Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 11.3.0) and /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 6.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
                                                   >>  23 // $Id: G4VEnergyLossProcess.cc,v 1.2 2003/11/25 18:01:49 vnivanch Exp $
                                                   >>  24 // GEANT4 tag $Name: geant4-06-00 $
                                                   >>  25 //
 26 // -------------------------------------------     26 // -------------------------------------------------------------------
 27 //                                                 27 //
 28 // GEANT4 Class file                               28 // GEANT4 Class file
 29 //                                                 29 //
 30 //                                                 30 //
 31 // File name:     G4VEnergyLossProcess             31 // File name:     G4VEnergyLossProcess
 32 //                                                 32 //
 33 // Author:        Vladimir Ivanchenko              33 // Author:        Vladimir Ivanchenko
 34 //                                                 34 //
 35 // Creation date: 03.01.2002                       35 // Creation date: 03.01.2002
 36 //                                                 36 //
 37 // Modifications: Vladimir Ivanchenko          <<  37 // Modifications:
 38 //                                                 38 //
                                                   >>  39 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko)
                                                   >>  40 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko)
                                                   >>  41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
                                                   >>  42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko)
                                                   >>  43 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko)
                                                   >>  44 // 20-01-03 Migrade to cut per region (V.Ivanchenko)
                                                   >>  45 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko)
                                                   >>  46 // 24-01-03 Make models region aware (V.Ivanchenko)
                                                   >>  47 // 05-02-03 Fix compilation warnings (V.Ivanchenko)
                                                   >>  48 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko)
                                                   >>  49 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko)
                                                   >>  50 // 15-02-03 Lambda table can be scaled (V.Ivanchenko)
                                                   >>  51 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko)
                                                   >>  52 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko)
                                                   >>  53 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko)
                                                   >>  54 // 06-03-03 Control on GenericIons using SubType + update verbose (V.Ivanchenko)
                                                   >>  55 // 10-03-03 Add Ion registration (V.Ivanchenko)
                                                   >>  56 // 22-03-03 Add Initialisation of cash (V.Ivanchenko)
                                                   >>  57 // 26-03-03 Remove finalRange modification (V.Ivanchenko)
                                                   >>  58 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko)
                                                   >>  59 // 26-04-03 Fix retrieve tables (V.Ivanchenko)
                                                   >>  60 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko)
                                                   >>  61 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko)
                                                   >>  62 // 13-05-03 Add calculation of precise range (V.Ivanchenko)
                                                   >>  63 // 23-05-03 Remove tracking cuts (V.Ivanchenko)
                                                   >>  64 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko)
                                                   >>  65 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko)
                                                   >>  66 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko)
                                                   >>  67 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko)
                                                   >>  68 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko)
 39 //                                                 69 //
 40 // Class Description:                              70 // Class Description:
 41 //                                                 71 //
 42 // It is the unified energy loss process it ca     72 // It is the unified energy loss process it calculates the continuous
 43 // energy loss for charged particles using a s     73 // energy loss for charged particles using a set of Energy Loss
 44 // models valid for different energy regions.      74 // models valid for different energy regions. There are a possibility
 45 // to create and access to dE/dx and range tab     75 // to create and access to dE/dx and range tables, or to calculate
 46 // that information on fly.                        76 // that information on fly.
 47 // -------------------------------------------     77 // -------------------------------------------------------------------
 48 //                                                 78 //
 49 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50 //....oooOO0OOooo........oooOO0OOooo........oo     80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 51                                                    81 
 52 #include "G4VEnergyLossProcess.hh"                 82 #include "G4VEnergyLossProcess.hh"
 53 #include "G4PhysicalConstants.hh"              << 
 54 #include "G4SystemOfUnits.hh"                  << 
 55 #include "G4ProcessManager.hh"                 << 
 56 #include "G4LossTableManager.hh"                   83 #include "G4LossTableManager.hh"
 57 #include "G4LossTableBuilder.hh"               << 
 58 #include "G4Step.hh"                               84 #include "G4Step.hh"
 59 #include "G4ParticleDefinition.hh"                 85 #include "G4ParticleDefinition.hh"
 60 #include "G4ParticleTable.hh"                  << 
 61 #include "G4EmParameters.hh"                   << 
 62 #include "G4EmUtility.hh"                      << 
 63 #include "G4EmTableUtil.hh"                    << 
 64 #include "G4VEmModel.hh"                           86 #include "G4VEmModel.hh"
 65 #include "G4VEmFluctuationModel.hh"                87 #include "G4VEmFluctuationModel.hh"
 66 #include "G4DataVector.hh"                         88 #include "G4DataVector.hh"
                                                   >>  89 #include "G4PhysicsTable.hh"
                                                   >>  90 #include "G4PhysicsVector.hh"
 67 #include "G4PhysicsLogVector.hh"                   91 #include "G4PhysicsLogVector.hh"
 68 #include "G4VParticleChange.hh"                    92 #include "G4VParticleChange.hh"
                                                   >>  93 #include "G4Gamma.hh"
 69 #include "G4Electron.hh"                           94 #include "G4Electron.hh"
                                                   >>  95 #include "G4Proton.hh"
                                                   >>  96 #include "G4VSubCutoffProcessor.hh"
 70 #include "G4ProcessManager.hh"                     97 #include "G4ProcessManager.hh"
 71 #include "G4UnitsTable.hh"                         98 #include "G4UnitsTable.hh"
                                                   >>  99 #include "G4GenericIon.hh"
                                                   >> 100 #include "G4ProductionCutsTable.hh"
 72 #include "G4Region.hh"                            101 #include "G4Region.hh"
 73 #include "G4RegionStore.hh"                       102 #include "G4RegionStore.hh"
 74 #include "G4PhysicsTableHelper.hh"             << 
 75 #include "G4SafetyHelper.hh"                   << 
 76 #include "G4EmDataHandler.hh"                  << 
 77 #include "G4TransportationManager.hh"          << 
 78 #include "G4VAtomDeexcitation.hh"              << 
 79 #include "G4VSubCutProducer.hh"                << 
 80 #include "G4EmBiasingManager.hh"               << 
 81 #include "G4Log.hh"                            << 
 82 #include <iostream>                            << 
 83                                                   103 
 84 //....oooOO0OOooo........oooOO0OOooo........oo    104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 85                                                   105 
 86 namespace                                      << 106 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, G4ProcessType type):
 87 {                                              << 107                  G4VContinuousDiscreteProcess(name, type),
 88   G4String tnames[7] =                         << 108   nSCoffRegions(0),
 89     {"DEDX","Ionisation","DEDXnr","CSDARange", << 109   idxSCoffRegions(0),
 90 }                                              << 110   theDEDXTable(0),
 91                                                << 111   theRangeTable(0),
 92                                                << 112   theSecondaryRangeTable(0),
 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con << 113   theInverseRangeTable(0),
 94                                            G4P << 114   theLambdaTable(0),
 95   G4VContinuousDiscreteProcess(name, type)     << 115   theSubLambdaTable(0),
 96 {                                              << 116   theDEDXAtMaxEnergy(0),
 97   theParameters = G4EmParameters::Instance();  << 117   theRangeAtMaxEnergy(0),
 98   SetVerboseLevel(1);                          << 118   particle(0),
 99                                                << 119   baseParticle(0),
100   // low energy limit                          << 120   secondaryParticle(0),
101   lowestKinEnergy = theParameters->LowestElect << 121   currentCouple(0),
102                                                << 122   nDEDXBins(90),
103   // Size of tables                            << 123   nDEDXBinsForRange(70),
104   minKinEnergy     = 0.1*CLHEP::keV;           << 124   nLambdaBins(90),
105   maxKinEnergy     = 100.0*CLHEP::TeV;         << 125   faclow(1.5),
106   maxKinEnergyCSDA = 1.0*CLHEP::GeV;           << 126   linLossLimit(0.05),
107   nBins            = 84;                       << 127   minSubRange(0.1),
108   nBinsCSDA        = 35;                       << 128   defaultRoverRange(0.2),
109                                                << 129   defaultIntegralRange(1.0),
110   invLambdaFactor = 1.0/lambdaFactor;          << 130   lossFluctuationFlag(true),
                                                   >> 131   rndmStepFlag(false),
                                                   >> 132   hasRestProcess(true),
                                                   >> 133   tablesAreBuilt(false),
                                                   >> 134   integral(true),
                                                   >> 135   meanFreePath(true)
                                                   >> 136 {
                                                   >> 137 
                                                   >> 138   minKinEnergy         = 0.1*keV;
                                                   >> 139   maxKinEnergy         = 100.0*GeV;
                                                   >> 140   maxKinEnergyForRange = 1.0*GeV;
                                                   >> 141   lowKinEnergy         = minKinEnergy*faclow;
                                                   >> 142 
                                                   >> 143   // default dRoverRange and finalRange
                                                   >> 144   SetStepFunction(defaultIntegralRange, 1.0*mm);
                                                   >> 145   SetVerboseLevel(0);
111                                                   146 
112   // default linear loss limit                 << 
113   finalRange = 1.*CLHEP::mm;                   << 
114                                                << 
115   // run time objects                          << 
116   pParticleChange = &fParticleChange;          << 
117   fParticleChange.SetSecondaryWeightByProcess( << 
118   modelManager = new G4EmModelManager();          147   modelManager = new G4EmModelManager();
119   safetyHelper = G4TransportationManager::GetT << 148   (G4LossTableManager::Instance())->Register(this);
120     ->GetSafetyHelper();                       << 149   scoffProcessors.clear();
121   aGPILSelection = CandidateForSelection;      << 150   scoffRegions.clear();
122                                                << 
123   // initialise model                          << 
124   lManager = G4LossTableManager::Instance();   << 
125   lManager->Register(this);                    << 
126   isMaster = lManager->IsMaster();             << 
127                                                << 
128   G4LossTableBuilder* bld = lManager->GetTable << 
129   theDensityFactor = bld->GetDensityFactors(); << 
130   theDensityIdx = bld->GetCoupleIndexes();     << 
131                                                << 
132   scTracks.reserve(10);                        << 
133   secParticles.reserve(12);                    << 
134   emModels = new std::vector<G4VEmModel*>;     << 
135 }                                                 151 }
136                                                   152 
137 //....oooOO0OOooo........oooOO0OOooo........oo    153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
138                                                   154 
139 G4VEnergyLossProcess::~G4VEnergyLossProcess()     155 G4VEnergyLossProcess::~G4VEnergyLossProcess()
140 {                                                 156 {
141   if (isMaster) {                              << 157   Clear();
142     if(nullptr == baseParticle) { delete theDa << 158 
143     delete theEnergyOfCrossSectionMax;         << 159   if (nSCoffRegions) {
144     if(nullptr != fXSpeaks) {                  << 160     for (G4int i=0; i<nSCoffRegions; i++) {
145       for(auto const & v : *fXSpeaks) { delete << 161       if (scoffProcessors[i]) {
146       delete fXSpeaks;                         << 162   for (G4int j=i+1; j<nSCoffRegions; j++) {
                                                   >> 163     if(scoffProcessors[i] == scoffProcessors[j]) scoffProcessors[j] = 0;
                                                   >> 164   }
                                                   >> 165         delete scoffProcessors[i];
                                                   >> 166       }
147     }                                             167     }
                                                   >> 168     scoffProcessors.clear();
                                                   >> 169     scoffRegions.clear();
148   }                                               170   }
149   delete modelManager;                            171   delete modelManager;
150   delete biasManager;                          << 172   (G4LossTableManager::Instance())->DeRegister(this);
151   delete scoffRegions;                         << 
152   delete emModels;                             << 
153   lManager->DeRegister(this);                  << 
154 }                                              << 
155                                                << 
156 //....oooOO0OOooo........oooOO0OOooo........oo << 
157                                                << 
158 G4double G4VEnergyLossProcess::MinPrimaryEnerg << 
159                                                << 
160                                                << 
161 {                                              << 
162   return cut;                                  << 
163 }                                              << 
164                                                << 
165 //....oooOO0OOooo........oooOO0OOooo........oo << 
166                                                << 
167 void G4VEnergyLossProcess::AddEmModel(G4int or << 
168                                       G4VEmFlu << 
169                                       const G4 << 
170 {                                              << 
171   if(nullptr == ptr) { return; }               << 
172   G4VEmFluctuationModel* afluc = (nullptr == f << 
173   modelManager->AddEmModel(order, ptr, afluc,  << 
174   ptr->SetParticleChange(pParticleChange, aflu << 
175 }                                                 173 }
176                                                   174 
177 //....oooOO0OOooo........oooOO0OOooo........oo    175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
178                                                   176 
179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 177 void G4VEnergyLossProcess::Clear()
180 {                                                 178 {
