Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEnergyLossProcess.cc,v 1.3 2004/01/12 18:59:41 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-00-patch-01 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: 38 // 38 // >> 39 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 40 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 44 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 45 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 46 // 24-01-03 Make models region aware (V.Ivanchenko) >> 47 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 48 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 49 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 50 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 51 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 52 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 53 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 54 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko) >> 55 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 56 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 57 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 58 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 59 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 60 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 61 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 62 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 63 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 64 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 65 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 66 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 67 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 68 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) 39 // 69 // 40 // Class Description: 70 // Class Description: 41 // 71 // 42 // It is the unified energy loss process it ca 72 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 73 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 74 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 75 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 76 // that information on fly. 47 // ------------------------------------------- 77 // ------------------------------------------------------------------- 48 // 78 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 81 52 #include "G4VEnergyLossProcess.hh" 82 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4ProcessManager.hh" << 56 #include "G4LossTableManager.hh" 83 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" << 58 #include "G4Step.hh" 84 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 85 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" << 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 86 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 87 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 88 #include "G4DataVector.hh" >> 89 #include "G4PhysicsTable.hh" >> 90 #include "G4PhysicsVector.hh" 67 #include "G4PhysicsLogVector.hh" 91 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 92 #include "G4VParticleChange.hh" >> 93 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 94 #include "G4Electron.hh" >> 95 #include "G4Proton.hh" >> 96 #include "G4VSubCutoffProcessor.hh" 70 #include "G4ProcessManager.hh" 97 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 98 #include "G4UnitsTable.hh" >> 99 #include "G4GenericIon.hh" >> 100 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 101 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 102 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" << 75 #include "G4SafetyHelper.hh" << 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" << 78 #include "G4VAtomDeexcitation.hh" << 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" << 81 #include "G4Log.hh" << 82 #include <iostream> << 83 103 84 //....oooOO0OOooo........oooOO0OOooo........oo 104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 105 86 namespace << 106 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, G4ProcessType type): 87 { << 107 G4VContinuousDiscreteProcess(name, type), 88 G4String tnames[7] = << 108 nSCoffRegions(0), 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 109 idxSCoffRegions(0), 90 } << 110 theDEDXTable(0), 91 << 111 theRangeTable(0), 92 << 112 theRangeTableForLoss(0), 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con << 113 theSecondaryRangeTable(0), 94 G4P << 114 theInverseRangeTable(0), 95 G4VContinuousDiscreteProcess(name, type) << 115 theLambdaTable(0), 96 { << 116 theSubLambdaTable(0), 97 theParameters = G4EmParameters::Instance(); << 117 theDEDXAtMaxEnergy(0), 98 SetVerboseLevel(1); << 118 theRangeAtMaxEnergy(0), 99 << 119 particle(0), 100 // low energy limit << 120 baseParticle(0), 101 lowestKinEnergy = theParameters->LowestElect << 121 secondaryParticle(0), 102 << 122 currentCouple(0), 103 // Size of tables << 123 nDEDXBins(90), 104 minKinEnergy = 0.1*CLHEP::keV; << 124 nDEDXBinsForRange(70), 105 maxKinEnergy = 100.0*CLHEP::TeV; << 125 nLambdaBins(90), 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 126 faclow(1.5), 107 nBins = 84; << 127 linLossLimit(0.05), 108 nBinsCSDA = 35; << 128 minSubRange(0.1), 109 << 129 defaultRoverRange(0.2), 110 invLambdaFactor = 1.0/lambdaFactor; << 130 defaultIntegralRange(1.0), 111 << 131 lossFluctuationFlag(true), 112 // default linear loss limit << 132 rndmStepFlag(false), 113 finalRange = 1.*CLHEP::mm; << 133 hasRestProcess(true), >> 134 tablesAreBuilt(false), >> 135 integral(true), >> 136 meanFreePath(true) >> 137 { >> 138 >> 139 minKinEnergy = 0.1*keV; >> 140 maxKinEnergy = 100.0*GeV; >> 141 maxKinEnergyForRange = 1.0*GeV; >> 142 lowKinEnergy = minKinEnergy*faclow; >> 143 >> 144 // default dRoverRange and finalRange >> 145 SetStepFunction(defaultIntegralRange, 1.0*mm); >> 146 SetVerboseLevel(0); 114 147 115 // run time objects << 116 pParticleChange = &fParticleChange; << 117 fParticleChange.SetSecondaryWeightByProcess( << 118 modelManager = new G4EmModelManager(); 148 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT << 149 (G4LossTableManager::Instance())->Register(this); 120 ->GetSafetyHelper(); << 150 scoffProcessors.clear(); 121 aGPILSelection = CandidateForSelection; << 151 scoffRegions.clear(); 122 << 123 // initialise model << 124 lManager = G4LossTableManager::Instance(); << 125 lManager->Register(this); << 126 isMaster = lManager->IsMaster(); << 127 << 128 G4LossTableBuilder* bld = lManager->GetTable << 129 theDensityFactor = bld->GetDensityFactors(); << 130 theDensityIdx = bld->GetCoupleIndexes(); << 131 << 132 scTracks.reserve(10); << 133 secParticles.reserve(12); << 134 emModels = new std::vector<G4VEmModel*>; << 135 } 152 } 136 153 137 //....oooOO0OOooo........oooOO0OOooo........oo 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 155 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 156 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 157 { 141 if (isMaster) { << 158 Clear(); 142 if(nullptr == baseParticle) { delete theDa << 159 143 delete theEnergyOfCrossSectionMax; << 160 if (nSCoffRegions) { 144 if(nullptr != fXSpeaks) { << 161 for (G4int i=0; i<nSCoffRegions; i++) { 145 for(auto const & v : *fXSpeaks) { delete << 162 if (scoffProcessors[i]) { 146 delete fXSpeaks; << 163 for (G4int j=i+1; j<nSCoffRegions; j++) { >> 164 if(scoffProcessors[i] == scoffProcessors[j]) scoffProcessors[j] = 0; >> 165 } >> 166 delete scoffProcessors[i]; >> 167 } 147 } 168 } >> 169 scoffProcessors.clear(); >> 170 scoffRegions.clear(); 148 } 171 } 149 delete modelManager; 172 delete modelManager; 150 delete biasManager; << 173 (G4LossTableManager::Instance())->DeRegister(this); 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); << 154 } << 155 << 156 //....oooOO0OOooo........oooOO0OOooo........oo << 157 << 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 159 << 160 << 161 { << 162 return cut; << 163 } 174 } 164 175 165 //....oooOO0OOooo........oooOO0OOooo........oo 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 177 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 178 void G4VEnergyLossProcess::Clear() 168 G4VEmFlu << 169 const G4 << 170 { 179 { 171 if(nullptr == ptr) { return; } << 180 if(0 < verboseLevel) { 172 G4VEmFluctuationModel* afluc = (nullptr == f << 181 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() << G4endl; 173 modelManager->AddEmModel(order, ptr, afluc, << 182 } 174 ptr->SetParticleChange(pParticleChange, aflu << 183 if ( !baseParticle ) { 175 } << 184 if(theDEDXTable) theDEDXTable->clearAndDestroy(); 176 << 185 if(theRangeTable) theRangeTable->clearAndDestroy(); 177 //....oooOO0OOooo........oooOO0OOooo........oo << 186 if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy(); 178 << 187 if(theLambdaTable) theLambdaTable->clearAndDestroy(); 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 188 if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy(); 180 { << 189 if(theDEDXAtMaxEnergy) delete [] theDEDXAtMaxEnergy; 181 if(nullptr == ptr) { return; } << 190 if(theRangeAtMaxEnergy) delete [] theRangeAtMaxEnergy; 182 if(!emModels->empty()) { << 183 for(auto & em : *emModels) { if(em == ptr) << 184 } 191 } 185 emModels->push_back(ptr); << 186 } << 187 << 188 //....oooOO0OOooo........oooOO0OOooo........oo << 189 192 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 193 theDEDXTable = 0; 191 << 194 theRangeTable = 0; 192 { << 195 theInverseRangeTable = 0; 193 massRatio = massratio; << 196 theSecondaryRangeTable = 0; 194 logMassRatio = G4Log(massRatio); << 197 theLambdaTable = 0; 195 fFactor = charge2ratio*biasFactor; << 198 theSubLambdaTable = 0; 196 if(baseMat) { fFactor *= (*theDensityFactor) << 199 theDEDXAtMaxEnergy = 0; 197 chargeSqRatio = charge2ratio; << 200 theRangeAtMaxEnergy = 0; 198 reduceFactor = 1.0/(fFactor*massRatio); << 201 tablesAreBuilt = false; 199 } 202 } 200 203 201 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 202 205 203 void << 206 void G4VEnergyLossProcess::Initialise() 204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 205 { 207 { 206 particle = G4EmTableUtil::CheckIon(this, &pa << 208 if(0 < verboseLevel) { 207 verboseLe << 209 G4cout << "G4VEnergyLossProcess::Initialise() for " 208 << 210 << GetProcessName() 209 if( particle != &part ) { << 211 << " for " << particle->GetParticleName() 210 if(!isIon) { lManager->RegisterExtraPartic << 212 << G4endl; 211 if(1 < verboseLevel) { << 212 G4cout << "### G4VEnergyLossProcess::Pre << 213 << " interrupted for " << GetProc << 214 << part.GetParticleName() << " is << 215 << " spline=" << spline << G4endl << 216 } << 217 return; << 218 } 213 } 219 214 220 tablesAreBuilt = false; << 215 Clear(); 221 if (GetProcessSubType() == fIonisation) { Se << 222 << 223 G4LossTableBuilder* bld = lManager->GetTable << 224 lManager->PreparePhysicsTable(&part, this); << 225 216 226 // Base particle and set of models can be de << 217 G4double initialCharge = particle->GetPDGCharge(); 227 InitialiseEnergyLossProcess(particle, basePa << 218 G4double initialMass = particle->GetPDGMass(); >> 219 chargeSquare = initialCharge*initialCharge/(eplus*eplus); >> 220 chargeSqRatio = 1.0; >> 221 massRatio = 1.0; >> 222 reduceFactor = 1.0; >> 223 >> 224 if(particle->GetProcessManager()->GetAtRestProcessVector()->size()) >> 225 hasRestProcess = true; >> 226 else hasRestProcess = false; 228 227 229 // parameters of the process << 228 if (baseParticle) { 230 if(!actLossFluc) { lossFluctuationFlag = the << 229 massRatio = (baseParticle->GetPDGMass())/initialMass; 231 useCutAsFinalRange = theParameters->UseCutAs << 230 G4double q = initialCharge/baseParticle->GetPDGCharge(); 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 231 chargeSqRatio = q*q; 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 232 reduceFactor = 1.0/(chargeSqRatio*massRatio); 234 if(!actBinning) { nBins = theParameters->Num << 233 } 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 238 if(!actLinLossLimit) { linLossLimit = thePar << 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 234 246 theParameters->DefineRegParamForLoss(this); << 235 theCuts = modelManager->Initialise(particle, secondaryParticle, minSubRange, verboseLevel); 247 236 248 fRangeEnergy = 0.0; << 237 // Sub Cutoff Regime 249 238 250 G4double initialCharge = particle->GetPDGCha << 239 idxSCoffRegions.clear(); 251 G4double initialMass = particle->GetPDGMas << 252 240 253 theParameters->FillStepFunction(particle, th << 241 const G4ProductionCutsTable* theCoupleTable= >> 242 G4ProductionCutsTable::GetProductionCutsTable(); >> 243 size_t numOfCouples = theCoupleTable->GetTableSize(); 254 244 255 // parameters for scaling from the base part << 245 if (nSCoffRegions) { 256 if (nullptr != baseParticle) { << 246 const G4DataVector* theSubCuts = modelManager->SubCutoff(); 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G << 260 chargeSqRatio = q*q; << 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 << 262 } << 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 << 267 // Tables preparation << 268 if (isMaster && nullptr == baseParticle) { << 269 if(nullptr == theData) { theData = new G4E << 270 << 271 if(nullptr != theDEDXTable && isIonisation << 272 if(nullptr != theIonisationTable && theD << 273 theData->CleanTable(0); << 274 theDEDXTable = theIonisationTable; << 275 theIonisationTable = nullptr; << 276 } << 277 } << 278 << 279 theDEDXTable = theData->MakeTable(theDEDXT << 280 bld->InitialiseBaseMaterials(theDEDXTable) << 281 theData->UpdateTable(theIonisationTable, 1 << 282 << 283 if (theParameters->BuildCSDARange()) { << 284 theDEDXunRestrictedTable = theData->Make << 285 if(isIonisation) { theCSDARangeTable = t << 286 } << 287 247 288 theLambdaTable = theData->MakeTable(4); << 248 for (G4int i=0; i<nSCoffRegions; i++) { 289 if(isIonisation) { << 249 scoffProcessors[i]->Initialise(particle, secondaryParticle, theCuts, theSubCuts); 290 theRangeTableForLoss = theData->MakeTabl << 291 theInverseRangeTable = theData->MakeTabl << 292 } 250 } 293 } << 251 for (size_t j=0; j<numOfCouples; j++) { 294 252 295 // forced biasing << 253 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j); 296 if(nullptr != biasManager) { << 254 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); 297 biasManager->Initialise(part,GetProcessNam << 255 G4int reg = nSCoffRegions; 298 biasFlag = false; << 256 do {reg--;} while (reg && pcuts != (scoffRegions[reg]->GetProductionCuts())); 299 } << 257 idxSCoffRegions.push_back(reg); 300 baseMat = bld->GetBaseMaterialFlag(); << 301 numberOfModels = modelManager->NumberOfModel << 302 currentModel = modelManager->GetModel(0); << 303 G4EmTableUtil::UpdateModels(this, modelManag << 304 numberOfModels, << 305 mainSecondaries, << 306 theParameters->U << 307 theCuts = modelManager->Initialise(particle, << 308 verboseLe << 309 // subcut processor << 310 if(isIonisation) { << 311 subcutProducer = lManager->SubCutProducer( << 312 } << 313 if(1 == nSCoffRegions) { << 314 if((*scoffRegions)[0]->GetName() == "Defau << 315 delete scoffRegions; << 316 scoffRegions = nullptr; << 317 nSCoffRegions = 0; << 318 } 258 } 319 } 259 } 320 260 321 if(1 < verboseLevel) { << 261 if (0 < verboseLevel) { 322 G4cout << "G4VEnergyLossProcess::PrepearPh << 262 G4cout << "G4VEnergyLossProcess::Initialise() is done " 323 << " for " << GetProcessName() << " << 263 << " chargeSqRatio= " << chargeSqRatio 324 << " isIon= " << isIon << " spline= << 325 if(baseParticle) { << 326 G4cout << "; base: " << baseParticle->Ge << 327 } << 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa << 330 << " massRatio= " << massRatio 264 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 265 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 266 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 267 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { << 268 for (G4int i=0; i<nSCoffRegions; i++) { 335 const G4Region* r = (*scoffRegions)[i] << 269 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 270 G4cout << " " << r->GetName() << G4endl; 337 } 271 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 272 } 341 } 273 } 342 } 274 } 343 275 344 //....oooOO0OOooo........oooOO0OOooo........oo 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 277 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 278 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 279 { 348 if(1 < verboseLevel) { << 280 currentCouple = 0; >> 281 preStepLambda = 0.0; >> 282 if(0 < verboseLevel) { >> 283 G4cout << "========================================================" << G4endl; 349 G4cout << "### G4VEnergyLossProcess::Build 284 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 285 << GetProcessName() 351 << " and particle " << part.GetPart 286 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 287 << G4endl; 353 if(baseParticle) { << 354 G4cout << "; base: " << baseParticle->Ge << 355 } << 356 G4cout << G4endl; << 357 G4cout << " TablesAreBuilt= " << tables << 358 << " spline=" << spline << " ptr: " << 359 } << 360 << 361 if(&part == particle) { << 362 if(isMaster) { << 363 lManager->BuildPhysicsTable(particle, th << 364 << 365 } else { << 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 << 369 numberOfModels = modelManager->NumberOfM << 370 G4EmTableUtil::BuildLocalElossProcess(th << 371 pa << 372 tablesAreBuilt = true; << 373 baseMat = masterProcess->UseBaseMaterial << 374 lManager->LocalPhysicsTables(particle, t << 375 } << 376 << 377 // needs to be done only once << 378 safetyHelper->InitialiseHelper(); << 379 } << 380 // Added tracking cut to avoid tracking arti << 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } << 387 } 288 } 388 289 389 // protection against double printout << 290 if (part.GetParticleName() != "GenericIon" && 390 if(theParameters->IsPrintLocked()) { return; << 291 part.GetParticleType() == "nucleus" && >> 292 part.GetParticleSubType() == "generic") >> 293 { >> 294 (G4LossTableManager::Instance())->RegisterIon(&part, this); >> 295 /* >> 296 G4cout << part.GetProcessManager() << " " >> 297 << (G4GenericIon::GenericIon())->GetProcessManager() >> 298 << G4endl; >> 299 */ >> 300 return; >> 301 } 391 302 392 // explicitly defined printout by particle n << 303 // Are particle defined? 