Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEnergyLossProcess.cc,v 1.57 2005/05/27 18:38:33 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-07-01 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: 38 // 38 // >> 39 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 40 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 44 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 45 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 46 // 24-01-03 Make models region aware (V.Ivanchenko) >> 47 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 48 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 49 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 50 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 51 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 52 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 53 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 54 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko) >> 55 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 56 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 57 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 58 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 59 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 60 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 61 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 62 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 63 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 64 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 65 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 66 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 67 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 68 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 69 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko) >> 70 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range >> 71 // calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko) >> 72 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko) >> 73 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko) >> 74 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko) >> 75 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko) >> 76 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko) >> 77 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 78 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 79 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 80 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 81 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) >> 82 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 83 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) 39 // 84 // 40 // Class Description: 85 // Class Description: 41 // 86 // 42 // It is the unified energy loss process it ca 87 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 88 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 89 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 90 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 91 // that information on fly. 47 // ------------------------------------------- 92 // ------------------------------------------------------------------- 48 // 93 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 96 52 #include "G4VEnergyLossProcess.hh" 97 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4ProcessManager.hh" << 56 #include "G4LossTableManager.hh" 98 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" << 58 #include "G4Step.hh" 99 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 100 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" << 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 101 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 102 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 103 #include "G4DataVector.hh" >> 104 #include "G4PhysicsTable.hh" >> 105 #include "G4PhysicsVector.hh" 67 #include "G4PhysicsLogVector.hh" 106 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 107 #include "G4VParticleChange.hh" >> 108 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 109 #include "G4Electron.hh" >> 110 #include "G4Positron.hh" >> 111 #include "G4Proton.hh" >> 112 #include "G4VSubCutoffProcessor.hh" 70 #include "G4ProcessManager.hh" 113 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 114 #include "G4UnitsTable.hh" >> 115 #include "G4GenericIon.hh" >> 116 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 117 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 118 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 119 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" << 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" << 78 #include "G4VAtomDeexcitation.hh" << 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" << 81 #include "G4Log.hh" << 82 #include <iostream> << 83 120 84 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 122 86 namespace << 123 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, G4ProcessType type): 87 { << 124 G4VContinuousDiscreteProcess(name, type), 88 G4String tnames[7] = << 125 nSCoffRegions(0), 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 126 idxSCoffRegions(0), 90 } << 127 theDEDXTable(0), >> 128 theRangeTableForLoss(0), >> 129 theDEDXunRestrictedTable(0), >> 130 thePreciseRangeTable(0), >> 131 theSecondaryRangeTable(0), >> 132 theInverseRangeTable(0), >> 133 theLambdaTable(0), >> 134 theSubLambdaTable(0), >> 135 theDEDXAtMaxEnergy(0), >> 136 theRangeAtMaxEnergy(0), >> 137 theEnergyOfCrossSectionMax(0), >> 138 theCrossSectionMax(0), >> 139 particle(0), >> 140 baseParticle(0), >> 141 secondaryParticle(0), >> 142 currentCouple(0), >> 143 nDEDXBins(90), >> 144 nDEDXBinsForRange(70), >> 145 nLambdaBins(90), >> 146 linLossLimit(0.05), >> 147 minSubRange(0.1), >> 148 defaultRoverRange(0.2), >> 149 defaultIntegralRange(1.0), >> 150 lambdaFactor(0.1), >> 151 mfpKinEnergy(0.0), >> 152 lossFluctuationFlag(true), >> 153 lossFluctuationArePossible(true), >> 154 rndmStepFlag(false), >> 155 tablesAreBuilt(false), >> 156 integral(true), >> 157 meanFreePath(false), >> 158 aboveCSmax(true), >> 159 isIonisation(true) >> 160 { >> 161 >> 162 lowestKinEnergy = 1.*eV; >> 163 minKinEnergy = 0.1*keV; >> 164 maxKinEnergy = 100.0*GeV; >> 165 maxKinEnergyForRange = 1.0*GeV; 91 166 >> 167 pParticleChange = &fParticleChange; 92 168 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con << 169 // default dRoverRange and finalRange 94 G4P << 170 SetStepFunction(defaultIntegralRange, 1.0*mm); 95 G4VContinuousDiscreteProcess(name, type) << 96 { << 97 theParameters = G4EmParameters::Instance(); << 98 SetVerboseLevel(1); 171 SetVerboseLevel(1); 99 172 100 // low energy limit << 101 lowestKinEnergy = theParameters->LowestElect << 102 << 103 // Size of tables << 104 minKinEnergy = 0.1*CLHEP::keV; << 105 maxKinEnergy = 100.0*CLHEP::TeV; << 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 107 nBins = 84; << 108 nBinsCSDA = 35; << 109 << 110 invLambdaFactor = 1.0/lambdaFactor; << 111 << 112 // default linear loss limit << 113 finalRange = 1.*CLHEP::mm; << 114 << 115 // run time objects << 116 pParticleChange = &fParticleChange; << 117 fParticleChange.SetSecondaryWeightByProcess( << 118 modelManager = new G4EmModelManager(); 173 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT << 174 (G4LossTableManager::Instance())->Register(this); 120 ->GetSafetyHelper(); << 175 scoffProcessors.clear(); 121 aGPILSelection = CandidateForSelection; << 176 scoffRegions.clear(); 122 << 123 // initialise model << 124 lManager = G4LossTableManager::Instance(); << 125 lManager->Register(this); << 126 isMaster = lManager->IsMaster(); << 127 << 128 G4LossTableBuilder* bld = lManager->GetTable << 129 theDensityFactor = bld->GetDensityFactors(); << 130 theDensityIdx = bld->GetCoupleIndexes(); << 131 << 132 scTracks.reserve(10); << 133 secParticles.reserve(12); << 134 emModels = new std::vector<G4VEmModel*>; << 135 } 177 } 136 178 137 //....oooOO0OOooo........oooOO0OOooo........oo 179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 180 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 181 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 182 { 141 if (isMaster) { << 183 Clear(); 142 if(nullptr == baseParticle) { delete theDa << 184 143 delete theEnergyOfCrossSectionMax; << 185 if ( !baseParticle ) { 144 if(nullptr != fXSpeaks) { << 186 if(theDEDXTable && theRangeTableForLoss) theDEDXTable->clearAndDestroy(); 145 for(auto const & v : *fXSpeaks) { delete << 187 if(theDEDXunRestrictedTable && thePreciseRangeTable) 146 delete fXSpeaks; << 188 theDEDXunRestrictedTable->clearAndDestroy(); >> 189 if(thePreciseRangeTable) thePreciseRangeTable->clearAndDestroy(); >> 190 if(theRangeTableForLoss) theRangeTableForLoss->clearAndDestroy(); >> 191 if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy(); >> 192 if(theLambdaTable) theLambdaTable->clearAndDestroy(); >> 193 if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy(); >> 194 } >> 195 >> 196 if (nSCoffRegions) { >> 197 for (G4int i=0; i<nSCoffRegions; i++) { >> 198 if (scoffProcessors[i]) { >> 199 for (G4int j=i+1; j<nSCoffRegions; j++) { >> 200 if(scoffProcessors[i] == scoffProcessors[j]) scoffProcessors[j] = 0; >> 201 } >> 202 delete scoffProcessors[i]; >> 203 } 147 } 204 } >> 205 scoffProcessors.clear(); >> 206 scoffRegions.clear(); 148 } 207 } 149 delete modelManager; 208 delete modelManager; 150 delete biasManager; << 209 (G4LossTableManager::Instance())->DeRegister(this); 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); << 154 } 210 } 155 211 156 //....oooOO0OOooo........oooOO0OOooo........oo 212 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 213 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 214 void G4VEnergyLossProcess::Clear() 159 << 160 << 161 { 215 { 162 return cut; << 216 if(1 < verboseLevel) { 163 } << 217 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() << G4endl; 164 << 218 } 165 //....oooOO0OOooo........oooOO0OOooo........oo << 166 219 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 220 if(theDEDXAtMaxEnergy) delete [] theDEDXAtMaxEnergy; 168 G4VEmFlu << 221 if(theRangeAtMaxEnergy) delete [] theRangeAtMaxEnergy; 169 const G4 << 222 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; 170 { << 223 if(theCrossSectionMax) delete [] theCrossSectionMax; 171 if(nullptr == ptr) { return; } << 224 172 G4VEmFluctuationModel* afluc = (nullptr == f << 225 theDEDXAtMaxEnergy = 0; 173 modelManager->AddEmModel(order, ptr, afluc, << 226 theRangeAtMaxEnergy = 0; 174 ptr->SetParticleChange(pParticleChange, aflu << 227 theEnergyOfCrossSectionMax = 0, >> 228 theCrossSectionMax = 0, >> 229 tablesAreBuilt = false; 175 } 230 } 176 231 177 //....oooOO0OOooo........oooOO0OOooo........oo 232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 233 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 234 void G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 180 { 235 { 181 if(nullptr == ptr) { return; } << 182 if(!emModels->empty()) { << 183 for(auto & em : *emModels) { if(em == ptr) << 184 } << 185 emModels->push_back(ptr); << 186 } << 187 << 188 //....oooOO0OOooo........oooOO0OOooo........oo << 189 236 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 237 // Are particle defined? 