Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEnergyLossProcess.cc,v 1.66 2005/10/05 14:26:06 urban Exp $ >> 24 // GEANT4 tag $Name: geant4-07-01-patch-01 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: 38 // 38 // >> 39 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 40 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 44 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 45 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 46 // 24-01-03 Make models region aware (V.Ivanchenko) >> 47 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 48 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 49 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 50 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 51 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 52 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 53 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 54 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko) >> 55 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 56 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 57 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 58 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 59 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 60 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 61 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 62 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 63 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 64 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 65 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 66 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 67 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 68 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 69 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko) >> 70 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range >> 71 // calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko) >> 72 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko) >> 73 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko) >> 74 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko) >> 75 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko) >> 76 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko) >> 77 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 78 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 79 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 80 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 81 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) >> 82 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 83 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 84 // 25-07-05 Add extra protection PostStep for non-integral mode (V.Ivanchenko) >> 85 // 12-08-05 Integral=false; SetStepFunction(0.2, 0.1*mm) (mma) >> 86 // 18-08-05 Return back both AlongStep and PostStep from 7.0 (V.Ivanchenko) >> 87 // 02-09-05 Default StepFunction 0.2 1 mm + integral (V.Ivanchenko) >> 88 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 89 // 05-10-05 protection against 0 energy loss added (L.Urban) 39 // 90 // 40 // Class Description: 91 // Class Description: 41 // 92 // 42 // It is the unified energy loss process it ca 93 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 94 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 95 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 96 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 97 // that information on fly. 47 // ------------------------------------------- 98 // ------------------------------------------------------------------- 48 // 99 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 102 52 #include "G4VEnergyLossProcess.hh" 103 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4ProcessManager.hh" << 56 #include "G4LossTableManager.hh" 104 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" << 58 #include "G4Step.hh" 105 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 106 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" << 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 107 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 108 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 109 #include "G4DataVector.hh" >> 110 #include "G4PhysicsTable.hh" >> 111 #include "G4PhysicsVector.hh" 67 #include "G4PhysicsLogVector.hh" 112 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 113 #include "G4VParticleChange.hh" >> 114 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 115 #include "G4Electron.hh" >> 116 #include "G4Positron.hh" >> 117 #include "G4Proton.hh" >> 118 #include "G4VSubCutoffProcessor.hh" 70 #include "G4ProcessManager.hh" 119 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 120 #include "G4UnitsTable.hh" >> 121 #include "G4GenericIon.hh" >> 122 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 123 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 124 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 125 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" << 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" << 78 #include "G4VAtomDeexcitation.hh" << 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" << 81 #include "G4Log.hh" << 82 #include <iostream> << 83 126 84 //....oooOO0OOooo........oooOO0OOooo........oo 127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 128 86 namespace << 129 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, G4ProcessType type): 87 { << 130 G4VContinuousDiscreteProcess(name, type), 88 G4String tnames[7] = << 131 nSCoffRegions(0), 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 132 idxSCoffRegions(0), 90 } << 133 theDEDXTable(0), >> 134 theRangeTableForLoss(0), >> 135 theDEDXunRestrictedTable(0), >> 136 thePreciseRangeTable(0), >> 137 theSecondaryRangeTable(0), >> 138 theInverseRangeTable(0), >> 139 theLambdaTable(0), >> 140 theSubLambdaTable(0), >> 141 theDEDXAtMaxEnergy(0), >> 142 theRangeAtMaxEnergy(0), >> 143 theEnergyOfCrossSectionMax(0), >> 144 theCrossSectionMax(0), >> 145 particle(0), >> 146 baseParticle(0), >> 147 secondaryParticle(0), >> 148 currentCouple(0), >> 149 nDEDXBins(90), >> 150 nDEDXBinsForRange(70), >> 151 nLambdaBins(90), >> 152 nWarnings(0), >> 153 linLossLimit(0.05), >> 154 minSubRange(0.1), >> 155 lambdaFactor(0.8), >> 156 mfpKinEnergy(0.0), >> 157 lossFluctuationFlag(true), >> 158 lossFluctuationArePossible(true), >> 159 rndmStepFlag(false), >> 160 tablesAreBuilt(false), >> 161 integral(true), >> 162 meanFreePath(false), >> 163 aboveCSmax(true), >> 164 isIonisation(true) >> 165 { >> 166 >> 167 lowestKinEnergy = 1.*eV; >> 168 minKinEnergy = 0.1*keV; >> 169 maxKinEnergy = 100.0*GeV; >> 170 maxKinEnergyForRange = 1.0*GeV; 91 171 >> 172 pParticleChange = &fParticleChange; 92 173 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con << 174 // default dRoverRange and finalRange 94 G4P << 175 SetStepFunction(0.2, 1.0*mm); 95 G4VContinuousDiscreteProcess(name, type) << 96 { << 97 theParameters = G4EmParameters::Instance(); << 98 SetVerboseLevel(1); 176 SetVerboseLevel(1); 99 177 100 // low energy limit << 101 lowestKinEnergy = theParameters->LowestElect << 102 << 103 // Size of tables << 104 minKinEnergy = 0.1*CLHEP::keV; << 105 maxKinEnergy = 100.0*CLHEP::TeV; << 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 107 nBins = 84; << 108 nBinsCSDA = 35; << 109 << 110 invLambdaFactor = 1.0/lambdaFactor; << 111 << 112 // default linear loss limit << 113 finalRange = 1.*CLHEP::mm; << 114 << 115 // run time objects << 116 pParticleChange = &fParticleChange; << 117 fParticleChange.SetSecondaryWeightByProcess( << 118 modelManager = new G4EmModelManager(); 178 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT << 179 (G4LossTableManager::Instance())->Register(this); 120 ->GetSafetyHelper(); << 180 scoffProcessors.clear(); 121 aGPILSelection = CandidateForSelection; << 181 scoffRegions.clear(); 122 << 123 // initialise model << 124 lManager = G4LossTableManager::Instance(); << 125 lManager->Register(this); << 126 isMaster = lManager->IsMaster(); << 127 << 128 G4LossTableBuilder* bld = lManager->GetTable << 129 theDensityFactor = bld->GetDensityFactors(); << 130 theDensityIdx = bld->GetCoupleIndexes(); << 131 << 132 scTracks.reserve(10); << 133 secParticles.reserve(12); << 134 emModels = new std::vector<G4VEmModel*>; << 135 } 182 } 136 183 137 //....oooOO0OOooo........oooOO0OOooo........oo 184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 185 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 186 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 187 { 141 if (isMaster) { << 188 Clear(); 142 if(nullptr == baseParticle) { delete theDa << 189 143 delete theEnergyOfCrossSectionMax; << 190 if ( !baseParticle ) { 144 if(nullptr != fXSpeaks) { << 191 if(theDEDXTable && theRangeTableForLoss) theDEDXTable->clearAndDestroy(); 145 for(auto const & v : *fXSpeaks) { delete << 192 if(theDEDXunRestrictedTable && thePreciseRangeTable) 146 delete fXSpeaks; << 193 theDEDXunRestrictedTable->clearAndDestroy(); >> 194 if(thePreciseRangeTable) thePreciseRangeTable->clearAndDestroy(); >> 195 if(theRangeTableForLoss) theRangeTableForLoss->clearAndDestroy(); >> 196 if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy(); >> 197 if(theLambdaTable) theLambdaTable->clearAndDestroy(); >> 198 if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy(); >> 199 } >> 200 >> 201 if (nSCoffRegions) { >> 202 for (G4int i=0; i<nSCoffRegions; i++) { >> 203 if (scoffProcessors[i]) { >> 204 for (G4int j=i+1; j<nSCoffRegions; j++) { >> 205 if(scoffProcessors[i] == scoffProcessors[j]) scoffProcessors[j] = 0; >> 206 } >> 207 delete scoffProcessors[i]; >> 208 } 147 } 209 } >> 210 scoffProcessors.clear(); >> 211 scoffRegions.clear(); 148 } 212 } 149 delete modelManager; 213 delete modelManager; 150 delete biasManager; << 214 (G4LossTableManager::Instance())->DeRegister(this); 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); << 154 } 215 } 155 216 156 //....oooOO0OOooo........oooOO0OOooo........oo 217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 218 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 219 void G4VEnergyLossProcess::Clear() 159 << 160 << 161 { 220 { 162 return cut; << 221 if(1 < verboseLevel) { 163 } << 222 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() << G4endl; 164 << 223 } 165 //....oooOO0OOooo........oooOO0OOooo........oo << 166 224 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 225 if(theDEDXAtMaxEnergy) delete [] theDEDXAtMaxEnergy; 168 G4VEmFlu << 226 if(theRangeAtMaxEnergy) delete [] theRangeAtMaxEnergy; 169 const G4 << 227 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; 170 { << 228 if(theCrossSectionMax) delete [] theCrossSectionMax; 171 if(nullptr == ptr) { return; } << 229 172 G4VEmFluctuationModel* afluc = (nullptr == f << 230 theDEDXAtMaxEnergy = 0; 173 modelManager->AddEmModel(order, ptr, afluc, << 231 theRangeAtMaxEnergy = 0; 174 ptr->SetParticleChange(pParticleChange, aflu << 232 theEnergyOfCrossSectionMax = 0, >> 233 theCrossSectionMax = 0, >> 234 tablesAreBuilt = false; 175 } 235 } 176 236 177 //....oooOO0OOooo........oooOO0OOooo........oo 237 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 238 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 239 void G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 180 { 240 { 181 if(nullptr == ptr) { return; } << 182 if(!emModels->empty()) { << 183 for(auto & em : *emModels) { if(em == ptr) << 184 } << 185 emModels->push_back(ptr); << 186 } << 187 << 188 //....oooOO0OOooo........oooOO0OOooo........oo << 189 241 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 242 // Are particle defined? 