theDEDXAtMaxEnergy = 0; 168 G4VEmFlu << 244 theRangeAtMaxEnergy = 0; 169 const G4 << 245 theEnergyOfCrossSectionMax = 0; 170 { << 246 theCrossSectionMax = 0; 171 if(nullptr == ptr) { return; } << 247 tablesAreBuilt = false; 172 G4VEmFluctuationModel* afluc = (nullptr == f << 173 modelManager->AddEmModel(order, ptr, afluc, << 174 ptr->SetParticleChange(pParticleChange, aflu << 175 } << 176 << 177 //....oooOO0OOooo........oooOO0OOooo........oo << 178 248 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 249 scTracks.clear(); 180 { << 250 scProcesses.clear(); 181 if(nullptr == ptr) { return; } << 182 if(!emModels->empty()) { << 183 for(auto & em : *emModels) { if(em == ptr) << 184 } << 185 emModels->push_back(ptr); << 186 } 251 } 187 252 188 //....oooOO0OOooo........oooOO0OOooo........oo 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 189 254 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 255 void G4VEnergyLossProcess::PreparePhysicsTable( 191 << 256 const G4ParticleDefinition& part) 192 { 257 { 193 massRatio = massratio; << 194 logMassRatio = G4Log(massRatio); << 195 fFactor = charge2ratio*biasFactor; << 196 if(baseMat) { fFactor *= (*theDensityFactor) << 197 chargeSqRatio = charge2ratio; << 198 reduceFactor = 1.0/(fFactor*massRatio); << 199 } << 200 258 201 //....oooOO0OOooo........oooOO0OOooo........oo << 259 // Are particle defined? >> 260 if( !particle ) { >> 261 if(part.GetParticleType() == "nucleus" && >> 262 part.GetParticleSubType() == "generic") >> 263 particle = G4GenericIon::GenericIon(); >> 264 else particle = ∂ >> 265 } 202 266 203 void << 267 if(1 < verboseLevel) { 204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 268 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " 205 { << 269 << GetProcessName() 206 particle = G4EmTableUtil::CheckIon(this, &pa << 270 << " for " << part.GetParticleName() 207 verboseLe << 271 << " local: " << particle->GetParticleName() >> 272 << G4endl; >> 273 } 208 274 209 if( particle != &part ) { << 275 G4LossTableManager* lManager = G4LossTableManager::Instance(); 210 if(!isIon) { lManager->RegisterExtraPartic << 276 211 if(1 < verboseLevel) { << 277 if(&part != particle) { 212 G4cout << "### G4VEnergyLossProcess::Pre << 278 if(part.GetParticleType() == "nucleus") lManager->RegisterIon(&part, this); 213 << " interrupted for " << GetProc << 279 else lManager->RegisterExtraParticle(&part, this); 214 << part.GetParticleName() << " is << 215 << " spline=" << spline << G4endl << 216 } << 217 return; 280 return; 218 } 281 } 219 282 220 tablesAreBuilt = false; << 283 Clear(); 221 if (GetProcessSubType() == fIonisation) { Se << 222 284 223 G4LossTableBuilder* bld = lManager->GetTable << 285 currentCouple = 0; 224 lManager->PreparePhysicsTable(&part, this); << 286 preStepLambda = 0.0; >> 287 mfpKinEnergy = DBL_MAX; >> 288 preStepMFP = DBL_MAX; >> 289 fRange = DBL_MAX; 225 290 226 // Base particle and set of models can be de 291 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 292 InitialiseEnergyLossProcess(particle, baseParticle); 228 293 229 // parameters of the process << 294 // Tables preparation 230 if(!actLossFluc) { lossFluctuationFlag = the << 295 if (!baseParticle) { 231 useCutAsFinalRange = theParameters->UseCutAs << 296 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 297 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 298 if (lManager->BuildCSDARange()) { 234 if(!actBinning) { nBins = theParameters->Num << 299 theDEDXunRestrictedTable = 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 300 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 301 theCSDARangeTable = 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 302 G4PhysicsTableHelper::PreparePhysicsTable(theCSDARangeTable); 238 if(!actLinLossLimit) { linLossLimit = thePar << 303 } 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 << 246 theParameters->DefineRegParamForLoss(this); << 247 304 248 fRangeEnergy = 0.0; << 305 theRangeTableForLoss = >> 306 G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 307 theInverseRangeTable = >> 308 G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); >> 309 >> 310 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 311 if (nSCoffRegions) { >> 312 theDEDXSubTable = >> 313 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); >> 314 theSubLambdaTable = >> 315 G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); >> 316 } >> 317 } 249 318 250 G4double initialCharge = particle->GetPDGCha 319 G4double initialCharge = particle->GetPDGCharge(); 251 G4double initialMass = particle->GetPDGMas 320 G4double initialMass = particle->GetPDGMass(); >> 321 chargeSquare = initialCharge*initialCharge/(eplus*eplus); >> 322 chargeSqRatio = 1.0; >> 323 massRatio = 1.0; >> 324 reduceFactor = 1.0; 252 325 253 theParameters->FillStepFunction(particle, th << 326 if (baseParticle) { 254 << 327 massRatio = (baseParticle->GetPDGMass())/initialMass; 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G 328 G4double q = initialCharge/baseParticle->GetPDGCharge(); 260 chargeSqRatio = q*q; 329 chargeSqRatio = q*q; 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 << 330 reduceFactor = 1.0/(chargeSqRatio*massRatio); 262 } 331 } 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 332 267 // Tables preparation << 333 theCuts = modelManager->Initialise(particle, secondaryParticle, 268 if (isMaster && nullptr == baseParticle) { << 334 minSubRange, verboseLevel); 269 if(nullptr == theData) { theData = new G4E << 335 >> 336 // Sub Cutoff Regime >> 337 if (nSCoffRegions>0) { >> 338 theSubCuts = modelManager->SubCutoff(); 270 339 271 if(nullptr != theDEDXTable && isIonisation << 340 const G4ProductionCutsTable* theCoupleTable= 272 if(nullptr != theIonisationTable && theD << 341 G4ProductionCutsTable::GetProductionCutsTable(); 273 theData->CleanTable(0); << 342 size_t numOfCouples = theCoupleTable->GetTableSize(); 274 theDEDXTable = theIonisationTable; << 343 idxSCoffRegions = new G4int[numOfCouples]; 275 theIonisationTable = nullptr; << 344 >> 345 for (size_t j=0; j<numOfCouples; j++) { >> 346 >> 347 const G4MaterialCutsCouple* couple = >> 348 theCoupleTable->GetMaterialCutsCouple(j); >> 349 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); >> 350 G4int reg = 0; >> 351 for(G4int i=0; i<nSCoffRegions; i++) { >> 352 if( pcuts == scoffRegions[i]->GetProductionCuts()) reg = 1; 276 } 353 } 277 } << 354 idxSCoffRegions[j] = reg; 278 << 279 theDEDXTable = theData->MakeTable(theDEDXT << 280 bld->InitialiseBaseMaterials(theDEDXTable) << 281 theData->UpdateTable(theIonisationTable, 1 << 282 << 283 if (theParameters->BuildCSDARange()) { << 284 theDEDXunRestrictedTable = theData->Make << 285 if(isIonisation) { theCSDARangeTable = t << 286 } << 287 << 288 theLambdaTable = theData->MakeTable(4); << 289 if(isIonisation) { << 290 theRangeTableForLoss = theData->MakeTabl << 291 theInverseRangeTable = theData->MakeTabl << 292 } 355 } 293 } 356 } 294 357 295 // forced biasing << 358 lManager->EnergyLossProcessIsInitialised(particle, this); 296 if(nullptr != biasManager) { << 297 biasManager->Initialise(part,GetProcessNam << 298 biasFlag = false; << 299 } << 300 baseMat = bld->GetBaseMaterialFlag(); << 301 numberOfModels = modelManager->NumberOfModel << 302 currentModel = modelManager->GetModel(0); << 303 G4EmTableUtil::UpdateModels(this, modelManag << 304 numberOfModels, << 305 mainSecondaries, << 306 theParameters->U << 307 theCuts = modelManager->Initialise(particle, << 308 verboseLe << 309 // subcut processor << 310 if(isIonisation) { << 311 subcutProducer = lManager->SubCutProducer( << 312 } << 313 if(1 == nSCoffRegions) { << 314 if((*scoffRegions)[0]->GetName() == "Defau << 315 delete scoffRegions; << 316 scoffRegions = nullptr; << 317 nSCoffRegions = 0; << 318 } << 319 } << 320 359 321 if(1 < verboseLevel) { << 360 if (1 < verboseLevel) { 322 G4cout << "G4VEnergyLossProcess::PrepearPh << 361 G4cout << "G4VEnergyLossProcess::Initialise() is done " 323 << " for " << GetProcessName() << " << 362 << " chargeSqRatio= " << chargeSqRatio 324 << " isIon= " << isIon << " spline= << 325 if(baseParticle) { << 326 G4cout << "; base: " << baseParticle->Ge << 327 } << 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa << 330 << " massRatio= " << massRatio 363 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 364 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 365 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 366 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { << 367 for (G4int i=0; i<nSCoffRegions; i++) { 335 const G4Region* r = (*scoffRegions)[i] << 368 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 369 G4cout << " " << r->GetName() << G4endl; 337 } 370 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 371 } 341 } 372 } 342 } 373 } 343 374 344 //....oooOO0OOooo........oooOO0OOooo........oo 375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 376 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 377 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 378 { 348 if(1 < verboseLevel) { << 379 if(1 < verboseLevel) { 349 G4cout << "### G4VEnergyLossProcess::Build 380 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 381 << GetProcessName() 351 << " and particle " << part.GetPart 382 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 383 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { << 384 if(baseParticle) G4cout << "; base: " << baseParticle->GetParticleName(); 354 G4cout << "; base: " << baseParticle->Ge << 355 } << 356 G4cout << G4endl; 385 G4cout << G4endl; 357 G4cout << " TablesAreBuilt= " << tables << 358 << " spline=" << spline << " ptr: " << 359 } 386 } 360 387 361 if(&part == particle) { << 388 if(!tablesAreBuilt && &part == particle) 362 if(isMaster) { << 389 G4LossTableManager::Instance()->BuildPhysicsTable(particle, this); 363 lManager->BuildPhysicsTable(particle, th << 390 364 << 391 if(0 < verboseLevel && (&part == particle) && !baseParticle) 365 } else { << 392 PrintInfoDefinition(); 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 << 369 numberOfModels = modelManager->NumberOfM << 370 G4EmTableUtil::BuildLocalElossProcess(th << 371 pa << 372 tablesAreBuilt = true; << 373 baseMat = masterProcess->UseBaseMaterial << 374 lManager->LocalPhysicsTables(particle, t << 375 } << 376 << 377 // needs to be done only once << 378 safetyHelper->InitialiseHelper(); << 379 } << 380 // Added tracking cut to avoid tracking arti << 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } << 387 } << 388 393 389 // protection against double printout << 390 if(theParameters->IsPrintLocked()) { return; << 391 << 392 // explicitly defined printout by particle n << 393 G4String num = part.GetParticleName(); << 394 if(1 < verboseLevel || << 395 (0 < verboseLevel && (num == "e-" || << 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } << 404 if(1 < verboseLevel) { 394 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 395 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 396 << GetProcessName() 407 << " and particle " << part.GetPart 397 << " and particle " << part.GetParticleName(); 408 if(isIonisation) { G4cout << " isIonisati << 398 if(isIonisation) G4cout << " isIonisation flag = 1"; 409 G4cout << " baseMat=" << baseMat << G4endl << 399 G4cout << G4endl; 410 } 400 } 411 } 401 } 412 402 413 //....oooOO0OOooo........oooOO0OOooo........oo 403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 404 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED << 405 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, >> 406 G4VEmFluctuationModel* fluc, >> 407 const G4Region* region) 416 { 408 { 417 G4PhysicsTable* table = nullptr; << 409 modelManager->AddEmModel(order, p, fluc, region); 418 G4double emax = maxKinEnergy; << 410 if(p) p->SetParticleChange(pParticleChange, fluc); 419 G4int bin = nBins; << 411 if(!fluc) { 420 << 412 lossFluctuationFlag = false; 421 if(fTotal == tType) { << 413 lossFluctuationArePossible = false; 422 emax = maxKinEnergyCSDA; << 423 bin = nBinsCSDA; << 424 table = theDEDXunRestrictedTable; << 425 } else if(fRestricted == tType) { << 426 table = theDEDXTable; << 427 } else { << 428 G4cout << "G4VEnergyLossProcess::BuildDEDX << 429 << tType << G4endl; << 430 } 414 } 431 if(1 < verboseLevel) { << 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 433 << " for " << GetProcessName() << 434 << " and " << particle->GetParticle << 435 << "spline=" << spline << G4endl; << 436 } << 437 if(nullptr == table) { return table; } << 438 << 439 G4LossTableBuilder* bld = lManager->GetTable << 440 G4EmTableUtil::BuildDEDXTable(this, particle << 441 table, minKinE << 442 verboseLevel, << 443 return table; << 444 } 415 } 445 416 446 //....oooOO0OOooo........oooOO0OOooo........oo 417 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 418 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 419 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 420 G4double emin, G4double emax) 449 { 421 { 450 if(nullptr == theLambdaTable) { return theLa << 422 modelManager->UpdateEmModel(nam, emin, emax); 451 << 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable << 458 G4EmTableUtil::BuildLambdaTable(this, partic << 459 bld, theLamb << 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } 423 } 464 424 465 //....oooOO0OOooo........oooOO0OOooo........oo 425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 466 426 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 427 void G4VEnergyLossProcess::ActivateSubCutoff(G4bool val, const G4Region* r) 468 const G4ParticleDefinition& pa << 469 { 428 { 470 G4String indent = (rst ? " " : ""); << 429 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 471 out << std::setprecision(6); << 430 if(val) { 472 out << G4endl << indent << GetProcessName() << 431 useSubCutoff = true; 473 if (!rst) out << " for " << part.GetParticle << 432 if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false); 474 out << " XStype:" << fXSType << 433 if (nSCoffRegions) { 475 << " SubType=" << GetProcessSubType() < << 434 for (G4int i=0; i<nSCoffRegions; i++) { 476 << " dE/dx and range tables from " << 435 if (r == scoffRegions[i]) return; 477 << G4BestUnit(minKinEnergy,"Energy") << 436 } 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } << 504 if(2 < verboseLevel) { << 505 for(std::size_t i=0; i<7; ++i) { << 506 auto ta = theData->Table(i); << 507 out << " " << tnames[i] << " addres << 508 if(nullptr != ta) { out << *ta << G4endl << 509 } 437 } >> 438 scoffRegions.push_back(r); >> 439 nSCoffRegions++; >> 440 } else { >> 441 useSubCutoff = false; 510 } 442 } 511 } 443 } 512 444 513 //....oooOO0OOooo........oooOO0OOooo........oo 445 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 446 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 447 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType) 516 { 448 { 517 if(nullptr == scoffRegions) { << 449 if(1 < verboseLevel) { 518 scoffRegions = new std::vector<const G4Reg << 450 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType >> 451 << " for " << GetProcessName() >> 452 << " and particle " << particle->GetParticleName() >> 453 << G4endl; 519 } 454 } 520 // the region is in the list << 455 G4PhysicsTable* table = 0; 521 if(!scoffRegions->empty()) { << 456 G4double emin = minKinEnergy; 522 for (auto & reg : *scoffRegions) { << 457 G4double emax = maxKinEnergy; 523 if (reg == r) { return; } << 458 G4int bin = nBins; 524 } << 459 >> 460 if(fTotal == tType) { >> 461 emax = maxKinEnergyCSDA; >> 462 bin = nBinsCSDA; >> 463 table = theDEDXunRestrictedTable; >> 464 } else if(fRestricted == tType) { >> 465 table = theDEDXTable; >> 466 } else if(fSubRestricted == tType) { >> 467 table = theDEDXSubTable; 525 } 468 } 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } << 530 469 531 //....oooOO0OOooo........oooOO0OOooo........oo << 470 // Access to materials >> 471 const G4ProductionCutsTable* theCoupleTable= >> 472 G4ProductionCutsTable::GetProductionCutsTable(); >> 473 size_t numOfCouples = theCoupleTable->GetTableSize(); 532 474 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 475 if(1 < verboseLevel) { 534 { << 476 G4cout << numOfCouples << " materials" 535 if(0 == nSCoffRegions) { return true; } << 477 << " minKinEnergy= " << minKinEnergy 536 const G4Region* r = aTrack.GetVolume()->GetL << 478 << " maxKinEnergy= " << maxKinEnergy 537 for(auto & reg : *scoffRegions) { << 479 << " EmTableType= " << tType 538 if(r == reg) { return true; } << 480 << " table= " << table >> 481 << G4endl; 539 } 482 } 540 return false; << 483 if(!table) return table; 541 } << 542 484 543 //....oooOO0OOooo........oooOO0OOooo........oo << 485 for(size_t i=0; i<numOfCouples; i++) { 544 486 545 void G4VEnergyLossProcess::StartTracking(G4Tra << 487 if(2 < verboseLevel) 546 { << 488 G4cout << "G4VEnergyLossProcess::BuildDEDXVector flag= " 547 // reset parameters for the new track << 489 << table->GetFlag(i) << G4endl; 548 theNumberOfInteractionLengthLeft = -1.0; << 490 549 mfpKinEnergy = DBL_MAX; << 491 if (table->GetFlag(i)) { 550 preStepLambda = 0.0; << 551 currentCouple = nullptr; << 552 492 553 // reset ion << 493 // create physics vector and fill it 554 if(isIon) { << 494 const G4MaterialCutsCouple* couple = 555 const G4double newmass = track->GetDefinit << 495 theCoupleTable->GetMaterialCutsCouple(i); 556 massRatio = (nullptr == baseParticle) ? CL << 496 G4PhysicsVector* aVector = new G4PhysicsLogVector(emin, emax, bin); 557 : baseParticle->GetPDGMass()/newmass; << 497 modelManager->FillDEDXVector(aVector, couple, tType); 558 logMassRatio = G4Log(massRatio); << 498 559 } << 499 // Insert vector for this material into the table 560 // forced biasing only for primary particles << 500 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); 561 if(nullptr != biasManager) { << 562 if(0 == track->GetParentID()) { << 563 biasFlag = true; << 564 biasManager->ResetForcedInteraction(); << 565 } 501 } 566 } 502 } 567 } << 568 << 569 //....oooOO0OOooo........oooOO0OOooo........oo << 570 503 571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 504 if(1 < verboseLevel) { 572 const G4Track& tr << 505 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " 573 G4GPILSelection* << 506 << particle->GetParticleName() 574 { << 507 << G4endl; 575 G4double x = DBL_MAX; << 508 // if(2 < verboseLevel) G4cout << (*table) << G4endl; 576 *selection = aGPILSelection; << 577 if(isIonisation && currentModel->IsActive(pr << 578 GetScaledRangeForScaledEnergy(preStepScale << 579 x = (useCutAsFinalRange) ? std::min(finalR << 580 currentCouple->GetProductionCuts()->GetP << 581 x = (fRange > x) ? fRange*dRoverRange + x* << 582 : fRange; << 583 /* << 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 585 << " fRange=" << fRange << " finR=" << finR << 586 */ << 587 } 509 } 588 return x; << 510 >> 511 return table; 589 } 512 } 590 513 