191 << 238 if( !particle ) { 192 { << 239 if(part.GetParticleType() == "nucleus" && part.GetParticleSubType() == "generic") 193 massRatio = massratio; << 240 particle = G4GenericIon::GenericIon(); 194 logMassRatio = G4Log(massRatio); << 241 else particle = ∂ 195 fFactor = charge2ratio*biasFactor; << 242 } 196 if(baseMat) { fFactor *= (*theDensityFactor) << 197 chargeSqRatio = charge2ratio; << 198 reduceFactor = 1.0/(fFactor*massRatio); << 199 } << 200 243 201 //....oooOO0OOooo........oooOO0OOooo........oo << 244 if(1 < verboseLevel) { >> 245 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " >> 246 << GetProcessName() >> 247 << " for " << part.GetParticleName() >> 248 << " local: " << particle->GetParticleName() >> 249 << G4endl; >> 250 } 202 251 203 void << 252 G4LossTableManager* lManager = G4LossTableManager::Instance(); 204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 205 { << 206 particle = G4EmTableUtil::CheckIon(this, &pa << 207 verboseLe << 208 253 209 if( particle != &part ) { << 254 if (&part != particle) { 210 if(!isIon) { lManager->RegisterExtraPartic << 255 if (part.GetParticleType() == "nucleus") lManager->RegisterIon(&part, this); 211 if(1 < verboseLevel) { << 256 else lManager->RegisterExtraParticle(&part, this); 212 G4cout << "### G4VEnergyLossProcess::Pre << 213 << " interrupted for " << GetProc << 214 << part.GetParticleName() << " is << 215 << " spline=" << spline << G4endl << 216 } << 217 return; 257 return; 218 } 258 } 219 259 220 tablesAreBuilt = false; << 260 Clear(); 221 if (GetProcessSubType() == fIonisation) { Se << 222 261 223 G4LossTableBuilder* bld = lManager->GetTable << 262 currentCouple = 0; 224 lManager->PreparePhysicsTable(&part, this); << 263 preStepLambda = 0.0; >> 264 mfpKinEnergy = DBL_MAX; >> 265 preStepMFP = DBL_MAX; 225 266 226 // Base particle and set of models can be de 267 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 268 InitialiseEnergyLossProcess(particle, baseParticle); 228 269 229 // parameters of the process << 270 // Tables preparation 230 if(!actLossFluc) { lossFluctuationFlag = the << 271 if (!baseParticle) { 231 useCutAsFinalRange = theParameters->UseCutAs << 272 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 273 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 274 if (lManager->BuildPreciseRange()) { 234 if(!actBinning) { nBins = theParameters->Num << 275 theDEDXunRestrictedTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 276 if (isIonisation) 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 277 thePreciseRangeTable = G4PhysicsTableHelper::PreparePhysicsTable(thePreciseRangeTable); 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 278 } 238 if(!actLinLossLimit) { linLossLimit = thePar << 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 << 246 theParameters->DefineRegParamForLoss(this); << 247 279 248 fRangeEnergy = 0.0; << 280 if (isIonisation) { >> 281 theRangeTableForLoss = G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 282 theInverseRangeTable = G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); >> 283 } >> 284 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 285 if (nSCoffRegions) >> 286 theSubLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); >> 287 } 249 288 250 G4double initialCharge = particle->GetPDGCha 289 G4double initialCharge = particle->GetPDGCharge(); 251 G4double initialMass = particle->GetPDGMas 290 G4double initialMass = particle->GetPDGMass(); >> 291 chargeSquare = initialCharge*initialCharge/(eplus*eplus); >> 292 chargeSqRatio = 1.0; >> 293 massRatio = 1.0; >> 294 reduceFactor = 1.0; 252 295 253 theParameters->FillStepFunction(particle, th << 296 if (baseParticle) { 254 << 297 massRatio = (baseParticle->GetPDGMass())/initialMass; 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G 298 G4double q = initialCharge/baseParticle->GetPDGCharge(); 260 chargeSqRatio = q*q; 299 chargeSqRatio = q*q; 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 << 300 reduceFactor = 1.0/(chargeSqRatio*massRatio); 262 } 301 } 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 302 267 // Tables preparation << 303 theCuts = modelManager->Initialise(particle, secondaryParticle, minSubRange, verboseLevel); 268 if (isMaster && nullptr == baseParticle) { << 269 if(nullptr == theData) { theData = new G4E << 270 304 271 if(nullptr != theDEDXTable && isIonisation << 305 // Sub Cutoff Regime 272 if(nullptr != theIonisationTable && theD << 306 273 theData->CleanTable(0); << 307 idxSCoffRegions.clear(); 274 theDEDXTable = theIonisationTable; << 308 275 theIonisationTable = nullptr; << 309 const G4ProductionCutsTable* theCoupleTable= 276 } << 310 G4ProductionCutsTable::GetProductionCutsTable(); 277 } << 311 size_t numOfCouples = theCoupleTable->GetTableSize(); 278 << 312 279 theDEDXTable = theData->MakeTable(theDEDXT << 313 if (nSCoffRegions) { 280 bld->InitialiseBaseMaterials(theDEDXTable) << 314 const G4DataVector* theSubCuts = modelManager->SubCutoff(); 281 theData->UpdateTable(theIonisationTable, 1 << 315 282 << 316 for (G4int i=0; i<nSCoffRegions; i++) { 283 if (theParameters->BuildCSDARange()) { << 317 scoffProcessors[i]->Initialise(particle, secondaryParticle, theCuts, theSubCuts); 284 theDEDXunRestrictedTable = theData->Make << 285 if(isIonisation) { theCSDARangeTable = t << 286 } << 287 << 288 theLambdaTable = theData->MakeTable(4); << 289 if(isIonisation) { << 290 theRangeTableForLoss = theData->MakeTabl << 291 theInverseRangeTable = theData->MakeTabl << 292 } 318 } 293 } << 319 for (size_t j=0; j<numOfCouples; j++) { 294 320 295 // forced biasing << 321 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j); 296 if(nullptr != biasManager) { << 322 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); 297 biasManager->Initialise(part,GetProcessNam << 323 G4int reg = nSCoffRegions; 298 biasFlag = false; << 324 do {reg--;} while (reg && pcuts != (scoffRegions[reg]->GetProductionCuts())); 299 } << 325 idxSCoffRegions.push_back(reg); 300 baseMat = bld->GetBaseMaterialFlag(); << 301 numberOfModels = modelManager->NumberOfModel << 302 currentModel = modelManager->GetModel(0); << 303 G4EmTableUtil::UpdateModels(this, modelManag << 304 numberOfModels, << 305 mainSecondaries, << 306 theParameters->U << 307 theCuts = modelManager->Initialise(particle, << 308 verboseLe << 309 // subcut processor << 310 if(isIonisation) { << 311 subcutProducer = lManager->SubCutProducer( << 312 } << 313 if(1 == nSCoffRegions) { << 314 if((*scoffRegions)[0]->GetName() == "Defau << 315 delete scoffRegions; << 316 scoffRegions = nullptr; << 317 nSCoffRegions = 0; << 318 } 326 } 319 } 327 } 320 328 321 if(1 < verboseLevel) { << 329 lManager->EnergyLossProcessIsInitialised(particle, this); 322 G4cout << "G4VEnergyLossProcess::PrepearPh << 330 323 << " for " << GetProcessName() << " << 331 if (1 < verboseLevel) { 324 << " isIon= " << isIon << " spline= << 332 G4cout << "G4VEnergyLossProcess::Initialise() is done " 325 if(baseParticle) { << 333 << " chargeSqRatio= " << chargeSqRatio 326 G4cout << "; base: " << baseParticle->Ge << 327 } << 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa << 330 << " massRatio= " << massRatio 334 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 335 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 336 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 337 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { << 338 for (G4int i=0; i<nSCoffRegions; i++) { 335 const G4Region* r = (*scoffRegions)[i] << 339 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 340 G4cout << " " << r->GetName() << G4endl; 337 } 341 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 342 } 341 } 343 } 342 } 344 } 343 345 344 //....oooOO0OOooo........oooOO0OOooo........oo 346 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 347 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 348 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 349 { 348 if(1 < verboseLevel) { << 350 if(1 < verboseLevel) { >> 351 // G4cout << "========================================================" << G4endl; 349 G4cout << "### G4VEnergyLossProcess::Build 352 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 353 << GetProcessName() 351 << " and particle " << part.GetPart 354 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 355 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { << 356 if(baseParticle) G4cout << "; base: " << baseParticle->GetParticleName(); 354 G4cout << "; base: " << baseParticle->Ge << 355 } << 356 G4cout << G4endl; 357 G4cout << G4endl; 357 G4cout << " TablesAreBuilt= " << tables << 358 << " spline=" << spline << " ptr: " << 359 } 358 } 360 359 361 if(&part == particle) { << 360 if(!tablesAreBuilt && &part == particle) 362 if(isMaster) { << 361 G4LossTableManager::Instance()->BuildPhysicsTable(particle, this); 363 lManager->BuildPhysicsTable(particle, th << 362 364 << 363 if(0 < verboseLevel && (&part == particle) && !baseParticle) PrintInfoDefinition(); 365 } else { << 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 << 369 numberOfModels = modelManager->NumberOfM << 370 G4EmTableUtil::BuildLocalElossProcess(th << 371 pa << 372 tablesAreBuilt = true; << 373 baseMat = masterProcess->UseBaseMaterial << 374 lManager->LocalPhysicsTables(particle, t << 375 } << 376 << 377 // needs to be done only once << 378 safetyHelper->InitialiseHelper(); << 