191 << 243 if( !particle ) { 192 { << 244 if(part.GetParticleType() == "nucleus" && part.GetParticleSubType() == "generic") 193 massRatio = massratio; << 245 particle = G4GenericIon::GenericIon(); 194 logMassRatio = G4Log(massRatio); << 246 else particle = ∂ 195 fFactor = charge2ratio*biasFactor; << 247 } 196 if(baseMat) { fFactor *= (*theDensityFactor) << 197 chargeSqRatio = charge2ratio; << 198 reduceFactor = 1.0/(fFactor*massRatio); << 199 } << 200 248 201 //....oooOO0OOooo........oooOO0OOooo........oo << 249 if(1 < verboseLevel) { >> 250 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " >> 251 << GetProcessName() >> 252 << " for " << part.GetParticleName() >> 253 << " local: " << particle->GetParticleName() >> 254 << G4endl; >> 255 } 202 256 203 void << 257 G4LossTableManager* lManager = G4LossTableManager::Instance(); 204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 205 { << 206 particle = G4EmTableUtil::CheckIon(this, &pa << 207 verboseLe << 208 258 209 if( particle != &part ) { << 259 if (&part != particle) { 210 if(!isIon) { lManager->RegisterExtraPartic << 260 if (part.GetParticleType() == "nucleus") lManager->RegisterIon(&part, this); 211 if(1 < verboseLevel) { << 261 else lManager->RegisterExtraParticle(&part, this); 212 G4cout << "### G4VEnergyLossProcess::Pre << 213 << " interrupted for " << GetProc << 214 << part.GetParticleName() << " is << 215 << " spline=" << spline << G4endl << 216 } << 217 return; 262 return; 218 } 263 } 219 264 220 tablesAreBuilt = false; << 265 Clear(); 221 if (GetProcessSubType() == fIonisation) { Se << 222 266 223 G4LossTableBuilder* bld = lManager->GetTable << 267 currentCouple = 0; 224 lManager->PreparePhysicsTable(&part, this); << 268 preStepLambda = 0.0; >> 269 mfpKinEnergy = DBL_MAX; >> 270 preStepMFP = DBL_MAX; 225 271 226 // Base particle and set of models can be de 272 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 273 InitialiseEnergyLossProcess(particle, baseParticle); 228 274 229 // parameters of the process << 275 // Tables preparation 230 if(!actLossFluc) { lossFluctuationFlag = the << 276 if (!baseParticle) { 231 useCutAsFinalRange = theParameters->UseCutAs << 277 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 278 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 279 if (lManager->BuildPreciseRange()) { 234 if(!actBinning) { nBins = theParameters->Num << 280 theDEDXunRestrictedTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 281 if (isIonisation) 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 282 thePreciseRangeTable = G4PhysicsTableHelper::PreparePhysicsTable(thePreciseRangeTable); 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 283 } 238 if(!actLinLossLimit) { linLossLimit = thePar << 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 << 246 theParameters->DefineRegParamForLoss(this); << 247 284 248 fRangeEnergy = 0.0; << 285 if (isIonisation) { >> 286 theRangeTableForLoss = G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 287 theInverseRangeTable = G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); >> 288 } >> 289 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 290 if (nSCoffRegions) >> 291 theSubLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); >> 292 } 249 293 250 G4double initialCharge = particle->GetPDGCha 294 G4double initialCharge = particle->GetPDGCharge(); 251 G4double initialMass = particle->GetPDGMas 295 G4double initialMass = particle->GetPDGMass(); >> 296 chargeSquare = initialCharge*initialCharge/(eplus*eplus); >> 297 chargeSqRatio = 1.0; >> 298 massRatio = 1.0; >> 299 reduceFactor = 1.0; 252 300 253 theParameters->FillStepFunction(particle, th << 301 if (baseParticle) { 254 << 302 massRatio = (baseParticle->GetPDGMass())/initialMass; 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G 303 G4double q = initialCharge/baseParticle->GetPDGCharge(); 260 chargeSqRatio = q*q; 304 chargeSqRatio = q*q; 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 << 305 reduceFactor = 1.0/(chargeSqRatio*massRatio); 262 } 306 } 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 307 267 // Tables preparation << 308 theCuts = modelManager->Initialise(particle, secondaryParticle, minSubRange, verboseLevel); 268 if (isMaster && nullptr == baseParticle) { << 269 if(nullptr == theData) { theData = new G4E << 270 309 271 if(nullptr != theDEDXTable && isIonisation << 310 // Sub Cutoff Regime 272 if(nullptr != theIonisationTable && theD << 311 273 theData->CleanTable(0); << 312 idxSCoffRegions.clear(); 274 theDEDXTable = theIonisationTable; << 313 275 theIonisationTable = nullptr; << 314 const G4ProductionCutsTable* theCoupleTable= 276 } << 315 G4ProductionCutsTable::GetProductionCutsTable(); 277 } << 316 size_t numOfCouples = theCoupleTable->GetTableSize(); 278 << 317 279 theDEDXTable = theData->MakeTable(theDEDXT << 318 if (nSCoffRegions) { 280 bld->InitialiseBaseMaterials(theDEDXTable) << 319 const G4DataVector* theSubCuts = modelManager->SubCutoff(); 281 theData->UpdateTable(theIonisationTable, 1 << 320 282 << 321 for (G4int i=0; i<nSCoffRegions; i++) { 283 if (theParameters->BuildCSDARange()) { << 322 scoffProcessors[i]->Initialise(particle, secondaryParticle, theCuts, theSubCuts); 284 theDEDXunRestrictedTable = theData->Make << 285 if(isIonisation) { theCSDARangeTable = t << 286 } << 287 << 288 theLambdaTable = theData->MakeTable(4); << 289 if(isIonisation) { << 290 theRangeTableForLoss = theData->MakeTabl << 291 theInverseRangeTable = theData->MakeTabl << 292 } 323 } 293 } << 324 for (size_t j=0; j<numOfCouples; j++) { 294 325 295 // forced biasing << 326 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j); 296 if(nullptr != biasManager) { << 327 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); 297 biasManager->Initialise(part,GetProcessNam << 328 G4int reg = nSCoffRegions; 298 biasFlag = false; << 329 do {reg--;} while (reg && pcuts != (scoffRegions[reg]->GetProductionCuts())); 299 } << 330 idxSCoffRegions.push_back(reg); 300 baseMat = bld->GetBaseMaterialFlag(); << 301 numberOfModels = modelManager->NumberOfModel << 302 currentModel = modelManager->GetModel(0); << 303 G4EmTableUtil::UpdateModels(this, modelManag << 304 numberOfModels, << 305 mainSecondaries, << 306 theParameters->U << 307 theCuts = modelManager->Initialise(particle, << 308 verboseLe << 309 // subcut processor << 310 if(isIonisation) { << 311 subcutProducer = lManager->SubCutProducer( << 312 } << 313 if(1 == nSCoffRegions) { << 314 if((*scoffRegions)[0]->GetName() == "Defau << 315 delete scoffRegions; << 316 scoffRegions = nullptr; << 317 nSCoffRegions = 0; << 318 } 331 } 319 } 332 } 320 333 321 if(1 < verboseLevel) { << 334 lManager->EnergyLossProcessIsInitialised(particle, this); 322 G4cout << "G4VEnergyLossProcess::PrepearPh << 335 323 << " for " << GetProcessName() << " << 336 if (1 < verboseLevel) { 324 << " isIon= " << isIon << " spline= << 337 G4cout << "G4VEnergyLossProcess::Initialise() is done " 325 if(baseParticle) { << 338 << " chargeSqRatio= " << chargeSqRatio 326 G4cout << "; base: " << baseParticle->Ge << 327 } << 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa << 330 << " massRatio= " << massRatio 339 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 340 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 341 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 342 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { << 343 for (G4int i=0; i<nSCoffRegions; i++) { 335 const G4Region* r = (*scoffRegions)[i] << 344 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 345 G4cout << " " << r->GetName() << G4endl; 337 } 346 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 347 } 341 } 348 } 342 } 349 } 343 350 344 //....oooOO0OOooo........oooOO0OOooo........oo 351 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 352 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 353 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 354 { 348 if(1 < verboseLevel) { << 355 if(1 < verboseLevel) { >> 356 // G4cout << "========================================================" << G4endl; 349 G4cout << "### G4VEnergyLossProcess::Build 357 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 358 << GetProcessName() 351 << " and particle " << part.GetPart 359 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 360 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { << 361 if(baseParticle) G4cout << "; base: " << baseParticle->GetParticleName(); 354 G4cout << "; base: " << baseParticle->Ge << 355 } << 356 G4cout << G4endl; 362 G4cout << G4endl; 357 G4cout << " TablesAreBuilt= " << tables << 358 << " spline=" << spline << " ptr: " << 359 } 363 } 360 364 361 if(&part == particle) { << 365 if(!tablesAreBuilt && &part == particle) 362 if(isMaster) { << 366 G4LossTableManager::Instance()->BuildPhysicsTable(particle, this); 363 lManager->BuildPhysicsTable(particle, th << 367 364 << 368 if(0 < verboseLevel && (&part == particle) && !baseParticle) PrintInfoDefinition(); 365 } else { << 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 << 369 numberOfModels = modelManager->NumberOfM << 370 G4EmTableUtil::BuildLocalElossProcess(th << 371 pa << 372 tablesAreBuilt = true; << 373 baseMat = masterProcess->UseBaseMaterial << 374 lManager->LocalPhysicsTables(particle, t << 375 } << 376 << 377 // needs to be done only once << 378 safetyHelper->InitialiseHelper(); << 379 } << 380 // Added tracking cut to avoid tracking arti << 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } << 387 } << 388 369 389 // protection against double printout << 390 if(theParameters->IsPrintLocked()) { return; << 391 << 392 // explicitly defined printout by particle n << 393 G4String num = part.GetParticleName(); << 394 if(1 < verboseLevel || << 395 (0 < verboseLevel && (num == "e-" || << 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } << 404 if(1 < verboseLevel) { 370 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 371 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 372 << GetProcessName() 407 << " and particle " << part.GetPart << 373 << " and particle " << part.GetParticleName() 408 if(isIonisation) { G4cout << " isIonisati << 374 << G4endl; 409 G4cout << " baseMat=" << baseMat << G4endl << 410 } 375 } 411 } 376 } 412 377 413 //....oooOO0OOooo........oooOO0OOooo........oo 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 379 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED << 380 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, G4VEmFluctuationModel* fluc, >> 381 const G4Region* region) 416 { 382 { 417 G4PhysicsTable* table = nullptr; << 383 modelManager->AddEmModel(order, p, fluc, region); 418 G4double emax = maxKinEnergy; << 384 if(p) p->SetParticleChange(pParticleChange, fluc); 419 G4int bin = nBins; << 385 if(!fluc) { 420 << 386 lossFluctuationFlag = false; 421 if(fTotal == tType) { << 387 lossFluctuationArePossible = false; 422 emax = maxKinEnergyCSDA; << 423 bin = nBinsCSDA; << 424 table = theDEDXunRestrictedTable; << 425 } else if(fRestricted == tType) { << 426 table = theDEDXTable; << 427 } else { << 428 G4cout << "G4VEnergyLossProcess::BuildDEDX << 429 << tType << G4endl; << 430 } << 431 if(1 < verboseLevel) { << 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 433 << " for " << GetProcessName() << 434 << " and " << particle->GetParticle << 435 << "spline=" << spline << G4endl; << 436 } 388 } 437 if(nullptr == table) { return table; } << 438 << 439 G4LossTableBuilder* bld = lManager->GetTable << 440 G4EmTableUtil::BuildDEDXTable(this, particle << 441 table, minKinE << 442 verboseLevel, << 443 return table; << 444 } 389 } 445 390 446 //....oooOO0OOooo........oooOO0OOooo........oo 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 392 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 393 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, G4double emin, G4double emax) 449 { 394 { 450 if(nullptr == theLambdaTable) { return theLa << 395 modelManager->UpdateEmModel(nam, emin, emax); 451 << 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable << 458 G4EmTableUtil::BuildLambdaTable(this, partic << 459 bld, theLamb << 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } 396 } 464 397 465 //....oooOO0OOooo........oooOO0OOooo........oo 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 466 399 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 400 void G4VEnergyLossProcess::AddSubCutoffProcessor(G4VSubCutoffProcessor* p, 468 const G4ParticleDefinition& pa << 401 const G4Region* r) 469 { 402 { 470 G4String indent = (rst ? " " : ""); << 403 if( !p ) { 471 out << std::setprecision(6); << 404 G4cout << "G4VEnergyLossProcess::AddSubCutoffProcessor WARNING: no SubCutoffProcessor defined." 472 out << G4endl << indent << GetProcessName() << 405 << G4endl; 473 if (!rst) out << " for " << part.GetParticle << 406 return; 474 out << " XStype:" << fXSType << 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " << 477 << G4BestUnit(minKinEnergy,"Energy") << 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } 407 } 504 if(2 < verboseLevel) { << 408 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 505 for(std::size_t i=0; i<7; ++i) { << 409 if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false); 506 auto ta = theData->Table(i); << 410 if (nSCoffRegions) { 507 out << " " << tnames[i] << " addres << 411 for (G4int i=0; i<nSCoffRegions; i++) { 508 if(nullptr != ta) { out << *ta << G4endl << 412 if (r == scoffRegions[i]) { >> 413 if ( scoffProcessors[i] ) delete scoffProcessors[i]; >> 414 scoffProcessors[i] = p; >> 415 return; >> 416 } 509 } 417 } 510 } 418 } >> 419 scoffProcessors.push_back(p); >> 420 scoffRegions.push_back(r); >> 421 nSCoffRegions++; 511 } 422 } 512 423 513 //....oooOO0OOooo........oooOO0OOooo........oo 424 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 425 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 426 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable() 516 { 427 { 517 if(nullptr == scoffRegions) { << 428 518 scoffRegions = new std::vector<const G4Reg << 429 if(1 < verboseLevel) { 519 } << 430 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() for " 520 // the region is in the list << 431 << GetProcessName() 521 if(!scoffRegions->empty()) { << 432 << " and particle " << particle->GetParticleName() 522 for (auto & reg : *scoffRegions) { << 433 << G4endl; 523 if (reg == r) { return; } << 524 } << 525 } 434 } 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } << 530 435 531 //....oooOO0OOooo........oooOO0OOooo........oo << 436 // Access to materials >> 437 const G4ProductionCutsTable* theCoupleTable= >> 438 G4ProductionCutsTable::GetProductionCutsTable(); >> 439 size_t numOfCouples = theCoupleTable->GetTableSize(); 532 440 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 441 if(1 < verboseLevel) { 534 { << 442 G4cout << numOfCouples << " materials" 535 if(0 == nSCoffRegions) { return true; } << 443 << " minKinEnergy= " << minKinEnergy 536 const G4Region* r = aTrack.GetVolume()->GetL << 444 << " maxKinEnergy= " << maxKinEnergy 537 for(auto & reg : *scoffRegions) { << 445 << G4endl; 538 if(r == reg) { return true; } << 539 } 446 } 540 return false; << 541 } << 542 447 543 //....oooOO0OOooo........oooOO0OOooo........oo << 448 for(size_t i=0; i<numOfCouples; i++) { 544 449 545 void G4VEnergyLossProcess::StartTracking(G4Tra << 450 if(2 < verboseLevel) 546 { << 451 G4cout << "G4VEnergyLossProcess::BuildDEDXVector flag= " << theDEDXTable->GetFlag(i) << G4endl; 547 // reset parameters for the new track << 548 theNumberOfInteractionLengthLeft = -1.0; << 549 mfpKinEnergy = DBL_MAX; << 550 preStepLambda = 0.0; << 551 currentCouple = nullptr; << 552 452 553 // reset ion << 453 if (theDEDXTable->GetFlag(i)) { 554 if(isIon) { << 454 555 const G4double newmass = track->GetDefinit << 455 // create physics vector and fill it 556 massRatio = (nullptr == baseParticle) ? CL << 456 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 557 : baseParticle->GetPDGMass()/newmass; << 457 G4PhysicsVector* aVector = DEDXPhysicsVector(couple); 558 logMassRatio = G4Log(massRatio); << 458 modelManager->FillDEDXVector(aVector, couple); 559 } << 459 560 // forced biasing only for primary particles << 460 // Insert vector for this material into the table 561 if(nullptr != biasManager) { << 461 G4PhysicsTableHelper::SetPhysicsVector(theDEDXTable, i, aVector); 562 if(0 == track->GetParentID()) { << 563 biasFlag = true; << 564 biasManager->ResetForcedInteraction(); << 565 } 462 } 566 } 463 } 567 } << 568 464 569 //....oooOO0OOooo........oooOO0OOooo........oo << 465 if(1 < verboseLevel) { 570 << 466 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " 571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 467 << particle->GetParticleName() 572 const G4Track& tr << 468 << G4endl; 573 G4GPILSelection* << 469 if(2 < verboseLevel) G4cout << (*theDEDXTable) << G4endl; 574 { << 575 G4double x = DBL_MAX; << 576 *selection = aGPILSelection; << 577 if(isIonisation && currentModel->IsActive(pr << 578 GetScaledRangeForScaledEnergy(preStepScale << 579 x = (useCutAsFinalRange) ? std::min(finalR << 580 currentCouple->GetProductionCuts()->GetP << 581 x = (fRange > x) ? fRange*dRoverRange + x* << 582 : fRange; << 583 /* << 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 585 << " fRange=" << fRange << " finR=" << finR << 586 */ << 587 } 470 } 588 return x; << 471 >> 472 return theDEDXTable; 589 } 473 } 590 474 591 //....oooOO0OOooo........oooOO0OOooo........oo 475 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 476 593 G4double G4VEnergyLossProcess::PostStepGetPhys << 477 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() 594 const G4Track& tr << 595 G4double previo << 596 G4ForceCondition* << 597 { 478 { 598 // condition is set to "Not Forced" << 599 *condition = NotForced; << 600 G4double x = DBL_MAX; << 601 479 602 // initialisation of material, mass, charge, << 480 if(1 < verboseLevel) { 603 // at the beginning of the step << 481 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() for " 604 DefineMaterial(track.GetMaterialCutsCouple() << 482 << GetProcessName() 605 preStepKinEnergy = track.GetKineticEne << 483 << " and particle " << particle->GetParticleName() 606 preStepScaledEnergy = preStepKinEnergy*ma << 484 << G4endl; 607 SelectModel(preStepScaledEnergy); << 485 } 608 486 609 if(!currentModel->IsActive(preStepScaledEner << 487 // Access to materials 610 theNumberOfInteractionLengthLeft = -1.0; << 488 const G4ProductionCutsTable* theCoupleTable= 611 mfpKinEnergy = DBL_MAX; << 489 G4ProductionCutsTable::GetProductionCutsTable(); 612 preStepLambda = 0.0; << 490 size_t numOfCouples = theCoupleTable->GetTableSize(); 613 currentInteractionLength = DBL_MAX; << 491 614 return x; << 492 if(0 < verboseLevel) { >> 493 G4cout << numOfCouples << " materials" >> 494 << " minKinEnergy= " << minKinEnergy >> 495 << " maxKinEnergy= " << maxKinEnergy >> 496 << G4endl; 615 } 497 } 616 498 617 // change effective charge of a charged part << 499 for(size_t i=0; i<numOfCouples; i++) { 618 if(isIon) { << 500 619 const G4double q2 = currentModel->ChargeSq << 501 if (theDEDXunRestrictedTable->GetFlag(i)) { 620 fFactor = q2*biasFactor; << 502 621 if(baseMat) { fFactor *= (*theDensityFacto << 503 // create physics vector and fill it 622 reduceFactor = 1.0/(fFactor*massRatio); << 504 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 623 if (lossFluctuationFlag) { << 505 G4PhysicsVector* aVector = DEDXPhysicsVectorForPreciseRange(couple); 624 auto fluc = currentModel->GetModelOfFluc << 506 modelManager->FillDEDXVectorForPreciseRange(aVector, couple); 625 fluc->SetParticleAndCharge(track.GetDefi << 507 >> 508 // Insert vector for this material into the table >> 509 G4PhysicsTableHelper::SetPhysicsVector(theDEDXunRestrictedTable, i, aVector); 626 } 510 } 627 } 511 } 628 512 629 // forced biasing only for primary particles << 513 if(1 < verboseLevel) { 630 if(biasManager) { << 514 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange(): table is built for " 631 if(0 == track.GetParentID() && biasFlag && << 515 << particle->GetParticleName() 632 biasManager->ForcedInteractionRegion((G << 516 << G4endl; 633 return biasManager->GetStepLimit((G4int) << 517 if(2 < verboseLevel) G4cout << (*theDEDXunRestrictedTable) << G4endl; 634 } << 635 } 518 } 636 519 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 520 return theDEDXunRestrictedTable; 638 << 521 } 639 // zero cross section << 640 if(preStepLambda <= 0.0) { << 641 theNumberOfInteractionLengthLeft = -1.0; << 642 currentInteractionLength = DBL_MAX; << 643 } else { << 644 522 645 // non-zero cross section << 523 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 if (theNumberOfInteractionLengthLeft < 0.0 << 647 524 648 // beggining of tracking (or just after << 525 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable() 649 theNumberOfInteractionLengthLeft = -G4Lo << 526 { 650 theInitialNumberOfInteractionLength = th << 651 527 652 } else if(currentInteractionLength < DBL_M << 528 if(1 < verboseLevel) { >> 529 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() for process " >> 530 << GetProcessName() << " and particle " >> 531 << particle->GetParticleName() >> 532 << G4endl; >> 533 } 653 534 654 // subtract NumberOfInteractionLengthLef << 535 // Access to materials 655 theNumberOfInteractionLengthLeft -= << 536 const G4ProductionCutsTable* theCoupleTable= 656 previousStepSize/currentInteractionLen << 537 G4ProductionCutsTable::GetProductionCutsTable(); >> 538 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 539 >> 540 for(size_t i=0; i<numOfCouples; i++) { >> 541 >> 542 if (theLambdaTable->GetFlag(i)) { >> 543 >> 544 // create physics vector and fill it >> 545 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 546 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); >> 547 modelManager->FillLambdaVector(aVector, couple); 657 548 658 theNumberOfInteractionLengthLeft = << 549 // Insert vector for this material into the table 659 std::max(theNumberOfInteractionLengthL << 550 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); 660 } 551 } 661 << 662 // new mean free path and step limit << 663 currentInteractionLength = 1.0/preStepLamb << 664 x = theNumberOfInteractionLengthLeft * cur << 665 } 552 } 666 #ifdef G4VERBOSE << 553 667 if (verboseLevel>2) { << 554 if(1 < verboseLevel) { 668 G4cout << "G4VEnergyLossProcess::PostStepG << 555 G4cout << "Lambda table is built for " 669 G4cout << "[ " << GetProcessName() << "]" << 556 << particle->GetParticleName() 670 G4cout << " for " << track.GetDefinition() << 557 << G4endl; 671 << " in Material " << currentMate << 672 << " Ekin(MeV)= " << preStepKinEner << 673 << " track material: " << track.Get << 674 <<G4endl; << 675 G4cout << "MeanFreePath = " << currentInte << 676 << "InteractionLength= " << x/cm << << 677 } 558 } 678 #endif << 559 679 return x; << 560 return theLambdaTable; 680 } 561 } 681 562 682 //....oooOO0OOooo........oooOO0OOooo........oo 563 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 564 684 void << 565 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaSubTable() 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 686 { 566 { 687 // cross section increased with energy << 567 if(1 < verboseLevel) { 688 if(fXSType == fEmIncreasing) { << 568 G4cout << "G4VEnergyLossProcess::BuildLambdaSubTable() for process " 689 if(e*invLambdaFactor < mfpKinEnergy) { << 569 << GetProcessName() << " and particle " 690 preStepLambda = GetLambdaForScaledEnergy << 570 << particle->GetParticleName() << G4endl; 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 571 } 692 } << 693 572 694 // cross section has one peak << 573 // Access to materials 695 } else if(fXSType == fEmOnePeak) { << 574 const G4ProductionCutsTable* theCoupleTable= 696 const G4double epeak = (*theEnergyOfCrossS << 575 G4ProductionCutsTable::GetProductionCutsTable(); 697 if(e <= epeak) { << 576 size_t numOfCouples = theCoupleTable->GetTableSize(); 698 if(e*invLambdaFactor < mfpKinEnergy) { << 577 699 preStepLambda = GetLambdaForScaledEner << 578 for(size_t i=0; i<numOfCouples; i++) { 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 579 701 } << 580 if (theSubLambdaTable->GetFlag(i)) { 702 } else if(e < mfpKinEnergy) { << 581 703 const G4double e1 = std::max(epeak, e*la << 582 // create physics vector and fill it 704 mfpKinEnergy = e1; << 583 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 705 preStepLambda = GetLambdaForScaledEnergy << 584 G4PhysicsVector* aVector = SubLambdaPhysicsVector(couple); 706 } << 585 modelManager->FillSubLambdaVector(aVector, couple); 707 << 586 708 // cross section has more than one peaks << 587 // Insert vector for this material into the table 709 } else if(fXSType == fEmTwoPeaks) { << 588 G4PhysicsTableHelper::SetPhysicsVector(theSubLambdaTable, i, aVector); 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } 589 } 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } 590 } >> 591 >> 592 if(1 < verboseLevel) { >> 593 G4cout << "Table is built for " >> 594 << particle->GetParticleName() >> 595 << G4endl; >> 596 } >> 597 >> 598 return theSubLambdaTable; 769 } 599 } 770 600 >> 601 771 //....oooOO0OOooo........oooOO0OOooo........oo 602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 603 773 G4VParticleChange* G4VEnergyLossProcess::Along 604 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 605 const G4Step& step) 775 { 606 { 776 fParticleChange.InitializeForAlongStep(track 607 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 608 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( << 609 if(!theRangeTableForLoss) return &fParticleChange; 779 return &fParticleChange; << 780 } << 781 610 >> 611 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 612 G4double length = step.GetStepLength(); 783 G4double eloss = 0.0; 613 G4double eloss = 0.0; 784 << 614 785 /* << 615 /* 786 if(-1 < verboseLevel) { 616 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP << 617 const G4ParticleDefinition* d = track.GetDefinition(); 788 G4cout << "AlongStepDoIt for " 618 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 619 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 620 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 621 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 622 << " range(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 623 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 624 << " q^2= " << chargeSqRatio >> 625 << " md= " << d->GetPDGMass() >> 626 << " status= " << track.GetTrackStatus() >> 627 << G4endl; 795 } 628 } 796 */ 629 */ 797 const G4DynamicParticle* dynParticle = track << 798 630 799 // define new weight for primary and seconda << 631 // stopping 800 G4double weight = fParticleChange.GetParentW << 632 if (length >= fRange) { 801 if(weightFlag) { << 802 weight /= biasFactor; << 803 fParticleChange.ProposeWeight(weight); << 804 } << 805 << 806 // stopping, check actual range and kinetic << 807 if (length >= fRange || preStepKinEnergy <= << 808 eloss = preStepKinEnergy; 633 eloss = preStepKinEnergy; 809 if (useDeexcitation) { << 810 atomDeexcitation->AlongStepDeexcitation( << 811 << 812 if(scTracks.size() > 0) { FillSecondarie << 813 eloss = std::max(eloss, 0.0); << 814 } << 815 fParticleChange.SetProposedKineticEnergy(0 << 816 fParticleChange.ProposeLocalEnergyDeposit( << 817 return &fParticleChange; << 818 } << 819 // zero step length with non-zero range << 820 if(length <= 0.0) { return &fParticleChange; << 821 634 822 // Short step 635 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 636 } else if( length <= linLossLimit * fRange ) { 824 LogSca << 637 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length; 825 /* << 638 826 G4cout << "##### Short STEP: eloss= " << elo << 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 639 // Long step 834 if(eloss > preStepKinEnergy*linLossLimit) { << 640 } else { >> 641 G4double r = GetScaledRangeForScaledEnergy(preStepScaledEnergy); >> 642 G4double x = r - length/reduceFactor; >> 643 if(x < 0.0) { >> 644 G4cout << "WARNING! G4VEnergyLossProcess::AlongStepDoIt: x= " << x >> 645 << " for eScaled(MeV)= " << preStepScaledEnergy/MeV >> 646 << " step(mm)= " << length/mm >> 647 << " for " << track.GetDefinition()->GetParticleName() >> 648 << G4endl; >> 649 x = 0.0; >> 650 } >> 651 eloss = (ScaledKinEnergyForLoss(r) - ScaledKinEnergyForLoss(x))/massRatio; 835 652 836 const G4double x = (fRange - length)/reduc << 653 /* 837 const G4double de = preStepKinEnergy - Sca << 654 if(-1 < verboseLevel && eloss == 0.0) { 838 if(de > 0.0) { eloss = de; } << 655 G4cout << "Long STEP: rPre(mm)= " << r/mm 839 /* << 656 << " rPost(mm)= " << x/mm 840 if(-1 < verboseLevel) << 657 << " ePre(MeV)= " << preStepScaledEnergy/MeV 841 G4cout << " Long STEP: rPre(mm)=" << 658 << " eloss(MeV)= " << eloss/MeV 842 << GetScaledRangeForScaledEnergy( << 659 << " eloss0(MeV)= " 843 << " x(mm)=" << x/mm << 660 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV 844 << " eloss(MeV)=" << eloss/MeV << 845 << " rFactor=" << reduceFactor << 846 << " massRatio=" << massRatio << 847 << G4endl; 661 << G4endl; 848 */ << 662 } >> 663 */ >> 664 849 } 665 } 850 666 851 /* << 667 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 852 if(-1 < verboseLevel ) { << 668 G4VEmModel* currentModel = SelectModel(preStepScaledEnergy); >> 669 G4double tmax = std::min(currentModel->MaxSecondaryKinEnergy(dynParticle), >> 670 (*theCuts)[currentMaterialIndex]); >> 671 >> 672 /* >> 673 // G4double eloss0 = eloss; >> 674 if(-1 < verboseLevel && eloss == 0.0) { 853 G4cout << "Before fluct: eloss(MeV)= " << 675 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV >> 676 << " tmax= " << tmax 854 << " e-eloss= " << preStepKinEnergy 677 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 678 << " step(mm)= " << length/mm 856 << " fluct= " << lossFluctuationFla << 679 << " range(mm)= " << fRange/mm >> 680 << " fluct= " << lossFluctuationFlag >> 681 << G4endl; 857 } 682 } 858 */ << 683 */ 859 684 860 const G4double cut = (*theCuts)[currentCoupl << 685 // protection