181   if(nullptr == ptr) { return; }               << 179   if(0 < verboseLevel) {
182   if(!emModels->empty()) {                     << 180     G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() << G4endl;
183     for(auto & em : *emModels) { if(em == ptr) << 181   }
                                                   >> 182   if ( !baseParticle ) {
                                                   >> 183     if(theDEDXTable) theDEDXTable->clearAndDestroy();
                                                   >> 184     if(theRangeTable) theRangeTable->clearAndDestroy();
                                                   >> 185     if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy();
                                                   >> 186     if(theLambdaTable) theLambdaTable->clearAndDestroy();
                                                   >> 187     if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy();
                                                   >> 188     if(theDEDXAtMaxEnergy) delete [] theDEDXAtMaxEnergy;
                                                   >> 189     if(theRangeAtMaxEnergy) delete [] theRangeAtMaxEnergy;
184   }                                               190   }
185   emModels->push_back(ptr);                    << 
186 }                                              << 
187                                                << 
188 //....oooOO0OOooo........oooOO0OOooo........oo << 
189                                                   191 
190 void G4VEnergyLossProcess::SetDynamicMassCharg << 192   theDEDXTable = 0;
191                                                << 193   theRangeTable = 0;
192 {                                              << 194   theInverseRangeTable = 0;
193   massRatio = massratio;                       << 195   theSecondaryRangeTable = 0;
194   logMassRatio = G4Log(massRatio);             << 196   theLambdaTable = 0;
195   fFactor = charge2ratio*biasFactor;           << 197   theSubLambdaTable = 0;
196   if(baseMat) { fFactor *= (*theDensityFactor) << 198   theDEDXAtMaxEnergy = 0;
197   chargeSqRatio = charge2ratio;                << 199   theRangeAtMaxEnergy = 0;
198   reduceFactor  = 1.0/(fFactor*massRatio);     << 200   tablesAreBuilt = false;
199 }                                                 201 }
200                                                   202 
201 //....oooOO0OOooo........oooOO0OOooo........oo    203 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
202                                                   204 
203 void                                           << 205 void G4VEnergyLossProcess::Initialise()
204 G4VEnergyLossProcess::PreparePhysicsTable(cons << 
205 {                                                 206 {
206   particle = G4EmTableUtil::CheckIon(this, &pa << 207   if(0 < verboseLevel) {
207                                      verboseLe << 208     G4cout << "G4VEnergyLossProcess::Initialise() for "
208                                                << 209            << GetProcessName() 
209   if( particle != &part ) {                    << 210            << " for " << particle->GetParticleName()
210     if(!isIon) { lManager->RegisterExtraPartic << 211            << G4endl;
211     if(1 < verboseLevel) {                     << 
212       G4cout << "### G4VEnergyLossProcess::Pre << 
213              << " interrupted for " << GetProc << 
214              << part.GetParticleName() << " is << 
215              << " spline=" << spline << G4endl << 
216     }                                          << 
217     return;                                    << 
218   }                                               212   }
219                                                   213 
220   tablesAreBuilt = false;                      << 214   Clear();
221   if (GetProcessSubType() == fIonisation) { Se << 
222                                                << 
223   G4LossTableBuilder* bld = lManager->GetTable << 
224   lManager->PreparePhysicsTable(&part, this);  << 
225                                                   215 
226   // Base particle and set of models can be de << 216   G4double initialCharge = particle->GetPDGCharge();
227   InitialiseEnergyLossProcess(particle, basePa << 217   G4double initialMass  = particle->GetPDGMass();
                                                   >> 218   chargeSquare = initialCharge*initialCharge/(eplus*eplus);
                                                   >> 219   chargeSqRatio = 1.0;
                                                   >> 220   massRatio = 1.0;
                                                   >> 221   reduceFactor = 1.0;
                                                   >> 222 
                                                   >> 223   if(particle->GetProcessManager()->GetAtRestProcessVector()->size())
                                                   >> 224                hasRestProcess = true;
                                                   >> 225   else         hasRestProcess = false;
228                                                   226 
229   // parameters of the process                 << 227   if (baseParticle) {
230   if(!actLossFluc) { lossFluctuationFlag = the << 228     massRatio = (baseParticle->GetPDGMass())/initialMass;
231   useCutAsFinalRange = theParameters->UseCutAs << 229     G4double q = initialCharge/baseParticle->GetPDGCharge();
232   if(!actMinKinEnergy) { minKinEnergy = thePar << 230     chargeSqRatio = q*q;
233   if(!actMaxKinEnergy) { maxKinEnergy = thePar << 231     reduceFactor = 1.0/(chargeSqRatio*massRatio);
234   if(!actBinning) { nBins = theParameters->Num << 232   }
235   maxKinEnergyCSDA = theParameters->MaxEnergyF << 
236   nBinsCSDA = theParameters->NumberOfBinsPerDe << 
237     *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 
238   if(!actLinLossLimit) { linLossLimit = thePar << 
239   lambdaFactor = theParameters->LambdaFactor() << 
240   invLambdaFactor = 1.0/lambdaFactor;          << 
241   if(isMaster) { SetVerboseLevel(theParameters << 
242   else { SetVerboseLevel(theParameters->Worker << 
243   // integral option may be disabled           << 
244   if(!theParameters->Integral()) { fXSType = f << 
245                                                   233 
246   theParameters->DefineRegParamForLoss(this);  << 234   theCuts = modelManager->Initialise(particle, secondaryParticle, minSubRange, verboseLevel);
247                                                   235 
248   fRangeEnergy = 0.0;                          << 236   // Sub Cutoff Regime
249                                                   237 
250   G4double initialCharge = particle->GetPDGCha << 238   idxSCoffRegions.clear();
251   G4double initialMass   = particle->GetPDGMas << 
252                                                   239 
253   theParameters->FillStepFunction(particle, th << 240   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 241           G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 242   size_t numOfCouples = theCoupleTable->GetTableSize();
254                                                   243 
255   // parameters for scaling from the base part << 244   if (nSCoffRegions) {
256   if (nullptr != baseParticle) {               << 245     const G4DataVector* theSubCuts = modelManager->SubCutoff();
257     massRatio    = (baseParticle->GetPDGMass() << 
258     logMassRatio = G4Log(massRatio);           << 
259     G4double q = initialCharge/baseParticle->G << 
260     chargeSqRatio = q*q;                       << 
261     if(chargeSqRatio > 0.0) { reduceFactor = 1 << 
262   }                                            << 
263   lowestKinEnergy = (initialMass < CLHEP::MeV) << 
264     ? theParameters->LowestElectronEnergy()    << 
265     : theParameters->LowestMuHadEnergy();      << 
266                                                << 
267   // Tables preparation                        << 
268   if (isMaster && nullptr == baseParticle) {   << 
269     if(nullptr == theData) { theData = new G4E << 
270                                                << 
271     if(nullptr != theDEDXTable && isIonisation << 
272       if(nullptr != theIonisationTable && theD << 
273   theData->CleanTable(0);                      << 
274   theDEDXTable = theIonisationTable;           << 
275   theIonisationTable = nullptr;                << 
276       }                                        << 
277     }                                          << 
278                                                << 
279     theDEDXTable = theData->MakeTable(theDEDXT << 
280     bld->InitialiseBaseMaterials(theDEDXTable) << 
281     theData->UpdateTable(theIonisationTable, 1 << 
282                                                << 
283     if (theParameters->BuildCSDARange()) {     << 
284       theDEDXunRestrictedTable = theData->Make << 
285       if(isIonisation) { theCSDARangeTable = t << 
286     }                                          << 
287                                                   246 
288     theLambdaTable = theData->MakeTable(4);    << 247     for (G4int i=0; i<nSCoffRegions; i++) {
289     if(isIonisation) {                         << 248       scoffProcessors[i]->Initialise(particle, secondaryParticle, theCuts, theSubCuts);
290       theRangeTableForLoss = theData->MakeTabl << 
291       theInverseRangeTable = theData->MakeTabl << 
292     }                                             249     }
293   }                                            << 250     for (size_t j=0; j<numOfCouples; j++) {
294                                                   251 
295   // forced biasing                            << 252       const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j);
296   if(nullptr != biasManager) {                 << 253       const G4ProductionCuts* pcuts = couple->GetProductionCuts();
297     biasManager->Initialise(part,GetProcessNam << 254       G4int reg = nSCoffRegions;
298     biasFlag = false;                          << 255       do {reg--;} while (reg && pcuts != (scoffRegions[reg]->GetProductionCuts()));
299   }                                            << 256       idxSCoffRegions.push_back(reg);
300   baseMat = bld->GetBaseMaterialFlag();        << 
301   numberOfModels = modelManager->NumberOfModel << 
302   currentModel = modelManager->GetModel(0);    << 
303   G4EmTableUtil::UpdateModels(this, modelManag << 
304                               numberOfModels,  << 
305                               mainSecondaries, << 
306                               theParameters->U << 
307   theCuts = modelManager->Initialise(particle, << 
308                                      verboseLe << 
309   // subcut processor                          << 
310   if(isIonisation) {                           << 
311     subcutProducer = lManager->SubCutProducer( << 
312   }                                            << 
313   if(1 == nSCoffRegions) {                     << 
314     if((*scoffRegions)[0]->GetName() == "Defau << 
315       delete scoffRegions;                     << 
316       scoffRegions = nullptr;                  << 
317       nSCoffRegions = 0;                       << 
318     }                                             257     }
319   }                                               258   }
320                                                   259 
321   if(1 < verboseLevel) {                       << 260   if (0 < verboseLevel) {
322     G4cout << "G4VEnergyLossProcess::PrepearPh << 261     G4cout << "G4VEnergyLossProcess::Initialise() is done "
323            << " for " << GetProcessName() << " << 262            << " chargeSqRatio= " << chargeSqRatio
324            << " isIon= " << isIon << " spline= << 
325     if(baseParticle) {                         << 
326       G4cout << "; base: " << baseParticle->Ge << 
327     }                                          << 
328     G4cout << G4endl;                          << 
329     G4cout << " chargeSqRatio= " << chargeSqRa << 
330            << " massRatio= " << massRatio         263            << " massRatio= " << massRatio
331            << " reduceFactor= " << reduceFacto    264            << " reduceFactor= " << reduceFactor << G4endl;
332     if (nSCoffRegions > 0) {                   << 265     if (nSCoffRegions) {
333       G4cout << " SubCut secondary production  << 266       G4cout << " SubCutoff Regime is ON for regions: " << G4endl;
334       for (G4int i=0; i<nSCoffRegions; ++i) {  << 267       for (G4int i=0; i<nSCoffRegions; i++) {
335         const G4Region* r = (*scoffRegions)[i] << 268         const G4Region* r = scoffRegions[i];
336         G4cout << "           " << r->GetName( << 269   G4cout << "           " << r->GetName() << G4endl;
337       }                                           270       }
338     } else if(nullptr != subcutProducer) {     << 
339       G4cout << " SubCut secondary production  << 
340     }                                             271     }
341   }                                               272   }
342 }                                                 273 }
343                                                   274 
344 //....oooOO0OOooo........oooOO0OOooo........oo    275 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
345                                                   276 
346 void G4VEnergyLossProcess::BuildPhysicsTable(c    277 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part)
347 {                                                 278 {
348   if(1 < verboseLevel) {                       << 279   currentCouple = 0;
                                                   >> 280   preStepLambda = 0.0;
                                                   >> 281   if(0 < verboseLevel) {
                                                   >> 282     G4cout << "========================================================" << G4endl;
349     G4cout << "### G4VEnergyLossProcess::Build    283     G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for "
350            << GetProcessName()                    284            << GetProcessName()
351            << " and particle " << part.GetPart    285            << " and particle " << part.GetParticleName()
352            << "; the first particle " << parti << 286            << G4endl;
353     if(baseParticle) {                         << 
354       G4cout << "; base: " << baseParticle->Ge << 
355     }                                          << 
356     G4cout << G4endl;                          << 
357     G4cout << "    TablesAreBuilt= " << tables << 
358            << " spline=" << spline << " ptr: " << 
359   }                                            << 
360                                                << 
361   if(&part == particle) {                      << 
362     if(isMaster) {                             << 
363       lManager->BuildPhysicsTable(particle, th << 
364                                                << 
365     } else {                                   << 
366       const auto masterProcess =               << 
367         static_cast<const G4VEnergyLossProcess << 
368                                                << 
369       numberOfModels = modelManager->NumberOfM << 
370       G4EmTableUtil::BuildLocalElossProcess(th << 
371                                             pa << 
372       tablesAreBuilt = true;                   << 
373       baseMat = masterProcess->UseBaseMaterial << 
374       lManager->LocalPhysicsTables(particle, t << 
375     }                                          << 
376                                                << 
377     // needs to be done only once              << 
378     safetyHelper->InitialiseHelper();          << 
379   }                                            << 
380   // Added tracking cut to avoid tracking arti << 
381   // and identified deexcitation flag          << 
382   if(isIonisation) {                           << 
383     atomDeexcitation = lManager->AtomDeexcitat << 
384     if(nullptr != atomDeexcitation) {          << 
385       if(atomDeexcitation->IsPIXEActive()) { u << 
386     }                                          << 
387   }                                               287   }
388                                                   288 
389   // protection against double printout        << 289   if (part.GetParticleName() != "GenericIon" &&
390   if(theParameters->IsPrintLocked()) { return; << 290       part.GetParticleType() == "nucleus" &&
                                                   >> 291       part.GetParticleSubType() == "generic")
                                                   >> 292   {
                                                   >> 293     (G4LossTableManager::Instance())->RegisterIon(&part, this);
                                                   >> 294     /*
                                                   >> 295     G4cout << part.GetProcessManager() << "  "
                                                   >> 296            << (G4GenericIon::GenericIon())->GetProcessManager()
                                                   >> 297            << G4endl;
                                                   >> 298     */
                                                   >> 299     return;
                                                   >> 300   }
391                                                   301 
392   // explicitly defined printout by particle n << 302   // Are particle defined?