379 } << 380 // Added tracking cut to avoid tracking arti << 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } << 387 } << 388 364 389 // protection against double printout << 390 if(theParameters->IsPrintLocked()) { return; << 391 << 392 // explicitly defined printout by particle n << 393 G4String num = part.GetParticleName(); << 394 if(1 < verboseLevel || << 395 (0 < verboseLevel && (num == "e-" || << 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } << 404 if(1 < verboseLevel) { 365 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 366 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 367 << GetProcessName() 407 << " and particle " << part.GetPart << 368 << " and particle " << part.GetParticleName() 408 if(isIonisation) { G4cout << " isIonisati << 369 << G4endl; 409 G4cout << " baseMat=" << baseMat << G4endl << 410 } 370 } 411 } 371 } 412 372 413 //....oooOO0OOooo........oooOO0OOooo........oo 373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 374 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED << 375 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, G4VEmFluctuationModel* fluc, >> 376 const G4Region* region) 416 { 377 { 417 G4PhysicsTable* table = nullptr; << 378 modelManager->AddEmModel(order, p, fluc, region); 418 G4double emax = maxKinEnergy; << 379 if(p) p->SetParticleChange(pParticleChange, fluc); 419 G4int bin = nBins; << 380 if(!fluc) { 420 << 381 lossFluctuationFlag = false; 421 if(fTotal == tType) { << 382 lossFluctuationArePossible = false; 422 emax = maxKinEnergyCSDA; << 423 bin = nBinsCSDA; << 424 table = theDEDXunRestrictedTable; << 425 } else if(fRestricted == tType) { << 426 table = theDEDXTable; << 427 } else { << 428 G4cout << "G4VEnergyLossProcess::BuildDEDX << 429 << tType << G4endl; << 430 } << 431 if(1 < verboseLevel) { << 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 433 << " for " << GetProcessName() << 434 << " and " << particle->GetParticle << 435 << "spline=" << spline << G4endl; << 436 } 383 } 437 if(nullptr == table) { return table; } << 438 << 439 G4LossTableBuilder* bld = lManager->GetTable << 440 G4EmTableUtil::BuildDEDXTable(this, particle << 441 table, minKinE << 442 verboseLevel, << 443 return table; << 444 } 384 } 445 385 446 //....oooOO0OOooo........oooOO0OOooo........oo 386 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 387 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 388 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, G4double emin, G4double emax) 449 { 389 { 450 if(nullptr == theLambdaTable) { return theLa << 390 modelManager->UpdateEmModel(nam, emin, emax); 451 << 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable << 458 G4EmTableUtil::BuildLambdaTable(this, partic << 459 bld, theLamb << 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } 391 } 464 392 465 //....oooOO0OOooo........oooOO0OOooo........oo 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 466 394 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 395 void G4VEnergyLossProcess::AddSubCutoffProcessor(G4VSubCutoffProcessor* p, 468 const G4ParticleDefinition& pa << 396 const G4Region* r) 469 { 397 { 470 G4String indent = (rst ? " " : ""); << 398 if( !p ) { 471 out << std::setprecision(6); << 399 G4cout << "G4VEnergyLossProcess::AddSubCutoffProcessor WARNING: no SubCutoffProcessor defined." 472 out << G4endl << indent << GetProcessName() << 400 << G4endl; 473 if (!rst) out << " for " << part.GetParticle << 401 return; 474 out << " XStype:" << fXSType << 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " << 477 << G4BestUnit(minKinEnergy,"Energy") << 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } 402 } 504 if(2 < verboseLevel) { << 403 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 505 for(std::size_t i=0; i<7; ++i) { << 404 if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false); 506 auto ta = theData->Table(i); << 405 if (nSCoffRegions) { 507 out << " " << tnames[i] << " addres << 406 for (G4int i=0; i<nSCoffRegions; i++) { 508 if(nullptr != ta) { out << *ta << G4endl << 407 if (r == scoffRegions[i]) { >> 408 if ( scoffProcessors[i] ) delete scoffProcessors[i]; >> 409 scoffProcessors[i] = p; >> 410 return; >> 411 } 509 } 412 } 510 } 413 } >> 414 scoffProcessors.push_back(p); >> 415 scoffRegions.push_back(r); >> 416 nSCoffRegions++; 511 } 417 } 512 418 513 //....oooOO0OOooo........oooOO0OOooo........oo 419 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 420 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 421 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable() 516 { 422 { 517 if(nullptr == scoffRegions) { << 423 518 scoffRegions = new std::vector<const G4Reg << 424 if(1 < verboseLevel) { 519 } << 425 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() for " 520 // the region is in the list << 426 << GetProcessName() 521 if(!scoffRegions->empty()) { << 427 << " and particle " << particle->GetParticleName() 522 for (auto & reg : *scoffRegions) { << 428 << G4endl; 523 if (reg == r) { return; } << 524 } << 525 } 429 } 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } << 530 430 531 //....oooOO0OOooo........oooOO0OOooo........oo << 431 // Access to materials >> 432 const G4ProductionCutsTable* theCoupleTable= >> 433 G4ProductionCutsTable::GetProductionCutsTable(); >> 434 size_t numOfCouples = theCoupleTable->GetTableSize(); 532 435 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 436 if(1 < verboseLevel) { 534 { << 437 G4cout << numOfCouples << " materials" 535 if(0 == nSCoffRegions) { return true; } << 438 << " minKinEnergy= " << minKinEnergy 536 const G4Region* r = aTrack.GetVolume()->GetL << 439 << " maxKinEnergy= " << maxKinEnergy 537 for(auto & reg : *scoffRegions) { << 440 << G4endl; 538 if(r == reg) { return true; } << 539 } 441 } 540 return false; << 541 } << 542 442 543 //....oooOO0OOooo........oooOO0OOooo........oo << 443 for(size_t i=0; i<numOfCouples; i++) { 544 444 545 void G4VEnergyLossProcess::StartTracking(G4Tra << 445 if(2 < verboseLevel) 546 { << 446 G4cout << "G4VEnergyLossProcess::BuildDEDXVector flag= " << theDEDXTable->GetFlag(i) << G4endl; 547 // reset parameters for the new track << 447 548 theNumberOfInteractionLengthLeft = -1.0; << 448 if (theDEDXTable->GetFlag(i)) { 549 mfpKinEnergy = DBL_MAX; << 550 preStepLambda = 0.0; << 551 currentCouple = nullptr; << 552 449 553 // reset ion << 450 // create physics vector and fill it 554 if(isIon) { << 451 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 555 const G4double newmass = track->GetDefinit << 452 G4PhysicsVector* aVector = DEDXPhysicsVector(couple); 556 massRatio = (nullptr == baseParticle) ? CL << 453 modelManager->FillDEDXVector(aVector, couple); 557 : baseParticle->GetPDGMass()/newmass; << 454 558 logMassRatio = G4Log(massRatio); << 455 // Insert vector for this material into the table 559 } << 456 G4PhysicsTableHelper::SetPhysicsVector(theDEDXTable, i, aVector); 560 // forced biasing only for primary particles << 561 if(nullptr != biasManager) { << 562 if(0 == track->GetParentID()) { << 563 biasFlag = true; << 564 biasManager->ResetForcedInteraction(); << 565 } 457 } 566 } 458 } 567 } << 568 459 569 //....oooOO0OOooo........oooOO0OOooo........oo << 460 if(1 < verboseLevel) { 570 << 461 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " 571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 462 << particle->GetParticleName() 572 const G4Track& tr << 463 << G4endl; 573 G4GPILSelection* << 464 if(2 < verboseLevel) G4cout << (*theDEDXTable) << G4endl; 574 { << 575 G4double x = DBL_MAX; << 576 *selection = aGPILSelection; << 577 if(isIonisation && currentModel->IsActive(pr << 578 GetScaledRangeForScaledEnergy(preStepScale << 579 x = (useCutAsFinalRange) ? std::min(finalR << 580 currentCouple->GetProductionCuts()->GetP << 581 x = (fRange > x) ? fRange*dRoverRange + x* << 582 : fRange; << 583 /* << 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 585 << " fRange=" << fRange << " finR=" << finR << 586 */ << 587 } 465 } 588 return x; << 466 >> 467 return theDEDXTable; 589 } 468 } 590 469 591 //....oooOO0OOooo........oooOO0OOooo........oo 470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 471 593 G4double G4VEnergyLossProcess::PostStepGetPhys << 472 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() 594 const G4Track& tr << 595 G4double previo << 596 G4ForceCondition* << 597 { 473 { 598 // condition is set to "Not Forced" << 599 *condition = NotForced; << 600 G4double x = DBL_MAX; << 601 474 602 // initialisation of material, mass, charge, << 475 if(1 < verboseLevel) { 603 // at the beginning of the step << 476 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() for " 604 DefineMaterial(track.GetMaterialCutsCouple() << 477 << GetProcessName() 605 preStepKinEnergy = track.GetKineticEne << 478 << " and particle " << particle->GetParticleName() 606 preStepScaledEnergy = preStepKinEnergy*ma << 479 << G4endl; 607 SelectModel(preStepScaledEnergy); << 480 } 608 481 609 if(!currentModel->IsActive(preStepScaledEner << 482 // Access to materials 610 theNumberOfInteractionLengthLeft = -1.0; << 483 const G4ProductionCutsTable* theCoupleTable= 611 mfpKinEnergy = DBL_MAX; << 484 G4ProductionCutsTable::GetProductionCutsTable(); 612 preStepLambda = 0.0; << 485 size_t numOfCouples = theCoupleTable->GetTableSize(); 613 currentInteractionLength = DBL_MAX; << 486 614 return x; << 487 if(0 < verboseLevel) { >> 488 G4cout << numOfCouples << " materials" >> 489 << " minKinEnergy= " << minKinEnergy >> 490 << " maxKinEnergy= " << maxKinEnergy >> 491 << G4endl; 615 } 492 } 616 493 617 // change effective charge of a charged part << 494 for(size_t i=0; i<numOfCouples; i++) { 618 if(isIon) { << 495 619 const G4double q2 = currentModel->ChargeSq << 496 if (theDEDXunRestrictedTable->GetFlag(i)) { 620 fFactor = q2*biasFactor; << 497 621 if(baseMat) { fFactor *= (*theDensityFacto << 498 // create physics vector and fill it 622 reduceFactor = 1.0/(fFactor*massRatio); << 499 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 623 if (lossFluctuationFlag) { << 500 G4PhysicsVector* aVector = DEDXPhysicsVectorForPreciseRange(couple); 624 auto fluc = currentModel->GetModelOfFluc << 501 modelManager->FillDEDXVectorForPreciseRange(aVector, couple); 625 fluc->SetParticleAndCharge(track.GetDefi << 502 >> 