against 0 mean energy loss 861 G4double esec = 0.0; << 686 if(eloss < lowestKinEnergy) >> 687 eloss = std::min(lowestKinEnergy,preStepKinEnergy); >> 688 >> 689 // Sample fluctuations >> 690 // if (lossFluctuationFlag && eloss + lowestKinEnergy < preStepKinEnergy) { >> 691 if (lossFluctuationFlag && eloss < preStepKinEnergy) { 862 692 863 // Corrections, which cannot be tabulated << 693 eloss = currentModel->GetModelOfFluctuations()-> 864 if(isIon) { << 694 SampleFluctuations(currentMaterial,dynParticle,tmax,length,eloss); 865 currentModel->CorrectionsAlongStep(current << 866 length, << 867 eloss = std::max(eloss, 0.0); << 868 } 695 } 869 << 696 /* 870 // Sample fluctuations if not full energy lo << 697 if(-1 < verboseLevel) { 871 if(eloss >= preStepKinEnergy) { << 698 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 872 eloss = preStepKinEnergy; << 699 << " fluc= " << (eloss-eloss0)/MeV 873 << 700 << " currentChargeSquare= " << chargeSquare 874 } else if (lossFluctuationFlag) { << 701 << " massRatio= " << massRatio 875 const G4double tmax = currentModel->MaxSec << 702 << G4endl; 876 const G4double tcut = std::min(cut, tmax); << 877 G4VEmFluctuationModel* fluc = currentModel << 878 eloss = fluc->SampleFluctuations(currentCo << 879 tcut, tma << 880 /* << 881 if(-1 < verboseLevel) << 882 G4cout << "After fluct: eloss(MeV)= " << << 883 << " fluc= " << (eloss-eloss0)/Me << 884 << " ChargeSqRatio= " << chargeSq << 885 << " massRatio= " << massRatio << << 886 */ << 887 } 703 } >> 704 */ 888 705 889 // deexcitation << 706 // Corrections, which cannot be tabulated 890 if (useDeexcitation) { << 707 CorrectionsAlongStep(currentCouple, dynParticle, eloss, length); 891 G4double esecfluo = preStepKinEnergy; << 892 G4double de = esecfluo; << 893 atomDeexcitation->AlongStepDeexcitation(sc << 894 de << 895 << 896 // sum of de-excitation energies << 897 esecfluo -= de; << 898 << 899 // subtracted from energy loss << 900 if(eloss >= esecfluo) { << 901 esec += esecfluo; << 902 eloss -= esecfluo; << 903 } else { << 904 esec += esecfluo; << 905 eloss = 0.0; << 906 } << 907 } << 908 if(nullptr != subcutProducer && IsRegionForC << 909 subcutProducer->SampleSecondaries(step, sc << 910 } << 911 // secondaries from atomic de-excitation and << 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 708 914 // Energy balance << 709 G4double finalT = preStepKinEnergy - eloss; 915 G4double finalT = preStepKinEnergy - eloss - << 710 if (finalT <= lowestKinEnergy) finalT = 0.0; 916 if (finalT <= lowestKinEnergy) { << 711 eloss = preStepKinEnergy-finalT; 917 eloss += finalT; << 918 finalT = 0.0; << 919 } else if(isIon) { << 920 fParticleChange.SetProposedCharge( << 921 currentModel->GetParticleCharge(track.Ge << 922 currentM << 923 } << 924 eloss = std::max(eloss, 0.0); << 925 712 926 fParticleChange.SetProposedKineticEnergy(fin 713 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 714 fParticleChange.ProposeLocalEnergyDeposit(eloss); 928 /* << 715 929 if(-1 < verboseLevel) { << 716 /* 930 G4double del = finalT + eloss + esec - pre << 717 if(-1 < verboseLevel && eloss == 0.0) { 931 G4cout << "Final value eloss(MeV)= " << el 718 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 719 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 720 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV << 935 << " lossFlag= " << lossFluctuation 721 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt 722 << " status= " << track.GetTrackStatus() 937 << G4endl; 723 << G4endl; 938 } 724 } 939 */ << 725 */ 940 return &fParticleChange; << 941 } << 942 << 943 //....oooOO0OOooo........oooOO0OOooo........oo << 944 726 945 void G4VEnergyLossProcess::FillSecondariesAlon << 727 return &fParticleChange; 946 { << 947 const std::size_t n0 = scTracks.size(); << 948 G4double weight = wt; << 949 // weight may be changed by biasing manager << 950 if(biasManager) { << 951 if(biasManager->SecondaryBiasingRegion((G4 << 952 weight *= << 953 biasManager->ApplySecondaryBiasing(scT << 954 } << 955 } << 956 << 957 // fill secondaries << 958 const std::size_t n = scTracks.size(); << 959 fParticleChange.SetNumberOfSecondaries((G4in << 960 << 961 for(std::size_t i=0; i<n; ++i) { << 962 G4Track* t = scTracks[i]; << 963 if(nullptr != t) { << 964 t->SetWeight(weight); << 965 pParticleChange->AddSecondary(t); << 966 G4int pdg = t->GetDefinition()->GetPDGEn << 967 if (i < n0) { << 968 if (pdg == 22) { << 969 t->SetCreatorModelID(gpixeID); << 970 } else if (pdg == 11) { << 971 t->SetCreatorModelID(epixeID); << 972 } else { << 973 t->SetCreatorModelID(biasID); << 974 } << 975 } else { << 976 t->SetCreatorModelID(biasID); << 977 } << 978 } << 979 } << 980 scTracks.clear(); << 981 } 728 } 982 729 983 //....oooOO0OOooo........oooOO0OOooo........oo 730 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 731 985 G4VParticleChange* G4VEnergyLossProcess::PostS 732 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 733 const G4Step& step) 987 { 734 { 988 // clear number of interaction lengths in an << 989 theNumberOfInteractionLengthLeft = -1.0; << 990 mfpKinEnergy = DBL_MAX; << 991 << 992 fParticleChange.InitializeForPostStep(track) 735 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 736 G4double finalT = track.GetKineticEnergy(); 994 << 737 if(finalT == 0.0) return &fParticleChange; 995 const G4double postStepScaledEnergy = finalT << 996 SelectModel(postStepScaledEnergy); << 997 738 998 if(!currentModel->IsActive(postStepScaledEne << 739 G4double postStepScaledEnergy = finalT*massRatio; 999 return &fParticleChange; << 1000 } << 1001 /* 740 /* 1002 if(1 < verboseLevel) { << 741 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 742 G4cout << GetProcessName() >> 743 << "::PostStepDoIt: E(MeV)= " << finalT/MeV >> 744 << G4endl; 1004 } 745 } 1005 */ 746 */ 1006 // forced process - should happen only once << 1007 if(biasFlag) { << 1008 if(biasManager->ForcedInteractionRegion(( << 1009 biasFlag = false; << 1010 } << 1011 } << 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 << 1014 // Integral approach 747 // Integral approach 1015 if (fXSType != fEmNoIntegral) { << 748 if (integral) { 1016 const G4double logFinalT = dp->GetLogKine << 749 G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy); 1017 G4double lx = GetLambdaForScaledEnergy(po << 750 /* 1018 lo << 751 if(preStepLambda<lx && 1 < verboseLevel && nWarnings<200) { 1019 lx = std::max(lx, 0.0); << 752 G4cout << "WARNING: for " << particle->GetParticleName() 1020 << 753 << " and " << GetProcessName() 1021 // if both lg and lx are zero then no int << 754 << " E(MeV)= " << finalT/MeV 1022 if(preStepLambda*G4UniformRand() >= lx) { << 755 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " 1023 return &fParticleChange; << 756 << G4endl; 1024 } << 757 nWarnings++; 1025 } << 1026 << 1027 // define new weight for primary and second << 1028 G4double weight = fParticleChange.GetParent << 1029 if(weightFlag) { << 1030 weight /= biasFactor; << 1031 fParticleChange.ProposeWeight(weight); << 1032 } << 1033 << 1034 const G4double tcut = (*theCuts)[currentCou << 1035 << 1036 // sample secondaries << 1037 secParticles.clear(); << 1038 currentModel->SampleSecondaries(&secParticl << 1039 << 1040 const G4int num0 = (G4int)secParticles.size << 1041 << 1042 // bremsstrahlung splitting or Russian roul << 1043 if(biasManager) { << 1044 if(biasManager->SecondaryBiasingRegion((G << 1045 G4double eloss = 0.0; << 1046 weight *= biasManager->ApplySecondaryBi << 1047 secPart << 1048 track, << 1049 &fParti << 1050 (G4int) << 1051 step.Ge << 1052 if(eloss > 0.0) { << 1053 eloss += fParticleChange.GetLocalEner << 1054 fParticleChange.ProposeLocalEnergyDep << 1055 } << 1056 } 758 } >> 759 */ >> 760 if(preStepLambda*G4UniformRand() > lx) >> 761 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1057 } 762 } 1058 763 1059 // save secondaries << 764 G4VEmModel* currentModel = SelectModel(postStepScaledEnergy); 1060 const G4int num = (G4int)secParticles.size( << 765 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 1061 if(num > 0) { << 766 G4double tcut = (*theCuts)[currentMaterialIndex]; 1062 << 767 G4double tmax = currentModel->MaxSecondaryKinEnergy(dynParticle); 1063 fParticleChange.SetNumberOfSecondaries(nu << 1064 G4double time = track.GetGlobalTime(); << 1065 << 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 << 1071 for (G4int i=0; i<num; ++i) { << 1072 if(nullptr != secParticles[i]) { << 1073 G4Track* t = new G4Track(secParticles << 1074 t->SetTouchableHandle(track.GetToucha << 1075 if (biasManager) { << 1076 t->SetWeight(weight * biasManager-> << 1077 } else { << 1078 t->SetWeight(weight); << 1079 } << 1080 if(i < num0) { << 1081 t->SetCreatorModelID(secID); << 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 768 1088 //G4cout << "Secondary(post step) has << 769 if (tcut < tmax) { 1089 // << ", kenergy " << t->GetKin << 770 std::vector<G4DynamicParticle*>* newp = SecondariesPostStep( 1090 // << " time= " << time/ns << " << 771 currentModel, currentCouple, dynParticle, tcut); 1091 pParticleChange->AddSecondary(t); << 772 >> 773 if(newp) { >> 774 G4int num = newp->size(); >> 775 fParticleChange.SetNumberOfSecondaries(num); >> 776 for (G4int i=0; i<num; i++) { >> 777 fParticleChange.AddSecondary((*newp)[i]); 1092 } 778 } >> 779 delete newp; 1093 } 780 } 1094 } << 1095 781 1096 if(0.0 == fParticleChange.GetProposedKineti << 782 finalT = fParticleChange.GetProposedKineticEnergy(); 1097 fAlive == fParticleChange.GetTrackStatus << 1098 if(particle->GetProcessManager()->GetAtRe << 1099 { fParticleChange.ProposeTrackStatus << 1100 else { fParticleChange.ProposeTrackStatus << 1101 } 783 } 1102 784 1103 /* 785 /* 1104 if(-1 < verboseLevel) { 786 if(-1 < verboseLevel) { 1105 G4cout << "::PostStepDoIt: Sample seconda << 787 G4cout << "::PostStepDoIt: Sample secondary; Efin= " << finalT/MeV 1106 << fParticleChange.GetProposedKineticEner << 1107 << " MeV; model= (" << currentMode 788 << " MeV; model= (" << currentModel->LowEnergyLimit() 1108 << ", " << currentModel->HighEner 789 << ", " << currentModel->HighEnergyLimit() << ")" 1109 << " preStepLambda= " << preStepL 790 << " preStepLambda= " << preStepLambda 1110 << " dir= " << track.GetMomentumD 791 << " dir= " << track.GetMomentumDirection() 1111 << " status= " << track.GetTrackS 792 << " status= " << track.GetTrackStatus() 1112 << G4endl; 793 << G4endl; 1113 } 794 } 1114 */ 795 */ 1115 return &fParticleChange; << 