393   G4String num = part.GetParticleName();       << 303   if( !particle ) {
394   if(1 < verboseLevel ||                       << 304     particle = &part;
395      (0 < verboseLevel && (num == "e-" ||      << 305     baseParticle = DefineBaseParticle(particle);
396                            num == "e+"    || n << 
397                            num == "mu-"   || n << 
398                            num == "pi+"   || n << 
399                            num == "kaon+" || n << 
400                            num == "alpha" || n << 
401                            num == "GenericIon" << 
402     StreamInfo(G4cout, part);                  << 
403   }                                               306   }
404   if(1 < verboseLevel) {                       << 307 
405     G4cout << "### G4VEnergyLossProcess::Build << 308   // Recalculation is needed because cuts were changed or recalculation is forced
406            << GetProcessName()                 << 309   G4LossTableManager* lManager = G4LossTableManager::Instance();
407            << " and particle " << part.GetPart << 310   if ( lManager->IsRecalcNeeded(particle) ) {
408     if(isIonisation) { G4cout << "  isIonisati << 311 
409     G4cout << " baseMat=" << baseMat << G4endl << 312     // It is responsability of the G4LossTables to build DEDX and range tables
                                                   >> 313     lManager->BuildPhysicsTable(particle);
                                                   >> 314 
                                                   >> 315     if(!baseParticle) PrintInfoDefinition();
                                                   >> 316 
                                                   >> 317     if(0 < verboseLevel) {
                                                   >> 318       G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for "
                                                   >> 319              << GetProcessName()
                                                   >> 320              << " and particle " << part.GetParticleName()
                                                   >> 321              << G4endl;
                                                   >> 322     }
410   }                                               323   }
411 }                                                 324 }
412                                                   325 
413 //....oooOO0OOooo........oooOO0OOooo........oo    326 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   327 
415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED << 328 void G4VEnergyLossProcess::SetParticles(const G4ParticleDefinition* p1,
                                                   >> 329                                     const G4ParticleDefinition* p2)
416 {                                                 330 {
417   G4PhysicsTable* table = nullptr;             << 331   particle = p1;
418   G4double emax = maxKinEnergy;                << 332   baseParticle = p2;
419   G4int bin = nBins;                           << 333   G4bool yes = true;
420                                                << 334   if(particle && baseParticle) {
421   if(fTotal == tType) {                        << 335     if((particle->GetPDGMass() < MeV && baseParticle->GetPDGMass() > MeV) ||
422     emax  = maxKinEnergyCSDA;                  << 336        (particle->GetPDGMass() > MeV && baseParticle->GetPDGMass() < MeV)) yes = false;
423     bin   = nBinsCSDA;                         << 337 
424     table = theDEDXunRestrictedTable;          << 338   }
425   } else if(fRestricted == tType) {            << 339   if(!yes) {
426     table = theDEDXTable;                      << 340     G4cout << "Warning in G4VEnergyLossProcess::SetParticle: "
                                                   >> 341            << particle->GetParticleName()
                                                   >> 342            << " losses cannot be obtained from "
                                                   >> 343            << baseParticle->GetParticleName()
                                                   >> 344            << " losses" << G4endl;
427   } else {                                        345   } else {
428     G4cout << "G4VEnergyLossProcess::BuildDEDX << 346     DefineBaseParticle(p1);
429            << tType << G4endl;                 << 
430   }                                            << 
431   if(1 < verboseLevel) {                       << 
432     G4cout << "G4VEnergyLossProcess::BuildDEDX << 
433            << " for " << GetProcessName()      << 
434            << " and " << particle->GetParticle << 
435      << "spline=" << spline << G4endl;         << 
436   }                                            << 
437   if(nullptr == table) { return table; }       << 
438                                                << 
439   G4LossTableBuilder* bld = lManager->GetTable << 
440   G4EmTableUtil::BuildDEDXTable(this, particle << 
441                                 table, minKinE << 
442                                 verboseLevel,  << 
443   return table;                                << 
444 }                                              << 
445                                                << 
446 //....oooOO0OOooo........oooOO0OOooo........oo << 
447                                                << 
448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 
449 {                                              << 
450   if(nullptr == theLambdaTable) { return theLa << 
451                                                << 
452   G4double scale = theParameters->MaxKinEnergy << 
453   G4int nbin =                                 << 
454     theParameters->NumberOfBinsPerDecade()*G4l << 
455   scale = nbin/G4Log(scale);                   << 
456                                                << 
457   G4LossTableBuilder* bld = lManager->GetTable << 
458   G4EmTableUtil::BuildLambdaTable(this, partic << 
459                                   bld, theLamb << 
460                                   minKinEnergy << 
461                                   verboseLevel << 
462   return theLambdaTable;                       << 
463 }                                              << 
464                                                << 
465 //....oooOO0OOooo........oooOO0OOooo........oo << 
466                                                << 
467 void G4VEnergyLossProcess::StreamInfo(std::ost << 
468                 const G4ParticleDefinition& pa << 
469 {                                              << 
470   G4String indent = (rst ? "  " : "");         << 
471   out << std::setprecision(6);                 << 
472   out << G4endl << indent << GetProcessName()  << 
473   if (!rst) out << " for " << part.GetParticle << 
474   out << "  XStype:" << fXSType                << 
475       << "  SubType=" << GetProcessSubType() < << 
476       << "      dE/dx and range tables from "  << 
477       << G4BestUnit(minKinEnergy,"Energy")     << 
478       << " to " << G4BestUnit(maxKinEnergy,"En << 
479       << " in " << nBins << " bins" << G4endl  << 
480       << "      Lambda tables from threshold t << 
481       << G4BestUnit(maxKinEnergy,"Energy")     << 
482       << ", " << theParameters->NumberOfBinsPe << 
483       << " bins/decade, spline: " << spline    << 
484       << G4endl;                               << 
485   if(nullptr != theRangeTableForLoss && isIoni << 
486     out << "      StepFunction=(" << dRoverRan << 
487         << finalRange/mm << " mm)"             << 
488         << ", integ: " << fXSType              << 
489         << ", fluct: " << lossFluctuationFlag  << 
490         << ", linLossLim= " << linLossLimit    << 
491         << G4endl;                             << 
492   }                                            << 
493   StreamProcessInfo(out);                      << 
494   modelManager->DumpModelList(out, verboseLeve << 
495   if(nullptr != theCSDARangeTable && isIonisat << 
496     out << "      CSDA range table up"         << 
497         << " to " << G4BestUnit(maxKinEnergyCS << 
498         << " in " << nBinsCSDA << " bins" << G << 
499   }                                            << 
500   if(nSCoffRegions>0 && isIonisation) {        << 
501     out << "      Subcutoff sampling in " << n << 
502         << " regions" << G4endl;               << 
503   }                                            << 
504   if(2 < verboseLevel) {                       << 
505     for(std::size_t i=0; i<7; ++i) {           << 
506       auto ta = theData->Table(i);             << 
507       out << "      " << tnames[i] << " addres << 
508       if(nullptr != ta) { out << *ta << G4endl << 
509     }                                          << 
510   }                                               347   }
511 }                                                 348 }
512                                                   349 
513 //....oooOO0OOooo........oooOO0OOooo........oo    350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
514                                                   351 
515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 352 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, G4VEmFluctuationModel* fluc,
                                                   >> 353                                 const G4Region* region)
516 {                                                 354 {
517   if(nullptr == scoffRegions) {                << 355   modelManager->AddEmModel(order, p, fluc, region);
518     scoffRegions = new std::vector<const G4Reg << 
519   }                                            << 
520   // the region is in the list                 << 
521   if(!scoffRegions->empty()) {                 << 
522     for (auto & reg : *scoffRegions) {         << 
523       if (reg == r) { return; }                << 
524     }                                          << 
525   }                                            << 
526   // new region                                << 
527   scoffRegions->push_back(r);                  << 
528   ++nSCoffRegions;                             << 
529 }                                                 356 }
530                                                   357 
531 //....oooOO0OOooo........oooOO0OOooo........oo    358 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
532                                                   359 
533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 360 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, G4double emin, G4double emax)
534 {                                                 361 {
535   if(0 == nSCoffRegions) { return true; }      << 362   modelManager->UpdateEmModel(nam, emin, emax);
536   const G4Region* r = aTrack.GetVolume()->GetL << 
537   for(auto & reg : *scoffRegions) {            << 
538     if(r == reg) { return true; }              << 
539   }                                            << 
540   return false;                                << 
541 }                                                 363 }
542                                                   364 
543 //....oooOO0OOooo........oooOO0OOooo........oo    365 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
544                                                   366 
545 void G4VEnergyLossProcess::StartTracking(G4Tra << 367 void G4VEnergyLossProcess::AddSubCutoffProcessor(G4VSubCutoffProcessor* p,
                                                   >> 368                                        const G4Region* r)
546 {                                                 369 {
547   // reset parameters for the new track        << 370   if( !p ) {
548   theNumberOfInteractionLengthLeft = -1.0;     << 371     G4cout << "G4VEnergyLossProcess::AddSubCutoffProcessor WARNING: no SubCutoffProcessor defined." << G4endl;
549   mfpKinEnergy = DBL_MAX;                      << 372     return;
550   preStepLambda = 0.0;                         << 373   }
551   currentCouple = nullptr;                     << 374   G4RegionStore* regionStore = G4RegionStore::GetInstance();
552                                                << 375   if (!r) r = regionStore->GetRegion("DefaultRegionForTheWorld", false);
553   // reset ion                                 << 376   if (nSCoffRegions) {
554   if(isIon) {                                  << 377     for (G4int i=0; i<nSCoffRegions; i++) {
555     const G4double newmass = track->GetDefinit << 378       if (r == scoffRegions[i]) {
556     massRatio = (nullptr == baseParticle) ? CL << 379         if ( scoffProcessors[i] ) delete scoffProcessors[i];
557       : baseParticle->GetPDGMass()/newmass;    << 380   scoffProcessors[i] = p;
558     logMassRatio = G4Log(massRatio);           << 381         return;
559   }                                            << 382       }
560   // forced biasing only for primary particles << 
561   if(nullptr != biasManager) {                 << 
562     if(0 == track->GetParentID()) {            << 
563       biasFlag = true;                         << 
564       biasManager->ResetForcedInteraction();   << 
565     }                                             383     }
566   }                                               384   }
                                                   >> 385   scoffProcessors.push_back(p);
                                                   >> 386   scoffRegions.push_back(r);
                                                   >> 387   nSCoffRegions++;
567 }                                                 388 }
568                                                   389 
569 //....oooOO0OOooo........oooOO0OOooo........oo    390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
570                                                   391 
571 G4double G4VEnergyLossProcess::AlongStepGetPhy << 392 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable()
572                              const G4Track& tr << 393 {
573                              G4GPILSelection*  << 394 
574 {                                              << 395   if(0 < verboseLevel) {
575   G4double x = DBL_MAX;                        << 396     G4cout << "G4VEnergyLossProcess::BuildDEDXTable() for "
576   *selection = aGPILSelection;                 << 397            << GetProcessName()
577   if(isIonisation && currentModel->IsActive(pr << 398            << " and particle " << particle->GetParticleName()
578     GetScaledRangeForScaledEnergy(preStepScale << 399            << G4endl;
579     x = (useCutAsFinalRange) ? std::min(finalR << 400   }
580       currentCouple->GetProductionCuts()->GetP << 401 
581     x = (fRange > x) ? fRange*dRoverRange + x* << 402   // vectors to provide continues dE/dx
582       : fRange;                                << 403   G4DataVector factor;
583     /*                                         << 404   G4DataVector dedxLow;
584       G4cout<<"AlongStepGPIL: " << GetProcessN << 405   G4DataVector dedxHigh;
585   << " fRange=" << fRange << " finR=" << finR  << 406 
586     */                                         << 407   // Access to materials
                                                   >> 408   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 409         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 410   size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 411 
                                                   >> 412   G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples);
                                                   >> 413 
                                                   >> 414   if(0 < verboseLevel) {
                                                   >> 415     G4cout << numOfCouples << " materials"
                                                   >> 416            << " minKinEnergy= " << minKinEnergy
                                                   >> 417            << " maxKinEnergy= " << maxKinEnergy
                                                   >> 418            << G4endl;
                                                   >> 419   }
                                                   >> 420 
                                                   >> 421   for(size_t i=0; i<numOfCouples; i++) {
                                                   >> 422 
                                                   >> 423     // create physics vector and fill it
                                                   >> 424     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
                                                   >> 425     G4PhysicsVector* aVector = DEDXPhysicsVector(couple);
                                                   >> 426     modelManager->FillDEDXVector(aVector, couple);
                                                   >> 427 
                                                   >> 428     // Insert vector for this material into the table
                                                   >> 429     theTable->insert(aVector) ;
                                                   >> 430   }
                                                   >> 431 
                                                   >> 432   if(0 < verboseLevel) {
                                                   >> 433     G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for "
                                                   >> 434            << particle->GetParticleName()
                                                   >> 435            << G4endl;
                                                   >> 436     if(2 < verboseLevel) {
                                                   >> 437       G4cout << *theTable << G4endl;
                                                   >> 438     }
587   }                                               439   }
588   return x;                                    << 440 
                                                   >> 441   return theTable;
589 }                                                 442 }
590                                                   443 
591 //....oooOO0OOooo........oooOO0OOooo........oo    444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
592                                                   445 
593 G4double G4VEnergyLossProcess::PostStepGetPhys << 446 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTableForPreciseRange()
594                              const G4Track& tr << 447 {
595                              G4double   previo << 448 
596                              G4ForceCondition* << 449   if(0 < verboseLevel) {
597 {                                              << 450     G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange() for "
598   // condition is set to "Not Forced"          << 451            << GetProcessName()