503 // Insert vector for this material into the table >> 504 G4PhysicsTableHelper::SetPhysicsVector(theDEDXunRestrictedTable, i, aVector); 626 } 505 } 627 } 506 } 628 507 629 // forced biasing only for primary particles << 508 if(1 < verboseLevel) { 630 if(biasManager) { << 509 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange(): table is built for " 631 if(0 == track.GetParentID() && biasFlag && << 510 << particle->GetParticleName() 632 biasManager->ForcedInteractionRegion((G << 511 << G4endl; 633 return biasManager->GetStepLimit((G4int) << 512 if(2 < verboseLevel) G4cout << (*theDEDXunRestrictedTable) << G4endl; 634 } << 635 } 513 } 636 514 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 515 return theDEDXunRestrictedTable; 638 << 516 } 639 // zero cross section << 640 if(preStepLambda <= 0.0) { << 641 theNumberOfInteractionLengthLeft = -1.0; << 642 currentInteractionLength = DBL_MAX; << 643 } else { << 644 517 645 // non-zero cross section << 518 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 if (theNumberOfInteractionLengthLeft < 0.0 << 647 519 648 // beggining of tracking (or just after << 520 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable() 649 theNumberOfInteractionLengthLeft = -G4Lo << 521 { 650 theInitialNumberOfInteractionLength = th << 651 522 652 } else if(currentInteractionLength < DBL_M << 523 if(1 < verboseLevel) { >> 524 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() for process " >> 525 << GetProcessName() << " and particle " >> 526 << particle->GetParticleName() >> 527 << G4endl; >> 528 } 653 529 654 // subtract NumberOfInteractionLengthLef << 530 // Access to materials 655 theNumberOfInteractionLengthLeft -= << 531 const G4ProductionCutsTable* theCoupleTable= 656 previousStepSize/currentInteractionLen << 532 G4ProductionCutsTable::GetProductionCutsTable(); >> 533 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 534 >> 535 for(size_t i=0; i<numOfCouples; i++) { >> 536 >> 537 if (theLambdaTable->GetFlag(i)) { >> 538 >> 539 // create physics vector and fill it >> 540 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 541 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); >> 542 modelManager->FillLambdaVector(aVector, couple); 657 543 658 theNumberOfInteractionLengthLeft = << 544 // Insert vector for this material into the table 659 std::max(theNumberOfInteractionLengthL << 545 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); 660 } 546 } 661 << 662 // new mean free path and step limit << 663 currentInteractionLength = 1.0/preStepLamb << 664 x = theNumberOfInteractionLengthLeft * cur << 665 } 547 } 666 #ifdef G4VERBOSE << 548 667 if (verboseLevel>2) { << 549 if(1 < verboseLevel) { 668 G4cout << "G4VEnergyLossProcess::PostStepG << 550 G4cout << "Lambda table is built for " 669 G4cout << "[ " << GetProcessName() << "]" << 551 << particle->GetParticleName() 670 G4cout << " for " << track.GetDefinition() << 552 << G4endl; 671 << " in Material " << currentMate << 672 << " Ekin(MeV)= " << preStepKinEner << 673 << " track material: " << track.Get << 674 <<G4endl; << 675 G4cout << "MeanFreePath = " << currentInte << 676 << "InteractionLength= " << x/cm << << 677 } 553 } 678 #endif << 554 679 return x; << 555 return theLambdaTable; 680 } 556 } 681 557 682 //....oooOO0OOooo........oooOO0OOooo........oo 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 559 684 void << 560 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaSubTable() 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 686 { 561 { 687 // cross section increased with energy << 562 if(1 < verboseLevel) { 688 if(fXSType == fEmIncreasing) { << 563 G4cout << "G4VEnergyLossProcess::BuildLambdaSubTable() for process " 689 if(e*invLambdaFactor < mfpKinEnergy) { << 564 << GetProcessName() << " and particle " 690 preStepLambda = GetLambdaForScaledEnergy << 565 << particle->GetParticleName() << G4endl; 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 566 } 692 } << 693 567 694 // cross section has one peak << 568 // Access to materials 695 } else if(fXSType == fEmOnePeak) { << 569 const G4ProductionCutsTable* theCoupleTable= 696 const G4double epeak = (*theEnergyOfCrossS << 570 G4ProductionCutsTable::GetProductionCutsTable(); 697 if(e <= epeak) { << 571 size_t numOfCouples = theCoupleTable->GetTableSize(); 698 if(e*invLambdaFactor < mfpKinEnergy) { << 572 699 preStepLambda = GetLambdaForScaledEner << 573 for(size_t i=0; i<numOfCouples; i++) { 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 574 701 } << 575 if (theSubLambdaTable->GetFlag(i)) { 702 } else if(e < mfpKinEnergy) { << 576 703 const G4double e1 = std::max(epeak, e*la << 577 // create physics vector and fill it 704 mfpKinEnergy = e1; << 578 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 705 preStepLambda = GetLambdaForScaledEnergy << 579 G4PhysicsVector* aVector = SubLambdaPhysicsVector(couple); 706 } << 580 modelManager->FillSubLambdaVector(aVector, couple); 707 << 581 708 // cross section has more than one peaks << 582 // Insert vector for this material into the table 709 } else if(fXSType == fEmTwoPeaks) { << 583 G4PhysicsTableHelper::SetPhysicsVector(theSubLambdaTable, i, aVector); 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } 584 } 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } 585 } >> 586 >> 587 if(1 < verboseLevel) { >> 588 G4cout << "Table is built for " >> 589 << particle->GetParticleName() >> 590 << G4endl; >> 591 } >> 592 >> 593 return theSubLambdaTable; 769 } 594 } 770 595 >> 596 771 //....oooOO0OOooo........oooOO0OOooo........oo 597 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 598 773 G4VParticleChange* G4VEnergyLossProcess::Along 599 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 600 const G4Step& step) 775 { 601 { 776 fParticleChange.InitializeForAlongStep(track 602 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 603 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( << 604 if(!theRangeTableForLoss) return &fParticleChange; 779 return &fParticleChange; << 780 } << 781 605 >> 606 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 607 G4double length = step.GetStepLength(); 783 G4double eloss = 0.0; 608 G4double eloss = 0.0; 784 << 609 785 /* << 610 /* 786 if(-1 < verboseLevel) { 611 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP << 612 const G4ParticleDefinition* d = track.GetDefinition(); 788 G4cout << "AlongStepDoIt for " 613 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 614 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 615 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 616 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 617 << " slim(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 618 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 619 << " q^2= " << chargeSqRatio >> 620 << " md= " << d->GetPDGMass() >> 621 << G4endl; 795 } 622 } 796 */ 623 */ 797 const G4DynamicParticle* dynParticle = track << 798 624 799 // define new weight for primary and seconda << 625 // stopping 800 G4double weight = fParticleChange.GetParentW << 626 if (length >= fRange) { 801 if(weightFlag) { << 802 weight /= biasFactor; << 803 fParticleChange.ProposeWeight(weight); << 804 } << 805 << 806 // stopping, check actual range and kinetic << 807 if (length >= fRange || preStepKinEnergy <= << 808 eloss = preStepKinEnergy; 627 eloss = preStepKinEnergy; 809 if (useDeexcitation) { << 810 atomDeexcitation->AlongStepDeexcitation( << 811 << 812 if(scTracks.size() > 0) { FillSecondarie << 813 eloss = std::max(eloss, 0.0); << 814 } << 815 fParticleChange.SetProposedKineticEnergy(0 << 816 fParticleChange.ProposeLocalEnergyDeposit( << 817 return &fParticleChange; << 818 } << 819 // zero step length with non-zero range << 820 if(length <= 0.0) { return &fParticleChange; << 821 628 822 // Short step 629 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 630 } else if( length <= linLossLimit * fRange ) { 824 LogSca << 631 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length; 825 /* << 632 826 G4cout << "##### Short STEP: eloss= " << elo << 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 633 // Long step 834 if(eloss > preStepKinEnergy*linLossLimit) { << 634 } else { >> 635 G4double r = GetScaledRangeForScaledEnergy(preStepScaledEnergy); >> 636 G4double x = r - length/reduceFactor; >> 637 if(x < 0.0) { >> 638 G4cout << "WARNING! G4VEnergyLossProcess::AlongStepDoIt: x= " << x >> 639 << " for eScaled(MeV)= " << preStepScaledEnergy/MeV >> 640 << " step(mm)= " << length/mm >> 641 << " for " << track.GetDefinition()->GetParticleName() >> 642 << G4endl; >> 643 x = 0.0; >> 644 } >> 645 eloss = (ScaledKinEnergyForLoss(r) - ScaledKinEnergyForLoss(x))/massRatio; 835 646 836 const G4double x = (fRange - length)/reduc << 837 const G4double de = preStepKinEnergy - Sca << 838 if(de > 0.0) { eloss = de; } << 839 /* 647 /* 840 if(-1 < verboseLevel) << 648 if(-1 < verboseLevel) { 841 G4cout << " Long STEP: rPre(mm)=" << 649 G4cout << "Long STEP: rPre(mm)= " << r/mm 842 << GetScaledRangeForScaledEnergy( << 650 << " rPost(mm)= " << x/mm 843 << " x(mm)=" << x/mm << 651 << " ePre(MeV)= " << preStepScaledEnergy/MeV 844 << " eloss(MeV)=" << eloss/MeV << 652 << " eloss(MeV)= " << eloss/MeV 845 << " rFactor=" << reduceFactor << 653 << " eloss0(MeV)= " 846 << " massRatio=" << massRatio << 654 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV 847 << G4endl; 655 << G4endl; >> 656 } 848 */ 657 */ >> 658 849 } 659 } 850 660 851 /* << 661 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 852 if(-1 < verboseLevel ) { << 662 G4VEmModel* currentModel = SelectModel(preStepScaledEnergy); >> 663 G4double tmax = currentModel->MaxSecondaryKinEnergy(dynParticle); >> 664 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); >> 665 >> 666 /* >> 667 G4double eloss0 = eloss; >> 668 if(-1 < verboseLevel) { 853 G4cout << "Before fluct: eloss(MeV)= " << 669 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV >> 670 << " tmax= " << tmax 854 << " e-eloss= " << preStepKinEnergy 671 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 672 << " fluct= " << lossFluctuationFlag 856 << " fluct= " << lossFluctuationFla << 673 << G4endl; 857 } 674 } 858 */ 675 */ 859 676 860 const G4double cut = (*theCuts)[currentCoupl << 677 // Sample fluctuations 861 G4double esec = 