Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 11.3.0) and /processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc (Version 11.1.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // -------------------------------------------     26 // -------------------------------------------------------------------
 27 //                                                 27 //
 28 // GEANT4 Class file                               28 // GEANT4 Class file
 29 //                                                 29 //
 30 //                                                 30 //
 31 // File name:     G4VEnergyLossProcess             31 // File name:     G4VEnergyLossProcess
 32 //                                                 32 //
 33 // Author:        Vladimir Ivanchenko              33 // Author:        Vladimir Ivanchenko
 34 //                                                 34 //
 35 // Creation date: 03.01.2002                       35 // Creation date: 03.01.2002
 36 //                                                 36 //
 37 // Modifications: Vladimir Ivanchenko              37 // Modifications: Vladimir Ivanchenko
 38 //                                                 38 //
 39 //                                                 39 //
 40 // Class Description:                              40 // Class Description:
 41 //                                                 41 //
 42 // It is the unified energy loss process it ca     42 // It is the unified energy loss process it calculates the continuous
 43 // energy loss for charged particles using a s     43 // energy loss for charged particles using a set of Energy Loss
 44 // models valid for different energy regions.      44 // models valid for different energy regions. There are a possibility
 45 // to create and access to dE/dx and range tab     45 // to create and access to dE/dx and range tables, or to calculate
 46 // that information on fly.                        46 // that information on fly.
 47 // -------------------------------------------     47 // -------------------------------------------------------------------
 48 //                                                 48 //
 49 //....oooOO0OOooo........oooOO0OOooo........oo     49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50 //....oooOO0OOooo........oooOO0OOooo........oo     50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 51                                                    51 
 52 #include "G4VEnergyLossProcess.hh"                 52 #include "G4VEnergyLossProcess.hh"
 53 #include "G4PhysicalConstants.hh"                  53 #include "G4PhysicalConstants.hh"
 54 #include "G4SystemOfUnits.hh"                      54 #include "G4SystemOfUnits.hh"
 55 #include "G4ProcessManager.hh"                     55 #include "G4ProcessManager.hh"
 56 #include "G4LossTableManager.hh"                   56 #include "G4LossTableManager.hh"
 57 #include "G4LossTableBuilder.hh"                   57 #include "G4LossTableBuilder.hh"
 58 #include "G4Step.hh"                               58 #include "G4Step.hh"
 59 #include "G4ParticleDefinition.hh"                 59 #include "G4ParticleDefinition.hh"
 60 #include "G4ParticleTable.hh"                      60 #include "G4ParticleTable.hh"
 61 #include "G4EmParameters.hh"                       61 #include "G4EmParameters.hh"
 62 #include "G4EmUtility.hh"                          62 #include "G4EmUtility.hh"
 63 #include "G4EmTableUtil.hh"                        63 #include "G4EmTableUtil.hh"
 64 #include "G4VEmModel.hh"                           64 #include "G4VEmModel.hh"
 65 #include "G4VEmFluctuationModel.hh"                65 #include "G4VEmFluctuationModel.hh"
 66 #include "G4DataVector.hh"                         66 #include "G4DataVector.hh"
 67 #include "G4PhysicsLogVector.hh"                   67 #include "G4PhysicsLogVector.hh"
 68 #include "G4VParticleChange.hh"                    68 #include "G4VParticleChange.hh"
 69 #include "G4Electron.hh"                           69 #include "G4Electron.hh"
 70 #include "G4ProcessManager.hh"                     70 #include "G4ProcessManager.hh"
 71 #include "G4UnitsTable.hh"                         71 #include "G4UnitsTable.hh"
 72 #include "G4Region.hh"                             72 #include "G4Region.hh"
 73 #include "G4RegionStore.hh"                        73 #include "G4RegionStore.hh"
 74 #include "G4PhysicsTableHelper.hh"                 74 #include "G4PhysicsTableHelper.hh"
 75 #include "G4SafetyHelper.hh"                       75 #include "G4SafetyHelper.hh"
 76 #include "G4EmDataHandler.hh"                      76 #include "G4EmDataHandler.hh"
 77 #include "G4TransportationManager.hh"              77 #include "G4TransportationManager.hh"
 78 #include "G4VAtomDeexcitation.hh"                  78 #include "G4VAtomDeexcitation.hh"