591 //....oooOO0OOooo........oooOO0OOooo........oo 514 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 515 593 G4double G4VEnergyLossProcess::PostStepGetPhys << 516 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType tType) 594 const G4Track& tr << 595 G4double previo << 596 G4ForceCondition* << 597 { 517 { 598 // condition is set to "Not Forced" << 518 G4PhysicsTable* table = 0; 599 *condition = NotForced; << 600 G4double x = DBL_MAX; << 601 519 602 // initialisation of material, mass, charge, << 520 if(fRestricted == tType) { 603 // at the beginning of the step << 521 table = theLambdaTable; 604 DefineMaterial(track.GetMaterialCutsCouple() << 522 } else if(fSubRestricted == tType) { 605 preStepKinEnergy = track.GetKineticEne << 523 table = theSubLambdaTable; 606 preStepScaledEnergy = preStepKinEnergy*ma << 607 SelectModel(preStepScaledEnergy); << 608 << 609 if(!currentModel->IsActive(preStepScaledEner << 610 theNumberOfInteractionLengthLeft = -1.0; << 611 mfpKinEnergy = DBL_MAX; << 612 preStepLambda = 0.0; << 613 currentInteractionLength = DBL_MAX; << 614 return x; << 615 } 524 } 616 525 617 // change effective charge of a charged part << 526 if(1 < verboseLevel) { 618 if(isIon) { << 527 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() of type " 619 const G4double q2 = currentModel->ChargeSq << 528 << tType << " for process " 620 fFactor = q2*biasFactor; << 529 << GetProcessName() << " and particle " 621 if(baseMat) { fFactor *= (*theDensityFacto << 530 << particle->GetParticleName() 622 reduceFactor = 1.0/(fFactor*massRatio); << 531 << " EmTableType= " << tType 623 if (lossFluctuationFlag) { << 532 << " table= " << table 624 auto fluc = currentModel->GetModelOfFluc << 533 << G4endl; 625 fluc->SetParticleAndCharge(track.GetDefi << 626 } << 627 } << 628 << 629 // forced biasing only for primary particles << 630 if(biasManager) { << 631 if(0 == track.GetParentID() && biasFlag && << 632 biasManager->ForcedInteractionRegion((G << 633 return biasManager->GetStepLimit((G4int) << 634 } << 635 } 534 } >> 535 if(!table) return table; 636 536 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 537 // Access to materials 638 << 538 const G4ProductionCutsTable* theCoupleTable= 639 // zero cross section << 539 G4ProductionCutsTable::GetProductionCutsTable(); 640 if(preStepLambda <= 0.0) { << 540 size_t numOfCouples = theCoupleTable->GetTableSize(); 641 theNumberOfInteractionLengthLeft = -1.0; << 541 642 currentInteractionLength = DBL_MAX; << 542 for(size_t i=0; i<numOfCouples; i++) { 643 } else { << 543 644 << 544 if (table->GetFlag(i)) { 645 // non-zero cross section << 545 646 if (theNumberOfInteractionLengthLeft < 0.0 << 546 // create physics vector and fill it 647 << 547 const G4MaterialCutsCouple* couple = 648 // beggining of tracking (or just after << 548 theCoupleTable->GetMaterialCutsCouple(i); 649 theNumberOfInteractionLengthLeft = -G4Lo << 549 G4double cut = (*theCuts)[i]; 650 theInitialNumberOfInteractionLength = th << 550 if(fSubRestricted == tType) cut = (*theSubCuts)[i]; 651 << 551 G4PhysicsVector* aVector = LambdaPhysicsVector(couple, cut); 652 } else if(currentInteractionLength < DBL_M << 552 modelManager->FillLambdaVector(aVector, couple, true, tType); 653 << 654 // subtract NumberOfInteractionLengthLef << 655 theNumberOfInteractionLengthLeft -= << 656 previousStepSize/currentInteractionLen << 657 553 658 theNumberOfInteractionLengthLeft = << 554 // Insert vector for this material into the table 659 std::max(theNumberOfInteractionLengthL << 555 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); 660 } 556 } 661 << 662 // new mean free path and step limit << 663 currentInteractionLength = 1.0/preStepLamb << 664 x = theNumberOfInteractionLengthLeft * cur << 665 } << 666 #ifdef G4VERBOSE << 667 if (verboseLevel>2) { << 668 G4cout << "G4VEnergyLossProcess::PostStepG << 669 G4cout << "[ " << GetProcessName() << "]" << 670 G4cout << " for " << track.GetDefinition() << 671 << " in Material " << currentMate << 672 << " Ekin(MeV)= " << preStepKinEner << 673 << " track material: " << track.Get << 674 <<G4endl; << 675 G4cout << "MeanFreePath = " << currentInte << 676 << "InteractionLength= " << x/cm << << 677 } 557 } 678 #endif << 679 return x; << 680 } << 681 558 682 //....oooOO0OOooo........oooOO0OOooo........oo << 559 if(1 < verboseLevel) { 683 << 560 G4cout << "Lambda table is built for " 684 void << 561 << particle->GetParticleName() 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 562 << G4endl; 686 { << 687 // cross section increased with energy << 688 if(fXSType == fEmIncreasing) { << 689 if(e*invLambdaFactor < mfpKinEnergy) { << 690 preStepLambda = GetLambdaForScaledEnergy << 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 692 } << 693 << 694 // cross section has one peak << 695 } else if(fXSType == fEmOnePeak) { << 696 const G4double epeak = (*theEnergyOfCrossS << 697 if(e <= epeak) { << 698 if(e*invLambdaFactor < mfpKinEnergy) { << 699 preStepLambda = GetLambdaForScaledEner << 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 701 } << 702 } else if(e < mfpKinEnergy) { << 703 const G4double e1 = std::max(epeak, e*la << 704 mfpKinEnergy = e1; << 705 preStepLambda = GetLambdaForScaledEnergy << 706 } << 707 << 708 // cross section has more than one peaks << 709 } else if(fXSType == fEmTwoPeaks) { << 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } << 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } 563 } >> 564 >> 565 return table; 769 } 566 } 770 567 771 //....oooOO0OOooo........oooOO0OOooo........oo 568 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 569 773 G4VParticleChange* G4VEnergyLossProcess::Along 570 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 571 const G4Step& step) 775 { 572 { 776 fParticleChange.InitializeForAlongStep(track 573 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 574 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( << 575 if(!isIonisation) return &fParticleChange; 779 return &fParticleChange; << 780 } << 781 576 >> 577 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 578 G4double length = step.GetStepLength(); 783 G4double eloss = 0.0; 579 G4double eloss = 0.0; 784 << 580 785 /* << 581 /* 786 if(-1 < verboseLevel) { 582 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP << 583 const G4ParticleDefinition* d = track.GetDefinition(); 788 G4cout << "AlongStepDoIt for " 584 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 585 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 586 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 587 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 588 << " range(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 589 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 590 << " q^2= " << chargeSqRatio >> 591 << " md= " << d->GetPDGMass() >> 592 << " status= " << track.GetTrackStatus() >> 593 << G4endl; 795 } 594 } 796 */ 595 */ 797 const G4DynamicParticle* dynParticle = track << 798 << 799 // define new weight for primary and seconda << 800 G4double weight = fParticleChange.GetParentW << 801 if(weightFlag) { << 802 weight /= biasFactor; << 803 fParticleChange.ProposeWeight(weight); << 804 } << 805 596 806 // stopping, check actual range and kinetic << 597 // stopping 807 if (length >= fRange || preStepKinEnergy <= << 598 if (length >= fRange) { 808 eloss = preStepKinEnergy; 599 eloss = preStepKinEnergy; 809 if (useDeexcitation) { << 810 atomDeexcitation->AlongStepDeexcitation( << 811 << 812 if(scTracks.size() > 0) { FillSecondarie << 813 eloss = std::max(eloss, 0.0); << 814 } << 815 fParticleChange.SetProposedKineticEnergy(0 << 816 fParticleChange.ProposeLocalEnergyDeposit( << 817 return &fParticleChange; << 818 } << 819 // zero step length with non-zero range << 820 if(length <= 0.0) { return &fParticleChange; << 821 600 822 // Short step 601 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 602 } else if( length <= linLossLimit * fRange ) { 824 LogSca << 603 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length; 825 /* << 604 826 G4cout << "##### Short STEP: eloss= " << elo << 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 605 // Long step 834 if(eloss > preStepKinEnergy*linLossLimit) { << 606 } else { >> 607 G4double r = GetScaledRangeForScaledEnergy(preStepScaledEnergy); >> 608 G4double x = r - length/reduceFactor; >> 609 if(x < 0.0) { >> 610 if(0 < verboseLevel && nWarnings<0) { >> 611 G4cout << "WARNING! G4VEnergyLossProcess::AlongStepDoIt: x= " << x >> 612 << " for eScaled(MeV)= " << preStepScaledEnergy/MeV >> 613 << " step(mm)= " << length/mm >> 614 << " range(mm)= " << fRange/mm >> 615 << " for " << track.GetDefinition()->GetParticleName() >> 616 << G4endl; >> 617 nWarnings++; >> 618 } >> 619 x = 0.0; >> 620 } >> 621 eloss = (ScaledKinEnergyForLoss(r) - ScaledKinEnergyForLoss(x))/massRatio; 835 622 836 const G4double x = (fRange - length)/reduc << 837 const G4double de = preStepKinEnergy - Sca << 838 if(de > 0.0) { eloss = de; } << 839 /* 623 /* 840 if(-1 < verboseLevel) 624 if(-1 < verboseLevel) 841 G4cout << " Long STEP: rPre(mm)=" << 625 G4cout << "Long STEP: rPre(mm)= " << r/mm 842 << GetScaledRangeForScaledEnergy( << 626 << " rPost(mm)= " << x/mm 843 << " x(mm)=" << x/mm << 627 << " ePre(MeV)= " << preStepScaledEnergy/MeV 844 << " eloss(MeV)=" << eloss/MeV << 628 << " eloss(MeV)= " << eloss/MeV 845 << " rFactor=" << reduceFactor << 629 << " eloss0(MeV)= " 