393 G4String num = part.GetParticleName(); << 304 if( !particle ) { 394 if(1 < verboseLevel || << 305 particle = ∂ 395 (0 < verboseLevel && (num == "e-" || << 306 baseParticle = DefineBaseParticle(particle); 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } 307 } 404 if(1 < verboseLevel) { << 308 405 G4cout << "### G4VEnergyLossProcess::Build << 309 // Recalculation is needed because cuts were changed or recalculation is forced 406 << GetProcessName() << 310 G4LossTableManager* lManager = G4LossTableManager::Instance(); 407 << " and particle " << part.GetPart << 311 if ( lManager->IsRecalcNeeded(particle) ) { 408 if(isIonisation) { G4cout << " isIonisati << 312 409 G4cout << " baseMat=" << baseMat << G4endl << 313 // It is responsability of the G4LossTables to build DEDX and range tables >> 314 lManager->BuildPhysicsTable(particle); >> 315 >> 316 if(!baseParticle) PrintInfoDefinition(); >> 317 >> 318 if(0 < verboseLevel) { >> 319 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " >> 320 << GetProcessName() >> 321 << " and particle " << part.GetParticleName() >> 322 << G4endl; >> 323 } 410 } 324 } 411 } 325 } 412 326 413 //....oooOO0OOooo........oooOO0OOooo........oo 327 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 328 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED << 329 void G4VEnergyLossProcess::SetParticles(const G4ParticleDefinition* p1, >> 330 const G4ParticleDefinition* p2) 416 { 331 { 417 G4PhysicsTable* table = nullptr; << 332 particle = p1; 418 G4double emax = maxKinEnergy; << 333 baseParticle = p2; 419 G4int bin = nBins; << 334 G4bool yes = true; 420 << 335 if(particle && baseParticle) { 421 if(fTotal == tType) { << 336 if((particle->GetPDGMass() < MeV && baseParticle->GetPDGMass() > MeV) || 422 emax = maxKinEnergyCSDA; << 337 (particle->GetPDGMass() > MeV && baseParticle->GetPDGMass() < MeV)) yes = false; 423 bin = nBinsCSDA; << 338 424 table = theDEDXunRestrictedTable; << 339 } 425 } else if(fRestricted == tType) { << 340 if(!yes) { 426 table = theDEDXTable; << 341 G4cout << "Warning in G4VEnergyLossProcess::SetParticle: " >> 342 << particle->GetParticleName() >> 343 << " losses cannot be obtained from " >> 344 << baseParticle->GetParticleName() >> 345 << " losses" << G4endl; 427 } else { 346 } else { 428 G4cout << "G4VEnergyLossProcess::BuildDEDX << 347 DefineBaseParticle(p1); 429 << tType << G4endl; << 430 } << 431 if(1 < verboseLevel) { << 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 433 << " for " << GetProcessName() << 434 << " and " << particle->GetParticle << 435 << "spline=" << spline << G4endl; << 436 } << 437 if(nullptr == table) { return table; } << 438 << 439 G4LossTableBuilder* bld = lManager->GetTable << 440 G4EmTableUtil::BuildDEDXTable(this, particle << 441 table, minKinE << 442 verboseLevel, << 443 return table; << 444 } << 445 << 446 //....oooOO0OOooo........oooOO0OOooo........oo << 447 << 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 449 { << 450 if(nullptr == theLambdaTable) { return theLa << 451 << 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable << 458 G4EmTableUtil::BuildLambdaTable(this, partic << 459 bld, theLamb << 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } << 464 << 465 //....oooOO0OOooo........oooOO0OOooo........oo << 466 << 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 468 const G4ParticleDefinition& pa << 469 { << 470 G4String indent = (rst ? " " : ""); << 471 out << std::setprecision(6); << 472 out << G4endl << indent << GetProcessName() << 473 if (!rst) out << " for " << part.GetParticle << 474 out << " XStype:" << fXSType << 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " << 477 << G4BestUnit(minKinEnergy,"Energy") << 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } << 504 if(2 < verboseLevel) { << 505 for(std::size_t i=0; i<7; ++i) { << 506 auto ta = theData->Table(i); << 507 out << " " << tnames[i] << " addres << 508 if(nullptr != ta) { out << *ta << G4endl << 509 } << 510 } 348 } 511 } 349 } 512 350 513 //....oooOO0OOooo........oooOO0OOooo........oo 351 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 352 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 353 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, G4VEmFluctuationModel* fluc, >> 354 const G4Region* region) 516 { 355 { 517 if(nullptr == scoffRegions) { << 356 modelManager->AddEmModel(order, p, fluc, region); 518 scoffRegions = new std::vector<const G4Reg << 519 } << 520 // the region is in the list << 521 if(!scoffRegions->empty()) { << 522 for (auto & reg : *scoffRegions) { << 523 if (reg == r) { return; } << 524 } << 525 } << 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } 357 } 530 358 531 //....oooOO0OOooo........oooOO0OOooo........oo 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 532 360 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 361 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, G4double emin, G4double emax) 534 { 362 { 535 if(0 == nSCoffRegions) { return true; } << 363 modelManager->UpdateEmModel(nam, emin, emax); 536 const G4Region* r = aTrack.GetVolume()->GetL << 537 for(auto & reg : *scoffRegions) { << 538 if(r == reg) { return true; } << 539 } << 540 return false; << 541 } 364 } 542 365 543 //....oooOO0OOooo........oooOO0OOooo........oo 366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 544 367 545 void G4VEnergyLossProcess::StartTracking(G4Tra << 368 void G4VEnergyLossProcess::AddSubCutoffProcessor(G4VSubCutoffProcessor* p, >> 369 const G4Region* r) 546 { 370 { 547 // reset parameters for the new track << 371 if( !p ) { 548 theNumberOfInteractionLengthLeft = -1.0; << 372 G4cout << "G4VEnergyLossProcess::AddSubCutoffProcessor WARNING: no SubCutoffProcessor defined." << G4endl; 549 mfpKinEnergy = DBL_MAX; << 373 return; 550 preStepLambda = 0.0; << 374 } 551 currentCouple = nullptr; << 375 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 552 << 376 if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false); 553 // reset ion << 377 if (nSCoffRegions) { 554 if(isIon) { << 378 for (G4int i=0; i<nSCoffRegions; i++) { 555 const G4double newmass = track->GetDefinit << 379 if (r == scoffRegions[i]) { 556 massRatio = (nullptr == baseParticle) ? CL << 380 if ( scoffProcessors[i] ) delete scoffProcessors[i]; 557 : baseParticle->GetPDGMass()/newmass; << 381 scoffProcessors[i] = p; 558 logMassRatio = G4Log(massRatio); << 382 return; 559 } << 383 } 560 // forced biasing only for primary particles << 561 if(nullptr != biasManager) { << 562 if(0 == track->GetParentID()) { << 563 biasFlag = true; << 564 biasManager->ResetForcedInteraction(); << 565 } 384 } 566 } 385 } >> 386 scoffProcessors.push_back(p); >> 387 scoffRegions.push_back(r); >> 388 nSCoffRegions++; 567 } 389 } 568 390 569 //....oooOO0OOooo........oooOO0OOooo........oo 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 570 392 571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 393 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable() 572 const G4Track& tr << 394 { 573 G4GPILSelection* << 395 574 { << 396 if(0 < verboseLevel) { 575 G4double x = DBL_MAX; << 397 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() for " 576 *selection = aGPILSelection; << 398 << GetProcessName() 577 if(isIonisation && currentModel->IsActive(pr << 399 << " and particle " << particle->GetParticleName() 578 GetScaledRangeForScaledEnergy(preStepScale << 400 << G4endl; 579 x = (useCutAsFinalRange) ? std::min(finalR << 401 } 580 currentCouple->GetProductionCuts()->GetP << 402 581 x = (fRange > x) ? fRange*dRoverRange + x* << 403 // vectors to provide continues dE/dx 582 : fRange; << 404 G4DataVector factor; 583 /* << 405 G4DataVector dedxLow; 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 406 G4DataVector dedxHigh; 585 << " fRange=" << fRange << " finR=" << finR << 407 586 */ << 408 // Access to materials >> 409 const G4ProductionCutsTable* theCoupleTable= >> 410 G4ProductionCutsTable::GetProductionCutsTable(); >> 411 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 412 >> 413 G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples); >> 414 >> 415 if(0 < verboseLevel) { >> 416 G4cout << numOfCouples << " materials" >> 417 << " minKinEnergy= " << minKinEnergy >> 418 << " maxKinEnergy= " << maxKinEnergy >> 419 << G4endl; 587 } 420 } 588 return x; << 421 >> 422 for(size_t i=0; i<numOfCouples; i++) { >> 423 >> 424 // create physics vector and fill it >> 425 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 426 G4PhysicsVector* aVector = DEDXPhysicsVector(couple); >> 427 modelManager->FillDEDXVector(aVector, couple); >> 428 >> 429 // Insert vector for this material into the table >> 430 theTable->insert(aVector) ; >> 431 } >> 432 >> 433 if(0 < verboseLevel) { >> 434 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " >> 435 << particle->GetParticleName() >> 436 << G4endl; >> 437 if(2 < verboseLevel) { >> 438 G4cout << *theTable << G4endl; >> 439 } >> 440 } >> 441 >> 442 return theTable; 589 } 443 } 590 444 591 //....oooOO0OOooo........oooOO0OOooo........oo 445 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 446 593 G4double G4VEnergyLossProcess::PostStepGetPhys << 447 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() 594 const G4Track& tr << 448 { 595 G4double previo << 449 596 G4ForceCondition* << 450 if(0 < verboseLevel) { 597 { << 451 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() for " 598 // condition is set to "Not Forced" << 452 << GetProcessName() 599 *condition = NotForced; << 453 << " and particle " << particle->GetParticleName() 600 G4double x = DBL_MAX; << 454 << G4endl; 601 << 602 // initialisation of material, mass, charge, << 603 // at the beginning of the step << 604 DefineMaterial(track.GetMaterialCutsCouple() << 605 preStepKinEnergy = track.GetKineticEne << 606 preStepScaledEnergy = preStepKinEnergy*ma << 607 SelectModel(preStepScaledEnergy); << 608 << 609 if(!currentModel->IsActive(preStepScaledEner << 610 theNumberOfInteractionLengthLeft = -1.0; << 611 mfpKinEnergy = DBL_MAX; << 612 preStepLambda = 0.0; << 613 currentInteractionLength = DBL_MAX; << 614 return x; << 615 } << 616 << 617 // change effective charge of a charged part << 618 if(isIon) { << 619 const G4double q2 = currentModel->ChargeSq << 620 fFactor = q2*biasFactor; << 621 if(baseMat) { fFactor *= (*theDensityFacto << 622 reduceFactor = 1.0/(fFactor*massRatio); << 623 if (lossFluctuationFlag) { << 624 auto fluc = currentModel->GetModelOfFluc << 625 fluc->SetParticleAndCharge(track.GetDefi << 626 } << 627 } 455 } 628 456 629 // forced biasing only for primary particles << 457 // vectors to provide continues dE/dx 630 if(biasManager) { << 458 G4DataVector factor; 631 if(0 == track.GetParentID() && biasFlag && << 459 G4DataVector dedxLow; 632 biasManager->ForcedInteractionRegion((G << 460 G4DataVector dedxHigh; 633 return biasManager->GetStepLimit((G4int) << 461 >> 462 // Access to materials >> 463 const G4ProductionCutsTable* theCoupleTable= >> 464 G4ProductionCutsTable::GetProductionCutsTable(); >> 465 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 466 >> 467 G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples); >> 