599   *condition = NotForced;                      << 452            << " and particle " << particle->GetParticleName()
600   G4double x = DBL_MAX;                        << 453            << G4endl;
601                                                << 454   }
602   // initialisation of material, mass, charge, << 455 
603   // at the beginning of the step              << 456   // vectors to provide continues dE/dx
604   DefineMaterial(track.GetMaterialCutsCouple() << 457   G4DataVector factor;
605   preStepKinEnergy       = track.GetKineticEne << 458   G4DataVector dedxLow;
606   preStepScaledEnergy    = preStepKinEnergy*ma << 459   G4DataVector dedxHigh;
607   SelectModel(preStepScaledEnergy);            << 460 
608                                                << 461   // Access to materials
609   if(!currentModel->IsActive(preStepScaledEner << 462   const G4ProductionCutsTable* theCoupleTable=
610     theNumberOfInteractionLengthLeft = -1.0;   << 463         G4ProductionCutsTable::GetProductionCutsTable();
611     mfpKinEnergy = DBL_MAX;                    << 464   size_t numOfCouples = theCoupleTable->GetTableSize();
612     preStepLambda = 0.0;                       << 465 
613     currentInteractionLength = DBL_MAX;        << 466   G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples);
614     return x;                                  << 467 
615   }                                            << 468   if(0 < verboseLevel) {
616                                                << 469     G4cout << numOfCouples << " materials"
617   // change effective charge of a charged part << 470            << " minKinEnergy= " << minKinEnergy
618   if(isIon) {                                  << 471            << " maxKinEnergy= " << maxKinEnergy
619     const G4double q2 = currentModel->ChargeSq << 472            << G4endl;
620     fFactor = q2*biasFactor;                   << 473   }
621     if(baseMat) { fFactor *= (*theDensityFacto << 474 
622     reduceFactor = 1.0/(fFactor*massRatio);    << 475   for(size_t i=0; i<numOfCouples; i++) {
623     if (lossFluctuationFlag) {                 << 476 
624       auto fluc = currentModel->GetModelOfFluc << 477     // create physics vector and fill it
625       fluc->SetParticleAndCharge(track.GetDefi << 478     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
626     }                                          << 479     G4PhysicsVector* aVector = DEDXPhysicsVectorForPreciseRange(couple);
                                                   >> 480     modelManager->FillDEDXVectorForPreciseRange(aVector, couple);
                                                   >> 481 
                                                   >> 482     // Insert vector for this material into the table
                                                   >> 483     theTable->insert(aVector) ;
627   }                                               484   }
628                                                   485 
629   // forced biasing only for primary particles << 486   if(0 < verboseLevel) {
630   if(biasManager) {                            << 487     G4cout << "G4VEnergyLossProcess::BuildDEDXTableForPreciseRange(): table is built for " 
631     if(0 == track.GetParentID() && biasFlag && << 488            << particle->GetParticleName()
632        biasManager->ForcedInteractionRegion((G << 489            << G4endl;
633       return biasManager->GetStepLimit((G4int) << 490     if(2 < verboseLevel) {
                                                   >> 491       G4cout << *theTable << G4endl;
634     }                                             492     }
635   }                                               493   }
636                                                   494 
637   ComputeLambdaForScaledEnergy(preStepScaledEn << 495   return theTable;
638                                                << 496 }
639   // zero cross section                        << 497 
640   if(preStepLambda <= 0.0) {                   << 498 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
641     theNumberOfInteractionLengthLeft = -1.0;   << 499 
642     currentInteractionLength = DBL_MAX;        << 500 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable()
643   } else {                                     << 501 {
644                                                   502 
645     // non-zero cross section                  << 503   if(0 < verboseLevel) {
646     if (theNumberOfInteractionLengthLeft < 0.0 << 504     G4cout << "G4VEnergyLossProcess::BuildLambdaTable() for process "
                                                   >> 505            << GetProcessName() << " and particle "
                                                   >> 506            << particle->GetParticleName()
                                                   >> 507            << G4endl;
                                                   >> 508   }
                                                   >> 509 
                                                   >> 510   // Access to materials
                                                   >> 511   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 512         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 513   size_t numOfCouples = theCoupleTable->GetTableSize();
647                                                   514 
648       // beggining of tracking (or just after  << 515   G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples);
649       theNumberOfInteractionLengthLeft = -G4Lo << 
650       theInitialNumberOfInteractionLength = th << 
651                                                   516 
652     } else if(currentInteractionLength < DBL_M << 517   for(size_t i=0; i<numOfCouples; i++) {
653                                                   518 
654       // subtract NumberOfInteractionLengthLef << 519     // create physics vector and fill it
655       theNumberOfInteractionLengthLeft -=      << 520     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
656         previousStepSize/currentInteractionLen << 521     G4PhysicsVector* aVector = LambdaPhysicsVector(couple);
                                                   >> 522     modelManager->FillLambdaVector(aVector, couple);
                                                   >> 523 
                                                   >> 524     // Insert vector for this material into the table
                                                   >> 525     theTable->insert(aVector) ;
                                                   >> 526   }
657                                                   527 
658       theNumberOfInteractionLengthLeft =       << 528   if(0 < verboseLevel) {
659         std::max(theNumberOfInteractionLengthL << 529     G4cout << "Lambda table is built for "
                                                   >> 530            << particle->GetParticleName()
                                                   >> 531            << G4endl;
                                                   >> 532     if(2 < verboseLevel) {
                                                   >> 533       G4cout << *theTable << G4endl;
660     }                                             534     }
                                                   >> 535   }
661                                                   536 
662     // new mean free path and step limit       << 537   return theTable;
663     currentInteractionLength = 1.0/preStepLamb << 
664     x = theNumberOfInteractionLengthLeft * cur << 
665   }                                            << 
666 #ifdef G4VERBOSE                               << 
667   if (verboseLevel>2) {                        << 
668     G4cout << "G4VEnergyLossProcess::PostStepG << 
669     G4cout << "[ " << GetProcessName() << "]"  << 
670     G4cout << " for " << track.GetDefinition() << 
671            << " in Material  " <<  currentMate << 
672            << " Ekin(MeV)= " << preStepKinEner << 
673            << " track material: " << track.Get << 
674            <<G4endl;                           << 
675     G4cout << "MeanFreePath = " << currentInte << 
676            << "InteractionLength= " << x/cm << << 
677   }                                            << 
678 #endif                                         << 
679   return x;                                    << 
680 }                                                 538 }
681                                                   539 
682 //....oooOO0OOooo........oooOO0OOooo........oo    540 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
683                                                   541 
684 void                                           << 542 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaSubTable()
685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 543 {
686 {                                              << 544   if(0 < verboseLevel) {
687   // cross section increased with energy       << 545     G4cout << "G4VEnergyLossProcess::BuildLambdaSubTable() for process "
688   if(fXSType == fEmIncreasing) {               << 546            << GetProcessName() << " and particle "
689     if(e*invLambdaFactor < mfpKinEnergy) {     << 547            << particle->GetParticleName() << G4endl;
690       preStepLambda = GetLambdaForScaledEnergy << 548   }
691       mfpKinEnergy = (preStepLambda > 0.0) ? e << 
692     }                                          << 
693                                                   549 
694     // cross section has one peak              << 550   // Access to materials
695   } else if(fXSType == fEmOnePeak) {           << 551   const G4ProductionCutsTable* theCoupleTable=
696     const G4double epeak = (*theEnergyOfCrossS << 552         G4ProductionCutsTable::GetProductionCutsTable();
697     if(e <= epeak) {                           << 553   size_t numOfCouples = theCoupleTable->GetTableSize();
698       if(e*invLambdaFactor < mfpKinEnergy) {   << 554   G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples);
699         preStepLambda = GetLambdaForScaledEner << 
700         mfpKinEnergy = (preStepLambda > 0.0) ? << 
701       }                                        << 
702     } else if(e < mfpKinEnergy) {              << 
703       const G4double e1 = std::max(epeak, e*la << 
704       mfpKinEnergy = e1;                       << 
705       preStepLambda = GetLambdaForScaledEnergy << 
706     }                                          << 
707                                                   555 
708     // cross section has more than one peaks   << 556   for(size_t i=0; i<numOfCouples; i++) {
709   } else if(fXSType == fEmTwoPeaks) {          << 557 
710     G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 558     // create physics vector and fill it
711     const G4double e1peak = xs->e1peak;        << 559     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
712                                                << 560     G4PhysicsVector* aVector = SubLambdaPhysicsVector(couple);
713     // below the 1st peak                      << 561     modelManager->FillSubLambdaVector(aVector, couple);
714     if(e <= e1peak) {                          << 562 
715       if(e*invLambdaFactor < mfpKinEnergy) {   << 563     // Insert vector for this material into the table
716         preStepLambda = GetLambdaForScaledEner << 564     theTable->insert(aVector) ;
717         mfpKinEnergy = (preStepLambda > 0.0) ? << 
718       }                                        << 
719       return;                                  << 
720     }                                          << 
721     const G4double e1deep = xs->e1deep;        << 
722     // above the 1st peak, below the deep      << 
723     if(e <= e1deep) {                          << 
724       if(mfpKinEnergy >= e1deep || e <= mfpKin << 
725         const G4double e1 = std::max(e1peak, e << 
726         mfpKinEnergy = e1;                     << 
727         preStepLambda = GetLambdaForScaledEner << 
728       }                                        << 
729       return;                                  << 
730     }                                          << 
731     const G4double e2peak = xs->e2peak;        << 
732     // above the deep, below 2nd peak          << 
733     if(e <= e2peak) {                          << 
734       if(e*invLambdaFactor < mfpKinEnergy) {   << 
735         mfpKinEnergy = e;                      << 
736         preStepLambda = GetLambdaForScaledEner << 
737       }                                        << 
738       return;                                  << 
739     }                                          << 
740     const G4double e2deep = xs->e2deep;        << 
741     // above the 2nd peak, below the deep      << 
742     if(e <= e2deep) {                          << 
743       if(mfpKinEnergy >= e2deep || e <= mfpKin << 
744         const G4double e1 = std::max(e2peak, e << 
745         mfpKinEnergy = e1;                     << 
746         preStepLambda = GetLambdaForScaledEner << 
747       }                                        << 
748       return;                                  << 
749     }                                          << 
750     const G4double e3peak = xs->e3peak;        << 
751     // above the deep, below 3d peak           << 
752     if(e <= e3peak) {                          << 
753       if(e*invLambdaFactor < mfpKinEnergy) {   << 
754         mfpKinEnergy = e;                      << 
755         preStepLambda = GetLambdaForScaledEner << 
756       }                                        << 
757       return;                                  << 
758     }                                          << 
759     // above 3d peak                           << 
760     if(e <= mfpKinEnergy) {                    << 
761       const G4double e1 = std::max(e3peak, e*l << 
762       mfpKinEnergy = e1;                       << 
763       preStepLambda = GetLambdaForScaledEnergy << 
764     }                                          << 
765     // integral method is not used             << 
766   } else {                                     << 
767     preStepLambda = GetLambdaForScaledEnergy(e << 
768   }                                               565   }
                                                   >> 566 
                                                   >> 567   if(0 < verboseLevel) {
                                                   >> 568     G4cout << "Table is built for "
                                                   >> 569            << particle->GetParticleName()
                                                   >> 570            << G4endl;
                                                   >> 571   }
                                                   >> 572 
                                                   >> 573   return theTable;
769 }                                                 574 }
770                                                   575 
                                                   >> 576 
771 //....oooOO0OOooo........oooOO0OOooo........oo    577 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
772                                                   578 
773 G4VParticleChange* G4VEnergyLossProcess::Along    579 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track,
774                                                << 580                                                    const G4Step& step)
775 {                                                 581 {
776   fParticleChange.InitializeForAlongStep(track << 582   aParticleChange.Initialize(track);
777   // The process has range table - calculate e    583   // The process has range table - calculate energy loss
778   if(!isIonisation || !currentModel->IsActive( << 584   if(!theRangeTable) return &aParticleChange;
779     return &fParticleChange;                   << 
780   }                                            << 
781                                                   585 
                                                   >> 586   // Get the actual (true) Step length
782   G4double length = step.GetStepLength();         587   G4double length = step.GetStepLength();
783   G4double eloss  = 0.0;                          588   G4double eloss  = 0.0;
784                                                << 589   G4bool b;
785   /*                                           << 590 
                                                   >> 591   /*    
786   if(-1 < verboseLevel) {                         592   if(-1 < verboseLevel) {
787     const G4ParticleDefinition* d = track.GetP << 593     const G4ParticleDefinition* d = track.GetDefinition();
788     G4cout << "AlongStepDoIt for "                594     G4cout << "AlongStepDoIt for "
789            << GetProcessName() << " and partic << 595            << GetProcessName() << " and particle "
790            << "  eScaled(MeV)=" << preStepScal << 596            << d->GetParticleName()
791            << "  range(mm)=" << fRange/mm << " << 597            << "  eScaled(MeV)= " << preStepScaledEnergy/MeV
792            << "  rf=" << reduceFactor << "  q^ << 598            << "  slim(mm)= " << fRange/mm
793            << " md=" << d->GetPDGMass() << "   << 599            << "  s(mm)= " << length/mm
794            << "  " << track.GetMaterial()->Get << 600            << "  q^2= " << chargeSqRatio
                                                   >> 601            << " md= " << d->GetPDGMass()
                                                   >> 602            << G4endl;
795   }                                               603   }
796   */                                              604   */
797   const G4DynamicParticle* dynParticle = track << 605     // low energy deposit case
                                                   >> 606   if (length >= fRange) {
                                                   >> 607     eloss = preStepKinEnergy;
798                                                   608 
799   // define new weight for primary and seconda << 609   } else if(preStepScaledEnergy <= lowKinEnergy) {
800   G4double weight = fParticleChange.GetParentW << 
801   if(weightFlag) {                             << 
802     weight /= biasFactor;                      << 
803     fParticleChange.ProposeWeight(weight);     << 
804   }                                            << 
805                                                   610 
806   // stopping, check actual range and kinetic  << 611     G4double x = 1.0 - length/fRange;
807   if (length >= fRange || preStepKinEnergy <=  << 612     eloss = preStepKinEnergy*(1.0 - x*x);
808     eloss = preStepKinEnergy;                  << 
809     if (useDeexcitation) {                     << 
810       atomDeexcitation->AlongStepDeexcitation( << 
811                                                << 