 79 #include "G4VSubCutProducer.hh"                    79 #include "G4VSubCutProducer.hh"
 80 #include "G4EmBiasingManager.hh"                   80 #include "G4EmBiasingManager.hh"
 81 #include "G4Log.hh"                                81 #include "G4Log.hh"
 82 #include <iostream>                                82 #include <iostream>
 83                                                    83 
 84 //....oooOO0OOooo........oooOO0OOooo........oo     84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 85                                                    85 
 86 namespace                                          86 namespace 
 87 {                                                  87 {
 88   G4String tnames[7] =                             88   G4String tnames[7] =
 89     {"DEDX","Ionisation","DEDXnr","CSDARange",     89     {"DEDX","Ionisation","DEDXnr","CSDARange","Lambda","Range","InverseRange"};
 90 }                                                  90 }
 91                                                    91 
 92                                                    92 
 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con     93 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 
 94                                            G4P     94                                            G4ProcessType type): 
 95   G4VContinuousDiscreteProcess(name, type)         95   G4VContinuousDiscreteProcess(name, type)
 96 {                                                  96 {
 97   theParameters = G4EmParameters::Instance();      97   theParameters = G4EmParameters::Instance();
 98   SetVerboseLevel(1);                              98   SetVerboseLevel(1);
 99                                                    99 
100   // low energy limit                             100   // low energy limit
101   lowestKinEnergy = theParameters->LowestElect    101   lowestKinEnergy = theParameters->LowestElectronEnergy();
102                                                   102 
103   // Size of tables                               103   // Size of tables
104   minKinEnergy     = 0.1*CLHEP::keV;              104   minKinEnergy     = 0.1*CLHEP::keV;
105   maxKinEnergy     = 100.0*CLHEP::TeV;            105   maxKinEnergy     = 100.0*CLHEP::TeV;
106   maxKinEnergyCSDA = 1.0*CLHEP::GeV;              106   maxKinEnergyCSDA = 1.0*CLHEP::GeV;
107   nBins            = 84;                          107   nBins            = 84;
108   nBinsCSDA        = 35;                          108   nBinsCSDA        = 35;
109                                                   109 
110   invLambdaFactor = 1.0/lambdaFactor;             110   invLambdaFactor = 1.0/lambdaFactor;
111                                                   111 
112   // default linear loss limit                    112   // default linear loss limit
113   finalRange = 1.*CLHEP::mm;                      113   finalRange = 1.*CLHEP::mm;
114                                                   114 
115   // run time objects                             115   // run time objects
116   pParticleChange = &fParticleChange;             116   pParticleChange = &fParticleChange;
117   fParticleChange.SetSecondaryWeightByProcess(    117   fParticleChange.SetSecondaryWeightByProcess(true);
118   modelManager = new G4EmModelManager();          118   modelManager = new G4EmModelManager();
119   safetyHelper = G4TransportationManager::GetT    119   safetyHelper = G4TransportationManager::GetTransportationManager()
120     ->GetSafetyHelper();                          120     ->GetSafetyHelper();
121   aGPILSelection = CandidateForSelection;         121   aGPILSelection = CandidateForSelection;
122                                                   122 
123   // initialise model                             123   // initialise model
124   lManager = G4LossTableManager::Instance();      124   lManager = G4LossTableManager::Instance();
125   lManager->Register(this);                       125   lManager->Register(this);
126   isMaster = lManager->IsMaster();                126   isMaster = lManager->IsMaster();
127                                                   127 
128   G4LossTableBuilder* bld = lManager->GetTable    128   G4LossTableBuilder* bld = lManager->GetTableBuilder();
129   theDensityFactor = bld->GetDensityFactors();    129   theDensityFactor = bld->GetDensityFactors();
130   theDensityIdx = bld->GetCoupleIndexes();        130   theDensityIdx = bld->GetCoupleIndexes();
131                                                   131 
132   scTracks.reserve(10);                           132   scTracks.reserve(10);
133   secParticles.reserve(12);                       133   secParticles.reserve(12);
134   emModels = new std::vector<G4VEmModel*>;        134   emModels = new std::vector<G4VEmModel*>;
135 }                                                 135 }
136                                                   136 