0.0; << 678 if (lossFluctuationFlag && eloss < preStepKinEnergy) { 862 << 863 // Corrections, which cannot be tabulated << 864 if(isIon) { << 865 currentModel->CorrectionsAlongStep(current << 866 length, << 867 eloss = std::max(eloss, 0.0); << 868 } << 869 << 870 // Sample fluctuations if not full energy lo << 871 if(eloss >= preStepKinEnergy) { << 872 eloss = preStepKinEnergy; << 873 679 874 } else if (lossFluctuationFlag) { << 680 eloss = currentModel->GetModelOfFluctuations()-> 875 const G4double tmax = currentModel->MaxSec << 681 SampleFluctuations(currentMaterial,dynParticle,tmax,length,eloss); 876 const G4double tcut = std::min(cut, tmax); << 877 G4VEmFluctuationModel* fluc = currentModel << 878 eloss = fluc->SampleFluctuations(currentCo << 879 tcut, tma << 880 /* << 881 if(-1 < verboseLevel) << 882 G4cout << "After fluct: eloss(MeV)= " << << 883 << " fluc= " << (eloss-eloss0)/Me << 884 << " ChargeSqRatio= " << chargeSq << 885 << " massRatio= " << massRatio << << 886 */ << 887 } 682 } 888 << 683 /* 889 // deexcitation << 684 if(-1 < verboseLevel) { 890 if (useDeexcitation) { << 685 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 891 G4double esecfluo = preStepKinEnergy; << 686 << " fluc= " << (eloss-eloss0)/MeV 892 G4double de = esecfluo; << 687 << " currentChargeSquare= " << chargeSquare 893 atomDeexcitation->AlongStepDeexcitation(sc << 688 << " massRatio= " << massRatio 894 de << 689 << G4endl; 895 << 896 // sum of de-excitation energies << 897 esecfluo -= de; << 898 << 899 // subtracted from energy loss << 900 if(eloss >= esecfluo) { << 901 esec += esecfluo; << 902 eloss -= esecfluo; << 903 } else { << 904 esec += esecfluo; << 905 eloss = 0.0; << 906 } << 907 } << 908 if(nullptr != subcutProducer && IsRegionForC << 909 subcutProducer->SampleSecondaries(step, sc << 910 } 690 } 911 // secondaries from atomic de-excitation and << 691 */ 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 692 914 // Energy balance << 693 // Corrections, which cannot be tabulated 915 G4double finalT = preStepKinEnergy - eloss - << 694 CorrectionsAlongStep(currentCouple, dynParticle, eloss, length); 916 if (finalT <= lowestKinEnergy) { << 695 917 eloss += finalT; << 696 G4double finalT = preStepKinEnergy - eloss; 918 finalT = 0.0; << 697 if (finalT <= lowestKinEnergy) finalT = 0.0; 919 } else if(isIon) { << 698 eloss = preStepKinEnergy-finalT; 920 fParticleChange.SetProposedCharge( << 921 currentModel->GetParticleCharge(track.Ge << 922 currentM << 923 } << 924 eloss = std::max(eloss, 0.0); << 925 699 926 fParticleChange.SetProposedKineticEnergy(fin 700 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 701 fParticleChange.ProposeLocalEnergyDeposit(eloss); 928 /* << 702 >> 703 /* 929 if(-1 < verboseLevel) { 704 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre << 931 G4cout << "Final value eloss(MeV)= " << el 705 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 706 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 707 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV << 935 << " lossFlag= " << lossFluctuation 708 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt << 937 << G4endl; 709 << G4endl; 938 } 710 } 939 */ 711 */ 940 return &fParticleChange; << 941 } << 942 << 943 //....oooOO0OOooo........oooOO0OOooo........oo << 944 712 945 void G4VEnergyLossProcess::FillSecondariesAlon << 713 return &fParticleChange; 946 { << 947 const std::size_t n0 = scTracks.size(); << 948 G4double weight = wt; << 949 // weight may be changed by biasing manager << 950 if(biasManager) { << 951 if(biasManager->SecondaryBiasingRegion((G4 << 952 weight *= << 953 biasManager->ApplySecondaryBiasing(scT << 954 } << 955 } << 956 << 957 // fill secondaries << 958 const std::size_t n = scTracks.size(); << 959 fParticleChange.SetNumberOfSecondaries((G4in << 960 << 961 for(std::size_t i=0; i<n; ++i) { << 962 G4Track* t = scTracks[i]; << 963 if(nullptr != t) { << 964 t->SetWeight(weight); << 965 pParticleChange->AddSecondary(t); << 966 G4int pdg = t->GetDefinition()->GetPDGEn << 967 if (i < n0) { << 968 if (pdg == 22) { << 969 t->SetCreatorModelID(gpixeID); << 970 } else if (pdg == 11) { << 971 t->SetCreatorModelID(epixeID); << 972 } else { << 973 t->SetCreatorModelID(biasID); << 974 } << 975 } else { << 976 t->SetCreatorModelID(biasID); << 977 } << 978 } << 979 } 714 } 980 scTracks.clear(); << 981 } << 982 715 983 //....oooOO0OOooo........oooOO0OOooo........oo 716 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 717 985 G4VParticleChange* G4VEnergyLossProcess::PostS 718 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 << 719 const G4Step& step) 987 { 720 { 988 // clear number of interaction lengths in an << 989 theNumberOfInteractionLengthLeft = -1.0; << 990 mfpKinEnergy = DBL_MAX; << 991 << 992 fParticleChange.InitializeForPostStep(track) 721 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 722 G4double finalT = track.GetKineticEnergy(); >> 723 G4double postStepScaledEnergy = finalT*massRatio; 994 724 995 const G4double postStepScaledEnergy = finalT << 725 // Integral approach 996 SelectModel(postStepScaledEnergy); << 726 if (integral) { >> 727 G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy); >> 728 if(preStepLambda<lx && 1 < verboseLevel) { >> 729 G4cout << "WARING: for " << particle->GetParticleName() >> 730 << " and " << GetProcessName() >> 731 << " E(MeV)= " << finalT/MeV >> 732 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " >> 733 << G4endl; >> 734 } >> 735 if(preStepLambda*G4UniformRand() > lx) >> 736 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); >> 737 } 997 738 998 if(!currentModel->IsActive(postStepScaledEne << 739 G4VEmModel* currentModel = SelectModel(postStepScaledEnergy); 999 return &fParticleChange; << 740 G4double tmax = (*theCuts)[currentMaterialIndex]; >> 741 >> 742 std::vector<G4DynamicParticle*>* newp = SecondariesPostStep( >> 743 currentModel, currentCouple, track.GetDynamicParticle(), tmax); >> 744 >> 745 if (newp) { >> 746 G4int num = newp->size(); >> 747 fParticleChange.SetNumberOfSecondaries(num); >> 748 for (G4int i=0; i<num; i++) { >> 749 fParticleChange.AddSecondary((*newp)[i]); >> 750 } >> 751 delete newp; 1000 } 752 } >> 753 1001 /* 754 /* 1002 if(1 < verboseLevel) { << 755 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 756 const G4ParticleDefinition* pd = track.GetDynamicParticle()->GetDefinition(); >> 757 G4cout << GetProcessName() >> 758 << "::PostStepDoIt: Sample secondary; E= " << finalT/MeV >> 759 << " MeV; model= (" << currentModel->LowEnergyLimit(pd) >> 760 << ", " << currentModel->HighEnergyLimit(pd) << ")" >> 761 << " preStepLambda= " << preStepLambda >> 762 << G4endl; 1004 } 763 } 1005 */ 764 */ 1006 // forced process - should happen only once << 765 1007 if(biasFlag) { << 766 finalT = fParticleChange.GetProposedKineticEnergy(); 1008 if(biasManager->ForcedInteractionRegion(( << 767 if (finalT <= lowestKinEnergy) { 1009 biasFlag = false; << 768 fParticleChange.SetProposedKineticEnergy(0.0); 1010 } << 769 return &fParticleChange; 1011 } 770 } 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 771 1014 // Integral approach << 772 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1015 if (fXSType != fEmNoIntegral) { << 773 } 1016 const G4double logFinalT = dp->GetLogKine << 774 1017 G4double lx = GetLambdaForScaledEnergy(po << 775 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1018 lo << 776 1019 lx = std::max(lx, 0.0); << 777 void G4VEnergyLossProcess::PrintInfoDefinition() 1020 << 778 { 1021 // if both lg and lx are zero then no int << 779 if(0 < verboseLevel) { 1022 if(preStepLambda*G4UniformRand() >= lx) { << 780 G4cout << G4endl << GetProcessName() << ": tables are built for " 1023 return &fParticleChange; << 781 << particle->GetParticleName() >> 782 << G4endl >> 783 << " dE/dx and range tables from " >> 784 << G4BestUnit(minKinEnergy,"Energy") >> 785 << " to " << G4BestUnit(maxKinEnergy,"Energy") >> 786 << " in " << nDEDXBins << " bins." << G4endl >> 787 << " Lambda tables from threshold to " >> 788 << G4BestUnit(maxKinEnergy,"Energy") >> 789 << " in " << nLambdaBins << " bins." >> 790 << G4endl; >> 791 PrintInfo(); >> 792 if(theRangeTableForLoss) { >> 793 G4cout << " Step function: finalRange(mm)= " << finalRange/mm >> 794 << ", dRoverRange= " << dRoverRange >> 795 << ", integral: " << integral >> 796 << G4endl; >> 797 } >> 798 if(thePreciseRangeTable) { >> 799 G4cout << " Precise range table up" >> 800 << " to " << G4BestUnit(maxKinEnergyForRange,"Energy") >> 801 << " in " << nDEDXBinsForRange << " bins." << G4endl; 1024 } 802 } 1025 } << 1026 803 1027 // define new weight for primary and second << 804 if(2 < verboseLevel) { 1028 G4double weight = fParticleChange.GetParent << 805 G4cout << "DEDXTable address= " << theDEDXTable << G4endl; 1029 if(weightFlag) { << 806 if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl; 1030 weight /= biasFactor; << 807 G4cout << "non restricted DEDXTable address= " << theDEDXunRestrictedTable << G4endl; 1031 fParticleChange.ProposeWeight(weight); << 808 if(theDEDXunRestrictedTable) G4cout << (*theDEDXunRestrictedTable) << G4endl; 1032 } << 809 G4cout << "PreciseRangeTable address= " << thePreciseRangeTable << G4endl; 1033 << 810 if(thePreciseRangeTable) G4cout << (*thePreciseRangeTable) << G4endl; 1034 const G4double tcut = (*theCuts)[currentCou << 811 G4cout << "RangeTableForLoss address= " << theRangeTableForLoss << G4endl; 1035 << 812 if(theRangeTableForLoss) G4cout << (*theRangeTableForLoss) << G4endl; 1036 // sample secondaries << 813 G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl; 1037 secParticles.clear(); << 814 if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl; 1038 currentModel->SampleSecondaries(&secParticl << 815 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; 1039 << 816 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 1040 const G4int num0 = (G4int)secParticles.size << 817 G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl; 1041 << 818 if(theSubLambdaTable) G4cout << (*theSubLambdaTable) << G4endl; 1042 // bremsstrahlung splitting or Russian roul << 1043 if(biasManager) { << 1044 if(biasManager->SecondaryBiasingRegion((G << 1045 G4double eloss = 0.0; << 1046 weight *= biasManager->ApplySecondaryBi << 1047 secPart << 1048 track, << 1049 &fParti << 1050 (G4int) << 1051 step.Ge << 1052 if(eloss > 0.0) { << 1053 eloss += fParticleChange.GetLocalEner << 1054 fParticleChange.ProposeLocalEnergyDep << 1055 } << 1056 } 819 } 1057 } 820 } >> 821 } 1058 822 1059 // save secondaries << 823 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1060 const G4int num = (G4int)secParticles.size( << 1061 if(num > 0) { << 1062 824 1063 fParticleChange.SetNumberOfSecondaries(nu << 825 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p) 1064 G4double time = track.GetGlobalTime(); << 826 { >> 827 if(theDEDXTable != p) theDEDXTable = p; >> 828 } 1065 829 1066 G4int n1(0), n2(0); << 830 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 831 1071 for (G4int i=0; i<num; ++i) { << 832 void G4VEnergyLossProcess::SetDEDXunRestrictedTable(G4PhysicsTable* p) 1072 if(nullptr != secParticles[i]) { << 833 { 1073 G4Track* t = new G4Track(secParticles << 834 if(theDEDXunRestrictedTable != p) theDEDXunRestrictedTable = p; 1074 t->SetTouchableHandle(track.GetToucha << 835 if(p) { 1075 if (biasManager) { << 836 size_t n = p->length(); 1076 t->SetWeight(weight * biasManager-> << 837 G4PhysicsVector* pv = (*p)[0]; 1077 } else { << 838 G4double emax = maxKinEnergyForRange; 1078 t->SetWeight(weight); << 839 G4bool b; 1079 } << 840 theDEDXAtMaxEnergy = new G4double [n]; 1080 if(i < num0) { << 1081 t->SetCreatorModelID(secID); << 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 841 1088 //G4cout << "Secondary(post step) has << 842 for (size_t i=0; i<n; i++) { 1089 // << ", kenergy " << t->GetKin << 843 pv = (*p)[i]; 1090 // << " time= " << time/ns << " << 844 G4double dedx = pv->GetValue(emax, b); 1091 pParticleChange->AddSecondary(t); << 845 theDEDXAtMaxEnergy[i] = dedx; 1092 } << 846 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " << dedx << G4endl; 1093 } 847 } 1094 } 848 } >> 849 } 1095 850 1096 if(0.0 == fParticleChange.GetProposedKineti << 851 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1097 fAlive == fParticleChange.GetTrackStatus << 1098 if(particle->GetProcessManager()->GetAtRe << 1099 { fParticleChange.ProposeTrackStatus << 1100 else { fParticleChange.ProposeTrackStatus << 1101 } << 1102 852 1103 /* << 853 void G4VEnergyLossProcess::SetPreciseRangeTable(G4PhysicsTable* p) 1104 if(-1 < verboseLevel) { << 854 { 1105 G4cout << "::PostStepDoIt: Sample seconda << 855 if(thePreciseRangeTable != p) thePreciseRangeTable = p; 1106 << fParticleChange.GetProposedKineticEner << 856 1107 << " MeV; model= (" << currentMode << 857 if(p) { 1108 << ", " << currentModel->HighEner << 858 size_t n = p->length(); 1109 << " preStepLambda= " << preStepL << 859 G4PhysicsVector* pv = (*p)[0]; 1110 << " dir= " << track.GetMomentumD << 860 G4double emax = maxKinEnergyForRange; 1111 << " status= " << track.GetTrackS << 861 G4bool b; 1112 << G4endl; << 862 theRangeAtMaxEnergy = new G4double [n]; >> 863 >> 864 for (size_t i=0; i<n; i++) { >> 865 pv = (*p)[i]; >> 866 G4double r2 = pv->GetValue(emax, b); >> 867 theRangeAtMaxEnergy[i] = r2; >> 868 //G4cout << "i= " << i << " e2(MeV)= " << emax/MeV << " r2= " << r2<< G4endl; >> 869 } 1113 } 870 } 1114 */ << 1115 return &fParticleChange; << 1116 } 871 } 1117 872 1118 //....oooOO0OOooo........oooOO0OOooo........o 873 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 874 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 875 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1121 const G4ParticleDefinition* part, cons << 1122 { 876 { 1123 if (!isMaster || nullptr != baseParticle || << 877 if(theRangeTableForLoss != p) { 1124 for(std::size_t i=0; i<7; ++i) { << 878 theRangeTableForLoss = p; 1125 // ionisation table only for ionisation p << 879 if(1 < verboseLevel) { 1126 if (nullptr == theData->Table(i) || (!isI << 880 G4cout << "### Set Range table " << p << " for " << particle->GetParticleName() 1127 continue; << 881 << " and process " << GetProcessName() << G4endl; 1128 } 882 } 1129 if (-1 < verboseLevel) { << 883 } 1130 G4cout << "G4VEnergyLossProcess::StoreP << 884 } 1131 << " " << particle->GetParticleName() << 885 1132 << " " << GetProcessName() << 886 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1133 << " " << tnames[i] << " " << theDat << 887 >> 888 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) >> 889 { >> 890 theSecondaryRangeTable = p; >> 891 } >> 892 >> 893 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 894 >> 895 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) >> 896 { >> 897 if(theInverseRangeTable != p) { >> 898 theInverseRangeTable = p; >> 899 if(1 < verboseLevel) { >> 900 G4cout << "### Set InverseRange table " << p << " for " << particle->GetParticleName() >> 901 << " and process " << GetProcessName() << G4endl; 1134 } 902 } 1135 if (!G4EmTableUtil::StoreTable(this, part << 903 } 1136 dir, tnames[i], verboseLevel, asci << 904 } 1137 return false; << 905 >> 906 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 907 >> 908 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) >> 909 { >> 910 if(1 < verboseLevel) { >> 911 G4cout << "### Set Lambda table " << p << " for " << particle->GetParticleName() >> 912 << " and process " << GetProcessName() << G4endl; >> 913 } >> 914 if(theLambdaTable != p) theLambdaTable = p; >> 915 tablesAreBuilt = true; >> 916 >> 917 if(p) { >> 918 size_t n = p->length(); >> 919 G4PhysicsVector* pv = (*p)[0]; >> 920 G4double e, s, smax, emax; >> 921 theEnergyOfCrossSectionMax = new G4double [n]; >> 922 theCrossSectionMax = new G4double [n]; >> 923 G4bool b; >> 924 >> 925 for (size_t i=0; i<n; i++) { >> 926 pv = (*p)[i]; >> 927 emax = DBL_MAX; >> 928 smax = 0.0; >> 929 if(pv) { >> 930 size_t nb = pv->GetVectorLength(); >> 931 emax = pv->GetLowEdgeEnergy(nb); >> 932 for (size_t j=0; j<nb; j++) { >> 933 e = pv->GetLowEdgeEnergy(j); >> 934 s = pv->GetValue(e,b); >> 935 if(s > smax) { >> 936 smax = s; >> 937 emax = e; >> 938 } >> 939 } >> 940 } >> 941 theEnergyOfCrossSectionMax[i] = emax; >> 942 theCrossSectionMax[i] = smax; >> 943 if(1 < verboseLevel) { >> 944 G4cout << "For " << particle->GetParticleName() >> 945 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 946 << " lambda= " << smax << G4endl; >> 947 } 1138 } 948 } 1139 } 949 } 1140 return true; << 1141 } 950 } 1142 951 1143 //....oooOO0OOooo........oooOO0OOooo........o << 952 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1144 953 1145 G4bool << 954 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 1147 co << 1148 { 955 { 1149 if (!isMaster || nullptr != baseParticle || << 956 if(theSubLambdaTable != p) theSubLambdaTable = p; 1150 for(std::size_t i=0; i<7; ++i) { << 957 1151 // ionisation table only for ionisation p << 958 if (nSCoffRegions) { 1152 if (!isIonisation && 1 == i) { continue; << 959 for (G4int i=0; i<nSCoffRegions; i++) { 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 960 scoffProcessors[i]->SetLambdaSubTable(theSubLambdaTable); 1154 verboseL << 1155 return false; << 1156 } 961 } 1157 } 962 } 1158 return true; << 1159 } 963 } 1160 964 1161 //....oooOO0OOooo........oooOO0OOooo........o 965 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 966 1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 967 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVector(const G4MaterialCutsCouple*) 1164 const G4Mat << 1165 const G4Dyn << 1166 G4dou << 1167 { 968 { 1168 DefineMaterial(couple); << 969 G4int nbins = nDEDXBins; 1169 G4double ekin = dp->GetKineticEnergy(); << 970 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins); 1170 SelectModel(ekin*massRatio); << 971 return v; 1171 G4double tmax = currentModel->MaxSecondaryK << 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 1173 G4double d = 0.0; << 1174 G4VEmFluctuationModel* fm = currentModel->G << 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 1176 return d; << 1177 } 972 } 1178 973 1179 //....oooOO0OOooo........oooOO0OOooo........o 974 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 975 1181 G4double << 976 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVectorForPreciseRange( 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 977 const G4MaterialCutsCouple*) 1183 c << 1184 G << 1185 { 978 { 1186 // Cross section per volume is calculated << 979 G4int nbins = nDEDXBinsForRange; 1187 DefineMaterial(couple); << 980 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergyForRange, nbins); 1188 G4double cross = 0.0; << 981 return v; 1189 if (nullptr != theLambdaTable) { << 1190 cross = GetLambdaForScaledEnergy(kineticE << 1191 logKinet << 1192 } else { << 1193 SelectModel(kineticEnergy*massRatio); << 1194 cross = (!baseMat) ? biasFactor : biasFac << 1195 cross *= (currentModel->CrossSectionPerVo << 1196 << 1197 } << 1198 return std::max(cross, 0.0); << 1199 } 982 } 1200 983 1201 //....oooOO0OOooo........oooOO0OOooo........o 984 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 985 1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 986 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1204 { 987 { 1205 DefineMaterial(track.GetMaterialCutsCouple( << 988 G4double cut = (*theCuts)[couple->GetIndex()]; 1206 const G4double kinEnergy = track.GetKine << 989 G4int nbins = nLambdaBins; 1207 const G4double logKinEnergy = track.GetDyna << 990 G4double tmin = std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), 1208 const G4double cs = GetLambdaForScaledEnerg << 991 minKinEnergy); 1209 << 992 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 993 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nbins); >> 994 return v; 1211 } 995 } 1212 996 1213 //....oooOO0OOooo........oooOO0OOooo........o 997 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 998 1215 G4double G4VEnergyLossProcess::ContinuousStep << 999 G4PhysicsVector* G4VEnergyLossProcess::SubLambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1216 << 1217 << 1218 { 1000 { 1219 return AlongStepGetPhysicalInteractionLengt << 1001 return LambdaPhysicsVector(couple); 1220 } 1002 } 1221 1003 1222 //....oooOO0OOooo........oooOO0OOooo........o 1004 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 1005 1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 1006 G4double G4VEnergyLossProcess::MicroscopicCrossSection(G4double kineticEnergy, 1225 const G4Track& t << 1007 const G4MaterialCutsCouple* couple) 1226 G4double, << 