468 >> 469 if(0 < verboseLevel) { >> 470 G4cout << numOfCouples << " materials" >> 471 << " minKinEnergy= " << minKinEnergy >> 472 << " maxKinEnergy= " << maxKinEnergy >> 473 << G4endl; >> 474 } >> 475 >> 476 for(size_t i=0; i<numOfCouples; i++) { >> 477 >> 478 // create physics vector and fill it >> 479 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 480 G4PhysicsVector* aVector = DEDXPhysicsVectorForPreciseRange(couple); >> 481 modelManager->FillDEDXVectorForPreciseRange(aVector, couple); >> 482 >> 483 // Insert vector for this material into the table >> 484 theTable->insert(aVector) ; >> 485 } >> 486 >> 487 if(0 < verboseLevel) { >> 488 G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange(): table is built for " >> 489 << particle->GetParticleName() >> 490 << G4endl; >> 491 if(2 < verboseLevel) { >> 492 G4cout << *theTable << G4endl; 634 } 493 } 635 } 494 } 636 495 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 496 return theTable; 638 << 497 } 639 // zero cross section << 498 640 if(preStepLambda <= 0.0) { << 499 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 641 theNumberOfInteractionLengthLeft = -1.0; << 500 642 currentInteractionLength = DBL_MAX; << 501 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable() 643 } else { << 502 { >> 503 >> 504 if(0 < verboseLevel) { >> 505 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() for process " >> 506 << GetProcessName() << " and particle " >> 507 << particle->GetParticleName() >> 508 << G4endl; >> 509 } >> 510 >> 511 // Access to materials >> 512 const G4ProductionCutsTable* theCoupleTable= >> 513 G4ProductionCutsTable::GetProductionCutsTable(); >> 514 size_t numOfCouples = theCoupleTable->GetTableSize(); 644 515 645 // non-zero cross section << 516 G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples); 646 if (theNumberOfInteractionLengthLeft < 0.0 << 647 517 648 // beggining of tracking (or just after << 518 for(size_t i=0; i<numOfCouples; i++) { 649 theNumberOfInteractionLengthLeft = -G4Lo << 650 theInitialNumberOfInteractionLength = th << 651 519 652 } else if(currentInteractionLength < DBL_M << 520 // create physics vector and fill it >> 521 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 522 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); >> 523 modelManager->FillLambdaVector(aVector, couple); 653 524 654 // subtract NumberOfInteractionLengthLef << 525 // Insert vector for this material into the table 655 theNumberOfInteractionLengthLeft -= << 526 theTable->insert(aVector) ; 656 previousStepSize/currentInteractionLen << 527 } 657 528 658 theNumberOfInteractionLengthLeft = << 529 if(0 < verboseLevel) { 659 std::max(theNumberOfInteractionLengthL << 530 G4cout << "Lambda table is built for " >> 531 << particle->GetParticleName() >> 532 << G4endl; >> 533 if(2 < verboseLevel) { >> 534 G4cout << *theTable << G4endl; 660 } 535 } >> 536 } 661 537 662 // new mean free path and step limit << 538 return theTable; 663 currentInteractionLength = 1.0/preStepLamb << 664 x = theNumberOfInteractionLengthLeft * cur << 665 } << 666 #ifdef G4VERBOSE << 667 if (verboseLevel>2) { << 668 G4cout << "G4VEnergyLossProcess::PostStepG << 669 G4cout << "[ " << GetProcessName() << "]" << 670 G4cout << " for " << track.GetDefinition() << 671 << " in Material " << currentMate << 672 << " Ekin(MeV)= " << preStepKinEner << 673 << " track material: " << track.Get << 674 <<G4endl; << 675 G4cout << "MeanFreePath = " << currentInte << 676 << "InteractionLength= " << x/cm << << 677 } << 678 #endif << 679 return x; << 680 } 539 } 681 540 682 //....oooOO0OOooo........oooOO0OOooo........oo 541 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 542 684 void << 543 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaSubTable() 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 544 { 686 { << 545 if(0 < verboseLevel) { 687 // cross section increased with energy << 546 G4cout << "G4VEnergyLossProcess::BuildLambdaSubTable() for process " 688 if(fXSType == fEmIncreasing) { << 547 << GetProcessName() << " and particle " 689 if(e*invLambdaFactor < mfpKinEnergy) { << 548 << particle->GetParticleName() << G4endl; 690 preStepLambda = GetLambdaForScaledEnergy << 549 } 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 692 } << 693 550 694 // cross section has one peak << 551 // Access to materials 695 } else if(fXSType == fEmOnePeak) { << 552 const G4ProductionCutsTable* theCoupleTable= 696 const G4double epeak = (*theEnergyOfCrossS << 553 G4ProductionCutsTable::GetProductionCutsTable(); 697 if(e <= epeak) { << 554 size_t numOfCouples = theCoupleTable->GetTableSize(); 698 if(e*invLambdaFactor < mfpKinEnergy) { << 555 G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples); 699 preStepLambda = GetLambdaForScaledEner << 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 701 } << 702 } else if(e < mfpKinEnergy) { << 703 const G4double e1 = std::max(epeak, e*la << 704 mfpKinEnergy = e1; << 705 preStepLambda = GetLambdaForScaledEnergy << 706 } << 707 556 708 // cross section has more than one peaks << 557 for(size_t i=0; i<numOfCouples; i++) { 709 } else if(fXSType == fEmTwoPeaks) { << 558 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 559 // create physics vector and fill it 711 const G4double e1peak = xs->e1peak; << 560 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 712 << 561 G4PhysicsVector* aVector = SubLambdaPhysicsVector(couple); 713 // below the 1st peak << 562 modelManager->FillSubLambdaVector(aVector, couple); 714 if(e <= e1peak) { << 563 715 if(e*invLambdaFactor < mfpKinEnergy) { << 564 // Insert vector for this material into the table 716 preStepLambda = GetLambdaForScaledEner << 565 theTable->insert(aVector) ; 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } << 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } 566 } >> 567 >> 568 if(0 < verboseLevel) { >> 569 G4cout << "Table is built for " >> 570 << particle->GetParticleName() >> 571 << G4endl; >> 572 } >> 573 >> 574 return theTable; 769 } 575 } 770 576 >> 577 771 //....oooOO0OOooo........oooOO0OOooo........oo 578 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 579 773 G4VParticleChange* G4VEnergyLossProcess::Along 580 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 << 581 const G4Step& step) 775 { 582 { 776 fParticleChange.InitializeForAlongStep(track << 583 aParticleChange.Initialize(track); 777 // The process has range table - calculate e 584 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( << 585 if(!theRangeTable) return &aParticleChange; 779 return &fParticleChange; << 780 } << 781 586 >> 587 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 588 G4double length = step.GetStepLength(); 783 G4double eloss = 0.0; 589 G4double eloss = 0.0; 784 << 590 G4bool b; 785 /* << 591 >> 592 /* 786 if(-1 < verboseLevel) { 593 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP << 594 const G4ParticleDefinition* d = track.GetDefinition(); 788 G4cout << "AlongStepDoIt for " 595 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 596 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 597 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 598 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 599 << " slim(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 600 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 601 << " q^2= " << chargeSqRatio >> 602 << " md= " << d->GetPDGMass() >> 603 << G4endl; 795 } 604 } 796 */ 605 */ 797 const G4DynamicParticle* dynParticle = track << 606 // low energy deposit case >> 607 if (length >= fRange) { >> 608 eloss = preStepKinEnergy; 798 609 799 // define new weight for primary and seconda << 610 } else if(preStepScaledEnergy <= lowKinEnergy) { 800 G4double weight = fParticleChange.GetParentW << 801 if(weightFlag) { << 802 weight /= biasFactor; << 803 fParticleChange.ProposeWeight(weight); << 804 } << 805 611 806 // stopping, check actual range and kinetic << 612 G4double x = 1.0 - length/fRange; 807 if (length >= fRange || preStepKinEnergy <= << 613 eloss = preStepKinEnergy*(1.0 - x*x); 808 eloss = preStepKinEnergy; << 809 if (useDeexcitation) { << 810 atomDeexcitation->AlongStepDeexcitation( << 811 << 812 if(scTracks.size() > 0) { FillSecondarie << 813 eloss = std::max(eloss, 0.0); << 814 } << 815 fParticleChange.SetProposedKineticEnergy(0 << 816 fParticleChange.ProposeLocalEnergyDeposit( << 817 return &fParticleChange; << 818 } << 819 // zero step length with non-zero range << 820 if(length <= 0.0) { return &fParticleChange; << 821 614 822 // Short step 615 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 616 } else if( length <= linLossLimit * fRange ) { 824 LogSca << 617 eloss = (((*theDEDXTable)[currentMaterialIndex])-> 825 /* << 618 GetValue(preStepScaledEnergy, b))*length*chargeSqRatio; 826 G4cout << "##### Short STEP: eloss= " << elo << 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step << 834 if(eloss > preStepKinEnergy*linLossLimit) { << 835 619 836 const G4double x = (fRange - length)/reduc << 620 // Long step 837 const G4double de = preStepKinEnergy - Sca << 621 } else { 838 if(de > 0.0) { eloss = de; } << 622 G4double x = (((*theRangeTableForLoss)[currentMaterialIndex])-> 839 /* << 623 GetValue(preStepScaledEnergy, b) - length)/reduceFactor; 840 if(-1 < verboseLevel) << 624 //G4double x = (fRange-length)/reduceFactor; 841 G4cout << " Long STEP: rPre(mm)=" << 625 G4double postStepScaledEnergy = ((*theInverseRangeTable)[currentMaterialIndex])-> 842 << GetScaledRangeForScaledEnergy( << 626 GetValue(x, b); 843 << " x(mm)=" << x/mm << 627 eloss = (preStepScaledEnergy - postStepScaledEnergy)/massRatio; 844 << " eloss(MeV)=" << eloss/MeV << 628 845 << " rFactor=" << reduceFactor << 629 if (eloss <= 0.0) { 846 << " massRatio=" << massRatio << 