796 if (finalT <= lowestKinEnergy) { >> 797 fParticleChange.SetProposedKineticEnergy(0.0); >> 798 return &fParticleChange; >> 799 } >> 800 >> 801 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1116 } 802 } 1117 803 1118 //....oooOO0OOooo........oooOO0OOooo........o 804 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 805 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 806 void G4VEnergyLossProcess::PrintInfoDefinition() 1121 const G4ParticleDefinition* part, cons << 1122 { 807 { 1123 if (!isMaster || nullptr != baseParticle || << 808 if(0 < verboseLevel) { 1124 for(std::size_t i=0; i<7; ++i) { << 809 G4cout << G4endl << GetProcessName() << ": tables are built for " 1125 // ionisation table only for ionisation p << 810 << particle->GetParticleName() 1126 if (nullptr == theData->Table(i) || (!isI << 811 << G4endl 1127 continue; << 812 << " dE/dx and range tables from " >> 813 << G4BestUnit(minKinEnergy,"Energy") >> 814 << " to " << G4BestUnit(maxKinEnergy,"Energy") >> 815 << " in " << nDEDXBins << " bins." << G4endl >> 816 << " Lambda tables from threshold to " >> 817 << G4BestUnit(maxKinEnergy,"Energy") >> 818 << " in " << nLambdaBins << " bins." >> 819 << G4endl; >> 820 PrintInfo(); >> 821 if(theRangeTableForLoss) { >> 822 G4cout << " Step function: finalRange(mm)= " << finalRange/mm >> 823 << ", dRoverRange= " << dRoverRange >> 824 << ", integral: " << integral >> 825 << G4endl; 1128 } 826 } 1129 if (-1 < verboseLevel) { << 827 if(thePreciseRangeTable) { 1130 G4cout << "G4VEnergyLossProcess::StoreP << 828 G4cout << " Precise range table up" 1131 << " " << particle->GetParticleName() << 829 << " to " << G4BestUnit(maxKinEnergyForRange,"Energy") 1132 << " " << GetProcessName() << 830 << " in " << nDEDXBinsForRange << " bins." << G4endl; 1133 << " " << tnames[i] << " " << theDat << 1134 } 831 } 1135 if (!G4EmTableUtil::StoreTable(this, part << 832 1136 dir, tnames[i], verboseLevel, asci << 833 if(2 < verboseLevel) { 1137 return false; << 834 G4cout << "DEDXTable address= " << theDEDXTable << G4endl; >> 835 if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl; >> 836 G4cout << "non restricted DEDXTable address= " << theDEDXunRestrictedTable << G4endl; >> 837 if(theDEDXunRestrictedTable) G4cout << (*theDEDXunRestrictedTable) << G4endl; >> 838 G4cout << "PreciseRangeTable address= " << thePreciseRangeTable << G4endl; >> 839 if(thePreciseRangeTable) G4cout << (*thePreciseRangeTable) << G4endl; >> 840 G4cout << "RangeTableForLoss address= " << theRangeTableForLoss << G4endl; >> 841 if(theRangeTableForLoss) G4cout << (*theRangeTableForLoss) << G4endl; >> 842 G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl; >> 843 if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl; >> 844 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; >> 845 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; >> 846 G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl; >> 847 if(theSubLambdaTable) G4cout << (*theSubLambdaTable) << G4endl; 1138 } 848 } 1139 } 849 } 1140 return true; << 1141 } 850 } 1142 851 1143 //....oooOO0OOooo........oooOO0OOooo........o << 852 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1144 853 1145 G4bool << 854 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p) 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 1147 co << 1148 { 855 { 1149 if (!isMaster || nullptr != baseParticle || << 856 if(theDEDXTable != p) theDEDXTable = p; 1150 for(std::size_t i=0; i<7; ++i) { << 857 } 1151 // ionisation table only for ionisation p << 858 1152 if (!isIonisation && 1 == i) { continue; << 859 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 860 1154 verboseL << 861 void G4VEnergyLossProcess::SetDEDXunRestrictedTable(G4PhysicsTable* p) 1155 return false; << 862 { >> 863 if(theDEDXunRestrictedTable != p) theDEDXunRestrictedTable = p; >> 864 if(p) { >> 865 size_t n = p->length(); >> 866 G4PhysicsVector* pv = (*p)[0]; >> 867 G4double emax = maxKinEnergyForRange; >> 868 G4bool b; >> 869 theDEDXAtMaxEnergy = new G4double [n]; >> 870 >> 871 for (size_t i=0; i<n; i++) { >> 872 pv = (*p)[i]; >> 873 G4double dedx = pv->GetValue(emax, b); >> 874 theDEDXAtMaxEnergy[i] = dedx; >> 875 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " << dedx << G4endl; 1156 } 876 } 1157 } 877 } 1158 return true; << 1159 } 878 } 1160 879 1161 //....oooOO0OOooo........oooOO0OOooo........o 880 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 881 1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 882 void G4VEnergyLossProcess::SetPreciseRangeTable(G4PhysicsTable* p) 1164 const G4Mat << 1165 const G4Dyn << 1166 G4dou << 1167 { 883 { 1168 DefineMaterial(couple); << 884 if(thePreciseRangeTable != p) thePreciseRangeTable = p; 1169 G4double ekin = dp->GetKineticEnergy(); << 885 1170 SelectModel(ekin*massRatio); << 886 if(p) { 1171 G4double tmax = currentModel->MaxSecondaryK << 887 size_t n = p->length(); 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 888 G4PhysicsVector* pv = (*p)[0]; 1173 G4double d = 0.0; << 889 G4double emax = maxKinEnergyForRange; 1174 G4VEmFluctuationModel* fm = currentModel->G << 890 G4bool b; 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 891 theRangeAtMaxEnergy = new G4double [n]; 1176 return d; << 892 >> 893 for (size_t i=0; i<n; i++) { >> 894 pv = (*p)[i]; >> 895 G4double r2 = pv->GetValue(emax, b); >> 896 theRangeAtMaxEnergy[i] = r2; >> 897 //G4cout << "i= " << i << " e2(MeV)= " << emax/MeV << " r2= " << r2<< G4endl; >> 898 } >> 899 } 1177 } 900 } 1178 901 1179 //....oooOO0OOooo........oooOO0OOooo........o 902 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 903 1181 G4double << 904 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1183 c << 1184 G << 1185 { 905 { 1186 // Cross section per volume is calculated << 906 if(theRangeTableForLoss != p) { 1187 DefineMaterial(couple); << 907 theRangeTableForLoss = p; 1188 G4double cross = 0.0; << 908 if(1 < verboseLevel) { 1189 if (nullptr != theLambdaTable) { << 909 G4cout << "### Set Range table " << p << " for " << particle->GetParticleName() 1190 cross = GetLambdaForScaledEnergy(kineticE << 910 << " and process " << GetProcessName() << G4endl; 1191 logKinet << 911 } 1192 } else { << 1193 SelectModel(kineticEnergy*massRatio); << 1194 cross = (!baseMat) ? biasFactor : biasFac << 1195 cross *= (currentModel->CrossSectionPerVo << 1196 << 1197 } 912 } 1198 return std::max(cross, 0.0); << 1199 } 913 } 1200 914 1201 //....oooOO0OOooo........oooOO0OOooo........o 915 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 916 1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 917 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) 1204 { 918 { 1205 DefineMaterial(track.GetMaterialCutsCouple( << 919 theSecondaryRangeTable = p; 1206 const G4double kinEnergy = track.GetKine << 1207 const G4double logKinEnergy = track.GetDyna << 1208 const G4double cs = GetLambdaForScaledEnerg << 1209 << 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 1211 } 920 } 1212 921 1213 //....oooOO0OOooo........oooOO0OOooo........o 922 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 923 1215 G4double G4VEnergyLossProcess::ContinuousStep << 924 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1216 << 1217 << 1218 { 925 { 1219 return AlongStepGetPhysicalInteractionLengt << 926 if(theInverseRangeTable != p) { >> 927 theInverseRangeTable = p; >> 928 if(1 < verboseLevel) { >> 929 G4cout << "### Set InverseRange table " << p << " for " << particle->GetParticleName() >> 930 << " and process " << GetProcessName() << G4endl; >> 931 } >> 932 } 1220 } 933 } 1221 934 1222 //....oooOO0OOooo........oooOO0OOooo........o 935 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 936 1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 937 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1225 const G4Track& t << 938 { 1226 G4double, << 939 if(1 < verboseLevel) { 1227 G4ForceCondition << 940 G4cout << "### Set Lambda table " << p << " for " << particle->GetParticleName() >> 941 << " and process " << GetProcessName() << G4endl; >> 942 } >> 943 if(theLambdaTable != p) theLambdaTable = p; >> 944 tablesAreBuilt = true; 1228 945 >> 946 if(p) { >> 947 size_t n = p->length(); >> 948 G4PhysicsVector* pv = (*p)[0]; >> 949 G4double e, s, smax, emax; >> 950 theEnergyOfCrossSectionMax = new G4double [n]; >> 951 theCrossSectionMax = new G4double [n]; >> 952 G4bool b; >> 953 >> 954 for (size_t i=0; i<n; i++) { >> 955 pv = (*p)[i]; >> 956 emax = DBL_MAX; >> 957 smax = 0.0; >> 958 if(pv) { >> 959 size_t nb = pv->GetVectorLength(); >> 960 emax = pv->GetLowEdgeEnergy(nb); >> 961 for (size_t j=0; j<nb; j++) { >> 962 e = pv->GetLowEdgeEnergy(j); >> 963 s = pv->GetValue(e,b); >> 964 if(s > smax) { >> 965 smax = s; >> 966 emax = e; >> 967 } >> 968 } >> 969 } >> 970 theEnergyOfCrossSectionMax[i] = emax; >> 971 theCrossSectionMax[i] = smax; >> 972 if(1 < verboseLevel) { >> 973 G4cout << "For " << particle->GetParticleName() >> 974 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 975 << " lambda= " << smax << G4endl; >> 976 } >> 977 } >> 978 } >> 979 } >> 980 >> 981 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 982 >> 983 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1229 { 984 { 1230 *condition = NotForced; << 985 if(theSubLambdaTable != p) theSubLambdaTable = p; 1231 return MeanFreePath(track); << 986 >> 987 if (nSCoffRegions) { >> 988 for (G4int i=0; i<nSCoffRegions; i++) { >> 989 scoffProcessors[i]->SetLambdaSubTable(theSubLambdaTable); >> 990 } >> 991 } 1232 } 992 } 1233 993 1234 //....oooOO0OOooo........oooOO0OOooo........o 994 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 995 1236 G4double G4VEnergyLossProcess::GetContinuousS << 996 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVector(const G4MaterialCutsCouple*) 1237 const G4Track&, << 1238 G4double, G4double, G4double& << 1239 { 997 { 1240 return DBL_MAX; << 998 G4int nbins = nDEDXBins; >> 999 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins); >> 1000 return v; 1241 } 1001 } 1242 1002 1243 //....oooOO0OOooo........oooOO0OOooo........o 1003 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1004 1245 G4PhysicsVector* << 1005 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVectorForPreciseRange( 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1006 const G4MaterialCutsCouple*) 1247 G4d << 1248 { 1007 { 1249 DefineMaterial(couple); << 1008 G4int nbins = nDEDXBinsForRange; 