846 << " massRatio=" << massRatio << 630 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV 847 << G4endl; 631 << G4endl; 848 */ 632 */ 849 } 633 } 850 634 >> 635 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); >> 636 G4VEmModel* currentModel = SelectModel(preStepScaledEnergy); 851 /* 637 /* >> 638 G4double eloss0 = eloss; 852 if(-1 < verboseLevel ) { 639 if(-1 < verboseLevel ) { 853 G4cout << "Before fluct: eloss(MeV)= " << 640 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV 854 << " e-eloss= " << preStepKinEnergy 641 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 642 << " step(mm)= " << length/mm 856 << " fluct= " << lossFluctuationFla << 643 << " range(mm)= " << fRange/mm >> 644 << " fluct= " << lossFluctuationFlag >> 645 << G4endl; 857 } 646 } 858 */ 647 */ 859 648 860 const G4double cut = (*theCuts)[currentCoupl << 649 G4double cut = (*theCuts)[currentMaterialIndex]; 861 G4double esec = 0.0; 650 G4double esec = 0.0; 862 651 863 // Corrections, which cannot be tabulated << 652 // SubCutOff 864 if(isIon) { << 653 if(useSubCutoff) { 865 currentModel->CorrectionsAlongStep(current << 654 if(idxSCoffRegions[currentMaterialIndex]) { 866 length, << 655 867 eloss = std::max(eloss, 0.0); << 656 G4double preSafety = step.GetPreStepPoint()->GetSafety(); >> 657 G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1); >> 658 if(preSafety < rcut) preSafety = >> 659 navigator->ComputeSafety(step.GetPreStepPoint()->GetPosition()); >> 660 if(preSafety - length < rcut) { >> 661 G4double postSafety = >> 662 navigator->ComputeSafety(step.GetPostStepPoint()->GetPosition()); >> 663 /* >> 664 if(-1 < verboseLevel) >> 665 G4cout << "Subcutoff: presafety(mm)= " << preSafety/mm >> 666 << " postsafety(mm)= " << postSafety/mm >> 667 << " rcut(mm)= " << rcut/mm >> 668 << G4endl; >> 669 */ >> 670 if(preSafety < rcut || postSafety < rcut) { >> 671 >> 672 eloss -= GetSubDEDXForScaledEnergy(preStepScaledEnergy)*length; >> 673 if(eloss < 0.0) eloss = 0.0; >> 674 SampleSubCutSecondaries(scTracks, step, cut, currentModel); >> 675 if(nProcesses) { >> 676 for(G4int i=0; i<nProcesses; i++) { >> 677 (scProcesses[i])->SampleSubCutSecondaries(scTracks, step, rcut, >> 678 (scProcesses[i])->SelectModelForMaterial( >> 679 preStepKinEnergy, currentMaterialIndex)); >> 680 } >> 681 } >> 682 G4int n = scTracks.size(); >> 683 if(n) { >> 684 G4ThreeVector mom = dynParticle->GetMomentum(); >> 685 fParticleChange.SetNumberOfSecondaries(n); >> 686 for(G4int i=0; i<n; i++) { >> 687 G4Track* t = scTracks[i]; >> 688 G4double e = t->GetKineticEnergy(); >> 689 if (t->GetDefinition() == thePositron) e += 2.0*electron_mass_c2; >> 690 esec += e; >> 691 pParticleChange->AddSecondary(t); >> 692 mom -= t->GetMomentum(); >> 693 } >> 694 scTracks.clear(); >> 695 // fParticleChange.SetProposedMomentum(mom); >> 696 } >> 697 } >> 698 } >> 699 } 868 } 700 } 869 701 870 // Sample fluctuations if not full energy lo << 702 // Corrections, which cannot be tabulated 871 if(eloss >= preStepKinEnergy) { << 703 CorrectionsAlongStep(currentCouple, dynParticle, eloss, length); 872 eloss = preStepKinEnergy; << 873 704 874 } else if (lossFluctuationFlag) { << 705 // Sample fluctuations 875 const G4double tmax = currentModel->MaxSec << 706 if (lossFluctuationFlag && eloss + esec + lowestKinEnergy < preStepKinEnergy) { 876 const G4double tcut = std::min(cut, tmax); << 707 877 G4VEmFluctuationModel* fluc = currentModel << 708 G4double tmax = 878 eloss = fluc->SampleFluctuations(currentCo << 709 std::min(currentModel->MaxSecondaryKinEnergy(dynParticle),cut); 879 tcut, tma << 710 eloss = currentModel->GetModelOfFluctuations()-> 880 /* << 711 SampleFluctuations(currentMaterial,dynParticle,tmax,length,eloss); 881 if(-1 < verboseLevel) << 712 >> 713 /* >> 714 if(-1 < verboseLevel) 882 G4cout << "After fluct: eloss(MeV)= " << 715 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 883 << " fluc= " << (eloss-eloss0)/Me 716 << " fluc= " << (eloss-eloss0)/MeV 884 << " ChargeSqRatio= " << chargeSq << 717 << " currentChargeSquare= " << chargeSquare 885 << " massRatio= " << massRatio << << 718 << " massRatio= " << massRatio >> 719 << " tmax= " << tmax >> 720 << G4endl; 886 */ 721 */ 887 } 722 } 888 723 889 // deexcitation << 724 // Energy balanse 890 if (useDeexcitation) { << 891 G4double esecfluo = preStepKinEnergy; << 892 G4double de = esecfluo; << 893 atomDeexcitation->AlongStepDeexcitation(sc << 894 de << 895 << 896 // sum of de-excitation energies << 897 esecfluo -= de; << 898 << 899 // subtracted from energy loss << 900 if(eloss >= esecfluo) { << 901 esec += esecfluo; << 902 eloss -= esecfluo; << 903 } else { << 904 esec += esecfluo; << 905 eloss = 0.0; << 906 } << 907 } << 908 if(nullptr != subcutProducer && IsRegionForC << 909 subcutProducer->SampleSecondaries(step, sc << 910 } << 911 // secondaries from atomic de-excitation and << 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 << 914 // Energy balance << 915 G4double finalT = preStepKinEnergy - eloss - 725 G4double finalT = preStepKinEnergy - eloss - esec; 916 if (finalT <= lowestKinEnergy) { 726 if (finalT <= lowestKinEnergy) { 917 eloss += finalT; 727 eloss += finalT; 918 finalT = 0.0; 728 finalT = 0.0; 919 } else if(isIon) { << 920 fParticleChange.SetProposedCharge( << 921 currentModel->GetParticleCharge(track.Ge << 922 currentM << 923 } 729 } 924 eloss = std::max(eloss, 0.0); << 925 730 926 fParticleChange.SetProposedKineticEnergy(fin 731 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 732 fParticleChange.ProposeLocalEnergyDeposit(eloss); >> 733 928 /* 734 /* 929 if(-1 < verboseLevel) { 735 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre << 931 G4cout << "Final value eloss(MeV)= " << el 736 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 737 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 738 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV << 935 << " lossFlag= " << lossFluctuation 739 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt 740 << " status= " << track.GetTrackStatus() 937 << G4endl; 741 << G4endl; 938 } 742 } 939 */ 743 */ >> 744 940 return &fParticleChange; 745 return &fParticleChange; 941 } 746 } 942 747 943 //....oooOO0OOooo........oooOO0OOooo........oo 748 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 944 749 945 void G4VEnergyLossProcess::FillSecondariesAlon << 750 void G4VEnergyLossProcess::SampleSubCutSecondaries( 946 { << 751 std::vector<G4Track*>& tracks, 947 const std::size_t n0 = scTracks.size(); << 752 const G4Step& step, 948 G4double weight = wt; << 753 G4double& currentCut, 949 // weight may be changed by biasing manager << 754 G4VEmModel* model) 950 if(biasManager) { << 755 { 951 if(biasManager->SecondaryBiasingRegion((G4 << 756 // Fast check weather subcutoff can work 952 weight *= << 757 G4double subcut = (*theSubCuts)[currentMaterialIndex]; 953 biasManager->ApplySecondaryBiasing(scT << 758 G4double cut = (*theCuts)[currentMaterialIndex]; 954 } << 759 if(cut <= subcut) return; 955 } << 760 G4bool b; 956 << 761 G4double cross = 957 // fill secondaries << 762 chargeSqRatio*(((*theSubLambdaTable)[currentMaterialIndex])-> 958 const std::size_t n = scTracks.size(); << 763 GetValue(preStepScaledEnergy, b)); 959 fParticleChange.SetNumberOfSecondaries((G4in << 764 G4double length = step.GetStepLength(); 960 << 765 currentCut = subcut; 961 for(std::size_t i=0; i<n; ++i) { << 766 if(length*cross < 1.e-9) return; 962 G4Track* t = scTracks[i]; << 767 /* 963 if(nullptr != t) { << 768 if(-1 < verboseLevel) 964 t->SetWeight(weight); << 769 G4cout << "<<< Subcutoff for " << GetProcessName() 965 pParticleChange->AddSecondary(t); << 770 << " cross(1/mm)= " << cross*mm << ">>>" 966 G4int pdg = t->GetDefinition()->GetPDGEn << 771 << G4endl; 967 if (i < n0) { << 772 */ 968 if (pdg == 22) { << 773 969 t->SetCreatorModelID(gpixeID); << 774 // Sample subcutoff secondaries 970 } else if (pdg == 11) { << 775 G4StepPoint* preStepPoint = step.GetPreStepPoint(); 971 t->SetCreatorModelID(epixeID); << 776 972 } else { << 777 G4ThreeVector prepoint = preStepPoint->GetPosition(); 973 t->SetCreatorModelID(biasID); << 778 G4ThreeVector dr = step.GetPostStepPoint()->GetPosition() - prepoint; 974 } << 779 G4double pretime = preStepPoint->GetGlobalTime(); 975 } else { << 780 G4double dt = length/preStepPoint->GetVelocity(); 976 t->SetCreatorModelID(biasID); << 781 G4double fragment = 0.0; >> 782 >> 783 const G4Track* track = step.GetTrack(); >> 784 const G4DynamicParticle* dp = track->GetDynamicParticle(); >> 785 const G4TouchableHandle& hand = track->GetTouchableHandle(); >> 786 >> 787 do { >> 788 G4double del = -std::log(G4UniformRand())/cross; >> 789 fragment += del/length; >> 790 if (fragment > 1.0) break; >> 791 std::vector<G4DynamicParticle*>* newp = >> 792 model->SampleSecondaries(currentCouple, dp, subcut, cut); >> 793 if (newp) { >> 794 >> 795 G4DynamicParticle* p; >> 796 G4int nNew = newp->size(); >> 797 for (G4int i=0; i<nNew; i++) { >> 798 >> 799 p = (*newp)[i]; >> 800 G4ThreeVector r = prepoint + fragment*dr; >> 801 G4Track* t = new G4Track(p, pretime + fragment*dt, r); >> 802 t->SetTouchableHandle(hand); >> 803 tracks.push_back(t); >> 804 /* >> 805 if(-1 < verboseLevel) >> 806 G4cout << "New track " << p->GetDefinition()->GetParticleName() >> 807 << " e(keV)= " << p->GetKineticEnergy()/keV >> 808 << " fragment= " << fragment >> 809 << G4endl; >> 810 */ 977 } 811 } >> 812 delete newp; 978 } 813 } 979 } << 814 } while (fragment <= 1.0); 980 scTracks.clear(); << 815 } 981 } << 982 816 983 //....oooOO0OOooo........oooOO0OOooo........oo 817 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 818 985 G4VParticleChange* G4VEnergyLossProcess::PostS 819 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 820 const G4Step& step) 987 { 821 { 988 // clear number of interaction lengths in an << 989 theNumberOfInteractionLengthLeft = -1.0; << 990 mfpKinEnergy = DBL_MAX; << 991 << 992 fParticleChange.InitializeForPostStep(track) 822 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 823 G4double finalT = track.GetKineticEnergy(); 994 << 824 if(finalT == 0.0) return &fParticleChange; 995 const G4double postStepScaledEnergy = finalT << 996 SelectModel(postStepScaledEnergy); << 997 825 998 if(!currentModel->IsActive(postStepScaledEne << 826 G4double postStepScaledEnergy = finalT*massRatio; 999 return &fParticleChange; << 1000 } << 1001 /* 827 /* 1002 if(1 < verboseLevel) { << 828 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 829 G4cout << GetProcessName() >> 830 << "::PostStepDoIt: E(MeV)= " << finalT/MeV >> 831 << G4endl; 1004 } 832 } 1005 */ 833 */ 1006 // forced process - should happen only once << 1007 if(biasFlag) { << 1008 if(biasManager->ForcedInteractionRegion(( << 1009 biasFlag = false; << 1010 } << 1011 } << 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 << 1014 // Integral approach 834 // Integral approach 1015 if (fXSType != fEmNoIntegral) { << 835 if (integral) { 1016 const G4double logFinalT = dp->GetLogKine << 836 G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy); 1017 G4double lx = GetLambdaForScaledEnergy(po << 837 /* 1018 lo << 838 if(preStepLambda<lx && 1 < verboseLevel && nWarnings<200) { 1019 lx = std::max(lx, 0.0); << 839 G4cout << "WARNING: for " << particle->GetParticleName() 1020 << 840 << " and " << GetProcessName() 1021 // if both lg and lx are zero then no int << 841 << " E(MeV)= " << finalT/MeV 1022 if(preStepLambda*G4UniformRand() >= lx) { << 842 << " preLambda= " << preStepLambda 1023 return &fParticleChange; << 843 << " < " << lx << " (postLambda) " 1024 } << 844 << G4endl; 1025 } << 845 nWarnings++; 1026 << 1027 // define new weight for primary and second << 1028 G4double weight = fParticleChange.GetParent << 1029 if(weightFlag) { << 1030 weight /= biasFactor; << 1031 fParticleChange.ProposeWeight(weight); << 1032 } << 1033 << 1034 const G4double tcut = (*theCuts)[currentCou << 1035 << 1036 // sample secondaries << 1037 secParticles.clear(); << 1038 currentModel->SampleSecondaries(&secParticl << 1039 << 1040 const G4int num0 = (G4int)secParticles.size << 1041 << 1042 // bremsstrahlung splitting or Russian roul << 1043 if(biasManager) { << 1044 if(biasManager->SecondaryBiasingRegion((G << 1045 G4double eloss = 0.0; << 1046 weight *= biasManager->ApplySecondaryBi << 1047 secPart << 1048 track, << 1049 &fParti << 1050 (G4int) << 1051 step.Ge << 1052 if(eloss > 0.0) { << 1053 eloss += fParticleChange.GetLocalEner << 1054 fParticleChange.ProposeLocalEnergyDep << 1055 } << 1056 } 846 } >> 847 */ >> 848 if(preStepLambda*G4UniformRand() > lx) >> 849 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1057 } 850 } 1058 851 1059 // save secondaries << 852 G4VEmModel* currentModel = SelectModel(postStepScaledEnergy); 1060 const G4int num = (G4int)secParticles.size( << 853 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 1061 if(num > 0) { << 854 G4double tcut = (*theCuts)[currentMaterialIndex]; 1062 << 855 G4double tmax = currentModel->MaxSecondaryKinEnergy(dynParticle); 1063 fParticleChange.SetNumberOfSecondaries(nu << 1064 G4double time = track.GetGlobalTime(); << 1065 << 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 << 1071 for (G4int i=0; i<num; ++i) { << 1072 if(nullptr != secParticles[i]) { << 1073 G4Track* t = new G4Track(secParticles << 1074 t->SetTouchableHandle(track.GetToucha << 1075 if (biasManager) { << 1076 t->SetWeight(weight * biasManager-> << 1077 } else { << 1078 t->SetWeight(weight); << 1079 } << 1080 if(i < num0) { << 1081 t->SetCreatorModelID(secID); << 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 856 1088 //G4cout << "Secondary(post step) has << 857 if (tcut < tmax) { 1089 // << ", kenergy " << t->GetKin << 858 std::vector<G4DynamicParticle*>* newp = SecondariesPostStep( 1090 // << " time= " << time/ns << " << 859 currentModel, currentCouple, dynParticle, tcut); 1091 pParticleChange->AddSecondary(t); << 860 >> 861 if(newp) { >> 862 G4int num = newp->size(); >> 863 fParticleChange.SetNumberOfSecondaries(num); >> 864 for (G4int i=0; i<num; i++) { >> 865 fParticleChange.AddSecondary((*newp)[i]); 1092 } 866 } >> 867 delete newp; 1093 } 868 } 1094 } << 1095 869 1096 if(0.0 == fParticleChange.GetProposedKineti << 870 finalT = fParticleChange.GetProposedKineticEnergy(); 1097 fAlive == fParticleChange.GetTrackStatus << 1098 if(particle->GetProcessManager()->GetAtRe << 1099 { fParticleChange.ProposeTrackStatus << 1100 else { fParticleChange.ProposeTrackStatus << 1101 } 871 } 1102 872 1103 /* 873 /* 1104 if(-1 < verboseLevel) { 874 if(-1 < verboseLevel) { 1105 G4cout << "::PostStepDoIt: Sample seconda << 875 G4cout << "::PostStepDoIt: Sample secondary; Efin= " << finalT/MeV 1106 << fParticleChange.GetProposedKineticEner << 1107 << " MeV; model= (" << currentMode 876 << " MeV; model= (" << currentModel->LowEnergyLimit() 1108 << ", " << currentModel->HighEner 877 << ", " << currentModel->HighEnergyLimit() << ")" 1109 << " preStepLambda= " << preStepL 878 << " preStepLambda= " << preStepLambda 1110 << " dir= " << track.GetMomentumD 879 << " dir= " << track.GetMomentumDirection() 1111 << " status= " << track.GetTrackS 880 << " status= " << track.GetTrackStatus() 1112 << G4endl; 881 << G4endl; 1113 } 882 } 1114 */ 883 */ 1115 return &fParticleChange; << 884 if (finalT <= lowestKinEnergy) { >> 885 fParticleChange.SetProposedKineticEnergy(0.0); >> 886 return &fParticleChange; >> 887 } >> 888 >> 889 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1116 } 890 } 1117 891 1118 //....oooOO0OOooo........oooOO0OOooo........o 892 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 893 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 894 void G4VEnergyLossProcess::PrintInfoDefinition() 1121 const G4ParticleDefinition* part, cons << 1122 { 895 { 1123 if (!isMaster || nullptr != baseParticle || << 896 if(0 < verboseLevel) { 1124 for(std::size_t i=0; i<7; ++i) { << 897 G4cout << G4endl << GetProcessName() << ": tables are built for " 1125 // ionisation table only for ionisation p << 898 << particle->GetParticleName() 1126 if (nullptr == theData->Table(i) || (!isI << 899 << G4endl 1127 continue; << 900 << " dE/dx and range tables from " 1128 } << 901 << G4BestUnit(minKinEnergy,"Energy") 1129 if (-1 < verboseLevel) { << 902 << " to " << G4BestUnit(maxKinEnergy,"Energy") 1130 G4cout << "G4VEnergyLossProcess::StoreP << 903 << " in " << nBins << " bins." << G4endl 1131 << " " << particle->GetParticleName() << 904 << " Lambda tables from threshold to " 1132 << " " << GetProcessName() << 905 << G4BestUnit(maxKinEnergy,"Energy") 1133 << " " << tnames[i] << " " << theDat << 906 << " in " << nBins << " bins." 1134 } << 907 << G4endl; 1135 if (!G4EmTableUtil::StoreTable(this, part << 908 PrintInfo(); 1136 dir, tnames[i], verboseLevel, asci << 909 if(theRangeTableForLoss && isIonisation) 1137 return false; << 910 G4cout << " Step function: finalRange(mm)= " << finalRange/mm >> 911 << ", dRoverRange= " << dRoverRange >> 912 << ", integral: " << integral >> 913 << G4endl; >> 914 >> 915 if(theCSDARangeTable && isIonisation) >> 916 G4cout << " CSDA range table up" >> 917 << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy") >> 918 << " in " << nBinsCSDA << " bins." << G4endl; >> 919 >> 920 if(nSCoffRegions>0) >> 921 G4cout << " Subcutoff sampling in " << nSCoffRegions >> 922 << " regions" << G4endl; >> 923 >> 924 if(2 < verboseLevel) { >> 925 G4cout << "DEDXTable address= " << theDEDXTable << G4endl; >> 926 if(theDEDXTable && isIonisation) G4cout << (*theDEDXTable) << G4endl; >> 927 G4cout << "non restricted DEDXTable address= " >> 928 << theDEDXunRestrictedTable << G4endl; >> 929 if(theDEDXunRestrictedTable && isIonisation) G4cout << (*theDEDXunRestrictedTable) >> 930 << G4endl; >> 931 if(theDEDXSubTable && isIonisation) G4cout << (*theDEDXSubTable) >> 932 << G4endl; >> 933 G4cout << "CSDARangeTable address= " << theCSDARangeTable >> 934 << G4endl; >> 935 if(theCSDARangeTable && isIonisation) G4cout << (*theCSDARangeTable) << G4endl; >> 936 G4cout << "RangeTableForLoss address= " << theRangeTableForLoss >> 937 << G4endl; >> 938 if(theRangeTableForLoss && isIonisation) G4cout << (*theRangeTableForLoss) << G4endl; >> 939 G4cout << "InverseRangeTable address= " << theInverseRangeTable >> 940 << G4endl; >> 941 if(theInverseRangeTable && isIonisation) G4cout << (*theInverseRangeTable) << G4endl; >> 942 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; >> 943 if(theLambdaTable && isIonisation) G4cout << (*theLambdaTable) << G4endl; >> 944 G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl; >> 945 if(theSubLambdaTable && isIonisation) G4cout << (*theSubLambdaTable) << G4endl; 1138 } 946 } 1139 } 947 } 1140 return true; << 1141 } 948 } 1142 949 1143 //....oooOO0OOooo........oooOO0OOooo........o << 950 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 951 >> 952 