630 eloss = (((*theDEDXTable)[currentMaterialIndex])-> >> 631 GetValue(preStepScaledEnergy, b))*length*chargeSqRatio; >> 632 } >> 633 >> 634 /* >> 635 if(-1 < verboseLevel) { >> 636 G4cout << "fRange(mm)= " << fRange/mm >> 637 << " xPost(mm)= " << x/mm >> 638 << " ePre(MeV)= " << preStepScaledEnergy/MeV >> 639 << " ePost(MeV)= " << postStepScaledEnergy/MeV >> 640 << " eloss(MeV)= " << eloss/MeV >> 641 << " eloss0(MeV)= " << (((*theDEDXTable)[currentMaterialIndex])-> >> 642 GetValue(preStepScaledEnergy, b))*length*chargeSqRatio 847 << G4endl; 643 << G4endl; >> 644 } 848 */ 645 */ >> 646 849 } 647 } 850 648 >> 649 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); >> 650 G4double tmax = MaxSecondaryEnergy(dynParticle); >> 651 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); >> 652 851 /* 653 /* 852 if(-1 < verboseLevel ) { << 654 G4double eloss0 = eloss; 853 G4cout << "Before fluct: eloss(MeV)= " << << 655 if(-1 < verboseLevel) { >> 656 //G4cout << *theDEDXTable << G4endl; >> 657 G4cout << "eloss(MeV)= " << eloss/MeV >> 658 << " eloss0(MeV)= " << (((*theDEDXTable)[currentMaterialIndex])-> >> 659 GetValue(preStepScaledEnergy, b))*length*chargeSqRatio >> 660 << " r0(mm)= " << (((*theRangeTable)[currentMaterialIndex])-> >> 661 GetValue(preStepScaledEnergy, b)) >> 662 << " tmax= " << tmax 854 << " e-eloss= " << preStepKinEnergy 663 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 664 // << " mat= " << currentMaterial 856 << " fluct= " << lossFluctuationFla << 665 // << " matIdx= " << currentMaterialIndex >> 666 // << " preCouple= " << (step.GetPreStepPoint())->GetMaterialCutsCouple() >> 667 // << " postCouple= " << (step.GetPostStepPoint())->GetMaterialCutsCouple() >> 668 // << " rangeTable= " << theRangeTable >> 669 << G4endl; 857 } 670 } 858 */ 671 */ 859 672 860 const G4double cut = (*theCuts)[currentCoupl << 673 // Sample fluctuations 861 G4double esec = 0.0; << 674 if (lossFluctuationFlag && eloss < preStepKinEnergy && eloss > 0.0) { 862 675 863 // Corrections, which cannot be tabulated << 676 eloss = modelManager->SampleFluctuations(currentMaterial, dynParticle, 864 if(isIon) { << 677 tmax, length, eloss, preStepScaledEnergy, 865 currentModel->CorrectionsAlongStep(current << 678 currentMaterialIndex); 866 length, << 867 eloss = std::max(eloss, 0.0); << 868 } 679 } 869 680 870 // Sample fluctuations if not full energy lo << 681 /* 871 if(eloss >= preStepKinEnergy) { << 682 if(-1 < verboseLevel) { 872 eloss = preStepKinEnergy; << 683 G4cout << "eloss(MeV)= " << eloss/MeV 873 << 684 << " fluc= " << (eloss-eloss0)/MeV 874 } else if (lossFluctuationFlag) { << 685 << " currentChargeSquare= " << chargeSquare 875 const G4double tmax = currentModel->MaxSec << 686 << " massRatio= " << massRatio 876 const G4double tcut = std::min(cut, tmax); << 687 << G4endl; 877 G4VEmFluctuationModel* fluc = currentModel << 878 eloss = fluc->SampleFluctuations(currentCo << 879 tcut, tma << 880 /* << 881 if(-1 < verboseLevel) << 882 G4cout << "After fluct: eloss(MeV)= " << << 883 << " fluc= " << (eloss-eloss0)/Me << 884 << " ChargeSqRatio= " << chargeSq << 885 << " massRatio= " << massRatio << << 886 */ << 887 } 688 } >> 689 */ >> 690 >> 691 // Subcutoff and/or deexcitation >> 692 std::vector<G4Track*>* newp = >> 693 SecondariesAlongStep(step, tmax, eloss, preStepScaledEnergy); >> 694 >> 695 if(newp) { >> 696 >> 697 G4int n = newp->size(); >> 698 if(n > 0) { >> 699 aParticleChange.SetNumberOfSecondaries(n); >> 700 G4Track* t; >> 701 G4double e; >> 702 for (G4int i=0; i<n; i++) { >> 703 t = (*newp)[i]; >> 704 e = t->GetKineticEnergy(); >> 705 const G4ParticleDefinition* pd = t->GetDefinition(); >> 706 if (pd != G4Gamma::Gamma() && pd != G4Electron::Electron() ) e += pd->GetPDGMass(); 888 707 889 // deexcitation << 708 preStepKinEnergy -= e; 890 if (useDeexcitation) { << 709 aParticleChange.AddSecondary(t); 891 G4double esecfluo = preStepKinEnergy; << 710 } 892 G4double de = esecfluo; << 711 } 893 atomDeexcitation->AlongStepDeexcitation(sc << 712 delete newp; 894 de << 895 << 896 // sum of de-excitation energies << 897 esecfluo -= de; << 898 << 899 // subtracted from energy loss << 900 if(eloss >= esecfluo) { << 901 esec += esecfluo; << 902 eloss -= esecfluo; << 903 } else { << 904 esec += esecfluo; << 905 eloss = 0.0; << 906 } << 907 } << 908 if(nullptr != subcutProducer && IsRegionForC << 909 subcutProducer->SampleSecondaries(step, sc << 910 } << 911 // secondaries from atomic de-excitation and << 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 << 914 // Energy balance << 915 G4double finalT = preStepKinEnergy - eloss - << 916 if (finalT <= lowestKinEnergy) { << 917 eloss += finalT; << 918 finalT = 0.0; << 919 } else if(isIon) { << 920 fParticleChange.SetProposedCharge( << 921 currentModel->GetParticleCharge(track.Ge << 922 currentM << 923 } 713 } 924 eloss = std::max(eloss, 0.0); << 925 714 926 fParticleChange.SetProposedKineticEnergy(fin << 715 preStepKinEnergy -= eloss; 927 fParticleChange.ProposeLocalEnergyDeposit(el << 716 928 /* 717 /* 929 if(-1 < verboseLevel) { 718 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre << 719 G4cout << "eloss(MeV)= " << eloss/MeV 931 G4cout << "Final value eloss(MeV)= " << el << 932 << " preStepKinEnergy= " << preStep 720 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT << 934 << " de(keV)= " << del/keV << 935 << " lossFlag= " << lossFluctuation 721 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt << 937 << G4endl; 722 << G4endl; 938 } 723 } 939 */ 724 */ 940 return &fParticleChange; << 941 } << 942 725 943 //....oooOO0OOooo........oooOO0OOooo........oo << 726 if (preStepKinEnergy <= 0.0) { 944 727 945 void G4VEnergyLossProcess::FillSecondariesAlon << 728 eloss += preStepKinEnergy; 946 { << 729 preStepKinEnergy = 0.0; 947 const std::size_t n0 = scTracks.size(); << 948 G4double weight = wt; << 949 // weight may be changed by biasing manager << 950 if(biasManager) { << 951 if(biasManager->SecondaryBiasingRegion((G4 << 952 weight *= << 953 biasManager->ApplySecondaryBiasing(scT << 954 } << 955 } << 956 730 957 // fill secondaries << 731 if (hasRestProcess) aParticleChange.SetStatusChange(fStopButAlive); 958 const std::size_t n = scTracks.size(); << 732 else aParticleChange.SetStatusChange(fStopAndKill); 959 fParticleChange.SetNumberOfSecondaries((G4in << 960 << 961 for(std::size_t i=0; i<n; ++i) { << 962 G4Track* t = scTracks[i]; << 963 if(nullptr != t) { << 964 t->SetWeight(weight); << 965 pParticleChange->AddSecondary(t); << 966 G4int pdg = t->GetDefinition()->GetPDGEn << 967 if (i < n0) { << 968 if (pdg == 22) { << 969 t->SetCreatorModelID(gpixeID); << 970 } else if (pdg == 11) { << 971 t->SetCreatorModelID(epixeID); << 972 } else { << 973 t->SetCreatorModelID(biasID); << 974 } << 975 } else { << 976 t->SetCreatorModelID(biasID); << 977 } << 978 } << 979 } 733 } 980 scTracks.clear(); << 734 >> 735 aParticleChange.SetEnergyChange(preStepKinEnergy); >> 736 aParticleChange.SetLocalEnergyDeposit(eloss); >> 737 >> 738 return &aParticleChange; 981 } 739 } 982 740 983 //....oooOO0OOooo........oooOO0OOooo........oo 741 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 742 985 G4VParticleChange* G4VEnergyLossProcess::PostS 743 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 << 744 const G4Step& step) 987 { 745 { 988 // clear number of interaction lengths in an << 746 aParticleChange.Initialize(track); 989 theNumberOfInteractionLengthLeft = -1.0; << 747 G4double finalT = track.GetKineticEnergy(); 990 mfpKinEnergy = DBL_MAX; << 748 G4double postStepScaledEnergy = finalT*massRatio; 991 << 992 fParticleChange.InitializeForPostStep(track) << 993 const G4double finalT = track.GetKineticEner << 994 749 995 const G4double postStepScaledEnergy = finalT << 750 // Integral approach 996 SelectModel(postStepScaledEnergy); << 751 if (integral) { >> 752 G4bool b; >> 753 G4double postStepLambda = chargeSqRatio* >> 754 (((*theLambdaTable)[currentMaterialIndex])->GetValue(postStepScaledEnergy,b)); 997 755 998 if(!currentModel->IsActive(postStepScaledEne << 756 if(preStepLambda*G4UniformRand() > postStepLambda) 999 return &fParticleChange; << 757 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1000 } 758 } >> 759 >> 760 G4VEmModel* currentModel = SelectModel(postStepScaledEnergy); >> 761 G4double tcut = (*theCuts)[currentMaterialIndex]; >> 762 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); >> 763 G4double tmax = currentModel->MaxSecondaryEnergy(dynParticle); >> 764 1001 /* 765 /* 1002 if(1 < verboseLevel) { << 766 if(0 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 767 const G4ParticleDefinition* pd = dynParticle->GetDefinition(); >> 768 G4cout << "G4VEnergyLossProcess::PostStepDoIt: Sample secondary; E= " << finalT/MeV >> 769 << " MeV; model= (" << currentModel->LowEnergyLimit(pd) >> 770 << ", " << currentModel->HighEnergyLimit(pd) << ")" >> 771 << G4endl; 1004 } 772 } 1005 */ 773 */ 1006 // forced process - should happen only once << 1007 if(biasFlag) { << 1008 if(biasManager->ForcedInteractionRegion(( << 1009 biasFlag = false; << 1010 } << 1011 } << 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 << 1014 // Integral approach << 1015 if (fXSType != fEmNoIntegral) { << 1016 const G4double logFinalT = dp->GetLogKine << 1017 G4double lx = GetLambdaForScaledEnergy(po << 1018 lo << 1019 lx = std::max(lx, 0.0); << 1020 << 1021 // if both lg and lx are zero then no int << 1022 if(preStepLambda*G4UniformRand() >= lx) { << 1023 return &fParticleChange; << 1024 } << 1025 } << 1026 774 1027 // define new weight for primary and second << 775 if (tcut < tmax) 1028 G4double weight = fParticleChange.GetParent << 776 SecondariesPostStep(currentModel,currentCouple,dynParticle,tcut,finalT); 1029 if(weightFlag) { << 1030 weight /= biasFactor; << 1031 