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1009 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergyForRange, nbins); 1251 return new G4PhysicsVector(*v); << 1010 return v; 1252 } 1011 } 1253 1012 1254 //....oooOO0OOooo........oooOO0OOooo........o 1013 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 1014 1256 void << 1015 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 1258 { 1016 { 1259 if(1 < verboseLevel) { << 1017 G4double cut = (*theCuts)[couple->GetIndex()]; 1260 G4cout << "### Set DEDX table " << p << " << 1018 G4int nbins = nLambdaBins; 1261 << " " << theDEDXunRestrictedTable << << 1019 G4double tmin = std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), 1262 << " for " << particle->GetParticl << 1020 minKinEnergy); 1263 << " and process " << GetProcessNa << 1021 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; 1264 << " type=" << tType << " isIonisation:" << 1022 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nbins); 1265 } << 1023 return v; 1266 if(fTotal == tType) { << 1024 } 1267 theDEDXunRestrictedTable = p; << 1025 1268 } else if(fRestricted == tType) { << 1026 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1269 theDEDXTable = p; << 1027 1270 if(isMaster && nullptr == baseParticle) { << 1028 G4PhysicsVector* G4VEnergyLossProcess::SubLambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1271 theData->UpdateTable(theDEDXTable, 0); << 1029 { 1272 } << 1030 return LambdaPhysicsVector(couple); 1273 } else if(fIsIonisation == tType) { << 1031 } 1274 theIonisationTable = p; << 1032 1275 if(isMaster && nullptr == baseParticle) { << 1033 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1276 theData->UpdateTable(theIonisationTable << 1034 1277 } << 1035 G4double G4VEnergyLossProcess::MicroscopicCrossSection(G4double kineticEnergy, >> 1036 const G4MaterialCutsCouple* couple) >> 1037 { >> 1038 // Cross section per atom is calculated >> 1039 DefineMaterial(couple); >> 1040 G4double cross = 0.0; >> 1041 G4bool b; >> 1042 if(theLambdaTable) { >> 1043 cross = (((*theLambdaTable)[currentMaterialIndex])-> >> 1044 GetValue(kineticEnergy, b)); >> 1045 >> 1046 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); 1278 } 1047 } >> 1048 >> 1049 return cross; 1279 } 1050 } 1280 1051 1281 //....oooOO0OOooo........oooOO0OOooo........o 1052 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 1053 1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 1054 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track, >> 1055 G4double s, >> 1056 G4ForceCondition* cond) 1284 { 1057 { 1285 theCSDARangeTable = p; << 1058 return GetMeanFreePath(track, s, cond); 1286 } 1059 } 1287 1060 1288 //....oooOO0OOooo........oooOO0OOooo........o 1061 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 1062 1290 void G4VEnergyLossProcess::SetRangeTableForLo << 1063 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, >> 1064 G4double x, G4double y, G4double& z) 1291 { 1065 { 1292 theRangeTableForLoss = p; << 1066 return GetContinuousStepLimit(track, x, y, z); 1293 } 1067 } 1294 1068 1295 //....oooOO0OOooo........oooOO0OOooo........o 1069 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 1070 1297 void G4VEnergyLossProcess::SetInverseRangeTab << 1071 void G4VEnergyLossProcess::SetStepLimits(G4double v1, G4double v2) 1298 { 1072 { 1299 theInverseRangeTable = p; << 1073 dRoverRange = v1; >> 1074 finalRange = v2; >> 1075 if (dRoverRange > 1.0) dRoverRange = 1.0; 1300 } 1076 } 1301 1077 1302 //....oooOO0OOooo........oooOO0OOooo........o 1078 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 1079 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 1080 void G4VEnergyLossProcess::SetIntegral(G4bool val) 1305 { 1081 { 1306 if(1 < verboseLevel) { << 1082 integral = val; 1307 G4cout << "### Set Lambda table " << p << << 1083 } 1308 << " for " << particle->GetParticl << 1309 << " and process " << GetProcessNa << 1310 } << 1311 theLambdaTable = p; << 1312 tablesAreBuilt = true; << 1313 1084 1314 if(isMaster && nullptr != p) { << 1085 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1315 delete theEnergyOfCrossSectionMax; << 1086 1316 theEnergyOfCrossSectionMax = nullptr; << 1087 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1317 if(fEmTwoPeaks == fXSType) { << 1088 { 1318 if(nullptr != fXSpeaks) { << 1089 dRoverRange = v1; 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 1090 finalRange = v2; 1320 delete fXSpeaks; << 1091 if (dRoverRange > 0.999) dRoverRange = 1.0; 1321 } << 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } << 1326 if(fXSType == fEmOnePeak) { << 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 1328 if(nullptr == theEnergyOfCrossSectionMa << 1329 } << 1330 } << 1331 } 1092 } 1332 1093 1333 //....oooOO0OOooo........oooOO0OOooo........o 1094 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 1095 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 1096 void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 1336 { 1097 { 1337 theEnergyOfCrossSectionMax = p; << 1098 particle = p; 1338 } 1099 } 1339 1100 1340 //....oooOO0OOooo........oooOO0OOooo........o 1101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1341 1102 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 1103 void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 1343 { 1104 { 1344 fXSpeaks = ptr; << 1105 baseParticle = p; 1345 } 1106 } 1346 1107 1347 //....oooOO0OOooo........oooOO0OOooo........o 1108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 1109 1349 const G4Element* G4VEnergyLossProcess::GetCur << 1110 void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 1350 { 1111 { 1351 return (nullptr != currentModel) << 1112 secondaryParticle = p; 1352 ? currentModel->GetCurrentElement(current << 1353 } 1113 } 1354 1114 1355 //....oooOO0OOooo........oooOO0OOooo........o 1115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 1116 1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1117 G4bool G4VEnergyLossProcess::StorePhysicsTable(const G4ParticleDefinition* part, 1358 << 1118 const G4String& directory, >> 1119 G4bool ascii) 1359 { 1120 { 1360 if(f > 0.0) { << 1121 G4bool res = true; 1361 biasFactor = f; << 1122 if ( baseParticle || part != particle ) return res; 1362 weightFlag = flag; << 1123 1363 if(1 < verboseLevel) { << 1124 if ( theDEDXTable && theRangeTableForLoss ) { 1364 G4cout << "### SetCrossSectionBiasingFa << 1125 const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii); 1365 << " process " << GetProcessName << 1126 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; 1366 << " biasFactor= " << f << " wei << 1127 } 1367 << G4endl; << 1128 >> 1129 if ( theDEDXunRestrictedTable && thePreciseRangeTable ) { >> 1130 const G4String name = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1131 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; >> 1132 } >> 1133 >> 1134 if ( thePreciseRangeTable ) { >> 1135 const G4String name = GetPhysicsTableFileName(part,directory,"PreciseRange",ascii); >> 1136 if( !thePreciseRangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1137 } >> 1138 >> 1139 if ( theRangeTableForLoss ) { >> 1140 const G4String name = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1141 if( !theRangeTableForLoss->StorePhysicsTable(name,ascii)) res = false; >> 1142 } >> 1143 >> 1144 if ( theInverseRangeTable ) { >> 1145 const G4String name = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1146 if( !theInverseRangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1147 } >> 1148 >> 1149 if ( theLambdaTable ) { >> 1150 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1151 if( !theLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1152 } >> 1153 >> 1154 if ( theSubLambdaTable ) { >> 1155 const G4String name = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1156 if( !theSubLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1157 } >> 1158 if ( res ) { >> 1159 if(0 < verboseLevel) { >> 1160 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 1161 << " and process " << GetProcessName() >> 1162 << " in the directory <" << directory >> 1163 << "> " << G4endl; 1368 } 1164 } >> 1165 } else { >> 1166 G4cout << "Fail to store Physics Tables for " << particle->GetParticleName() >> 1167 << " and process " << GetProcessName() >> 1168 << " in the directory <" << directory >> 1169 << "> " << G4endl; 1369 } 1170 } >> 1171 return res; 1370 } 1172 } 1371 1173 1372 //....oooOO0OOooo........oooOO0OOooo........o << 1174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1373 1175 1374 void G4VEnergyLossProcess::ActivateForcedInte << 1176 G4bool G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 1375 << 1177 const G4String& directory, 1376 << 1178 G4bool ascii) 1377 { 1179 { 1378 if(nullptr == biasManager) { biasManager = << 1180 G4bool res = true; >> 1181 const G4String particleName = part->GetParticleName(); >> 1182 1379 if(1 < verboseLevel) { 1183 if(1 < verboseLevel) { 1380 G4cout << "### ActivateForcedInteraction: << 1184 // G4cout << "========================================================" << G4endl; 1381 << " process " << GetProcessName() << 1185 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1382 << " length(mm)= " << length/mm << 1186 << particleName << " and process " << GetProcessName() 1383 << " in G4Region <" << region << 1187 << "; tables_are_built= " << tablesAreBuilt 1384 << "> weightFlag= " << flag << 1188 << G4endl; 1385 << G4endl; << 1189 } >> 1190 if(particle == part) { >> 1191 >> 1192 G4bool yes = true; >> 1193 G4bool fpi = true; >> 1194 if ( !baseParticle ) { >> 1195 G4String filename; >> 1196 >> 1197 filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii); >> 1198 yes = theDEDXTable->ExistPhysicsTable(filename); >> 1199 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theDEDXTable,filename,ascii); >> 1200 if(yes) { >> 1201 if (0 < verboseLevel) { >> 1202 G4cout << "DEDX table for " << particleName << " is Retrieved from <" >> 1203 << filename << ">" >> 1204 << G4endl; >> 1205 } >> 1206 } else { >> 1207 fpi = false; >> 1208 if (1 < verboseLevel) { >> 1209 G4cout << "DEDX table for " << particleName << " from file <" >> 1210 << filename << "> is not Retrieved" >> 1211 << G4endl; >> 1212 } >> 1213 } >> 1214 >> 1215 filename = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1216 yes = theRangeTableForLoss->ExistPhysicsTable(filename); >> 1217 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theRangeTableForLoss,filename,ascii); >> 