812       if(scTracks.size() > 0) { FillSecondarie << 
813       eloss = std::max(eloss, 0.0);            << 
814     }                                          << 
815     fParticleChange.SetProposedKineticEnergy(0 << 
816     fParticleChange.ProposeLocalEnergyDeposit( << 
817     return &fParticleChange;                   << 
818   }                                            << 
819   // zero step length with non-zero range      << 
820   if(length <= 0.0) { return &fParticleChange; << 
821                                                   613 
822   // Short step                                   614   // Short step
823   eloss = length*GetDEDXForScaledEnergy(preSte << 615   } else if( length <= linLossLimit * fRange ) {
824                                         LogSca << 616     eloss = (((*theDEDXTable)[currentMaterialIndex])->
825   /*                                           << 617                GetValue(preStepScaledEnergy, b))*length*chargeSqRatio;
826   G4cout << "##### Short STEP: eloss= " << elo << 
827    << " Escaled=" << preStepScaledEnergy       << 
828    << " R=" << fRange                          << 
829    << " L=" << length                          << 
830    << " fFactor=" << fFactor << " minE=" << mi << 
831    << " idxBase=" << basedCoupleIndex << G4end << 
832   */                                           << 
833   // Long step                                 << 
834   if(eloss > preStepKinEnergy*linLossLimit) {  << 
835                                                   618 
836     const G4double x = (fRange - length)/reduc << 619   // Long step
837     const G4double de = preStepKinEnergy - Sca << 620   } else {
838     if(de > 0.0) { eloss = de; }               << 621     G4double x = (fRange-length)/reduceFactor;
839     /*                                         << 622     G4double postStepScaledEnergy = ((*theInverseRangeTable)[currentMaterialIndex])->
840     if(-1 < verboseLevel)                      << 623              GetValue(x, b);
841       G4cout << "  Long STEP: rPre(mm)="       << 624     eloss = (preStepScaledEnergy - postStepScaledEnergy)/massRatio;
842              << GetScaledRangeForScaledEnergy( << 625 
843              << " x(mm)=" << x/mm              << 626     if (eloss <= 0.0) {
844              << " eloss(MeV)=" << eloss/MeV    << 627       eloss = (((*theDEDXTable)[currentMaterialIndex])->
845        << " rFactor=" << reduceFactor          << 628                GetValue(preStepScaledEnergy, b))*length*chargeSqRatio;
846        << " massRatio=" << massRatio           << 629     }
                                                   >> 630 
                                                   >> 631     /*      
                                                   >> 632     if(-1 < verboseLevel) {
                                                   >> 633       G4cout << "fRange(mm)= " << fRange/mm
                                                   >> 634              << " xPost(mm)= " << x/mm
                                                   >> 635              << " ePre(MeV)= " << preStepScaledEnergy/MeV
                                                   >> 636              << " ePost(MeV)= " << postStepScaledEnergy/MeV
                                                   >> 637              << " eloss(MeV)= " << eloss/MeV
                                                   >> 638              << " eloss0(MeV)= " << (((*theDEDXTable)[currentMaterialIndex])->
                                                   >> 639                GetValue(preStepScaledEnergy, b))*length*chargeSqRatio
847              << G4endl;                           640              << G4endl;
                                                   >> 641     }
848     */                                            642     */
                                                   >> 643 
849   }                                               644   }
850                                                   645 
                                                   >> 646   const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
                                                   >> 647   G4double tmax = MaxSecondaryEnergy(dynParticle);
                                                   >> 648   tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]);
                                                   >> 649 
851   /*                                              650   /*
852   if(-1 < verboseLevel ) {                     << 651   G4double eloss0 = eloss;
853     G4cout << "Before fluct: eloss(MeV)= " <<  << 652   if(-1 < verboseLevel) {
                                                   >> 653     //G4cout << *theDEDXTable << G4endl;
                                                   >> 654     G4cout << "eloss(MeV)= " << eloss/MeV
                                                   >> 655            << " eloss0(MeV)= " << (((*theDEDXTable)[currentMaterialIndex])->
                                                   >> 656                GetValue(preStepScaledEnergy, b))*length*chargeSqRatio
                                                   >> 657            << " r0(mm)= " << (((*theRangeTable)[currentMaterialIndex])->
                                                   >> 658                GetValue(preStepScaledEnergy, b))
                                                   >> 659            << " tmax= " << tmax
854            << " e-eloss= " << preStepKinEnergy    660            << " e-eloss= " << preStepKinEnergy-eloss
855            << " step(mm)= " << length/mm << "  << 661       //   << " mat= " << currentMaterial
856            << " fluct= " << lossFluctuationFla << 662       //   << " matIdx= " << currentMaterialIndex
                                                   >> 663       //   << " preCouple= " << (step.GetPreStepPoint())->GetMaterialCutsCouple()
                                                   >> 664       //   << " postCouple= " << (step.GetPostStepPoint())->GetMaterialCutsCouple()
                                                   >> 665       //   << " rangeTable= " << theRangeTable
                                                   >> 666            << G4endl;
857   }                                               667   }
858   */                                              668   */
859                                                   669 
860   const G4double cut = (*theCuts)[currentCoupl << 670   // Sample fluctuations
861   G4double esec = 0.0;                         << 671   if (lossFluctuationFlag && eloss < preStepKinEnergy && eloss > 0.0) {
862                                                   672 
863   // Corrections, which cannot be tabulated    << 673     eloss = modelManager->SampleFluctuations(currentMaterial, dynParticle,
864   if(isIon) {                                  << 674                                        tmax, length, eloss, preStepScaledEnergy,
865     currentModel->CorrectionsAlongStep(current << 675                currentMaterialIndex);
866                                        length, << 
867     eloss = std::max(eloss, 0.0);              << 
868   }                                               676   }
869                                                   677 
870   // Sample fluctuations if not full energy lo << 678   /*
871   if(eloss >= preStepKinEnergy) {              << 679   if(-1 < verboseLevel) {
872     eloss = preStepKinEnergy;                  << 680     G4cout << "eloss(MeV)= " << eloss/MeV
873                                                << 681            << " fluc= " << (eloss-eloss0)/MeV
874   } else if (lossFluctuationFlag) {            << 682            << " currentChargeSquare= " << chargeSquare
875     const G4double tmax = currentModel->MaxSec << 683            << " massRatio= " << massRatio
876     const G4double tcut = std::min(cut, tmax); << 684            << G4endl;
877     G4VEmFluctuationModel* fluc = currentModel << 
878     eloss = fluc->SampleFluctuations(currentCo << 
879                                      tcut, tma << 
880     /*                                         << 
881     if(-1 < verboseLevel)                      << 
882       G4cout << "After fluct: eloss(MeV)= " << << 
883              << " fluc= " << (eloss-eloss0)/Me << 
884              << " ChargeSqRatio= " << chargeSq << 
885              << " massRatio= " << massRatio << << 
886     */                                         << 
887   }                                               685   }
                                                   >> 686   */
                                                   >> 687 
                                                   >> 688   // Subcutoff and/or deexcitation
                                                   >> 689   std::vector<G4Track*>* newp =
                                                   >> 690            SecondariesAlongStep(step, tmax, eloss, preStepScaledEnergy);
                                                   >> 691 
                                                   >> 692   if(newp) {
                                                   >> 693 
                                                   >> 694     G4int n = newp->size();
                                                   >> 695     if(n > 0) {
                                                   >> 696       aParticleChange.SetNumberOfSecondaries(n);
                                                   >> 697       G4Track* t;
                                                   >> 698       G4double e;
                                                   >> 699       for (G4int i=0; i<n; i++) {
                                                   >> 700         t = (*newp)[i];
                                                   >> 701         e = t->GetKineticEnergy();
                                                   >> 702         const G4ParticleDefinition* pd = t->GetDefinition();
                                                   >> 703         if (pd != G4Gamma::Gamma() && pd != G4Electron::Electron() ) e += pd->GetPDGMass();
888                                                   704 
889   // deexcitation                              << 705         preStepKinEnergy -= e;
890   if (useDeexcitation) {                       << 706         aParticleChange.AddSecondary(t);
891     G4double esecfluo = preStepKinEnergy;      << 707       }
892     G4double de = esecfluo;                    << 708     }
893     atomDeexcitation->AlongStepDeexcitation(sc << 709     delete newp;
894                                             de << 
895                                                << 
896     // sum of de-excitation energies           << 
897     esecfluo -= de;                            << 
898                                                << 
899     // subtracted from energy loss             << 
900     if(eloss >= esecfluo) {                    << 
901       esec  += esecfluo;                       << 
902       eloss -= esecfluo;                       << 
903     } else {                                   << 
904       esec += esecfluo;                        << 
905       eloss = 0.0;                             << 
906     }                                          << 
907   }                                            << 
908   if(nullptr != subcutProducer && IsRegionForC << 
909     subcutProducer->SampleSecondaries(step, sc << 
910   }                                            << 
911   // secondaries from atomic de-excitation and << 
912   if(!scTracks.empty()) { FillSecondariesAlong << 
913                                                << 
914   // Energy balance                            << 
915   G4double finalT = preStepKinEnergy - eloss - << 
916   if (finalT <= lowestKinEnergy) {             << 
917     eloss += finalT;                           << 
918     finalT = 0.0;                              << 
919   } else if(isIon) {                           << 
920     fParticleChange.SetProposedCharge(         << 
921       currentModel->GetParticleCharge(track.Ge << 
922                                       currentM << 
923   }                                               710   }
924   eloss = std::max(eloss, 0.0);                << 
925                                                   711 
926   fParticleChange.SetProposedKineticEnergy(fin << 712   preStepKinEnergy -= eloss;
927   fParticleChange.ProposeLocalEnergyDeposit(el << 713 
928   /*                                              714   /*
929   if(-1 < verboseLevel) {                         715   if(-1 < verboseLevel) {
930     G4double del = finalT + eloss + esec - pre << 716     G4cout << "eloss(MeV)= " << eloss/MeV
931     G4cout << "Final value eloss(MeV)= " << el << 
932            << " preStepKinEnergy= " << preStep    717            << " preStepKinEnergy= " << preStepKinEnergy
933            << " postStepKinEnergy= " << finalT << 
934            << " de(keV)= " << del/keV          << 
935            << " lossFlag= " << lossFluctuation    718            << " lossFlag= " << lossFluctuationFlag
936            << "  status= " << track.GetTrackSt << 
937            << G4endl;                             719            << G4endl;
938   }                                               720   }
939   */                                              721   */
940   return &fParticleChange;                     << 
941 }                                              << 
942                                                   722 
943 //....oooOO0OOooo........oooOO0OOooo........oo << 723   if (preStepKinEnergy <= 0.0) {
944                                                   724 
945 void G4VEnergyLossProcess::FillSecondariesAlon << 725     eloss += preStepKinEnergy;
946 {                                              << 726     preStepKinEnergy = 0.0;
947   const std::size_t n0 = scTracks.size();      << 
948   G4double weight = wt;                        << 
949   // weight may be changed by biasing manager  << 
950   if(biasManager) {                            << 
951     if(biasManager->SecondaryBiasingRegion((G4 << 
952       weight *=                                << 
953         biasManager->ApplySecondaryBiasing(scT << 
954     }                                          << 
955   }                                            << 
956                                                   727 
957   // fill secondaries                          << 728     if (hasRestProcess) aParticleChange.SetStatusChange(fStopButAlive);
958   const std::size_t n = scTracks.size();       << 729     else                aParticleChange.SetStatusChange(fStopAndKill);
959   fParticleChange.SetNumberOfSecondaries((G4in << 
960                                                << 
961   for(std::size_t i=0; i<n; ++i) {             << 
962     G4Track* t = scTracks[i];                  << 
963     if(nullptr != t) {                         << 
964       t->SetWeight(weight);                    << 
965       pParticleChange->AddSecondary(t);        << 
966       G4int pdg = t->GetDefinition()->GetPDGEn << 
967       if (i < n0) {                            << 
968         if (pdg == 22) {                       << 
969     t->SetCreatorModelID(gpixeID);             << 
970         } else if (pdg == 11) {                << 
971           t->SetCreatorModelID(epixeID);       << 
972         } else {                               << 
973           t->SetCreatorModelID(biasID);        << 
974   }                                            << 
975       } else {                                 << 
976   t->SetCreatorModelID(biasID);                << 
977       }                                        << 
978     }                                          << 
979   }                                               730   }
980   scTracks.clear();                            << 731 
                                                   >> 732   aParticleChange.SetEnergyChange(preStepKinEnergy);
                                                   >> 733   aParticleChange.SetLocalEnergyDeposit(eloss);
                                                   >> 734 
                                                   >> 735   return &aParticleChange;
981 }                                                 736 }
982                                                   737 
983 //....oooOO0OOooo........oooOO0OOooo........oo    738 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
984                                                   739 
985 G4VParticleChange* G4VEnergyLossProcess::PostS    740 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track,
986                                                << 741                                                   const G4Step& step)
987 {                                                 742 {
988   // clear number of interaction lengths in an << 743   aParticleChange.Initialize(track);
989   theNumberOfInteractionLengthLeft = -1.0;     << 744   G4double finalT = track.GetKineticEnergy();
990   mfpKinEnergy = DBL_MAX;                      << 745   G4double postStepScaledEnergy = finalT*massRatio;
991                                                   746 
992   fParticleChange.InitializeForPostStep(track) << 747   // Integral approach
993   const G4double finalT = track.GetKineticEner << 748   if (integral) {
994                                                << 749     G4bool b;
995   const G4double postStepScaledEnergy = finalT << 750     G4double postStepLambda = chargeSqRatio*
996   SelectModel(postStepScaledEnergy);           << 751       (((*theLambdaTable)[currentMaterialIndex])->GetValue(postStepScaledEnergy,b));
997                                                   752 
998   if(!currentModel->IsActive(postStepScaledEne << 753     if(preStepLambda*G4UniformRand() > postStepLambda)
999     return &fParticleChange;                   << 754       return G4VContinuousDiscreteProcess::PostStepDoIt(track,step);
1000   }                                              755   }
                                                   >> 756 
                                                   >> 757   G4VEmModel* currentModel = SelectModel(postStepScaledEnergy);
                                                   >> 758   G4double tcut = (*theCuts)[currentMaterialIndex];
                                                   >> 759   const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
                                                   >> 760   G4double tmax = currentModel->MaxSecondaryEnergy(dynParticle);
                                                   >> 761 
1001   /*                                             762   /*
1002   if(1 < verboseLevel) {                      << 763   if(0 < verboseLevel) {
1003     G4cout<<GetProcessName()<<" PostStepDoIt: << 764     const G4ParticleDefinition* pd = dynParticle->GetDefinition();