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p) >> 953 { >> 954 if(theDEDXTable != p) theDEDXTable = p; >> 955 } >> 956 >> 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1144 958 1145 G4bool << 959 void G4VEnergyLossProcess::SetDEDXTableForSubsec(G4PhysicsTable* p) 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 1147 co << 1148 { 960 { 1149 if (!isMaster || nullptr != baseParticle || << 961 if(theDEDXSubTable != p) theDEDXSubTable = p; 1150 for(std::size_t i=0; i<7; ++i) { << 962 } 1151 // ionisation table only for ionisation p << 963 1152 if (!isIonisation && 1 == i) { continue; << 964 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 965 1154 verboseL << 966 void G4VEnergyLossProcess::SetDEDXunRestrictedTable(G4PhysicsTable* p) 1155 return false; << 967 { >> 968 if(theDEDXunRestrictedTable != p) theDEDXunRestrictedTable = p; >> 969 if(p) { >> 970 size_t n = p->length(); >> 971 G4PhysicsVector* pv = (*p)[0]; >> 972 G4double emax = maxKinEnergyCSDA; >> 973 G4bool b; >> 974 theDEDXAtMaxEnergy = new G4double [n]; >> 975 >> 976 for (size_t i=0; i<n; i++) { >> 977 pv = (*p)[i]; >> 978 G4double dedx = pv->GetValue(emax, b); >> 979 theDEDXAtMaxEnergy[i] = dedx; >> 980 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " >> 981 //<< dedx << G4endl; 1156 } 982 } 1157 } 983 } 1158 return true; << 1159 } 984 } 1160 985 1161 //....oooOO0OOooo........oooOO0OOooo........o 986 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 987 1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 988 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p) 1164 const G4Mat << 1165 const G4Dyn << 1166 G4dou << 1167 { 989 { 1168 DefineMaterial(couple); << 990 if(theCSDARangeTable != p) theCSDARangeTable = p; 1169 G4double ekin = dp->GetKineticEnergy(); << 991 1170 SelectModel(ekin*massRatio); << 992 if(p) { 1171 G4double tmax = currentModel->MaxSecondaryK << 993 size_t n = p->length(); 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 994 G4PhysicsVector* pv = (*p)[0]; 1173 G4double d = 0.0; << 995 G4double emax = maxKinEnergyCSDA; 1174 G4VEmFluctuationModel* fm = currentModel->G << 996 G4bool b; 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 997 theRangeAtMaxEnergy = new G4double [n]; 1176 return d; << 998 >> 999 for (size_t i=0; i<n; i++) { >> 1000 pv = (*p)[i]; >> 1001 G4double r2 = pv->GetValue(emax, b); >> 1002 theRangeAtMaxEnergy[i] = r2; >> 1003 //G4cout << "i= " << i << " e2(MeV)= " << emax/MeV << " r2= " >> 1004 //<< r2<< G4endl; >> 1005 } >> 1006 } 1177 } 1007 } 1178 1008 1179 //....oooOO0OOooo........oooOO0OOooo........o 1009 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 1010 1181 G4double << 1011 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1183 c << 1184 G << 1185 { 1012 { 1186 // Cross section per volume is calculated << 1013 if(theRangeTableForLoss != p) { 1187 DefineMaterial(couple); << 1014 theRangeTableForLoss = p; 1188 G4double cross = 0.0; << 1015 if(1 < verboseLevel) { 1189 if (nullptr != theLambdaTable) { << 1016 G4cout << "### Set Range table " << p 1190 cross = GetLambdaForScaledEnergy(kineticE << 1017 << " for " << particle->GetParticleName() 1191 logKinet << 1018 << " and process " << GetProcessName() << G4endl; 1192 } else { << 1019 } 1193 SelectModel(kineticEnergy*massRatio); << 1194 cross = (!baseMat) ? biasFactor : biasFac << 1195 cross *= (currentModel->CrossSectionPerVo << 1196 << 1197 } 1020 } 1198 return std::max(cross, 0.0); << 1199 } 1021 } 1200 1022 1201 //....oooOO0OOooo........oooOO0OOooo........o 1023 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 1024 1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 1025 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) 1204 { 1026 { 1205 DefineMaterial(track.GetMaterialCutsCouple( << 1027 theSecondaryRangeTable = p; 1206 const G4double kinEnergy = track.GetKine << 1207 const G4double logKinEnergy = track.GetDyna << 1208 const G4double cs = GetLambdaForScaledEnerg << 1209 << 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 1211 } 1028 } 1212 1029 1213 //....oooOO0OOooo........oooOO0OOooo........o 1030 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 1031 1215 G4double G4VEnergyLossProcess::ContinuousStep << 1032 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1216 << 1217 << 1218 { 1033 { 1219 return AlongStepGetPhysicalInteractionLengt << 1034 if(theInverseRangeTable != p) { >> 1035 theInverseRangeTable = p; >> 1036 if(1 < verboseLevel) { >> 1037 G4cout << "### Set InverseRange table " << p >> 1038 << " for " << particle->GetParticleName() >> 1039 << " and process " << GetProcessName() << G4endl; >> 1040 } >> 1041 } 1220 } 1042 } 1221 1043 1222 //....oooOO0OOooo........oooOO0OOooo........o 1044 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 1045 1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 1046 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1225 const G4Track& t << 1047 { 1226 G4double, << 1048 if(1 < verboseLevel) { 1227 G4ForceCondition << 1049 G4cout << "### Set Lambda table " << p >> 1050 << " for " << particle->GetParticleName() >> 1051 << " and process " << GetProcessName() << G4endl; >> 1052 } >> 1053 if(theLambdaTable != p) theLambdaTable = p; >> 1054 tablesAreBuilt = true; >> 1055 >> 1056 if(p) { >> 1057 size_t n = p->length(); >> 1058 G4PhysicsVector* pv = (*p)[0]; >> 1059 G4double e, s, smax, emax; >> 1060 theEnergyOfCrossSectionMax = new G4double [n]; >> 1061 theCrossSectionMax = new G4double [n]; >> 1062 G4bool b; >> 1063 >> 1064 for (size_t i=0; i<n; i++) { >> 1065 pv = (*p)[i]; >> 1066 emax = DBL_MAX; >> 1067 smax = 0.0; >> 1068 if(pv) { >> 1069 size_t nb = pv->GetVectorLength(); >> 1070 emax = pv->GetLowEdgeEnergy(nb); >> 1071 for (size_t j=0; j<nb; j++) { >> 1072 e = pv->GetLowEdgeEnergy(j); >> 1073 s = pv->GetValue(e,b); >> 1074 if(s > smax) { >> 1075 smax = s; >> 1076 emax = e; >> 1077 } >> 1078 } >> 1079 } >> 1080 theEnergyOfCrossSectionMax[i] = emax; >> 1081 theCrossSectionMax[i] = smax; >> 1082 if(1 < verboseLevel) { >> 1083 G4cout << "For " << particle->GetParticleName() >> 1084 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 1085 << " lambda= " << smax << G4endl; >> 1086 } >> 1087 } >> 1088 } >> 1089 } >> 1090 >> 1091 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1228 1092 >> 1093 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1229 { 1094 { 1230 *condition = NotForced; << 1095 if(theSubLambdaTable != p) theSubLambdaTable = p; 1231 return MeanFreePath(track); << 1232 } 1096 } 1233 1097 1234 //....oooOO0OOooo........oooOO0OOooo........o 1098 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 1099 1236 G4double G4VEnergyLossProcess::GetContinuousS << 1100 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector( 1237 const G4Track&, << 1101 const G4MaterialCutsCouple* couple, G4double cut) 1238 G4double, G4double, G4double& << 1239 { 1102 { 1240 return DBL_MAX; << 1103 // G4double cut = (*theCuts)[couple->GetIndex()]; >> 1104 // G4int nbins = nLambdaBins; >> 1105 G4double tmin = >> 1106 std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), >> 1107 minKinEnergy); >> 1108 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; >> 1109 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nBins); >> 1110 return v; 1241 } 1111 } 1242 1112 1243 //....oooOO0OOooo........oooOO0OOooo........o 1113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1114 1245 G4PhysicsVector* << 1115 G4double G4VEnergyLossProcess::MicroscopicCrossSection( 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1116 G4double kineticEnergy, const G4MaterialCutsCouple* couple) 1247 G4d << 1248 { 1117 { >> 1118 // Cross section per atom is calculated 1249 DefineMaterial(couple); 1119 DefineMaterial(couple); 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1120 G4double cross = 0.0; 1251 return new G4PhysicsVector(*v); << 1121 G4bool b; >> 1122 if(theLambdaTable) >> 1123 cross = >> 1124 ((*theLambdaTable)[currentMaterialIndex])->GetValue(kineticEnergy, b)/ >> 1125 currentMaterial->GetTotNbOfAtomsPerVolume(); >> 1126 >> 1127 return cross; 1252 } 1128 } 1253 1129 1254 //....oooOO0OOooo........oooOO0OOooo........o 1130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 1131 1256 void << 1132 G4double G4VEnergyLossProcess::MeanFreePath( 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 1133 const G4Track& track, G4double s, G4ForceCondition* cond) 1258 { 1134 { 1259 if(1 < verboseLevel) { << 1135 return GetMeanFreePath(track, s, cond); 1260 G4cout << "### Set DEDX table " << p << " << 1261 << " " << theDEDXunRestrictedTable << << 1262 << " for " << particle->GetParticl << 1263 << " and process " << GetProcessNa << 1264 << " type=" << tType << " isIonisation:" << 1265 } << 1266 if(fTotal == tType) { << 1267 theDEDXunRestrictedTable = p; << 1268 } else if(fRestricted == tType) { << 1269 theDEDXTable = p; << 1270 if(isMaster && nullptr == baseParticle) { << 1271 theData->UpdateTable(theDEDXTable, 0); << 1272 } << 1273 } else if(fIsIonisation == tType) { << 1274 theIonisationTable = p; << 1275 if(isMaster && nullptr == baseParticle) { << 1276 theData->UpdateTable(theIonisationTable << 1277 } << 1278 } << 1279 } 1136 } 1280 1137 1281 //....oooOO0OOooo........oooOO0OOooo........o 1138 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 1139 1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 1140 G4double G4VEnergyLossProcess::ContinuousStepLimit( >> 1141 const G4Track& track, G4double