137 //....oooOO0OOooo........oooOO0OOooo........oo    137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
138                                                   138 
139 G4VEnergyLossProcess::~G4VEnergyLossProcess()     139 G4VEnergyLossProcess::~G4VEnergyLossProcess()
140 {                                                 140 {
141   if (isMaster) {                                 141   if (isMaster) {
142     if(nullptr == baseParticle) { delete theDa    142     if(nullptr == baseParticle) { delete theData; }
143     delete theEnergyOfCrossSectionMax;            143     delete theEnergyOfCrossSectionMax;
144     if(nullptr != fXSpeaks) {                     144     if(nullptr != fXSpeaks) {
145       for(auto const & v : *fXSpeaks) { delete    145       for(auto const & v : *fXSpeaks) { delete v; }
146       delete fXSpeaks;                            146       delete fXSpeaks;
147     }                                             147     }
148   }                                               148   }
149   delete modelManager;                            149   delete modelManager;
150   delete biasManager;                             150   delete biasManager;
151   delete scoffRegions;                            151   delete scoffRegions;
152   delete emModels;                                152   delete emModels;
153   lManager->DeRegister(this);                     153   lManager->DeRegister(this);
154 }                                                 154 }
155                                                   155 
156 //....oooOO0OOooo........oooOO0OOooo........oo    156 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157                                                   157 
158 G4double G4VEnergyLossProcess::MinPrimaryEnerg    158 G4double G4VEnergyLossProcess::MinPrimaryEnergy(const G4ParticleDefinition*, 
159                                                   159                                                 const G4Material*, 
160                                                   160                                                 G4double cut)
161 {                                                 161 {
162   return cut;                                     162   return cut;
163 }                                                 163 }
164                                                   164 
165 //....oooOO0OOooo........oooOO0OOooo........oo    165 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
166                                                   166 
167 void G4VEnergyLossProcess::AddEmModel(G4int or    167 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* ptr,
168                                       G4VEmFlu    168                                       G4VEmFluctuationModel* fluc,
169                                       const G4    169                                       const G4Region* region)
170 {                                                 170 {
171   if(nullptr == ptr) { return; }                  171   if(nullptr == ptr) { return; }
172   G4VEmFluctuationModel* afluc = (nullptr == f    172   G4VEmFluctuationModel* afluc = (nullptr == fluc) ? fluctModel : fluc;
173   modelManager->AddEmModel(order, ptr, afluc,     173   modelManager->AddEmModel(order, ptr, afluc, region);
174   ptr->SetParticleChange(pParticleChange, aflu    174   ptr->SetParticleChange(pParticleChange, afluc);
175 }                                                 175 }
176                                                   176 
177 //....oooOO0OOooo........oooOO0OOooo........oo    177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
178                                                   178 
179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod    179 void G4VEnergyLossProcess::SetEmModel(G4VEmModel* ptr, G4int)
180 {                                                 180 {
181   if(nullptr == ptr) { return; }                  181   if(nullptr == ptr) { return; }
182   if(!emModels->empty()) {                        182   if(!emModels->empty()) {
183     for(auto & em : *emModels) { if(em == ptr)    183     for(auto & em : *emModels) { if(em == ptr) { return; } }
184   }                                               184   }
185   emModels->push_back(ptr);                       185   emModels->push_back(ptr);  
186 }                                                 186 }
187                                                   187 
188 //....oooOO0OOooo........oooOO0OOooo........oo    188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
189                                                   189 
190 void G4VEnergyLossProcess::SetDynamicMassCharg    190 void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio,
191                                                   191                                                 G4double charge2ratio)