fParticleChange.ProposeWeight(weight); << 1032 } << 1033 << 1034 const G4double tcut = (*theCuts)[currentCou << 1035 << 1036 // sample secondaries << 1037 secParticles.clear(); << 1038 currentModel->SampleSecondaries(&secParticl << 1039 << 1040 const G4int num0 = (G4int)secParticles.size << 1041 << 1042 // bremsstrahlung splitting or Russian roul << 1043 if(biasManager) { << 1044 if(biasManager->SecondaryBiasingRegion((G << 1045 G4double eloss = 0.0; << 1046 weight *= biasManager->ApplySecondaryBi << 1047 secPart << 1048 track, << 1049 &fParti << 1050 (G4int) << 1051 step.Ge << 1052 if(eloss > 0.0) { << 1053 eloss += fParticleChange.GetLocalEner << 1054 fParticleChange.ProposeLocalEnergyDep << 1055 } << 1056 } << 1057 } << 1058 777 1059 // save secondaries << 778 if (finalT <= 0.0) { 1060 const G4int num = (G4int)secParticles.size( << 779 aParticleChange.SetEnergyChange(0.0); 1061 if(num > 0) { << 1062 << 1063 fParticleChange.SetNumberOfSecondaries(nu << 1064 G4double time = track.GetGlobalTime(); << 1065 << 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 780 1071 for (G4int i=0; i<num; ++i) { << 781 if (hasRestProcess) aParticleChange.SetStatusChange(fStopButAlive); 1072 if(nullptr != secParticles[i]) { << 782 else aParticleChange.SetStatusChange(fStopAndKill); 1073 G4Track* t = new G4Track(secParticles << 1074 t->SetTouchableHandle(track.GetToucha << 1075 if (biasManager) { << 1076 t->SetWeight(weight * biasManager-> << 1077 } else { << 1078 t->SetWeight(weight); << 1079 } << 1080 if(i < num0) { << 1081 t->SetCreatorModelID(secID); << 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 783 1088 //G4cout << "Secondary(post step) has << 784 return pParticleChange; 1089 // << ", kenergy " << t->GetKin << 1090 // << " time= " << time/ns << " << 1091 pParticleChange->AddSecondary(t); << 1092 } << 1093 } << 1094 } 785 } 1095 786 1096 if(0.0 == fParticleChange.GetProposedKineti << 787 aParticleChange.SetEnergyChange(finalT); 1097 fAlive == fParticleChange.GetTrackStatus << 1098 if(particle->GetProcessManager()->GetAtRe << 1099 { fParticleChange.ProposeTrackStatus << 1100 else { fParticleChange.ProposeTrackStatus << 1101 } << 1102 788 1103 /* << 789 return G4VContinuousDiscreteProcess::PostStepDoIt(track,step); 1104 if(-1 < verboseLevel) { << 1105 G4cout << "::PostStepDoIt: Sample seconda << 1106 << fParticleChange.GetProposedKineticEner << 1107 << " MeV; model= (" << currentMode << 1108 << ", " << currentModel->HighEner << 1109 << " preStepLambda= " << preStepL << 1110 << " dir= " << track.GetMomentumD << 1111 << " status= " << track.GetTrackS << 1112 << G4endl; << 1113 } << 1114 */ << 1115 return &fParticleChange; << 1116 } 790 } 1117 791 1118 //....oooOO0OOooo........oooOO0OOooo........o 792 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 793 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 794 void G4VEnergyLossProcess::PrintInfoDefinition() 1121 const G4ParticleDefinition* part, cons << 1122 { 795 { 1123 if (!isMaster || nullptr != baseParticle || << 796 G4cout << G4endl << GetProcessName() << ": tables are built for " 1124 for(std::size_t i=0; i<7; ++i) { << 797 << particle->GetParticleName() 1125 // ionisation table only for ionisation p << 798 << G4endl 1126 if (nullptr == theData->Table(i) || (!isI << 799 << " dE/dx and range tables from " 1127 continue; << 800 << G4BestUnit(minKinEnergy,"Energy") 1128 } << 801 << " to " << G4BestUnit(maxKinEnergy,"Energy") 1129 if (-1 < verboseLevel) { << 802 << " in " << nDEDXBins << " bins." << G4endl 1130 G4cout << "G4VEnergyLossProcess::StoreP << 803 << " Lambda tables from threshold to " 1131 << " " << particle->GetParticleName() << 804 << G4BestUnit(maxKinEnergy,"Energy") 1132 << " " << GetProcessName() << 805 << " in " << nLambdaBins << " bins." 1133 << " " << tnames[i] << " " << theDat << 806 << G4endl; 1134 } << 807 if(theRangeTable) { 1135 if (!G4EmTableUtil::StoreTable(this, part << 808 G4cout << " Step function: finalRange(mm)= " << finalRange/mm 1136 dir, tnames[i], verboseLevel, asci << 809 << ", dRoverRange= " << dRoverRange 1137 return false; << 810 << ", integral: " << integral 1138 } << 811 << G4endl; 1139 } 812 } 1140 return true; << 813 1141 } << 814 if(0 < verboseLevel) { 1142 << 815 G4cout << "Tables are built for " << particle->GetParticleName() 1143 //....oooOO0OOooo........oooOO0OOooo........o << 816 << " IntegralFlag= " << integral >> 817 << G4endl; 1144 818 1145 G4bool << 819 if(2 < verboseLevel) { 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 820 G4cout << "DEDXTable address= " << theDEDXTable << G4endl; 1147 co << 821 if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl; 1148 { << 822 G4cout << "RangeTable address= " << theRangeTable << G4endl; 1149 if (!isMaster || nullptr != baseParticle || << 823 if(theRangeTable) G4cout << (*theRangeTable) << G4endl; 1150 for(std::size_t i=0; i<7; ++i) { << 824 G4cout << "RangeTableForLoss address= " << theRangeTableForLoss << G4endl; 1151 // ionisation table only for ionisation p << 825 if(theRangeTableForLoss) G4cout << (*theRangeTableForLoss) << G4endl; 1152 if (!isIonisation && 1 == i) { continue; << 826 G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl; 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 827 if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl; 1154 verboseL << 828 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; 1155 return false; << 829 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; >> 830 G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl; >> 831 if(theSubLambdaTable) G4cout << (*theSubLambdaTable) << G4endl; 1156 } 832 } 1157 } 833 } 1158 return true; << 1159 } 834 } 1160 835 1161 //....oooOO0OOooo........oooOO0OOooo........o 836 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 837 1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 838 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p) 1164 const G4Mat << 1165 const G4Dyn << 1166 G4dou << 1167 { 839 { 1168 DefineMaterial(couple); << 840 if(theDEDXTable) theDEDXTable->clearAndDestroy(); 1169 G4double ekin = dp->GetKineticEnergy(); << 841 theDEDXTable = p; 1170 SelectModel(ekin*massRatio); << 1171 G4double tmax = currentModel->MaxSecondaryK << 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 1173 G4double d = 0.0; << 1174 G4VEmFluctuationModel* fm = currentModel->G << 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 1176 return d; << 1177 } 842 } 1178 843 1179 //....oooOO0OOooo........oooOO0OOooo........o 844 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 845 1181 G4double << 846 void G4VEnergyLossProcess::SetRangeTable(G4PhysicsTable* p) 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1183 c << 1184 G << 1185 { 847 { 1186 // Cross section per volume is calculated << 848 if(theRangeTable) theRangeTable->clearAndDestroy(); 1187 DefineMaterial(couple); << 849 theRangeTable = p; 1188 G4double cross = 0.0; << 850 size_t n = p->length(); 1189 if (nullptr != theLambdaTable) { << 851 if(0 < n) { 1190 cross = GetLambdaForScaledEnergy(kineticE << 852 G4PhysicsVector* pv = (*p)[0]; 1191 logKinet << 853 G4bool b; 1192 } else { << 854 theDEDXAtMaxEnergy = new G4double [n]; 1193 SelectModel(kineticEnergy*massRatio); << 855 theRangeAtMaxEnergy = new G4double [n]; 1194 cross = (!baseMat) ? biasFactor : biasFac << 856 1195 cross *= (currentModel->CrossSectionPerVo << 857 for (size_t i=0; i<n; i++) { 1196 << 858 pv = (*p)[i]; >> 859 G4double r2 = pv->GetValue(maxKinEnergyForRange, b); >> 860 G4double dedx = ((*theDEDXTable)[i])->GetValue(maxKinEnergyForRange,b); >> 861 theDEDXAtMaxEnergy[i] = dedx; >> 862 theRangeAtMaxEnergy[i] = r2; >> 863 //G4cout << "i= " << i << " e2(MeV)= " << maxKinEnergyForRange/MeV << " r2= " << r2 >> 864 // << " dedx= " << dedx << G4endl; >> 865 } 1197 } 866 } 1198 return std::max(cross, 0.0); << 1199 } 867 } 1200 868 1201 //....oooOO0OOooo........oooOO0OOooo........o 869 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 870 1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 871 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1204 { 872 { 1205 DefineMaterial(track.GetMaterialCutsCouple( << 873 if(theRangeTableForLoss) theRangeTableForLoss->clearAndDestroy(); 1206 const G4double kinEnergy = track.GetKine << 874 theRangeTableForLoss = p; 1207 const G4double logKinEnergy = track.GetDyna << 1208 const G4double cs = GetLambdaForScaledEnerg << 1209 << 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 1211 } 875 } 1212 876 1213 //....oooOO0OOooo........oooOO0OOooo........o 877 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 878 1215 G4double G4VEnergyLossProcess::ContinuousStep << 879 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) 1216 << 1217 << 1218 { 880 { 1219 return AlongStepGetPhysicalInteractionLengt << 881 theSecondaryRangeTable = p; 1220 } 882 } 1221 883 1222 //....oooOO0OOooo........oooOO0OOooo........o 884 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 885 1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 886 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1225 const G4Track& t << 1226 G4double, << 1227 G4ForceCondition << 1228 << 1229 { 887 { 1230 *condition = NotForced; << 888 if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy(); 1231 return MeanFreePath(track); << 889 theInverseRangeTable = p; 1232 } 890 } 1233 891 1234 //....oooOO0OOooo........oooOO0OOooo........o 892 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 893 1236 G4double G4VEnergyLossProcess::GetContinuousS << 894 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1237 const G4Track&, << 1238 G4double, G4double, G4double& << 1239 { 895 { 1240 return DBL_MAX; << 896 if(theLambdaTable) theLambdaTable->clearAndDestroy(); >> 897 theLambdaTable = p; >> 898 tablesAreBuilt = true; 1241 } 899 } 1242 900 1243 //....oooOO0OOooo........oooOO0OOooo........o 901 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 902 1245 G4PhysicsVector* << 903 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1247 G4d << 1248 { 904 { 1249 DefineMaterial(couple); << 905 if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy(); 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 906 theSubLambdaTable = p; 1251 return new G4PhysicsVector(*v); << 907 if (nSCoffRegions) { >> 908 for (G4int i=0; i<nSCoffRegions; i++) { >> 909 scoffProcessors[i]->SetLambdaSubTable(theSubLambdaTable); >> 910 } >> 911 } 1252 } 912 } 1253 913 1254 //....oooOO0OOooo........oooOO0OOooo........o 914 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 915 1256 void << 916 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVector(const G4MaterialCutsCouple*) 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 1258 { 917 { 1259 if(1 < verboseLevel) { << 918 G4int nbins = nDEDXBins; 1260 G4cout << "### Set DEDX table " << p << " << 919 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins); 1261 << " " << theDEDXunRestrictedTable << << 920 return v; 1262 << " for " << particle->GetParticl << 1263 << " and process " << GetProcessNa << 1264 << " type=" << tType << " isIonisation:" << 1265 } << 1266 if(fTotal == tType) { << 1267 theDEDXunRestrictedTable = p; << 1268 } else if(fRestricted == tType) { << 1269 theDEDXTable = p; << 1270 if(isMaster && nullptr == baseParticle) { << 1271 theData->UpdateTable(theDEDXTable, 0); << 1272 } << 1273 } else if(fIsIonisation == tType) { << 1274 theIonisationTable = p; << 1275 if(isMaster && nullptr == baseParticle) { << 1276 theData->UpdateTable(theIonisationTable << 1277 } << 1278 } << 1279 } 921 } 1280 922 1281 //....oooOO0OOooo........oooOO0OOooo........o 923 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 924 1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 925 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVectorForPreciseRange( >> 926 const G4MaterialCutsCouple*) 1284 { 927 { 1285 theCSDARangeTable = p; << 928 G4int nbins = nDEDXBinsForRange; >> 929 G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergyForRange, nbins); >> 930 return v; 1286 } 931 } 1287 932 1288 //....oooOO0OOooo........oooOO0OOooo........o 933 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 934 1290 void G4VEnergyLossProcess::SetRangeTableForLo << 935 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1291 { 936 { 1292 theRangeTableForLoss = p; << 937 G4double cut = (*theCuts)[couple->GetIndex()]; >> 938 G4int nbins = nLambdaBins; >> 939 G4double tmin = std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), >> 940 minKinEnergy); >> 941 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; >> 942 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nbins); >> 943 return v; 1293 } 944 } 1294 945 1295 //....oooOO0OOooo........oooOO0OOooo........o 946 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 947 1297 void G4VEnergyLossProcess::SetInverseRangeTab << 948 G4PhysicsVector* G4VEnergyLossProcess::SubLambdaPhysicsVector(const G4MaterialCutsCouple* couple) 1298 { 949 { 1299 theInverseRangeTable = p; << 950 return LambdaPhysicsVector(couple); 1300 } 951 } 1301 952 1302 //....oooOO0OOooo........oooOO0OOooo........o 953 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 954 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 955 G4double G4VEnergyLossProcess::MicroscopicCrossSection(G4double kineticEnergy, >> 956 const G4MaterialCutsCouple* couple) 1305 { 957 { 1306 if(1 < verboseLevel) { << 958 // Cross section per atom is calculated 1307 G4cout << "### Set Lambda table " << p << << 959 DefineMaterial(couple); 1308 << " for " << particle->GetParticl << 960 G4double cross = 0.0; 1309 << " and process " << GetProcessNa << 961 G4bool b; 1310 } << 962 if(theLambdaTable) { 1311 theLambdaTable = p; << 963 cross = (((*theLambdaTable)[currentMaterialIndex])-> 1312 tablesAreBuilt = true; << 964 GetValue(kineticEnergy, b)); 1313 965 1314 if(isMaster && nullptr != p) { << 966 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); 1315 delete theEnergyOfCrossSectionMax; << 1316 theEnergyOfCrossSectionMax = nullptr; << 1317 if(fEmTwoPeaks == fXSType) { << 1318 if(nullptr != fXSpeaks) { << 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 1320 delete fXSpeaks; << 1321 } << 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } << 1326 if(fXSType == fEmOnePeak) { << 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 1328 if(nullptr == theEnergyOfCrossSectionMa << 1329 } << 1330 } 967 } >> 968 >> 969 return cross; 1331 } 970 } 1332 971 1333 //....oooOO0OOooo........oooOO0OOooo........o 972 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 973 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 974 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track, >> 975 G4double s, >> 976 G4ForceCondition* cond) 1336 { 977 { 1337 theEnergyOfCrossSectionMax = p; << 978 return GetMeanFreePath(track, s, cond); 1338 } 979 } 1339 980 1340 //....oooOO0OOooo........oooOO0OOooo........o 981 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1341 982 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 983 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, >> 984 G4double x, G4double y, G4double& z) 1343 { 985 { 1344 fXSpeaks = ptr; << 986 return GetContinuousStepLimit(track, x, y, z); 1345 } 987 } 1346 988 1347 //....oooOO0OOooo........oooOO0OOooo........o 989 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 990 1349 const G4Element* G4VEnergyLossProcess::GetCur << 991 void G4VEnergyLossProcess::SetStepLimits(G4double v1, G4double v2) 1350 { 992 { 1351 return (nullptr != currentModel) << 993 dRoverRange = v1; 1352 ? currentModel->GetCurrentElement(current << 994 finalRange = v2; >> 995 if (dRoverRange > 1.0) dRoverRange = 1.0; 1353 } 996 } 1354 997 1355 //....oooOO0OOooo........oooOO0OOooo........o 998 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 999 1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1000 void G4VEnergyLossProcess::SetIntegral(G4bool val) 1358 << 1359 { 1001 { 1360 if(f > 0.0) { << 1002 if(integral != val) { 1361 biasFactor = f; << 1003 if(val) dRoverRange = defaultIntegralRange; 1362 weightFlag = flag; << 1004 else dRoverRange = defaultRoverRange; 1363 if(1 < verboseLevel) { << 1364 G4cout << "### SetCrossSectionBiasingFa << 1365 << " process " << GetProcessName << 1366 << " biasFactor= " << f << " wei << 1367 << G4endl; << 1368 } << 1369 } 1005 } >> 1006 integral = val; 1370 } 1007 } 1371 1008 1372 //....oooOO0OOooo........oooOO0OOooo........o 1009 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 1010 1374 void G4VEnergyLossProcess::ActivateForcedInte << 1011 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1375 << 1012 { 1376 << 1013 dRoverRange = v1; 1377 { << 1014 finalRange = v2; 1378 if(nullptr == biasManager) { biasManager = << 1015 if (dRoverRange > 0.999) dRoverRange = 1.0; 1379 if(1 < verboseLevel) { << 1380 G4cout << "### ActivateForcedInteraction: << 1381 << " process " << GetProcessName() << 1382 << " length(mm)= " << length/mm << 1383 << " in G4Region <" << region << 1384 << "> weightFlag= " << flag << 1385 << G4endl; << 1386 } << 1387 weightFlag = flag; << 1388 biasManager->ActivateForcedInteraction(leng << 1389 } 1016 } 1390 1017 1391 //....oooOO0OOooo........oooOO0OOooo........o 1018 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 1019 1393 void << 1020 void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1021 { 1395 << 1022 particle = p; 1396 << 1023 baseParticle = DefineBaseParticle(particle); 1397 { << 1398 if (0.0 <= factor) { << 1399 // Range cut can be applied only for e- << 1400 if(0.0 == factor && secondaryParticle != << 1401 { return; } << 1402 << 1403 if(nullptr == biasManager) { biasManager << 1404 biasManager->ActivateSecondaryBiasing(reg << 1405 if(1 < verboseLevel) { << 1406 G4cout << "### ActivateSecondaryBiasing << 1407 << " process " << GetProcessName << 1408 << " factor= " << factor << 1409 << " in G4Region <" << region << 1410 << "> energyLimit(MeV)= " << ene << 1411 << G4endl; << 1412 } << 1413 } << 1414 } 1024 } 1415 1025 1416 //....oooOO0OOooo........oooOO0OOooo........o 1026 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 1027 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1028 void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 1419 { 1029 { 1420 isIonisation = val; << 1030 baseParticle = p; 1421 aGPILSelection = (val) ? CandidateForSelect << 1422 } 1031 } 1423 1032 1424 //....oooOO0OOooo........oooOO0OOooo........o 1033 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1425 1034 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1035 void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 1427 { 1036 { 1428 if(0.0 < val && val < 1.0) { << 1037 secondaryParticle = p; 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } 1038 } 1433 1039 1434 //....oooOO0OOooo........oooOO0OOooo........o 1040 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1435 1041 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1042 G4bool G4VEnergyLossProcess::StorePhysicsTable(G4ParticleDefinition* part, >> 1043 const G4String& directory, >> 1044 G4bool ascii) 1437 { 1045 { 1438 if(0.0 < v1 && 0.0 < v2) { << 1046 G4bool res = true; 1439 dRoverRange = std::min(1.0, v1); << 1047 if ( baseParticle ) return res; 1440 finalRange = std::min(v2, 1.e+50); << 1048 G4bool yes = true; 1441 } else { << 1049 1442 PrintWarning("SetStepFunctionV1", v1); << 1050 if ( theDEDXTable ) { 1443 PrintWarning("SetStepFunctionV2", v2); << 1051 const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii); >> 1052 yes = theDEDXTable->StorePhysicsTable(name,ascii); >> 1053 if( !yes ) res = false; 1444 } 1054 } 1445 } << 1446 1055 1447 //....oooOO0OOooo........oooOO0OOooo........o << 1056 if ( theRangeTable ) { >> 1057 const G4String name = GetPhysicsTableFileName(part,directory,"Range",ascii); >> 1058 yes = theRangeTable->StorePhysicsTable(name,ascii); >> 1059 if( !yes ) res = false; >> 1060 } 1448 1061 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1062 if ( theRangeTableForLoss ) { 1450 { << 1063 const G4String name = GetPhysicsTableFileName(part,directory,"RangeForLoss",ascii); 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1064 yes = theRangeTableForLoss->StorePhysicsTable(name,ascii); 1452 else { PrintWarning("SetLowestEnergyLimit", << 1065 if( !yes ) res = false; 1453 } << 1066 } 1454 1067 1455 //....oooOO0OOooo........oooOO0OOooo........o << 1068 if ( theInverseRangeTable ) { >> 1069 const G4String name = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); >> 1070 yes = theInverseRangeTable->StorePhysicsTable(name,ascii); >> 1071 if( !yes ) res = false; >> 1072 } 1456 1073 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1074 if ( theLambdaTable ) { 1458 { << 1075 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 1459 if(2 < n && n < 1000000000) { << 1076 yes = theLambdaTable->StorePhysicsTable(name,ascii); 1460 nBins = n; << 1077 if( !yes ) res = false; 1461 actBinning = true; << 1078 } >> 1079 >> 1080 if ( theSubLambdaTable ) { >> 1081 const G4String name = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1082 yes = theSubLambdaTable->StorePhysicsTable(name,ascii); >> 1083 if( !yes ) res = false; >> 1084 } >> 1085 if ( res ) { >> 1086 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 1087 << " and process " << GetProcessName() >> 1088 << " in the directory <" << directory >> 1089 << "> " << G4endl; 1462 } else { 1090 } else { 1463 G4double e = (G4double)n; << 1091 G4cout << "Fail to store Physics Tables for " << particle->GetParticleName() 1464 PrintWarning("SetDEDXBinning", e); << 1092 << " and process " << GetProcessName() 1465 } << 1093 << " in the directory <" << directory >> 1094 << "> " << G4endl; >> 1095 } >> 1096 return res; 1466 } 1097 } 1467 1098 1468 //....oooOO0OOooo........oooOO0OOooo........o << 1099 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1469 1100 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1101 G4bool G4VEnergyLossProcess::RetrievePhysicsTable(G4ParticleDefinition* part, >> 1102 const G4String& directory, >> 1103 G4bool ascii) 1471 { 1104 { 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1105 G4bool res = true; 1473 minKinEnergy = e; << 1106 currentCouple = 0; 1474 actMinKinEnergy = true; << 1107 preStepLambda = 0.0; 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1108 if(0 < verboseLevel) { 1476 } << 1109 G4cout << "========================================================" << G4endl; >> 1110 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " >> 1111 << part->GetParticleName() << " and process " << GetProcessName() >> 1112 << "; tables_are_built= " << tablesAreBuilt >> 1113 << G4endl; >> 1114 } 1477 1115 1478 //....oooOO0OOooo........oooOO0OOooo........o << 1116 const G4String particleName = part->GetParticleName(); >> 1117 if( !particle ) { >> 1118 particle = part; >> 1119 baseParticle = DefineBaseParticle(particle); >> 1120 } >> 1121 >> 1122 if(particleName != "GenericIon" && >> 1123 part->GetParticleType() == "nucleus" && >> 1124 part->GetParticleSubType() == "generic") >> 1125 { >> 1126 (G4LossTableManager::Instance())->RegisterIon(part, this); >> 1127 return res; >> 1128 } >> 1129 >> 1130 if(tablesAreBuilt) return res; >> 1131 Initialise(); >> 1132 >> 1133 // Recalculation is needed because cuts were changed or recalculation is forced >> 1134 G4LossTableManager* lManager = G4LossTableManager::Instance(); >> 1135 if ( lManager->IsRecalcNeeded(particle)) { >> 1136 >> 1137 G4bool yes = true; >> 1138 G4bool fpi = true; >> 1139 if ( !baseParticle ) { >> 1140 G4PhysicsTable* table; >> 1141 G4String filename; >> 1142 const G4ProductionCutsTable* theCoupleTable= >> 1143 G4ProductionCutsTable::GetProductionCutsTable(); >> 1144 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 1145 >> 1146 filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii); >> 1147 >> 1148 table = new G4PhysicsTable(numOfCouples); >> 1149 yes = table->ExistPhysicsTable(filename); >> 1150 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); >> 1151 if(yes) { >> 1152 SetDEDXTable(table); >> 1153 if (-1 < verboseLevel) { >> 1154 G4cout << "DEDX table for " << particleName << " is retrieved from <" >> 1155 << filename << ">" >> 1156 << G4endl; >> 1157 } >> 1158 } else { >> 1159 fpi = false; >> 1160 table->clearAndDestroy(); >> 1161 if (0 < verboseLevel) { >> 1162 G4cout << "DEDX table for " << particleName << " in file <" >> 1163 << filename << "> is not retrieved" >> 1164 << G4endl; >> 1165 } >> 1166 } 1479 1167 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1168 filename = GetPhysicsTableFileName(part,directory,"Range",ascii); 1481 { << 1169 table = new G4PhysicsTable(numOfCouples); 1482 if(minKinEnergy < e && e < 1.e+50) { << 1170 yes = table->ExistPhysicsTable(filename); 1483 maxKinEnergy = e; << 1171 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); 1484 actMaxKinEnergy = true; << 1172 if(yes) { 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1173 SetRangeTable(table); 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1174 if (-1 < verboseLevel) { 1487 } << 1175 G4cout << "Range table for " << particleName << " is retrieved from <" >> 1176 << filename << ">" >> 1177 << G4endl; >> 1178 } >> 1179 } else { >> 1180 table->clearAndDestroy(); >> 1181 if(fpi) { >> 1182 res = false; >> 1183 G4cout << "Range table for " << particleName << " in file <" >> 1184 << filename << "> is not retrieved" >> 1185 << G4endl; >> 1186 } >> 1187 } 1488 1188 1489 //....oooOO0OOooo........oooOO0OOooo........o << 1189 filename = GetPhysicsTableFileName(part,directory,"RangeForLoss",ascii); >> 1190 table = new G4PhysicsTable(numOfCouples); >> 1191 yes = table->ExistPhysicsTable(filename); >> 1192 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); >> 1193 if(yes) { >> 1194 SetRangeTableForLoss(table); >> 1195 if (-1 < verboseLevel) { >> 1196 G4cout << "Range table for " << particleName << " is retrieved from <" >> 1197 << filename << ">" >> 1198 << G4endl; >> 1199 } >> 1200 } else { >> 1201 table->clearAndDestroy(); >> 1202 if(fpi) { >> 1203 res = false; >> 1204 G4cout << "Range table for loss for " << particleName << " in file <" >> 1205 << filename << "> is not retrieved" >> 1206 << G4endl; >> 1207 } >> 1208 } 1490 1209 1491 void G4VEnergyLossProcess::PrintWarning(const << 1210 filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii); 1492 { << 1211 table = new G4PhysicsTable(numOfCouples); 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1212 yes = table->ExistPhysicsTable(filename); 1494 G4ExceptionDescription ed; << 1213 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); 1495 ed << "Parameter is out of range: " << val << 1214 if(yes) { 1496 << " it will have no effect!\n" << " Pr << 1215 SetInverseRangeTable(table); 1497 << GetProcessName() << " nbins= " << nB << 1216 if (-1 < verboseLevel) { 1498 << " Emin(keV)= " << minKinEnergy/keV << 1217 G4cout << "InverseRange table for " << particleName << " is retrieved from <" 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1218 << filename << ">" 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1219 << G4endl; 1501 } << 1220 } >> 1221 } else { >> 1222 table->clearAndDestroy(); >> 1223 if(fpi) { >> 1224 res = false; >> 1225 G4cout << "InverseRange table for " << particleName << " in file <" >> 1226 << filename << "> is not retrieved" >> 1227 << G4endl; 1502 1228 1503 //....oooOO0OOooo........oooOO0OOooo........o << 1229 } >> 1230 } 1504 1231 1505 void G4VEnergyLossProcess::ProcessDescription << 1232 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 1506 { << 1233 table = new G4PhysicsTable(numOfCouples); 1507 if(nullptr != particle) { StreamInfo(out, * << 1234 yes = table->ExistPhysicsTable(filename); >> 1235 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); >> 1236 if(yes) { >> 1237 SetLambdaTable(table); >> 1238 if (-1 < verboseLevel) { >> 1239 G4cout << "Lambda table for " << particleName << " is retrieved from <" >> 1240 << filename << ">" >> 1241 << G4endl; >> 1242 } >> 1243 } else { >> 1244 table->clearAndDestroy(); >> 1245 if(fpi) { >> 1246 res = false; >> 1247 G4cout << "Lambda table for " << particleName << " in file <" >> 1248 << filename << "> is not retrieved" >> 1249 << G4endl; >> 1250 } >> 1251 } >> 1252 >> 1253 filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii); >> 1254 table = new G4PhysicsTable(numOfCouples); >> 1255 yes = table->ExistPhysicsTable(filename); >> 1256 if(yes) yes = table->RetrievePhysicsTable(filename,ascii); >> 1257 if(yes) { >> 1258 SetSubLambdaTable(table); >> 1259 if (-1 < verboseLevel) { >> 1260 G4cout << "SubLambda table for " << particleName << " is retrieved from <" >> 1261 << filename << ">" >> 1262 << G4endl; >> 1263 } >> 1264 } else { >> 1265 table->clearAndDestroy(); >> 1266 if(nSCoffRegions) { >> 1267 res=false; >> 1268 G4cout << "SubLambda table for " << particleName << " in file <" >> 1269 << filename << "> is not retrieved" >> 1270 << G4endl; >> 1271 } >> 1272 } >> 1273 if(res) PrintInfoDefinition(); >> 1274 else { >> 1275 G4cout << "### BuildPhysicsTable will be requested for " << GetProcessName() >> 1276 << " for " << particleName << G4endl; >> 1277 } >> 1278 } >> 1279 tablesAreBuilt = true; >> 1280 } >> 1281 >> 1282 lManager->RetrievePhysicsTables(particle, this); >> 1283 >> 1284 return res; 1508 } 1285 } >> 1286 1509 1287 1510 //....oooOO0OOooo........oooOO0OOooo........o 1288 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1511 1289