x, G4double y, G4double& z) 1284 { 1142 { 1285 theCSDARangeTable = p; << 1143 return GetContinuousStepLimit(track, x, y, z); 1286 } 1144 } 1287 1145 1288 //....oooOO0OOooo........oooOO0OOooo........o 1146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 1147 1290 void G4VEnergyLossProcess::SetRangeTableForLo << 1148 void G4VEnergyLossProcess::SetIntegral(G4bool val) 1291 { 1149 { 1292 theRangeTableForLoss = p; << 1150 integral = val; 1293 } 1151 } 1294 1152 1295 //....oooOO0OOooo........oooOO0OOooo........o 1153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 1154 1297 void G4VEnergyLossProcess::SetInverseRangeTab << 1155 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1298 { 1156 { 1299 theInverseRangeTable = p; << 1157 dRoverRange = v1; >> 1158 finalRange = v2; >> 1159 if (dRoverRange > 0.999) dRoverRange = 1.0; >> 1160 currentCouple = 0; >> 1161 mfpKinEnergy = DBL_MAX; 1300 } 1162 } 1301 1163 1302 //....oooOO0OOooo........oooOO0OOooo........o 1164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 1165 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 1166 void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 1305 { 1167 { >> 1168 particle = p; >> 1169 } >> 1170 >> 1171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1172 >> 1173 void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) >> 1174 { >> 1175 baseParticle = p; >> 1176 } >> 1177 >> 1178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1179 >> 1180 void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) >> 1181 { >> 1182 secondaryParticle = p; >> 1183 } >> 1184 >> 1185 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1186 >> 1187 G4bool G4VEnergyLossProcess::StorePhysicsTable( >> 1188 const G4ParticleDefinition* part, const G4String& directory, >> 1189 G4bool ascii) >> 1190 { >> 1191 G4bool res = true; >> 1192 if ( baseParticle || part != particle ) return res; >> 1193 >> 1194 if ( theDEDXTable ) { >> 1195 const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii); >> 1196 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; >> 1197 } >> 1198 >> 1199 if ( theDEDXunRestrictedTable ) { >> 1200 const G4String name = >> 1201 GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1202 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; >> 1203 } >> 1204 >> 1205 if ( theDEDXSubTable ) { >> 1206 const G4String name = >> 1207 GetPhysicsTableFileName(part,directory,"SubDEDX",ascii); >> 1208 if( !theDEDXSubTable->StorePhysicsTable(name,ascii)) res = false; >> 1209 } >> 1210 >> 1211 if ( theCSDARangeTable && isIonisation ) { >> 1212 const G4String name = >> 1213 GetPhysicsTableFileName(part,directory,"CSDARange",ascii); >> 1214 if( !theCSDARangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1215 } >> 1216 >> 1217 if ( theRangeTableForLoss && isIonisation ) { >> 1218 const G4String name = >> 1219 GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1220 if( !theRangeTableForLoss->StorePhysicsTable(name,ascii)) res = false; >> 1221 } >> 1222 >> 1223 if ( theInverseRangeTable && isIonisation ) { >> 1224 const G4String name = >> 1225 GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1226 if( !theInverseRangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1227 } >> 1228 >> 1229 if ( theLambdaTable && isIonisation) { >> 1230 const G4String name = >> 1231 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1232 if( !theLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1233 } >> 1234 >> 1235 if ( theSubLambdaTable && isIonisation) { >> 1236 const G4String name = >> 1237 GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1238 if( !theSubLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1239 } >> 1240 if ( res ) { >> 1241 if(0 < verboseLevel) { >> 1242 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 1243 << " and process " << GetProcessName() >> 1244 << " in the directory <" << directory >> 1245 << "> " << G4endl; >> 1246 } >> 1247 } else { >> 1248 G4cout << "Fail to store Physics Tables for " >> 1249 << particle->GetParticleName() >> 1250 << " and process " << GetProcessName() >> 1251 << " in the directory <" << directory >> 1252 << "> " << G4endl; >> 1253 } >> 1254 return res; >> 1255 } >> 1256 >> 1257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1258 >> 1259 G4bool G4VEnergyLossProcess::RetrievePhysicsTable( >> 1260 const G4ParticleDefinition* part, const G4String& directory, >> 1261 G4bool ascii) >> 1262 { >> 1263 G4bool res = true; >> 1264 const G4String particleName = part->GetParticleName(); >> 1265 1306 if(1 < verboseLevel) { 1266 if(1 < verboseLevel) { 1307 G4cout << "### Set Lambda table " << p << << 1267 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1308 << " for " << particle->GetParticl << 1268 << particleName << " and process " << GetProcessName() 1309 << " and process " << GetProcessNa << 1269 << "; tables_are_built= " << tablesAreBuilt >> 1270 << G4endl; 1310 } 1271 } 1311 theLambdaTable = p; << 1272 if(particle == part) { 1312 tablesAreBuilt = true; << 1313 1273 1314 if(isMaster && nullptr != p) { << 1274 G4bool yes = true; 1315 delete theEnergyOfCrossSectionMax; << 1275 G4bool fpi = true; 1316 theEnergyOfCrossSectionMax = nullptr; << 1276 if ( !baseParticle ) { 1317 if(fEmTwoPeaks == fXSType) { << 1277 G4String filename; 1318 if(nullptr != fXSpeaks) { << 1278 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 1279 filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii); 1320 delete fXSpeaks; << 1280 yes = theDEDXTable->ExistPhysicsTable(filename); >> 1281 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1282 theDEDXTable,filename,ascii); >> 1283 if(yes) { >> 1284 if (0 < verboseLevel) { >> 1285 G4cout << "DEDX table for " << particleName >> 1286 << " is Retrieved from <" >> 1287 << filename << ">" >> 1288 << G4endl; >> 1289 } >> 1290 } else { >> 1291 fpi = false; >> 1292 if (1 < verboseLevel) { >> 1293 G4cout << "DEDX table for " << particleName << " from file <" >> 1294 << filename << "> is not Retrieved" >> 1295 << G4endl; >> 1296 } >> 1297 } >> 1298 >> 1299 filename = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1300 yes = theRangeTableForLoss->ExistPhysicsTable(filename); >> 1301 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1302 theRangeTableForLoss,filename,ascii); >> 1303 if(yes) { >> 1304 if (0 < verboseLevel) { >> 1305 G4cout << "Range table for loss for " << particleName >> 1306 << " is Retrieved from <" >> 1307 << filename << ">" >> 1308 << G4endl; >> 1309 } >> 1310 } else { >> 1311 if(fpi) { >> 1312 res = false; >> 1313 G4cout << "Range table for loss for " << particleName >> 1314 << " from file <" >> 1315 << filename << "> is not Retrieved" >> 1316 << G4endl; >> 1317 } >> 1318 } >> 1319 >> 1320 filename = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1321 yes = theDEDXunRestrictedTable->ExistPhysicsTable(filename); >> 1322 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1323 theDEDXunRestrictedTable,filename,ascii); >> 1324 if(yes) { >> 1325 if (0 < verboseLevel) { >> 1326 G4cout << "Non-restricted DEDX table for " << particleName >> 1327 << " is Retrieved from <" >> 1328 << filename << ">" >> 1329 << G4endl; >> 1330 } >> 1331 } else { >> 1332 if (1 < verboseLevel) { >> 1333 G4cout << "Non-restricted DEDX table for " << particleName >> 1334 << " from file <" >> 1335 << filename << "> is not Retrieved" >> 1336 << G4endl; >> 1337 } >> 1338 } >> 1339 >> 1340 filename = GetPhysicsTableFileName(part,directory,"CSDARange",ascii); >> 1341 yes = theCSDARangeTable->ExistPhysicsTable(filename); >> 1342 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1343 theCSDARangeTable,filename,ascii); >> 1344 if(yes) { >> 1345 if (0 < verboseLevel) { >> 1346 G4cout << "Precise Range table for " << particleName >> 1347 << " is Retrieved from <" >> 1348 << filename << ">" >> 1349 << G4endl; >> 1350 } >> 1351 } else { >> 1352 G4cout << "Precise Range table for loss for " << particleName >> 1353 << " does not exist" >> 1354 << G4endl; >> 1355 } >> 1356 >> 1357 filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1358 yes = theInverseRangeTable->ExistPhysicsTable(filename); >> 1359 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1360 theInverseRangeTable,filename,ascii); >> 1361 if(yes) { >> 1362 if (0 < verboseLevel) { >> 1363 G4cout << "InverseRange table for " << particleName >> 1364 << " is Retrieved from <" >> 1365 << filename << ">" >> 1366 << G4endl; >> 1367 } >> 1368 } else { >> 1369 if(fpi) { >> 1370 res = false; >> 1371 G4cout << "InverseRange table for " << particleName >> 1372 << " from file <" >> 1373 << filename << "> is not Retrieved" >> 1374 << G4endl; >> 1375 >> 1376 } >> 1377 } >> 1378 >> 1379 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1380 yes = theLambdaTable->ExistPhysicsTable(filename); >> 1381 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1382 theLambdaTable,filename,ascii); >> 1383 if(yes) { >> 1384 if (0 < verboseLevel) { >> 1385 G4cout << "Lambda table for " << particleName >> 1386 << " is Retrieved from <" >> 1387 << filename << ">" >> 1388 << G4endl; >> 1389 } >> 1390 } else { >> 1391 if(fpi) { >> 1392 res = false; >> 1393 G4cout << "Lambda table for " << particleName << " from file <" >> 1394 << filename << "> is not Retrieved" >> 1395 << G4endl; >> 1396 } >> 1397 } >> 1398 >> 1399 filename = GetPhysicsTableFileName(part,directory,"SubDEDX",ascii); >> 1400 yes = theDEDXSubTable->ExistPhysicsTable(filename); >> 