                                                   >> 765     G4cout << "G4VEnergyLossProcess::PostStepDoIt: Sample secondary; E= " << finalT/MeV
                                                   >> 766            << " MeV; model= (" << currentModel->LowEnergyLimit(pd)
                                                   >> 767            << ", " <<  currentModel->HighEnergyLimit(pd) << ")"
                                                   >> 768            << G4endl;
1004   }                                              769   }
1005   */                                             770   */
1006   // forced process - should happen only once << 
1007   if(biasFlag) {                              << 
1008     if(biasManager->ForcedInteractionRegion(( << 
1009       biasFlag = false;                       << 
1010     }                                         << 
1011   }                                           << 
1012   const G4DynamicParticle* dp = track.GetDyna << 
1013                                               << 
1014   // Integral approach                        << 
1015   if (fXSType != fEmNoIntegral) {             << 
1016     const G4double logFinalT = dp->GetLogKine << 
1017     G4double lx = GetLambdaForScaledEnergy(po << 
1018                                            lo << 
1019     lx = std::max(lx, 0.0);                   << 
1020                                               << 
1021     // if both lg and lx are zero then no int << 
1022     if(preStepLambda*G4UniformRand() >= lx) { << 
1023       return &fParticleChange;                << 
1024     }                                         << 
1025   }                                           << 
1026                                                  771 
1027   // define new weight for primary and second << 772   if (tcut < tmax)
1028   G4double weight = fParticleChange.GetParent << 773     SecondariesPostStep(currentModel,currentCouple,dynParticle,tcut,finalT);
1029   if(weightFlag) {                            << 
1030     weight /= biasFactor;                     << 
1031     fParticleChange.ProposeWeight(weight);    << 
1032   }                                           << 
1033                                               << 
1034   const G4double tcut = (*theCuts)[currentCou << 
1035                                               << 
1036   // sample secondaries                       << 
1037   secParticles.clear();                       << 
1038   currentModel->SampleSecondaries(&secParticl << 
1039                                               << 
1040   const G4int num0 = (G4int)secParticles.size << 
1041                                               << 
1042   // bremsstrahlung splitting or Russian roul << 
1043   if(biasManager) {                           << 
1044     if(biasManager->SecondaryBiasingRegion((G << 
1045       G4double eloss = 0.0;                   << 
1046       weight *= biasManager->ApplySecondaryBi << 
1047                                       secPart << 
1048                                       track,  << 
1049                                       &fParti << 
1050                                       (G4int) << 
1051                                       step.Ge << 
1052       if(eloss > 0.0) {                       << 
1053         eloss += fParticleChange.GetLocalEner << 
1054         fParticleChange.ProposeLocalEnergyDep << 
1055       }                                       << 
1056     }                                         << 
1057   }                                           << 
1058                                                  774 
1059   // save secondaries                         << 775   if (finalT <= 0.0) {
1060   const G4int num = (G4int)secParticles.size( << 776     aParticleChange.SetEnergyChange(0.0);
1061   if(num > 0) {                               << 
1062                                               << 
1063     fParticleChange.SetNumberOfSecondaries(nu << 
1064     G4double time = track.GetGlobalTime();    << 
1065                                               << 
1066     G4int n1(0), n2(0);                       << 
1067     if(num0 > mainSecondaries) {              << 
1068       currentModel->FillNumberOfSecondaries(n << 
1069     }                                         << 
1070                                                  777 
1071     for (G4int i=0; i<num; ++i) {             << 778     if (hasRestProcess) aParticleChange.SetStatusChange(fStopButAlive);
1072       if(nullptr != secParticles[i]) {        << 779     else                aParticleChange.SetStatusChange(fStopAndKill);
1073         G4Track* t = new G4Track(secParticles << 
1074         t->SetTouchableHandle(track.GetToucha << 
1075         if (biasManager) {                    << 
1076           t->SetWeight(weight * biasManager-> << 
1077         } else {                              << 
1078           t->SetWeight(weight);               << 
1079         }                                     << 
1080         if(i < num0) {                        << 
1081           t->SetCreatorModelID(secID);        << 
1082         } else if(i < num0 + n1) {            << 
1083           t->SetCreatorModelID(tripletID);    << 
1084         } else {                              << 
1085           t->SetCreatorModelID(biasID);       << 
1086         }                                     << 
1087                                                  780 
1088         //G4cout << "Secondary(post step) has << 781     return pParticleChange;
1089         //       << ", kenergy " << t->GetKin << 
1090         //       << " time= " << time/ns << " << 
1091         pParticleChange->AddSecondary(t);     << 
1092       }                                       << 
1093     }                                         << 
1094   }                                              782   }
1095                                                  783 
1096   if(0.0 == fParticleChange.GetProposedKineti << 784   aParticleChange.SetEnergyChange(finalT);
1097      fAlive == fParticleChange.GetTrackStatus << 
1098     if(particle->GetProcessManager()->GetAtRe << 
1099          { fParticleChange.ProposeTrackStatus << 
1100     else { fParticleChange.ProposeTrackStatus << 
1101   }                                           << 
1102                                                  785 
1103   /*                                          << 786   return G4VContinuousDiscreteProcess::PostStepDoIt(track,step);
1104   if(-1 < verboseLevel) {                     << 
1105     G4cout << "::PostStepDoIt: Sample seconda << 
1106     << fParticleChange.GetProposedKineticEner << 
1107            << " MeV; model= (" << currentMode << 
1108            << ", " <<  currentModel->HighEner << 
1109            << "  preStepLambda= " << preStepL << 
1110            << "  dir= " << track.GetMomentumD << 
1111            << "  status= " << track.GetTrackS << 
1112            << G4endl;                         << 
1113   }                                           << 
1114   */                                          << 
1115   return &fParticleChange;                    << 
1116 }                                                787 }
1117                                                  788 
1118 //....oooOO0OOooo........oooOO0OOooo........o    789 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1119                                                  790 
1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl << 791 void G4VEnergyLossProcess::PrintInfoDefinition()
1121        const G4ParticleDefinition* part, cons << 
1122 {                                                792 {
1123   if (!isMaster || nullptr != baseParticle || << 793   G4cout << G4endl << GetProcessName() << ":   tables are built for  " 
1124   for(std::size_t i=0; i<7; ++i) {            << 794          << particle->GetParticleName()
1125     // ionisation table only for ionisation p << 795          << G4endl
1126     if (nullptr == theData->Table(i) || (!isI << 796          << "      dE/dx and range tables from "
1127       continue;                               << 797    << G4BestUnit(minKinEnergy,"Energy")
1128     }                                         << 798          << " to " << G4BestUnit(maxKinEnergy,"Energy")
1129     if (-1 < verboseLevel) {                  << 799          << " in " << nDEDXBins << " bins." << G4endl
1130       G4cout << "G4VEnergyLossProcess::StoreP << 800          << "      Lambda tables from threshold to "
1131        << "  " << particle->GetParticleName() << 801          << G4BestUnit(maxKinEnergy,"Energy")
1132        << "  " << GetProcessName()            << 802          << " in " << nLambdaBins << " bins."
1133        << "  " << tnames[i] << "  " << theDat << 803          << G4endl;
1134     }                                         << 804   if(theRangeTable) {
1135     if (!G4EmTableUtil::StoreTable(this, part << 805     G4cout << "      Step function: finalRange(mm)= " << finalRange/mm
1136            dir, tnames[i], verboseLevel, asci << 806            << ", dRoverRange= " << dRoverRange 
1137       return false;                           << 807            << ", integral: " << integral
1138     }                                         << 808            << G4endl;
1139   }                                              809   }
1140   return true;                                << 810   /*
1141 }                                             << 811       G4cout << "DEDXTable address= " << theDEDXTable << G4endl;
1142                                               << 812       if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl;
1143 //....oooOO0OOooo........oooOO0OOooo........o << 813       G4cout << "RangeTable address= " << theRangeTable << G4endl;
                                                   >> 814       if(theRangeTable) G4cout << (*theRangeTable) << G4endl;
                                                   >> 815       G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl;
                                                   >> 816       if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl;
                                                   >> 817   */
                                                   >> 818   if(0 < verboseLevel) {
                                                   >> 819     G4cout << "Tables are built for " << particle->GetParticleName()
                                                   >> 820            << " IntegralFlag= " <<  integral
                                                   >> 821            << G4endl;
1144                                                  822 
1145 G4bool                                        << 823     if(2 < verboseLevel) {
1146 G4VEnergyLossProcess::RetrievePhysicsTable(co << 824       G4cout << "DEDXTable address= " << theDEDXTable << G4endl;
1147                                            co << 825       if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl;
1148 {                                             << 826       G4cout << "RangeTable address= " << theRangeTable << G4endl;
1149   if (!isMaster || nullptr != baseParticle || << 827       if(theRangeTable) G4cout << (*theRangeTable) << G4endl;
1150   for(std::size_t i=0; i<7; ++i) {            << 828       G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl;
1151     // ionisation table only for ionisation p << 829       if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl;
1152     if (!isIonisation && 1 == i) { continue;  << 830       G4cout << "LambdaTable address= " << theLambdaTable << G4endl;
1153     if(!G4EmTableUtil::RetrieveTable(this, pa << 831       if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl;
1154                                      verboseL << 832       G4cout << "SubLambdaTable address= " << theSubLambdaTable << G4endl;
1155       return false;                           << 833       if(theSubLambdaTable) G4cout << (*theSubLambdaTable) << G4endl;
1156     }                                            834     }
1157   }                                              835   }
1158   return true;                                << 
1159 }                                                836 }
1160                                                  837 
1161 //....oooOO0OOooo........oooOO0OOooo........o    838 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162                                                  839 
1163 G4double G4VEnergyLossProcess::GetDEDXDispers << 840 void G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p)
1164                                   const G4Mat << 
1165                                   const G4Dyn << 
1166                                         G4dou << 
1167 {                                                841 {
1168   DefineMaterial(couple);                     << 842   if(theDEDXTable) theDEDXTable->clearAndDestroy();
1169   G4double ekin = dp->GetKineticEnergy();     << 843   theDEDXTable = p;
1170   SelectModel(ekin*massRatio);                << 
1171   G4double tmax = currentModel->MaxSecondaryK << 
1172   G4double tcut = std::min(tmax,(*theCuts)[cu << 
1173   G4double d = 0.0;                           << 
1174   G4VEmFluctuationModel* fm = currentModel->G << 
1175   if(nullptr != fm) { d = fm->Dispersion(curr << 
1176   return d;                                   << 
1177 }                                                844 }
1178                                                  845 
1179 //....oooOO0OOooo........oooOO0OOooo........o    846 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1180                                                  847 
1181 G4double                                      << 848 void G4VEnergyLossProcess::SetRangeTable(G4PhysicsTable* p)
1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 
1183                                             c << 
1184                                             G << 
1185 {                                                849 {
1186   // Cross section per volume is calculated   << 850   if(theRangeTable) theRangeTable->clearAndDestroy();
1187   DefineMaterial(couple);                     << 851   theRangeTable = p;
1188   G4double cross = 0.0;                       << 852   size_t n = p->length();
1189   if (nullptr != theLambdaTable) {            << 853   if(0 < n) {
1190     cross = GetLambdaForScaledEnergy(kineticE << 854     G4PhysicsVector* pv = (*p)[0];
1191                                      logKinet << 855     G4bool b;
1192   } else {                                    << 856     size_t nbins = pv->GetVectorLength();
1193     SelectModel(kineticEnergy*massRatio);     << 857     highKinEnergyForRange = pv->GetLowEdgeEnergy(nbins);
1194     cross = (!baseMat) ? biasFactor : biasFac << 858     theDEDXAtMaxEnergy = new G4double [n];
1195     cross *= (currentModel->CrossSectionPerVo << 859     theRangeAtMaxEnergy = new G4double [n];
1196                                               << 860 
                                                   >> 861     for (size_t i=0; i<n; i++) {
                                                   >> 862       pv = (*p)[i];
                                                   >> 863       G4double r2 = pv->GetValue(highKinEnergyForRange, b);
                                                   >> 864       G4double dedx = ((*theDEDXTable)[i])->GetValue(highKinEnergyForRange,b);
                                                   >> 865       theDEDXAtMaxEnergy[i] = dedx;
                                                   >> 866       theRangeAtMaxEnergy[i] = r2;
                                                   >> 867       //G4cout << "i= " << i << " e2= " << e2 << " r2= " << r2 
                                                   >> 868       //<< " dedx= " << dedx << G4endl;
                                                   >> 869     }
1197   }                                              870   }
1198   return std::max(cross, 0.0);                << 
1199 }                                                871 }
1200                                                  872 
1201 //....oooOO0OOooo........oooOO0OOooo........o    873 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1202                                                  874 
1203 G4double G4VEnergyLossProcess::MeanFreePath(c << 875 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p)
1204 {                                                876 {
1205   DefineMaterial(track.GetMaterialCutsCouple( << 877   theSecondaryRangeTable = p;
1206   const G4double kinEnergy    = track.GetKine << 
1207   const G4double logKinEnergy = track.GetDyna << 
1208   const G4double cs = GetLambdaForScaledEnerg << 
1209                                               << 
1210   return (0.0 < cs) ? 1.0/cs : DBL_MAX;       << 
1211 }                                                878 }
1212                                                  879 
1213 //....oooOO0OOooo........oooOO0OOooo........o    880 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1214                                                  881 
1215 G4double G4VEnergyLossProcess::ContinuousStep << 882 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p)
1216                                               << 
1217                                               << 
1218 {                                                883 {
1219   return AlongStepGetPhysicalInteractionLengt << 884   if(theInverseRangeTable) theInverseRangeTable->clearAndDestroy();
                                                   >> 885   theInverseRangeTable = p;
1220 }                                                886 }
1221                                                  887 
1222 //....oooOO0OOooo........oooOO0OOooo........o    888 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1223                                                  889 
1224 G4double G4VEnergyLossProcess::GetMeanFreePat << 890 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p)
1225                              const G4Track& t << 
1226                              G4double,        << 
1227                              G4ForceCondition << 
1228                                               << 
1229 {                                                891 {
1230   *condition = NotForced;                     << 892   if(theLambdaTable) theLambdaTable->clearAndDestroy();
1231   return MeanFreePath(track);                 << 893   theLambdaTable = p;
                                                   >> 894   tablesAreBuilt = true;
1232 }                                                895 }
1233                                                  896 
1234 //....oooOO0OOooo........oooOO0OOooo........o    897 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1235                                                  898 