192 {                                                 192 {
193   massRatio = massratio;                          193   massRatio = massratio;
194   logMassRatio = G4Log(massRatio);                194   logMassRatio = G4Log(massRatio);
195   fFactor = charge2ratio*biasFactor;              195   fFactor = charge2ratio*biasFactor;
196   if(baseMat) { fFactor *= (*theDensityFactor)    196   if(baseMat) { fFactor *= (*theDensityFactor)[currentCoupleIndex]; }
197   chargeSqRatio = charge2ratio;                   197   chargeSqRatio = charge2ratio;
198   reduceFactor  = 1.0/(fFactor*massRatio);        198   reduceFactor  = 1.0/(fFactor*massRatio);
199 }                                                 199 }
200                                                   200 
201 //....oooOO0OOooo........oooOO0OOooo........oo    201 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
202                                                   202 
203 void                                              203 void 
204 G4VEnergyLossProcess::PreparePhysicsTable(cons    204 G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part)
205 {                                                 205 {
206   particle = G4EmTableUtil::CheckIon(this, &pa    206   particle = G4EmTableUtil::CheckIon(this, &part, particle,
207                                      verboseLe    207                                      verboseLevel, isIon);
208                                                   208 
209   if( particle != &part ) {                       209   if( particle != &part ) {
210     if(!isIon) { lManager->RegisterExtraPartic    210     if(!isIon) { lManager->RegisterExtraParticle(&part, this); }
211     if(1 < verboseLevel) {                        211     if(1 < verboseLevel) {
212       G4cout << "### G4VEnergyLossProcess::Pre    212       G4cout << "### G4VEnergyLossProcess::PreparePhysicsTable()"
213              << " interrupted for " << GetProc << 213              << " interrupted for "
214              << part.GetParticleName() << " is << 214              << part.GetParticleName() << "  isIon=" << isIon << G4endl;
215              << " spline=" << spline << G4endl << 
216     }                                             215     }
217     return;                                       216     return;
218   }                                               217   }
219                                                   218 
220   tablesAreBuilt = false;                         219   tablesAreBuilt = false;
221   if (GetProcessSubType() == fIonisation) { Se << 
222                                                   220 
223   G4LossTableBuilder* bld = lManager->GetTable    221   G4LossTableBuilder* bld = lManager->GetTableBuilder();
224   lManager->PreparePhysicsTable(&part, this);  << 222   lManager->PreparePhysicsTable(&part, this, isMaster);
225                                                   223 
226   // Base particle and set of models can be de    224   // Base particle and set of models can be defined here
227   InitialiseEnergyLossProcess(particle, basePa    225   InitialiseEnergyLossProcess(particle, baseParticle);
228                                                   226 
229   // parameters of the process                    227   // parameters of the process
230   if(!actLossFluc) { lossFluctuationFlag = the    228   if(!actLossFluc) { lossFluctuationFlag = theParameters->LossFluctuation(); }
231   useCutAsFinalRange = theParameters->UseCutAs << 229   rndmStepFlag = theParameters->UseCutAsFinalRange();
232   if(!actMinKinEnergy) { minKinEnergy = thePar    230   if(!actMinKinEnergy) { minKinEnergy = theParameters->MinKinEnergy(); }
233   if(!actMaxKinEnergy) { maxKinEnergy = thePar    231   if(!actMaxKinEnergy) { maxKinEnergy = theParameters->MaxKinEnergy(); }
234   if(!actBinning) { nBins = theParameters->Num    232   if(!actBinning) { nBins = theParameters->NumberOfBins(); }
235   maxKinEnergyCSDA = theParameters->MaxEnergyF    233   maxKinEnergyCSDA = theParameters->MaxEnergyForCSDARange();
236   nBinsCSDA = theParameters->NumberOfBinsPerDe    234   nBinsCSDA = theParameters->NumberOfBinsPerDecade()
237     *G4lrint(std::log10(maxKinEnergyCSDA/minKi    235     *G4lrint(std::log10(maxKinEnergyCSDA/minKinEnergy));
238   if(!actLinLossLimit) { linLossLimit = thePar    236   if(!actLinLossLimit) { linLossLimit = theParameters->LinearLossLimit(); }
239   lambdaFactor = theParameters->LambdaFactor()    237   lambdaFactor = theParameters->LambdaFactor();
240   invLambdaFactor = 1.0/lambdaFactor;             238   invLambdaFactor = 1.0/lambdaFactor;
241   if(isMaster) { SetVerboseLevel(theParameters    239   if(isMaster) { SetVerboseLevel(theParameters->Verbose()); }
242   else { SetVerboseLevel(theParameters->Worker    240   else { SetVerboseLevel(theParameters->WorkerVerbose()); }