1401 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1402 theDEDXSubTable,filename,ascii); >> 1403 if(yes) { >> 1404 if (0 < verboseLevel) { >> 1405 G4cout << "SubDEDX table for " << particleName >> 1406 << " is Retrieved from <" >> 1407 << filename << ">" >> 1408 << G4endl; >> 1409 } >> 1410 } else { >> 1411 if(nSCoffRegions) { >> 1412 res=false; >> 1413 G4cout << "SubDEDX table for " << particleName << " from file <" >> 1414 << filename << "> is not Retrieved" >> 1415 << G4endl; >> 1416 } >> 1417 } >> 1418 >> 1419 filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1420 yes = theSubLambdaTable->ExistPhysicsTable(filename); >> 1421 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable( >> 1422 theSubLambdaTable,filename,ascii); >> 1423 if(yes) { >> 1424 if (0 < verboseLevel) { >> 1425 G4cout << "SubLambda table for " << particleName >> 1426 << " is Retrieved from <" >> 1427 << filename << ">" >> 1428 << G4endl; >> 1429 } >> 1430 } else { >> 1431 if(nSCoffRegions) { >> 1432 res=false; >> 1433 G4cout << "SubLambda table for " << particleName << " from file <" >> 1434 << filename << "> is not Retrieved" >> 1435 << G4endl; >> 1436 } 1321 } 1437 } 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } << 1326 if(fXSType == fEmOnePeak) { << 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 1328 if(nullptr == theEnergyOfCrossSectionMa << 1329 } 1438 } 1330 } 1439 } >> 1440 >> 1441 return res; 1331 } 1442 } 1332 1443 1333 //....oooOO0OOooo........oooOO0OOooo........o 1444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 1445 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 1446 void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) 1336 { 1447 { 1337 theEnergyOfCrossSectionMax = p; << 1448 linLossLimit = val; 1338 } 1449 } 1339 1450 1340 //....oooOO0OOooo........oooOO0OOooo........o 1451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1341 1452 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 1453 void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) 1343 { 1454 { 1344 fXSpeaks = ptr; << 1455 if(val && !lossFluctuationArePossible) return; >> 1456 lossFluctuationFlag = val; 1345 } 1457 } 1346 1458 1347 //....oooOO0OOooo........oooOO0OOooo........o 1459 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 1460 1349 const G4Element* G4VEnergyLossProcess::GetCur << 1461 void G4VEnergyLossProcess::SetRandomStep(G4bool val) 1350 { 1462 { 1351 return (nullptr != currentModel) << 1463 rndmStepFlag = val; 1352 ? currentModel->GetCurrentElement(current << 1353 } 1464 } 1354 1465 1355 //....oooOO0OOooo........oooOO0OOooo........o 1466 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 1467 1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1468 void G4VEnergyLossProcess::SetMinSubRange(G4double val) 1358 << 1359 { 1469 { 1360 if(f > 0.0) { << 1470 minSubRange = val; 1361 biasFactor = f; << 1362 weightFlag = flag; << 1363 if(1 < verboseLevel) { << 1364 G4cout << "### SetCrossSectionBiasingFa << 1365 << " process " << GetProcessName << 1366 << " biasFactor= " << f << " wei << 1367 << G4endl; << 1368 } << 1369 } << 1370 } 1471 } 1371 1472 1372 //....oooOO0OOooo........oooOO0OOooo........o 1473 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 1474 1374 void G4VEnergyLossProcess::ActivateForcedInte << 1475 G4bool G4VEnergyLossProcess::TablesAreBuilt() const 1375 << 1376 << 1377 { 1476 { 1378 if(nullptr == biasManager) { biasManager = << 1477 return tablesAreBuilt; 1379 if(1 < verboseLevel) { << 1380 G4cout << "### ActivateForcedInteraction: << 1381 << " process " << GetProcessName() << 1382 << " length(mm)= " << length/mm << 1383 << " in G4Region <" << region << 1384 << "> weightFlag= " << flag << 1385 << G4endl; << 1386 } << 1387 weightFlag = flag; << 1388 biasManager->ActivateForcedInteraction(leng << 1389 } 1478 } 1390 1479 1391 //....oooOO0OOooo........oooOO0OOooo........o 1480 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 1481 1393 void << 1482 G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1395 << 1396 << 1397 { 1483 { 1398 if (0.0 <= factor) { << 1484 return nSCoffRegions; 1399 // Range cut can be applied only for e- << 1485 } 1400 if(0.0 == factor && secondaryParticle != << 1401 { return; } << 1402 1486 1403 if(nullptr == biasManager) { biasManager << 1487 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1404 biasManager->ActivateSecondaryBiasing(reg << 1488 1405 if(1 < verboseLevel) { << 1489 void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 1406 G4cout << "### ActivateSecondaryBiasing << 1490 { 1407 << " process " << GetProcessName << 1491 nBins = nbins; 1408 << " factor= " << factor << 1409 << " in G4Region <" << region << 1410 << "> energyLimit(MeV)= " << ene << 1411 << G4endl; << 1412 } << 1413 } << 1414 } 1492 } 1415 1493 1416 //....oooOO0OOooo........oooOO0OOooo........o 1494 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 1495 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1496 void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 1419 { 1497 { 1420 isIonisation = val; << 1498 nBins = nbins; 1421 aGPILSelection = (val) ? CandidateForSelect << 1422 } 1499 } 1423 1500 1424 //....oooOO0OOooo........oooOO0OOooo........o 1501 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1425 1502 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1503 void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins) 1427 { 1504 { 1428 if(0.0 < val && val < 1.0) { << 1505 nBinsCSDA = nbins; 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } 1506 } 1433 1507 1434 //....oooOO0OOooo........oooOO0OOooo........o 1508 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1435 1509 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1510 G4double G4VEnergyLossProcess::MinKinEnergy() const 1437 { 1511 { 1438 if(0.0 < v1 && 0.0 < v2) { << 1512 return minKinEnergy; 1439 dRoverRange = std::min(1.0, v1); << 1440 finalRange = std::min(v2, 1.e+50); << 1441 } else { << 1442 PrintWarning("SetStepFunctionV1", v1); << 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } << 1445 } 1513 } 1446 1514 1447 //....oooOO0OOooo........oooOO0OOooo........o 1515 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1448 1516 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1517 void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 1450 { 1518 { 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1519 minKinEnergy = e; 1452 else { PrintWarning("SetLowestEnergyLimit", << 1453 } 1520 } 1454 1521 1455 //....oooOO0OOooo........oooOO0OOooo........o 1522 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1456 1523 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1524 void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 1458 { 1525 { 1459 if(2 < n && n < 1000000000) { << 1526 maxKinEnergy = e; 1460 nBins = n; << 1527 if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e; 1461 actBinning = true; << 1462 } else { << 1463 G4double e = (G4double)n; << 1464 PrintWarning("SetDEDXBinning", e); << 1465 } << 1466 } 1528 } 1467 1529 1468 //....oooOO0OOooo........oooOO0OOooo........o 1530 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1469 1531 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1532 void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e) 1471 { 1533 { 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1534 maxKinEnergyCSDA = e; 1473 minKinEnergy = e; << 1474 actMinKinEnergy = true; << 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1476 } 1535 } 1477 1536 1478 //....oooOO0OOooo........oooOO0OOooo........o 1537 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1479 1538 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1539 G4double G4VEnergyLossProcess::MaxKinEnergy() const >> 1540 { >> 1541 return maxKinEnergy; >> 1542 } >> 1543 >> 1544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1545 >> 1546 void G4VEnergyLossProcess::ActivateDeexcitation(G4bool, const G4Region*) >> 1547 {} >> 1548 >> 1549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1550 >> 1551 void G4VEnergyLossProcess::SetLambdaFactor(G4double val) 1481 { 1552 { 1482 if(minKinEnergy < e && e < 1.e+50) { << 1553 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 1483 maxKinEnergy = e; << 1484 actMaxKinEnergy = true; << 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1487 } 1554 } 1488 1555 1489 //....oooOO0OOooo........oooOO0OOooo........o 1556 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1490 1557 1491 void G4VEnergyLossProcess::PrintWarning(const << 1558 void G4VEnergyLossProcess::SetIonisation(G4bool val) 1492 { 1559 { 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1560 isIonisation = val; 1494 G4ExceptionDescription ed; << 1495 ed << "Parameter is out of range: " << val << 1496 << " it will have no effect!\n" << " Pr << 1497 << GetProcessName() << " nbins= " << nB << 1498 << " Emin(keV)= " << minKinEnergy/keV << 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1501 } 1561 } 1502 1562 1503 //....oooOO0OOooo........oooOO0OOooo........o 1563 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1504 1564 1505 void G4VEnergyLossProcess::ProcessDescription << 1565 G4bool G4VEnergyLossProcess::IsIonisationProcess() const 1506 { 1566 { 1507 if(nullptr != particle) { StreamInfo(out, * << 1567 return isIonisation; 1508 } 1568 } 1509 1569 1510 //....oooOO0OOooo........oooOO0OOooo........o 1570 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1571 1511 1572