1008 { 1227 G4ForceCondition << 1009 // Cross section per atom is calculated >> 1010 DefineMaterial(couple); >> 1011 G4double cross = 0.0; >> 1012 G4bool b; >> 1013 if(theLambdaTable) { >> 1014 cross = (((*theLambdaTable)[currentMaterialIndex])-> >> 1015 GetValue(kineticEnergy, b)); >> 1016 >> 1017 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); >> 1018 } >> 1019 >> 1020 return cross; >> 1021 } >> 1022 >> 1023 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1228 1024 >> 1025 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track, >> 1026 G4double s, >> 1027 G4ForceCondition* cond) 1229 { 1028 { 1230 *condition = NotForced; << 1029 return GetMeanFreePath(track, s, cond); 1231 return MeanFreePath(track); << 1232 } 1030 } 1233 1031 1234 //....oooOO0OOooo........oooOO0OOooo........o 1032 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 1033 1236 G4double G4VEnergyLossProcess::GetContinuousS << 1034 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, 1237 const G4Track&, << 1035 G4double x, G4double y, G4double& z) 1238 G4double, G4double, G4double& << 1239 { 1036 { 1240 return DBL_MAX; << 1037 return GetContinuousStepLimit(track, x, y, z); 1241 } 1038 } 1242 1039 1243 //....oooOO0OOooo........oooOO0OOooo........o 1040 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1041 1245 G4PhysicsVector* << 1042 void G4VEnergyLossProcess::SetStepLimits(G4double v1, G4double v2) 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1247 G4d << 1248 { 1043 { 1249 DefineMaterial(couple); << 1044 dRoverRange = v1; 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1045 finalRange = v2; 1251 return new G4PhysicsVector(*v); << 1046 if (dRoverRange > 1.0) dRoverRange = 1.0; 1252 } 1047 } 1253 1048 1254 //....oooOO0OOooo........oooOO0OOooo........o 1049 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 1050 1256 void << 1051 void G4VEnergyLossProcess::SetIntegral(G4bool val) 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 1258 { 1052 { 1259 if(1 < verboseLevel) { << 1053 if(integral != val) { 1260 G4cout << "### Set DEDX table " << p << " << 1054 if(val) dRoverRange = defaultIntegralRange; 1261 << " " << theDEDXunRestrictedTable << << 1055 else dRoverRange = defaultRoverRange; 1262 << " for " << particle->GetParticl << 1263 << " and process " << GetProcessNa << 1264 << " type=" << tType << " isIonisation:" << 1265 } << 1266 if(fTotal == tType) { << 1267 theDEDXunRestrictedTable = p; << 1268 } else if(fRestricted == tType) { << 1269 theDEDXTable = p; << 1270 if(isMaster && nullptr == baseParticle) { << 1271 theData->UpdateTable(theDEDXTable, 0); << 1272 } << 1273 } else if(fIsIonisation == tType) { << 1274 theIonisationTable = p; << 1275 if(isMaster && nullptr == baseParticle) { << 1276 theData->UpdateTable(theIonisationTable << 1277 } << 1278 } 1056 } >> 1057 integral = val; 1279 } 1058 } 1280 1059 1281 //....oooOO0OOooo........oooOO0OOooo........o 1060 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 1061 1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 1062 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1284 { 1063 { 1285 theCSDARangeTable = p; << 1064 dRoverRange = v1; >> 1065 finalRange = v2; >> 1066 if (dRoverRange > 0.999) dRoverRange = 1.0; 1286 } 1067 } 1287 1068 1288 //....oooOO0OOooo........oooOO0OOooo........o 1069 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 1070 1290 void G4VEnergyLossProcess::SetRangeTableForLo << 1071 void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 1291 { 1072 { 1292 theRangeTableForLoss = p; << 1073 particle = p; 1293 } 1074 } 1294 1075 1295 //....oooOO0OOooo........oooOO0OOooo........o 1076 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 1077 1297 void G4VEnergyLossProcess::SetInverseRangeTab << 1078 void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 1298 { 1079 { 1299 theInverseRangeTable = p; << 1080 baseParticle = p; 1300 } 1081 } 1301 1082 1302 //....oooOO0OOooo........oooOO0OOooo........o 1083 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 1084 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 1085 void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) >> 1086 { >> 1087 secondaryParticle = p; >> 1088 } >> 1089 >> 1090 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1091 >> 1092 G4bool G4VEnergyLossProcess::StorePhysicsTable(const G4ParticleDefinition* part, >> 1093 const G4String& directory, >> 1094 G4bool ascii) >> 1095 { >> 1096 G4bool res = true; >> 1097 if ( baseParticle || part != particle ) return res; >> 1098 >> 1099 if ( theDEDXTable && theRangeTableForLoss ) { >> 1100 const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii); >> 1101 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; >> 1102 } >> 1103 >> 1104 if ( theDEDXunRestrictedTable && thePreciseRangeTable ) { >> 1105 const G4String name = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1106 if( !theDEDXTable->StorePhysicsTable(name,ascii)) res = false; >> 1107 } >> 1108 >> 1109 if ( thePreciseRangeTable ) { >> 1110 const G4String name = GetPhysicsTableFileName(part,directory,"PreciseRange",ascii); >> 1111 if( !thePreciseRangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1112 } >> 1113 >> 1114 if ( theRangeTableForLoss ) { >> 1115 const G4String name = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1116 if( !theRangeTableForLoss->StorePhysicsTable(name,ascii)) res = false; >> 1117 } >> 1118 >> 1119 if ( theInverseRangeTable ) { >> 1120 const G4String name = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1121 if( !theInverseRangeTable->StorePhysicsTable(name,ascii)) res = false; >> 1122 } >> 1123 >> 1124 if ( theLambdaTable ) { >> 1125 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1126 if( !theLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1127 } >> 1128 >> 1129 if ( theSubLambdaTable ) { >> 1130 const G4String name = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1131 if( !theSubLambdaTable->StorePhysicsTable(name,ascii)) res = false; >> 1132 } >> 1133 if ( res ) { >> 1134 if(0 < verboseLevel) { >> 1135 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 1136 << " and process " << GetProcessName() >> 1137 << " in the directory <" << directory >> 1138 << "> " << G4endl; >> 1139 } >> 1140 } else { >> 1141 G4cout << "Fail to store Physics Tables for " << particle->GetParticleName() >> 1142 << " and process " << GetProcessName() >> 1143 << " in the directory <" << directory >> 1144 << "> " << G4endl; >> 1145 } >> 1146 return res; >> 1147 } >> 1148 >> 1149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 1150 >> 1151 G4bool G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, >> 1152 const G4String& directory, >> 1153 G4bool ascii) 1305 { 1154 { >> 1155 G4bool res = true; >> 1156 const G4String particleName = part->GetParticleName(); >> 1157 1306 if(1 < verboseLevel) { 1158 if(1 < verboseLevel) { 1307 G4cout << "### Set Lambda table " << p << << 1159 // G4cout << "========================================================" << G4endl; 1308 << " for " << particle->GetParticl << 1160 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1309 << " and process " << GetProcessNa << 1161 << particleName << " and process " << GetProcessName() >> 1162 << "; tables_are_built= " << tablesAreBuilt >> 1163 << G4endl; 1310 } 1164 } 1311 theLambdaTable = p; << 1165 if(particle == part) { 1312 tablesAreBuilt = true; << 1313 1166 1314 if(isMaster && nullptr != p) { << 1167 G4bool yes = true; 1315 delete theEnergyOfCrossSectionMax; << 1168 G4bool fpi = true; 1316 theEnergyOfCrossSectionMax = nullptr; << 1169 if ( !baseParticle ) { 1317 if(fEmTwoPeaks == fXSType) { << 1170 G4String filename; 1318 if(nullptr != fXSpeaks) { << 1171 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 1172 filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii); 1320 delete fXSpeaks; << 1173 yes = theDEDXTable->ExistPhysicsTable(filename); >> 1174 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theDEDXTable,filename,ascii); >> 1175 if(yes) { >> 1176 if (0 < verboseLevel) { >> 1177 G4cout << "DEDX table for " << particleName << " is Retrieved from <" >> 1178 << filename << ">" >> 1179 << G4endl; >> 1180 } >> 1181 } else { >> 1182 fpi = false; >> 1183 if (1 < verboseLevel) { >> 1184 G4cout << "DEDX table for " << particleName << " from file <" >> 1185 << filename << "> is not Retrieved" >> 1186 << G4endl; >> 1187 } >> 1188 } >> 1189 >> 1190 filename = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1191 yes = theRangeTableForLoss->ExistPhysicsTable(filename); >> 1192 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theRangeTableForLoss,filename,ascii); >> 1193 if(yes) { >> 1194 if (0 < verboseLevel) { >> 1195 G4cout << "Range table for loss for " << particleName << " is Retrieved from <" >> 1196 << filename << ">" >> 1197 << G4endl; >> 1198 } >> 1199 } else { >> 1200 if(fpi) { >> 1201 res = false; >> 1202 G4cout << "Range table for loss for " << particleName << " from file <" >> 1203 << filename << "> is not Retrieved" >> 1204 << G4endl; >> 1205 } >> 1206 } >> 1207 >> 1208 filename = GetPhysicsTableFileName(part,directory,"DEDXnr",ascii); >> 1209 yes = theDEDXunRestrictedTable->ExistPhysicsTable(filename); >> 1210 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theDEDXunRestrictedTable,filename,ascii); >> 1211 if(yes) { >> 1212 if (0 < verboseLevel) { >> 1213 G4cout << "Non-restricted DEDX table for " << particleName << " is Retrieved from <" >> 1214 << filename << ">" >> 1215 << G4endl; >> 1216 } >> 1217 } else { >> 1218 if (1 < verboseLevel) { >> 1219 G4cout << "Non-restricted DEDX table for " << particleName << " from file <" >> 1220 << filename << "> is not Retrieved" >> 1221 << G4endl; >> 1222 } >> 1223 } >> 1224 >> 1225 filename = GetPhysicsTableFileName(part,directory,"PreciseRange",ascii); >> 1226 yes = thePreciseRangeTable->ExistPhysicsTable(filename); >> 1227 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(thePreciseRangeTable,filename,ascii); >> 1228 if(yes) { >> 1229 if (0 < verboseLevel) { >> 1230 G4cout << "Precise Range table for " << particleName << " is Retrieved from <" >> 1231 << filename << ">" >> 1232 << G4endl; >> 1233 } >> 1234 } else { >> 1235 G4cout << "Precise Range table for loss for " << particleName << " does not exist" >> 1236 << G4endl; >> 1237 } >> 1238 >> 1239 filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1240 yes = theInverseRangeTable->ExistPhysicsTable(filename); >> 1241 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theInverseRangeTable,filename,ascii); >> 1242 if(yes) { >> 1243 if (0 < verboseLevel) { >> 1244 G4cout << "InverseRange table for " << particleName << " is Retrieved from <" >> 1245 << filename << ">" >> 1246 << G4endl; >> 1247 } >> 1248 } else { >> 1249 if(fpi) { >> 1250 res = false; >> 1251 G4cout << "InverseRange table for " << particleName << " from file <" >> 1252 << filename << "> is not Retrieved" >> 1253 << G4endl; >> 1254 >> 1255 } >> 1256 } >> 1257 >> 1258 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 1259 yes = theLambdaTable->ExistPhysicsTable(filename); >> 1260 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable,filename,ascii); >> 1261 if(yes) { >> 1262 if (0 < verboseLevel) { >> 1263 G4cout << "Lambda table for " << particleName << " is Retrieved from <" >> 1264 << filename << ">" >> 1265 << G4endl; >> 1266 } >> 1267 } else { >> 1268 if(fpi) { >> 1269 res = false; >> 1270 G4cout << "Lambda table for " << particleName << " from file <" >> 1271 << filename << "> is not Retrieved" >> 1272 << G4endl; >> 1273 } >> 1274 } >> 1275 >> 1276 filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1277 yes = theSubLambdaTable->ExistPhysicsTable(filename); >> 1278 if(yes) yes = G4PhysicsTableHelper::RetrievePhysicsTable(theSubLambdaTable,filename,ascii); >> 1279 if(yes) { >> 1280 if (0 < verboseLevel) { >> 1281 G4cout << "SubLambda table for " << particleName << " is Retrieved from <" >> 1282 << filename << ">" >> 1283 << G4endl; >> 1284 } >> 1285 } else { >> 1286 if(nSCoffRegions) { >> 1287 res=false; >> 1288 G4cout << "SubLambda table for " << particleName << " from file <" >> 1289 << filename << "> is not Retrieved" >> 1290 << G4endl; >> 1291 } 1321 } 1292 } 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } << 1326 if(fXSType == fEmOnePeak) { << 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 1328 if(nullptr == theEnergyOfCrossSectionMa << 1329 } 1293 } 1330 } 1294 } >> 1295 >> 1296 return res; 1331 } 1297 } 1332 1298 1333 //....oooOO0OOooo........oooOO0OOooo........o 1299 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 1300 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 1301 void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) 1336 { 1302 { 1337 theEnergyOfCrossSectionMax = p; << 1303 linLossLimit = val; 1338 } 1304 } 1339 1305 1340 //....oooOO0OOooo........oooOO0OOooo........o 1306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1341 1307 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 1308 void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) 1343 { 1309 { 1344 fXSpeaks = ptr; << 1310 if(val && !lossFluctuationArePossible) return; >> 1311 lossFluctuationFlag = val; 1345 } 1312 } 1346 1313 1347 //....oooOO0OOooo........oooOO0OOooo........o 1314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 1315 1349 const G4Element* G4VEnergyLossProcess::GetCur << 1316 void G4VEnergyLossProcess::SetSubCutoff(G4bool) >> 1317 {} >> 1318 >> 1319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1320 >> 1321 void G4VEnergyLossProcess::SetRandomStep(G4bool val) 1350 { 1322 { 1351 return (nullptr != currentModel) << 1323 rndmStepFlag = val; 1352 ? currentModel->GetCurrentElement(current << 1353 } 1324 } 1354 1325 1355 //....oooOO0OOooo........oooOO0OOooo........o 1326 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 1327 1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1328 void G4VEnergyLossProcess::SetMinSubRange(G4double val) 1358 << 1359 { 1329 { 1360 if(f > 0.0) { << 1330 minSubRange = val; 1361 biasFactor = f; << 1362 weightFlag = flag; << 1363 if(1 < verboseLevel) { << 1364 G4cout << "### SetCrossSectionBiasingFa << 1365 << " process " << GetProcessName << 1366 << " biasFactor= " << f << " wei << 1367 << G4endl; << 1368 } << 1369 } << 1370 } 1331 } 1371 1332 1372 //....oooOO0OOooo........oooOO0OOooo........o 1333 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 1334 1374 void G4VEnergyLossProcess::ActivateForcedInte << 1335 G4bool G4VEnergyLossProcess::TablesAreBuilt() const 1375 << 1376 << 1377 { 1336 { 1378 if(nullptr == biasManager) { biasManager = << 1337 return tablesAreBuilt; 1379 if(1 < verboseLevel) { << 1380 G4cout << "### ActivateForcedInteraction: << 1381 << " process " << GetProcessName() << 1382 << " length(mm)= " << length/mm << 1383 << " in G4Region <" << region << 1384 << "> weightFlag= " << flag << 1385 << G4endl; << 1386 } << 1387 weightFlag = flag; << 1388 biasManager->ActivateForcedInteraction(leng << 1389 } 1338 } 1390 1339 1391 //....oooOO0OOooo........oooOO0OOooo........o 1340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 1341 1393 void << 1342 G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1395 << 1396 << 1397 { 1343 { 1398 if (0.0 <= factor) { << 1344 return nSCoffRegions; 1399 // Range cut can be applied only for e- << 1345 } 1400 if(0.0 == factor && secondaryParticle != << 1401 { return; } << 1402 1346 1403 if(nullptr == biasManager) { biasManager << 1347 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1404 biasManager->ActivateSecondaryBiasing(reg << 1348 1405 if(1 < verboseLevel) { << 1349 void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 1406 G4cout << "### ActivateSecondaryBiasing << 1350 { 1407 << " process " << GetProcessName << 1351 nDEDXBins = nbins; 1408 << " factor= " << factor << 1409 << " in G4Region <" << region << 1410 << "> energyLimit(MeV)= " << ene << 1411 << G4endl; << 1412 } << 1413 } << 1414 } 1352 } 1415 1353 1416 //....oooOO0OOooo........oooOO0OOooo........o 1354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 1355 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1356 void G4VEnergyLossProcess::SetDEDXBinningForPreciseRange(G4int nbins) 1419 { 1357 { 1420 isIonisation = val; << 1358 nDEDXBinsForRange = nbins; 1421 aGPILSelection = (val) ? CandidateForSelect << 1422 } 1359 } 1423 1360 1424 //....oooOO0OOooo........oooOO0OOooo........o 1361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1425 1362 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1363 void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 1427 { 1364 { 1428 if(0.0 < val && val < 1.0) { << 1365 nLambdaBins = nbins; 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } 1366 } 1433 1367 1434 //....oooOO0OOooo........oooOO0OOooo........o 1368 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1435 1369 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1370 G4double G4VEnergyLossProcess::MinKinEnergy() const 1437 { 1371 { 1438 if(0.0 < v1 && 0.0 < v2) { << 1372 return minKinEnergy; 1439 dRoverRange = std::min(1.0, v1); << 1440 finalRange = std::min(v2, 1.e+50); << 1441 } else { << 1442 PrintWarning("SetStepFunctionV1", v1); << 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } << 1445 } 1373 } 1446 1374 1447 //....oooOO0OOooo........oooOO0OOooo........o 1375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1448 1376 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1377 void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 1450 { 1378 { 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1379 minKinEnergy = e; 1452 else { PrintWarning("SetLowestEnergyLimit", << 1453 } 1380 } 1454 1381 1455 //....oooOO0OOooo........oooOO0OOooo........o 1382 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1456 1383 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1384 void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 1458 { 1385 { 1459 if(2 < n && n < 1000000000) { << 1386 maxKinEnergy = e; 1460 nBins = n; << 1387 if(e < maxKinEnergyForRange) maxKinEnergyForRange = e; 1461 actBinning = true; << 1462 } else { << 1463 G4double e = (G4double)n; << 1464 PrintWarning("SetDEDXBinning", e); << 1465 } << 1466 } 1388 } 1467 1389 1468 //....oooOO0OOooo........oooOO0OOooo........o 1390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1469 1391 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1392 void G4VEnergyLossProcess::SetMaxKinEnergyForPreciseRange(G4double e) 1471 { 1393 { 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1394 maxKinEnergyForRange = e; 1473 minKinEnergy = e; << 1474 actMinKinEnergy = true; << 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1476 } 1395 } 1477 1396 1478 //....oooOO0OOooo........oooOO0OOooo........o 1397 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1479 1398 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1399 G4double G4VEnergyLossProcess::MaxKinEnergy() const 1481 { 1400 { 1482 if(minKinEnergy < e && e < 1.e+50) { << 1401 return maxKinEnergy; 1483 maxKinEnergy = e; << 1484 actMaxKinEnergy = true; << 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1487 } 1402 } 1488 1403 1489 //....oooOO0OOooo........oooOO0OOooo........o 1404 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1490 1405 1491 void G4VEnergyLossProcess::PrintWarning(const << 1406 void G4VEnergyLossProcess::ActivateDeexcitation(G4bool, const G4Region*) >> 1407 {} >> 1408 >> 1409 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1410 >> 1411 void G4VEnergyLossProcess::SetLambdaFactor(G4double val) 1492 { 1412 { 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1413 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 1494 G4ExceptionDescription ed; << 1495 ed << "Parameter is out of range: " << val << 1496 << " it will have no effect!\n" << " Pr << 1497 << GetProcessName() << " nbins= " << nB << 1498 << " Emin(keV)= " << minKinEnergy/keV << 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1501 } 1414 } 1502 1415 1503 //....oooOO0OOooo........oooOO0OOooo........o 1416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1504 1417 1505 void G4VEnergyLossProcess::ProcessDescription << 1418 void G4VEnergyLossProcess::SetIonisation(G4bool val) 1506 { 1419 { 1507 if(nullptr != particle) { StreamInfo(out, * << 1420 isIonisation = val; 1508 } 1421 } 1509 1422 1510 //....oooOO0OOooo........oooOO0OOooo........o 1423 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1424 >> 1425 G4bool G4VEnergyLossProcess::IsIonisationProcess() const >> 1426 { >> 1427 return isIonisation; >> 1428 } >> 1429 >> 1430 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1431 1511 1432