243   // integral option may be disabled              241   // integral option may be disabled
244   if(!theParameters->Integral()) { fXSType = f    242   if(!theParameters->Integral()) { fXSType = fEmNoIntegral; }
245                                                   243 
246   theParameters->DefineRegParamForLoss(this);     244   theParameters->DefineRegParamForLoss(this);
247                                                   245 
248   fRangeEnergy = 0.0;                             246   fRangeEnergy = 0.0;
249                                                   247 
250   G4double initialCharge = particle->GetPDGCha    248   G4double initialCharge = particle->GetPDGCharge();
251   G4double initialMass   = particle->GetPDGMas    249   G4double initialMass   = particle->GetPDGMass();
252                                                   250 
253   theParameters->FillStepFunction(particle, th    251   theParameters->FillStepFunction(particle, this);
254                                                   252 
255   // parameters for scaling from the base part    253   // parameters for scaling from the base particle
256   if (nullptr != baseParticle) {                  254   if (nullptr != baseParticle) {
257     massRatio    = (baseParticle->GetPDGMass()    255     massRatio    = (baseParticle->GetPDGMass())/initialMass;
258     logMassRatio = G4Log(massRatio);              256     logMassRatio = G4Log(massRatio);
259     G4double q = initialCharge/baseParticle->G    257     G4double q = initialCharge/baseParticle->GetPDGCharge();
260     chargeSqRatio = q*q;                          258     chargeSqRatio = q*q;
261     if(chargeSqRatio > 0.0) { reduceFactor = 1    259     if(chargeSqRatio > 0.0) { reduceFactor = 1.0/(chargeSqRatio*massRatio); }
262   }                                               260   }
263   lowestKinEnergy = (initialMass < CLHEP::MeV)    261   lowestKinEnergy = (initialMass < CLHEP::MeV) 
264     ? theParameters->LowestElectronEnergy()       262     ? theParameters->LowestElectronEnergy()
265     : theParameters->LowestMuHadEnergy();         263     : theParameters->LowestMuHadEnergy();
266                                                   264 
267   // Tables preparation                           265   // Tables preparation
268   if (isMaster && nullptr == baseParticle) {      266   if (isMaster && nullptr == baseParticle) {
269     if(nullptr == theData) { theData = new G4E    267     if(nullptr == theData) { theData = new G4EmDataHandler(7); }
270                                                   268 
271     if(nullptr != theDEDXTable && isIonisation    269     if(nullptr != theDEDXTable && isIonisation) {
272       if(nullptr != theIonisationTable && theD    270       if(nullptr != theIonisationTable && theDEDXTable != theIonisationTable) {
273   theData->CleanTable(0);                         271   theData->CleanTable(0);
274   theDEDXTable = theIonisationTable;              272   theDEDXTable = theIonisationTable;
275   theIonisationTable = nullptr;                   273   theIonisationTable = nullptr;
276       }                                           274       }
277     }                                             275     }
278                                                   276     
279     theDEDXTable = theData->MakeTable(theDEDXT    277     theDEDXTable = theData->MakeTable(theDEDXTable, 0);
280     bld->InitialiseBaseMaterials(theDEDXTable)    278     bld->InitialiseBaseMaterials(theDEDXTable);
281     theData->UpdateTable(theIonisationTable, 1    279     theData->UpdateTable(theIonisationTable, 1);
282                                                   280 
283     if (theParameters->BuildCSDARange()) {        281     if (theParameters->BuildCSDARange()) {
284       theDEDXunRestrictedTable = theData->Make    282       theDEDXunRestrictedTable = theData->MakeTable(2);
285       if(isIonisation) { theCSDARangeTable = t    283       if(isIonisation) { theCSDARangeTable = theData->MakeTable(3); }
286     }                                             284     }
287                                                   285 
288     theLambdaTable = theData->MakeTable(4);       286     theLambdaTable = theData->MakeTable(4);
289     if(isIonisation) {                            287     if(isIonisation) {
290       theRangeTableForLoss = theData->MakeTabl    288       theRangeTableForLoss = theData->MakeTable(5);
291       theInverseRangeTable = theData->MakeTabl    289       theInverseRangeTable = theData->MakeTable(6);
292     }                                             290     }
293   }                                               291   }
294                                                   292 
295   // forced biasing                               293   // forced biasing
296   if(nullptr != biasManager) {                    294   if(nullptr != biasManager) { 