1236 G4double G4VEnergyLossProcess::GetContinuousS << 899 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p)
1237                 const G4Track&,               << 
1238                 G4double, G4double, G4double& << 
1239 {                                                900 {
1240   return DBL_MAX;                             << 901   if(theSubLambdaTable) theSubLambdaTable->clearAndDestroy();
                                                   >> 902   theSubLambdaTable = p;
                                                   >> 903   if (nSCoffRegions) {
                                                   >> 904     for (G4int i=0; i<nSCoffRegions; i++) {
                                                   >> 905       scoffProcessors[i]->SetLambdaSubTable(theSubLambdaTable);
                                                   >> 906     }
                                                   >> 907   }
1241 }                                                908 }
1242                                                  909 
1243 //....oooOO0OOooo........oooOO0OOooo........o    910 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1244                                                  911 
1245 G4PhysicsVector*                              << 912 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVector(const G4MaterialCutsCouple* couple)
1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 
1247                                           G4d << 
1248 {                                                913 {
1249   DefineMaterial(couple);                     << 914   G4int nbins = 3;
1250   G4PhysicsVector* v = (*theLambdaTable)[base << 915   if( couple->IsUsed() ) nbins = nDEDXBins;
1251   return new G4PhysicsVector(*v);             << 916   //G4double emax = maxKinEnergy*exp( log(maxKinEnergy/minKinEnergy) / ((G4double)(nbins-1)) );
                                                   >> 917   G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nbins);
                                                   >> 918   return v;
1252 }                                                919 }
1253                                                  920 
1254 //....oooOO0OOooo........oooOO0OOooo........o    921 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1255                                                  922 
1256 void                                          << 923 G4PhysicsVector* G4VEnergyLossProcess::DEDXPhysicsVectorForPreciseRange(
1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT << 924                              const G4MaterialCutsCouple* couple)
1258 {                                                925 {
1259   if(1 < verboseLevel) {                      << 926   G4int nbins = 3;
1260     G4cout << "### Set DEDX table " << p << " << 927   if( couple->IsUsed() ) nbins = nDEDXBinsForRange;
1261      << "  " <<  theDEDXunRestrictedTable <<  << 928   //G4double emax = maxKinEnergy*exp( log(maxKinEnergy/minKinEnergy) / ((G4double)(nbins-1)) );
1262            << " for " << particle->GetParticl << 929   G4PhysicsVector* v = new G4PhysicsLogVector(minKinEnergy, maxKinEnergyForRange, nbins);
1263            << " and process " << GetProcessNa << 930   return v;
1264      << " type=" << tType << " isIonisation:" << 
1265   }                                           << 
1266   if(fTotal == tType) {                       << 
1267     theDEDXunRestrictedTable = p;             << 
1268   } else if(fRestricted == tType) {           << 
1269     theDEDXTable = p;                         << 
1270     if(isMaster && nullptr == baseParticle) { << 
1271       theData->UpdateTable(theDEDXTable, 0);  << 
1272     }                                         << 
1273   } else if(fIsIonisation == tType) {         << 
1274     theIonisationTable = p;                   << 
1275     if(isMaster && nullptr == baseParticle) { << 
1276       theData->UpdateTable(theIonisationTable << 
1277     }                                         << 
1278   }                                           << 
1279 }                                                931 }
1280                                                  932 
1281 //....oooOO0OOooo........oooOO0OOooo........o    933 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1282                                                  934 
1283 void G4VEnergyLossProcess::SetCSDARangeTable( << 935 G4PhysicsVector* G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple)
1284 {                                                936 {
1285   theCSDARangeTable = p;                      << 937   G4double cut  = (*theCuts)[couple->GetIndex()];
                                                   >> 938   G4int nbins = 3;
                                                   >> 939   if( couple->IsUsed() ) nbins = nLambdaBins;
                                                   >> 940   G4double tmin = std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut),
                                                   >> 941                                minKinEnergy);
                                                   >> 942   if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy;
                                                   >> 943   //  G4double xmax = maxKinEnergy*exp(log(maxKinEnergy/tmin)/((G4double)(nbins-1)) );
                                                   >> 944   G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nbins);
                                                   >> 945   return v;
1286 }                                                946 }
1287                                                  947 
1288 //....oooOO0OOooo........oooOO0OOooo........o    948 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1289                                                  949 
1290 void G4VEnergyLossProcess::SetRangeTableForLo << 950 G4PhysicsVector* G4VEnergyLossProcess::SubLambdaPhysicsVector(const G4MaterialCutsCouple* couple)
1291 {                                                951 {
1292   theRangeTableForLoss = p;                   << 952   return LambdaPhysicsVector(couple);
1293 }                                                953 }
1294                                                  954 
1295 //....oooOO0OOooo........oooOO0OOooo........o    955 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1296                                                  956 
1297 void G4VEnergyLossProcess::SetInverseRangeTab << 957 G4double G4VEnergyLossProcess::MicroscopicCrossSection(G4double kineticEnergy,
                                                   >> 958                                              const G4MaterialCutsCouple* couple)
1298 {                                                959 {
1299   theInverseRangeTable = p;                   << 960   // Cross section per atom is calculated
1300 }                                             << 961   DefineMaterial(couple);
1301                                               << 962   G4double cross = 0.0;
1302 //....oooOO0OOooo........oooOO0OOooo........o << 963   G4bool b;
                                                   >> 964   if(theLambdaTable) {
                                                   >> 965     cross = (((*theLambdaTable)[currentMaterialIndex])->
                                                   >> 966                            GetValue(kineticEnergy, b));
1303                                                  967 
1304 void G4VEnergyLossProcess::SetLambdaTable(G4P << 968     cross /= currentMaterial->GetTotNbOfAtomsPerVolume();
1305 {                                             << 
1306   if(1 < verboseLevel) {                      << 
1307     G4cout << "### Set Lambda table " << p << << 
1308            << " for " << particle->GetParticl << 
1309            << " and process " << GetProcessNa << 
1310   }                                              969   }
1311   theLambdaTable = p;                         << 
1312   tablesAreBuilt = true;                      << 
1313                                                  970 
1314   if(isMaster && nullptr != p) {              << 971   return cross;
1315     delete theEnergyOfCrossSectionMax;        << 
1316     theEnergyOfCrossSectionMax = nullptr;     << 
1317     if(fEmTwoPeaks == fXSType) {              << 
1318       if(nullptr != fXSpeaks) {               << 
1319   for(auto & ptr : *fXSpeaks) { delete ptr; } << 
1320   delete fXSpeaks;                            << 
1321       }                                       << 
1322       G4LossTableBuilder* bld = lManager->Get << 
1323       fXSpeaks = G4EmUtility::FillPeaksStruct << 
1324       if(nullptr == fXSpeaks) { fXSType = fEm << 
1325     }                                         << 
1326     if(fXSType == fEmOnePeak) {               << 
1327       theEnergyOfCrossSectionMax = G4EmUtilit << 
1328       if(nullptr == theEnergyOfCrossSectionMa << 
1329     }                                         << 
1330   }                                           << 
1331 }                                                972 }
1332                                                  973 
1333 //....oooOO0OOooo........oooOO0OOooo........o    974 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1334                                                  975 
1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 976 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track,
                                                   >> 977                                               G4double s,
                                                   >> 978                                               G4ForceCondition* cond)
1336 {                                                979 {
1337   theEnergyOfCrossSectionMax = p;             << 980   return GetMeanFreePath(track, s, cond);
1338 }                                                981 }
1339                                                  982 
1340 //....oooOO0OOooo........oooOO0OOooo........o    983 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1341                                                  984 
1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 985 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track,
                                                   >> 986                                                G4double x, G4double y, G4double& z)
1343 {                                                987 {
1344   fXSpeaks = ptr;                             << 988   return GetContinuousStepLimit(track, x, y, z);
1345 }                                                989 }
1346                                                  990 
1347 //....oooOO0OOooo........oooOO0OOooo........o    991 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1348                                                  992 
1349 const G4Element* G4VEnergyLossProcess::GetCur << 993 void G4VEnergyLossProcess::SetStepLimits(G4double v1, G4double v2)
1350 {                                                994 {
1351   return (nullptr != currentModel)            << 995   dRoverRange = v1;
1352     ? currentModel->GetCurrentElement(current << 996   finalRange = v2;
                                                   >> 997   if (dRoverRange > 1.0) dRoverRange = 1.0;
1353 }                                                998 }
1354                                                  999 
1355 //....oooOO0OOooo........oooOO0OOooo........o    1000 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1356                                                  1001 
1357 void G4VEnergyLossProcess::SetCrossSectionBia << 1002 void G4VEnergyLossProcess::SetIntegral(G4bool val)
1358                                               << 
1359 {                                                1003 {
1360   if(f > 0.0) {                               << 1004   if(integral != val) {
1361     biasFactor = f;                           << 1005     if(val) dRoverRange = defaultIntegralRange;
1362     weightFlag = flag;                        << 1006     else    dRoverRange = defaultRoverRange;
1363     if(1 < verboseLevel) {                    << 
1364       G4cout << "### SetCrossSectionBiasingFa << 
1365              << " process " << GetProcessName << 
1366              << " biasFactor= " << f << " wei << 
1367              << G4endl;                       << 
1368     }                                         << 
1369   }                                              1007   }
                                                   >> 1008   integral = val;
1370 }                                                1009 }
1371                                                  1010 
1372 //....oooOO0OOooo........oooOO0OOooo........o    1011 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1373                                                  1012 
1374 void G4VEnergyLossProcess::ActivateForcedInte << 1013 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2)
1375                                               << 1014 {
1376                                               << 1015   dRoverRange = v1;
1377 {                                             << 1016   finalRange = v2;
1378   if(nullptr == biasManager) { biasManager =  << 1017   if (dRoverRange > 0.999) dRoverRange = 1.0;
1379   if(1 < verboseLevel) {                      << 
1380     G4cout << "### ActivateForcedInteraction: << 
1381            << " process " << GetProcessName() << 
1382            << " length(mm)= " << length/mm    << 
1383            << " in G4Region <" << region      << 
1384            << "> weightFlag= " << flag        << 
1385            << G4endl;                         << 
1386   }                                           << 
1387   weightFlag = flag;                          << 
1388   biasManager->ActivateForcedInteraction(leng << 
1389 }                                                1018 }
1390                                                  1019 
1391 //....oooOO0OOooo........oooOO0OOooo........o    1020 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1392                                                  1021 
1393 void                                          << 1022 void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p)
1394 G4VEnergyLossProcess::ActivateSecondaryBiasin << 1023 {
1395                                               << 1024   particle = p;
1396                                               << 1025   baseParticle = DefineBaseParticle(particle);
1397 {                                             << 
1398   if (0.0 <= factor) {                        << 
1399     // Range cut can be applied only for e-   << 
1400     if(0.0 == factor && secondaryParticle !=  << 
1401       { return; }                             << 
1402                                               << 
1403     if(nullptr == biasManager) { biasManager  << 
1404     biasManager->ActivateSecondaryBiasing(reg << 
1405     if(1 < verboseLevel) {                    << 
1406       G4cout << "### ActivateSecondaryBiasing << 
1407              << " process " << GetProcessName << 
1408              << " factor= " << factor         << 
1409              << " in G4Region <" << region    << 
1410              << "> energyLimit(MeV)= " << ene << 
1411              << G4endl;                       << 
1412     }                                         << 
1413   }                                           << 
1414 }                                                1026 }
1415                                                  1027 
1416 //....oooOO0OOooo........oooOO0OOooo........o    1028 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1417                                                  1029 
1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1030 void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p)
1419 {                                                1031 {
1420   isIonisation = val;                         << 1032   baseParticle = p;
1421   aGPILSelection = (val) ? CandidateForSelect << 
1422 }                                                1033 }
1423                                                  1034 
1424 //....oooOO0OOooo........oooOO0OOooo........o    1035 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1425                                                  1036 
1426  void G4VEnergyLossProcess::SetLinearLossLimi << 1037 void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p)
1427 {                                                1038 {
1428   if(0.0 < val && val < 1.0) {                << 1039   secondaryParticle = p;
1429     linLossLimit = val;                       << 
1430     actLinLossLimit = true;                   << 
1431   } else { PrintWarning("SetLinearLossLimit", << 
1432 }                                                1040 }
1433                                                  1041 
1434 //....oooOO0OOooo........oooOO0OOooo........o    1042 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1435                                                  1043 
1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1044 G4bool G4VEnergyLossProcess::StorePhysicsTable(G4ParticleDefinition* part,
                                                   >> 1045              const G4String& directory,
                                                   >> 1046                    G4bool ascii)
1437 {                                                1047 {
1438   if(0.0 < v1 && 0.0 < v2) {                  << 1048   G4bool res = true;
1439     dRoverRange = std::min(1.0, v1);          << 1049   if ( baseParticle ) return res;
1440     finalRange = std::min(v2, 1.e+50);        << 1050   G4bool yes = true;
1441   } else {                                    << 1051 
1442     PrintWarning("SetStepFunctionV1", v1);    << 1052   if ( theDEDXTable ) {
1443     PrintWarning("SetStepFunctionV2", v2);    << 1053     const G4String name = GetPhysicsTableFileName(part,directory,"DEDX",ascii);
                                                   >> 1054     yes = theDEDXTable->StorePhysicsTable(name,ascii);
                                                   >> 1055     if( !yes ) res = false;
1444   }                                              1056   }
1445 }                                             << 
1446                                                  1057 
1447 //....oooOO0OOooo........oooOO0OOooo........o << 1058   if ( theRangeTable ) {
                                                   >> 1059     const G4String name = GetPhysicsTableFileName(part,directory,"Range",ascii);
                                                   >> 1060     yes = theRangeTable->StorePhysicsTable(name,ascii);
                                                   >> 1061     if( !yes ) res = false;
                                                   >> 1062   }
1448                                                  1063 