1218 if(yes) { >> 1219 if (0 < verboseLevel) { >> 1220 G4cout << "Range table for loss for " << particleName << " is Retrieved from <" >> 1221 << filename << ">" >> 1222 << G4endl; >> 1223 } >> 1224 } else { >> 1225 if(fpi) { >> 1226 res = false; >> 1227 G4cout << "Range table for loss for " << particleName << " from file <" >> 1228 << filename << "> is not Retrieved" >> 1229 << G4endl; >> 1230 } >> 1231 } >> 1232 >> 1233 filename = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1234 yes = theDEDXunRestrictedTable->ExistPhysicsTable(filename); >> 1235 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theDEDXunRestrictedTable,filename,ascii); >> 1236 if(yes) { >> 1237 if (0 < verboseLevel) { >> 1238 G4cout << "Non-restricted DEDX table for " << particleName << " is Retrieved from <" >> 1239 << filename << ">" >> 1240 << G4endl; >> 1241 } >> 1242 } else { >> 1243 if (1 < verboseLevel) { >> 1244 G4cout << "Non-restricted DEDX table for " << particleName << " from file <" >> 1245 << filename << "> is not Retrieved" >> 1246 << G4endl; >> 1247 } >> 1248 } >> 1249 >> 1250 filename = GetPhysicsTableFileName(part,directory,"PreciseRange",ascii); >> 1251 yes = thePreciseRangeTable->ExistPhysicsTable(filename); >> 1252 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(thePreciseRangeTable,filename,ascii); >> 1253 if(yes) { >> 1254 if (0 < verboseLevel) { >> 1255 G4cout << "Precise Range table for " << particleName << " is Retrieved from <" >> 1256 << filename << ">" >> 1257 << G4endl; >> 1258 } >> 1259 } else { >> 1260 G4cout << "Precise Range table for loss for " << particleName << " does not exist" >> 1261 << G4endl; >> 1262 } >> 1263 >> 1264 filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1265 yes = theInverseRangeTable->ExistPhysicsTable(filename); >> 1266 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theInverseRangeTable,filename,ascii); >> 1267 if(yes) { >> 1268 if (0 < verboseLevel) { >> 1269 G4cout << "InverseRange table for " << particleName << " is Retrieved from <" >> 1270 << filename << ">" >> 1271 << G4endl; >> 1272 } >> 1273 } else { >> 1274 if(fpi) { >> 1275 res = false; >> 1276 G4cout << "InverseRange table for " << particleName << " from file <" >> 1277 << filename << "> is not Retrieved" >> 1278 << G4endl; >> 1279 >> 1280 } >> 1281 } >> 1282 >> 1283 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1284 yes = theLambdaTable->ExistPhysicsTable(filename); >> 1285 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable,filename,ascii); >> 1286 if(yes) { >> 1287 if (0 < verboseLevel) { >> 1288 G4cout << "Lambda table for " << particleName << " is Retrieved from <" >> 1289 << filename << ">" >> 1290 << G4endl; >> 1291 } >> 1292 } else { >> 1293 if(fpi) { >> 1294 res = false; >> 1295 G4cout << "Lambda table for " << particleName << " from file <" >> 1296 << filename << "> is not Retrieved" >> 1297 << G4endl; >> 1298 } >> 1299 } >> 1300 >> 1301 filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1302 yes = theSubLambdaTable->ExistPhysicsTable(filename); >> 1303 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theSubLambdaTable,filename,ascii); >> 1304 if(yes) { >> 1305 if (0 < verboseLevel) { >> 1306 G4cout << "SubLambda table for " << particleName << " is Retrieved from <" >> 1307 << filename << ">" >> 1308 << G4endl; >> 1309 } >> 1310 } else { >> 1311 if(nSCoffRegions) { >> 1312 res=false; >> 1313 G4cout << "SubLambda table for " << particleName << " from file <" >> 1314 << filename << "> is not Retrieved" >> 1315 << G4endl; >> 1316 } >> 1317 } >> 1318 } 1386 } 1319 } 1387 weightFlag = flag; << 1320 1388 biasManager->ActivateForcedInteraction(leng << 1321 return res; 1389 } 1322 } 1390 1323 1391 //....oooOO0OOooo........oooOO0OOooo........o 1324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 1325 1393 void << 1326 void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1395 << 1396 << 1397 { 1327 { 1398 if (0.0 <= factor) { << 1328 linLossLimit = val; 1399 // Range cut can be applied only for e- << 1329 } 1400 if(0.0 == factor && secondaryParticle != << 1401 { return; } << 1402 1330 1403 if(nullptr == biasManager) { biasManager << 1331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1404 biasManager->ActivateSecondaryBiasing(reg << 1332 1405 if(1 < verboseLevel) { << 1333 void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) 1406 G4cout << "### ActivateSecondaryBiasing << 1334 { 1407 << " process " << GetProcessName << 1335 if(val && !lossFluctuationArePossible) return; 1408 << " factor= " << factor << 1336 lossFluctuationFlag = val; 1409 << " in G4Region <" << region << 1410 << "> energyLimit(MeV)= " << ene << 1411 << G4endl; << 1412 } << 1413 } << 1414 } 1337 } 1415 1338 1416 //....oooOO0OOooo........oooOO0OOooo........o 1339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 1340 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1341 void G4VEnergyLossProcess::SetSubCutoff(G4bool) >> 1342 {} >> 1343 >> 1344 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1345 >> 1346 void G4VEnergyLossProcess::SetRandomStep(G4bool val) 1419 { 1347 { 1420 isIonisation = val; << 1348 rndmStepFlag = val; 1421 aGPILSelection = (val) ? CandidateForSelect << 1422 } 1349 } 1423 1350 1424 //....oooOO0OOooo........oooOO0OOooo........o 1351 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1425 1352 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1353 void G4VEnergyLossProcess::SetMinSubRange(G4double val) 1427 { 1354 { 1428 if(0.0 < val && val < 1.0) { << 1355 minSubRange = val; 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } 1356 } 1433 1357 1434 //....oooOO0OOooo........oooOO0OOooo........o 1358 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1435 1359 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1360 G4bool G4VEnergyLossProcess::TablesAreBuilt() const 1437 { 1361 { 1438 if(0.0 < v1 && 0.0 < v2) { << 1362 return tablesAreBuilt; 1439 dRoverRange = std::min(1.0, v1); << 1440 finalRange = std::min(v2, 1.e+50); << 1441 } else { << 1442 PrintWarning("SetStepFunctionV1", v1); << 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } << 1445 } 1363 } 1446 1364 1447 //....oooOO0OOooo........oooOO0OOooo........o 1365 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1448 1366 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1367 G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 1450 { 1368 { 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1369 return nSCoffRegions; 1452 else { PrintWarning("SetLowestEnergyLimit", << 1453 } 1370 } 1454 1371 1455 //....oooOO0OOooo........oooOO0OOooo........o 1372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1456 1373 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1374 void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 1458 { 1375 { 1459 if(2 < n && n < 1000000000) { << 1376 nDEDXBins = nbins; 1460 nBins = n; << 1377 } 1461 actBinning = true; << 1378 1462 } else { << 1379 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1463 G4double e = (G4double)n; << 1380 1464 PrintWarning("SetDEDXBinning", e); << 1381 void G4VEnergyLossProcess::SetDEDXBinningForPreciseRange(G4int nbins) 1465 } << 1382 { >> 1383 nDEDXBinsForRange = nbins; >> 1384 } >> 1385 >> 1386 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1387 >> 1388 void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) >> 1389 { >> 1390 nLambdaBins = nbins; >> 1391 } >> 1392 >> 1393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1394 >> 1395 G4double G4VEnergyLossProcess::MinKinEnergy() const >> 1396 { >> 1397 return minKinEnergy; 1466 } 1398 } 1467 1399 1468 //....oooOO0OOooo........oooOO0OOooo........o 1400 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1469 1401 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 1402 void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 1471 { 1403 { 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1404 minKinEnergy = e; 1473 minKinEnergy = e; << 1474 actMinKinEnergy = true; << 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1476 } 1405 } 1477 1406 1478 //....oooOO0OOooo........oooOO0OOooo........o 1407 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1479 1408 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 1409 void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 1481 { 1410 { 1482 if(minKinEnergy < e && e < 1.e+50) { << 1411 maxKinEnergy = e; 1483 maxKinEnergy = e; << 1412 if(e < maxKinEnergyForRange) maxKinEnergyForRange = e; 1484 actMaxKinEnergy = true; << 1413 } 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1414 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1416 >> 1417 void G4VEnergyLossProcess::SetMaxKinEnergyForPreciseRange(G4double e) >> 1418 { >> 1419 maxKinEnergyForRange = e; >> 1420 } >> 1421 >> 1422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1423 >> 1424 G4double G4VEnergyLossProcess::MaxKinEnergy() const >> 1425 { >> 1426 return maxKinEnergy; 1487 } 1427 } 1488 1428 1489 //....oooOO0OOooo........oooOO0OOooo........o 1429 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1490 1430 1491 void G4VEnergyLossProcess::PrintWarning(const << 1431 void G4VEnergyLossProcess::ActivateDeexcitation(G4bool, const G4Region*) >> 1432 {} >> 1433 >> 1434 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1435 >> 1436 void G4VEnergyLossProcess::SetLambdaFactor(G4double val) 1492 { 1437 { 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1438 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 1494 G4ExceptionDescription ed; << 1495 ed << "Parameter is out of range: " << val << 1496 << " it will have no effect!\n" << " Pr << 1497 << GetProcessName() << " nbins= " << nB << 1498 << " Emin(keV)= " << minKinEnergy/keV << 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1501 } 1439 } 1502 1440 1503 //....oooOO0OOooo........oooOO0OOooo........o 1441 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1504 1442 1505 void G4VEnergyLossProcess::ProcessDescription << 1443 void G4VEnergyLossProcess::SetIonisation(G4bool val) 1506 { 1444 { 1507 if(nullptr != particle) { StreamInfo(out, * << 1445 isIonisation = val; 1508 } 1446 } 1509 1447 1510 //....oooOO0OOooo........oooOO0OOooo........o 1448 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1449 >> 1450 G4bool G4VEnergyLossProcess::IsIonisationProcess() const >> 1451 { >> 1452 return isIonisation; >> 1453 } >> 1454 >> 1455 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1456 1511 1457