297     biasManager->Initialise(part,GetProcessNam    295     biasManager->Initialise(part,GetProcessName(),verboseLevel); 
298     biasFlag = false;                             296     biasFlag = false; 
299   }                                               297   }
300   baseMat = bld->GetBaseMaterialFlag();           298   baseMat = bld->GetBaseMaterialFlag();
301   numberOfModels = modelManager->NumberOfModel    299   numberOfModels = modelManager->NumberOfModels();
302   currentModel = modelManager->GetModel(0);       300   currentModel = modelManager->GetModel(0);
303   G4EmTableUtil::UpdateModels(this, modelManag    301   G4EmTableUtil::UpdateModels(this, modelManager, maxKinEnergy,
304                               numberOfModels,     302                               numberOfModels, secID, biasID,
305                               mainSecondaries,    303                               mainSecondaries, baseMat, isMaster,
306                               theParameters->U    304                               theParameters->UseAngularGeneratorForIonisation());
307   theCuts = modelManager->Initialise(particle,    305   theCuts = modelManager->Initialise(particle, secondaryParticle,
308                                      verboseLe    306                                      verboseLevel);
309   // subcut processor                             307   // subcut processor
310   if(isIonisation) {                              308   if(isIonisation) { 
311     subcutProducer = lManager->SubCutProducer(    309     subcutProducer = lManager->SubCutProducer();
312   }                                               310   }
313   if(1 == nSCoffRegions) {                        311   if(1 == nSCoffRegions) {
314     if((*scoffRegions)[0]->GetName() == "Defau    312     if((*scoffRegions)[0]->GetName() == "DefaultRegionForTheWorld") {
315       delete scoffRegions;                        313       delete scoffRegions;
316       scoffRegions = nullptr;                     314       scoffRegions = nullptr;
317       nSCoffRegions = 0;                          315       nSCoffRegions = 0;
318     }                                             316     }
319   }                                               317   }
320                                                   318 
321   if(1 < verboseLevel) {                          319   if(1 < verboseLevel) {
322     G4cout << "G4VEnergyLossProcess::PrepearPh    320     G4cout << "G4VEnergyLossProcess::PrepearPhysicsTable() is done "
323            << " for " << GetProcessName() << " << 321            << " for local " << particle->GetParticleName()
324            << " isIon= " << isIon << " spline= << 322            << " isIon= " << isIon;
325     if(baseParticle) {                            323     if(baseParticle) { 
326       G4cout << "; base: " << baseParticle->Ge    324       G4cout << "; base: " << baseParticle->GetParticleName(); 
327     }                                             325     }
328     G4cout << G4endl;                          << 
329     G4cout << " chargeSqRatio= " << chargeSqRa    326     G4cout << " chargeSqRatio= " << chargeSqRatio
330            << " massRatio= " << massRatio         327            << " massRatio= " << massRatio
331            << " reduceFactor= " << reduceFacto    328            << " reduceFactor= " << reduceFactor << G4endl;
332     if (nSCoffRegions > 0) {                      329     if (nSCoffRegions > 0) {
333       G4cout << " SubCut secondary production     330       G4cout << " SubCut secondary production is ON for regions: " << G4endl;
334       for (G4int i=0; i<nSCoffRegions; ++i) {     331       for (G4int i=0; i<nSCoffRegions; ++i) {
335         const G4Region* r = (*scoffRegions)[i]    332         const G4Region* r = (*scoffRegions)[i];
336         G4cout << "           " << r->GetName(    333         G4cout << "           " << r->GetName() << G4endl;
337       }                                           334       }
338     } else if(nullptr != subcutProducer) {        335     } else if(nullptr != subcutProducer) {
339       G4cout << " SubCut secondary production     336       G4cout << " SubCut secondary production is ON for all regions" << G4endl;
340     }                                             337     }
341   }                                               338   }
342 }                                                 339 }
343                                                   340 
344 //....oooOO0OOooo........oooOO0OOooo........oo    341 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
345                                                   342 
346 void G4VEnergyLossProcess::BuildPhysicsTable(c    343 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part)
347 {                                                 344 {
348   if(1 < verboseLevel) {                          345   if(1 < verboseLevel) {  