1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1064   if ( theInverseRangeTable ) {
1450 {                                             << 1065     const G4String name = GetPhysicsTableFileName(part,directory,"InverseRange",ascii);
1451   if(1.e-18 < val && val < 1.e+50) { lowestKi << 1066     yes = theInverseRangeTable->StorePhysicsTable(name,ascii);
1452   else { PrintWarning("SetLowestEnergyLimit", << 1067     if( !yes ) res = false;
1453 }                                             << 1068   }
1454                                                  1069 
1455 //....oooOO0OOooo........oooOO0OOooo........o << 1070   if ( theLambdaTable ) {
                                                   >> 1071     const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii);
                                                   >> 1072     yes = theLambdaTable->StorePhysicsTable(name,ascii);
                                                   >> 1073     if( !yes ) res = false;
                                                   >> 1074   }
1456                                                  1075 
1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1076   if ( theSubLambdaTable ) {
1458 {                                             << 1077     const G4String name = GetPhysicsTableFileName(part,directory,"SubLambda",ascii);
1459   if(2 < n && n < 1000000000) {               << 1078     yes = theSubLambdaTable->StorePhysicsTable(name,ascii);
1460     nBins = n;                                << 1079     if( !yes ) res = false;
1461     actBinning = true;                        << 1080   }
                                                   >> 1081   if ( res ) {
                                                   >> 1082     G4cout << "Physics tables are stored for " << particle->GetParticleName()
                                                   >> 1083            << " and process " << GetProcessName()
                                                   >> 1084      << " in the directory <" << directory
                                                   >> 1085      << "> " << G4endl;
1462   } else {                                       1086   } else {
1463     G4double e = (G4double)n;                 << 1087     G4cout << "Fail to store Physics Tables for " << particle->GetParticleName()
1464     PrintWarning("SetDEDXBinning", e);        << 1088            << " and process " << GetProcessName()
1465   }                                           << 1089      << " in the directory <" << directory
                                                   >> 1090      << "> " << G4endl;
                                                   >> 1091   }
                                                   >> 1092   return res;
1466 }                                                1093 }
1467                                                  1094 
1468 //....oooOO0OOooo........oooOO0OOooo........o << 1095 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1469                                                  1096 
1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1097 G4bool G4VEnergyLossProcess::RetrievePhysicsTable(G4ParticleDefinition* part,
                                                   >> 1098                   const G4String& directory,
                                                   >> 1099                         G4bool ascii)
1471 {                                                1100 {
1472   if(1.e-18 < e && e < maxKinEnergy) {        << 1101   G4bool res = true;
1473     minKinEnergy = e;                         << 1102   currentCouple = 0;
1474     actMinKinEnergy = true;                   << 1103   preStepLambda = 0.0;
1475   } else { PrintWarning("SetMinKinEnergy", e) << 1104   if(0 < verboseLevel) {
1476 }                                             << 1105     G4cout << "========================================================" << G4endl;
                                                   >> 1106     G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for "
                                                   >> 1107            << part->GetParticleName() << " and process " << GetProcessName() 
                                                   >> 1108            << "; tables_are_built= " << tablesAreBuilt
                                                   >> 1109            << G4endl;
                                                   >> 1110   }
1477                                                  1111 
1478 //....oooOO0OOooo........oooOO0OOooo........o << 1112   const G4String particleName = part->GetParticleName();
                                                   >> 1113   if( !particle ) {
                                                   >> 1114     particle = part;
                                                   >> 1115     baseParticle = DefineBaseParticle(particle);
                                                   >> 1116   }
                                                   >> 1117 
                                                   >> 1118   if(particleName != "GenericIon"  &&
                                                   >> 1119      part->GetParticleType() == "nucleus"  &&
                                                   >> 1120      part->GetParticleSubType() == "generic")
                                                   >> 1121   {
                                                   >> 1122     (G4LossTableManager::Instance())->RegisterIon(part, this);
                                                   >> 1123     return res;
                                                   >> 1124   }
                                                   >> 1125 
                                                   >> 1126   if(tablesAreBuilt) return res;
                                                   >> 1127   Initialise();
                                                   >> 1128 
                                                   >> 1129   // Recalculation is needed because cuts were changed or recalculation is forced
                                                   >> 1130   G4LossTableManager* lManager = G4LossTableManager::Instance();
                                                   >> 1131   if ( lManager->IsRecalcNeeded(particle)) {
                                                   >> 1132 
                                                   >> 1133     G4bool yes = true;
                                                   >> 1134     G4bool fpi = true;
                                                   >> 1135     if ( !baseParticle ) {
                                                   >> 1136       G4PhysicsTable* table;
                                                   >> 1137       G4String filename;
                                                   >> 1138       const G4ProductionCutsTable* theCoupleTable=
                                                   >> 1139             G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 1140       size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 1141 
                                                   >> 1142       filename = GetPhysicsTableFileName(part,directory,"DEDX",ascii);
                                                   >> 1143       
                                                   >> 1144       table = new G4PhysicsTable(numOfCouples);
                                                   >> 1145       yes = table->ExistPhysicsTable(filename);
                                                   >> 1146       if(yes) yes = table->RetrievePhysicsTable(filename,ascii);
                                                   >> 1147       if(yes) {
                                                   >> 1148         SetDEDXTable(table);
                                                   >> 1149         if (-1 < verboseLevel) {
                                                   >> 1150           G4cout << "DEDX table for " << particleName << " is retrieved from <"
                                                   >> 1151                  << filename << ">"
                                                   >> 1152                  << G4endl;
                                                   >> 1153         }
                                                   >> 1154       } else {
                                                   >> 1155         fpi = false;
                                                   >> 1156         table->clearAndDestroy();
                                                   >> 1157         if (0 < verboseLevel) {
                                                   >> 1158           G4cout << "DEDX table for " << particleName << " in file <"
                                                   >> 1159                  << filename << "> is not retrieved"
                                                   >> 1160                  << G4endl;
                                                   >> 1161         }
                                                   >> 1162       }
1479                                                  1163 
1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1164       filename = GetPhysicsTableFileName(part,directory,"Range",ascii);
1481 {                                             << 1165       table = new G4PhysicsTable(numOfCouples);
1482   if(minKinEnergy < e && e < 1.e+50) {        << 1166       yes = table->ExistPhysicsTable(filename);
1483     maxKinEnergy = e;                         << 1167       if(yes) yes = table->RetrievePhysicsTable(filename,ascii);
1484     actMaxKinEnergy = true;                   << 1168       if(yes) {
1485     if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1169         SetRangeTable(table);
1486   } else { PrintWarning("SetMaxKinEnergy", e) << 1170         if (-1 < verboseLevel) {
1487 }                                             << 1171           G4cout << "Range table for " << particleName << " is retrieved from <"
                                                   >> 1172                  << filename << ">"
                                                   >> 1173                  << G4endl;
                                                   >> 1174         }
                                                   >> 1175       } else {
                                                   >> 1176         table->clearAndDestroy();
                                                   >> 1177         if(fpi) {
                                                   >> 1178           res = false;
                                                   >> 1179     G4cout << "Range table for " << particleName << " in file <"
                                                   >> 1180      << filename << "> is not retrieved"
                                                   >> 1181      << G4endl;
                                                   >> 1182         }
                                                   >> 1183       }
1488                                                  1184 
1489 //....oooOO0OOooo........oooOO0OOooo........o << 1185       filename = GetPhysicsTableFileName(part,directory,"InverseRange",ascii);
                                                   >> 1186       table = new G4PhysicsTable(numOfCouples);
                                                   >> 1187       yes = table->ExistPhysicsTable(filename);
                                                   >> 1188       if(yes)  yes = table->RetrievePhysicsTable(filename,ascii);
                                                   >> 1189       if(yes) {
                                                   >> 1190         SetInverseRangeTable(table);
                                                   >> 1191         if (-1 < verboseLevel) {
                                                   >> 1192           G4cout << "InverseRange table for " << particleName << " is retrieved from <"
                                                   >> 1193                  << filename << ">"
                                                   >> 1194                  << G4endl;
                                                   >> 1195         }
                                                   >> 1196       } else {
                                                   >> 1197         table->clearAndDestroy();
                                                   >> 1198         if(fpi) {
                                                   >> 1199           res = false;
                                                   >> 1200           G4cout << "InverseRange table for " << particleName << " in file <"
                                                   >> 1201                  << filename << "> is not retrieved"
                                                   >> 1202                  << G4endl;
1490                                                  1203 
1491 void G4VEnergyLossProcess::PrintWarning(const << 1204         }
1492 {                                             << 1205       }
1493   G4String ss = "G4VEnergyLossProcess::" + ti << 
1494   G4ExceptionDescription ed;                  << 
1495   ed << "Parameter is out of range: " << val  << 
1496      << " it will have no effect!\n" << "  Pr << 
1497      << GetProcessName() << "  nbins= " << nB << 
1498      << " Emin(keV)= " << minKinEnergy/keV    << 
1499      << " Emax(GeV)= " << maxKinEnergy/GeV;   << 
1500   G4Exception(ss, "em0044", JustWarning, ed); << 
1501 }                                             << 
1502                                                  1206 
1503 //....oooOO0OOooo........oooOO0OOooo........o << 1207       filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii);
                                                   >> 1208       table = new G4PhysicsTable(numOfCouples);
                                                   >> 1209       yes = table->ExistPhysicsTable(filename);
                                                   >> 1210       if(yes) yes = table->RetrievePhysicsTable(filename,ascii);
                                                   >> 1211       if(yes) {
                                                   >> 1212         SetLambdaTable(table);
                                                   >> 1213         if (-1 < verboseLevel) {
                                                   >> 1214           G4cout << "Lambda table for " << particleName << " is retrieved from <"
                                                   >> 1215                  << filename << ">"
                                                   >> 1216                  << G4endl;
                                                   >> 1217         }
                                                   >> 1218       } else {
                                                   >> 1219         table->clearAndDestroy();
                                                   >> 1220         if(fpi) {
                                                   >> 1221           res = false;
                                                   >> 1222           G4cout << "Lambda table for " << particleName << " in file <"
                                                   >> 1223                  << filename << "> is not retrieved"
                                                   >> 1224                  << G4endl;
                                                   >> 1225         }
                                                   >> 1226       }
1504                                                  1227 
1505 void G4VEnergyLossProcess::ProcessDescription << 1228       filename = GetPhysicsTableFileName(part,directory,"SubLambda",ascii);
1506 {                                             << 1229       table = new G4PhysicsTable(numOfCouples);
1507   if(nullptr != particle) { StreamInfo(out, * << 1230       yes = table->ExistPhysicsTable(filename);
                                                   >> 1231       if(yes) yes = table->RetrievePhysicsTable(filename,ascii);
                                                   >> 1232       if(yes) {
                                                   >> 1233         SetSubLambdaTable(table);
                                                   >> 1234         if (-1 < verboseLevel) {
                                                   >> 1235           G4cout << "SubLambda table for " << particleName << " is retrieved from <"
                                                   >> 1236                  << filename << ">"
                                                   >> 1237                  << G4endl;
                                                   >> 1238         }
                                                   >> 1239       } else {
                                                   >> 1240         table->clearAndDestroy();
                                                   >> 1241         if(nSCoffRegions) {
                                                   >> 1242           res=false;
                                                   >> 1243           G4cout << "SubLambda table for " << particleName << " in file <"
                                                   >> 1244                  << filename << "> is not retrieved"
                                                   >> 1245                  << G4endl;
                                                   >> 1246   }
                                                   >> 1247       }
                                                   >> 1248       if(res) PrintInfoDefinition();
                                                   >> 1249       else {
                                                   >> 1250         G4cout << "### BuildPhysicsTable will be requested for " <<  GetProcessName() 
                                                   >> 1251                << " for " << particleName << G4endl; 
                                                   >> 1252       }
                                                   >> 1253     }
                                                   >> 1254     tablesAreBuilt = true;
                                                   >> 1255   }
                                                   >> 1256 
                                                   >> 1257   lManager->RetrievePhysicsTables(particle, this);
                                                   >> 1258 
                                                   >> 1259   return res;
1508 }                                                1260 }
                                                   >> 1261 
1509                                                  1262 
1510 //....oooOO0OOooo........oooOO0OOooo........o    1263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1511                                                  1264