349     G4cout << "### G4VEnergyLossProcess::Build    346     G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for "
350            << GetProcessName()                    347            << GetProcessName()
351            << " and particle " << part.GetPart    348            << " and particle " << part.GetParticleName()
352            << "; the first particle " << parti << 349            << "; local: " << particle->GetParticleName();
353     if(baseParticle) {                            350     if(baseParticle) { 
354       G4cout << "; base: " << baseParticle->Ge    351       G4cout << "; base: " << baseParticle->GetParticleName(); 
355     }                                             352     }
356     G4cout << G4endl;                          << 353     G4cout << " TablesAreBuilt= " << tablesAreBuilt
357     G4cout << "    TablesAreBuilt= " << tables << 354            << " isIon= " << isIon << "  " << this << G4endl;
358            << " spline=" << spline << " ptr: " << 
359   }                                               355   }
360                                                   356 
361   if(&part == particle) {                         357   if(&part == particle) {
                                                   >> 358 
362     if(isMaster) {                                359     if(isMaster) {
363       lManager->BuildPhysicsTable(particle, th    360       lManager->BuildPhysicsTable(particle, this);
364                                                   361 
365     } else {                                      362     } else {
366       const auto masterProcess =                  363       const auto masterProcess =
367         static_cast<const G4VEnergyLossProcess    364         static_cast<const G4VEnergyLossProcess*>(GetMasterProcess());
368                                                   365 
369       numberOfModels = modelManager->NumberOfM    366       numberOfModels = modelManager->NumberOfModels();
370       G4EmTableUtil::BuildLocalElossProcess(th    367       G4EmTableUtil::BuildLocalElossProcess(this, masterProcess,
371                                             pa    368                                             particle, numberOfModels);
372       tablesAreBuilt = true;                      369       tablesAreBuilt = true;  
373       baseMat = masterProcess->UseBaseMaterial    370       baseMat = masterProcess->UseBaseMaterial();
374       lManager->LocalPhysicsTables(particle, t    371       lManager->LocalPhysicsTables(particle, this);
375     }                                             372     }
376                                                   373    
377     // needs to be done only once                 374     // needs to be done only once
378     safetyHelper->InitialiseHelper();             375     safetyHelper->InitialiseHelper();
379   }                                               376   }
380   // Added tracking cut to avoid tracking arti    377   // Added tracking cut to avoid tracking artifacts
381   // and identified deexcitation flag             378   // and identified deexcitation flag
382   if(isIonisation) {                              379   if(isIonisation) { 
383     atomDeexcitation = lManager->AtomDeexcitat    380     atomDeexcitation = lManager->AtomDeexcitation();
384     if(nullptr != atomDeexcitation) {             381     if(nullptr != atomDeexcitation) { 
385       if(atomDeexcitation->IsPIXEActive()) { u    382       if(atomDeexcitation->IsPIXEActive()) { useDeexcitation = true; } 
386     }                                             383     }
387   }                                               384   }
388                                                   385 
389   // protection against double printout           386   // protection against double printout
390   if(theParameters->IsPrintLocked()) { return;    387   if(theParameters->IsPrintLocked()) { return; }
391                                                   388 
392   // explicitly defined printout by particle n    389   // explicitly defined printout by particle name
393   G4String num = part.GetParticleName();          390   G4String num = part.GetParticleName();
394   if(1 < verboseLevel ||                          391   if(1 < verboseLevel || 
395      (0 < verboseLevel && (num == "e-" ||         392      (0 < verboseLevel && (num == "e-" || 
396                            num == "e+"    || n    393                            num == "e+"    || num == "mu+" || 
397                            num == "mu-"   || n    394                            num == "mu-"   || num == "proton"|| 
398                            num == "pi+"   || n    395                            num == "pi+"   || num == "pi-" || 
399                            num == "kaon+" || n    396                            num == "kaon+" || num == "kaon-" || 
400                            num == "alpha" || n    397                            num == "alpha" || num == "anti_proton" || 
401                            num == "GenericIon"    398                            num == "GenericIon"|| num == "alpha+" ))) { 
402     StreamInfo(G4cout, part);                     399     StreamInfo(G4cout, part); 
403   }                                               400   }
404   if(1 < verboseLevel) {                          401   if(1 < verboseLevel) {
405     G4cout << "### G4VEnergyLossProcess::Build    402     G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for "
406            << GetProcessName()                    403            << GetProcessName()
407            << " and particle " << part.GetPart    404            << " and particle " << part.GetParticleName();
408     if(isIonisation) { G4cout << "  isIonisati    405     if(isIonisation) { G4cout << "  isIonisation flag=1"; }
409     G4cout << " baseMat=" << baseMat << G4endl    406     G4cout << " baseMat=" << baseMat << G4endl;
410   }                                               407   }
411 }                                                 408 }
412                                                   409 
413 //....oooOO0OOooo........oooOO0OOooo........oo    410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   411 
415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED    412 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType)
416 {                                                 413 {
417   G4PhysicsTable* table = nullptr;                414   G4PhysicsTable* table = nullptr;
418   G4double emax = maxKinEnergy;                   415   G4double emax = maxKinEnergy;
419   G4int bin = nBins;                              416   G4int bin = nBins;
420                                                   417 
421   if(fTotal == tType) {                           418   if(fTotal == tType) {
422     emax  = maxKinEnergyCSDA;                     419     emax  = maxKinEnergyCSDA;
423     bin   = nBinsCSDA;                            420     bin   = nBinsCSDA;
424     table = theDEDXunRestrictedTable;             421     table = theDEDXunRestrictedTable;
425   } else if(fRestricted == tType) {               422   } else if(fRestricted == tType) {
426     table = theDEDXTable;                         423     table = theDEDXTable;
427   } else {                                        424   } else {
428     G4cout << "G4VEnergyLossProcess::BuildDEDX    425     G4cout << "G4VEnergyLossProcess::BuildDEDXTable WARNING: wrong type "
429            << tType << G4endl;                    426            << tType << G4endl;
430   }                                               427   }
431   if(1 < verboseLevel) {                          428   if(1 < verboseLevel) {
432     G4cout << "G4VEnergyLossProcess::BuildDEDX    429     G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType
433            << " for " << GetProcessName()         430            << " for " << GetProcessName()
434            << " and " << particle->GetParticle << 431            << " and " << particle->GetParticleName() << G4endl;
435      << "spline=" << spline << G4endl;         << 
436   }                                               432   }
437   if(nullptr == table) { return table; }          433   if(nullptr == table) { return table; }
438                                                   434 
439   G4LossTableBuilder* bld = lManager->GetTable    435   G4LossTableBuilder* bld = lManager->GetTableBuilder();
440   G4EmTableUtil::BuildDEDXTable(this, particle    436   G4EmTableUtil::BuildDEDXTable(this, particle, modelManager, bld,
441                                 table, minKinE    437                                 table, minKinEnergy, emax, bin,
442                                 verboseLevel,     438                                 verboseLevel, tType, spline);
443   return table;                                   439   return table;
444 }                                                 440 }
445                                                   441 
446 //....oooOO0OOooo........oooOO0OOooo........oo    442 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
447                                                   443 
448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam    444 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType)
449 {                                                 445 {
450   if(nullptr == theLambdaTable) { return theLa    446   if(nullptr == theLambdaTable) { return theLambdaTable; }
451                                                   447 
452   G4double scale = theParameters->MaxKinEnergy    448   G4double scale = theParameters->MaxKinEnergy()/theParameters->MinKinEnergy();
453   G4int nbin =                                    449   G4int nbin = 
454     theParameters->NumberOfBinsPerDecade()*G4l    450     theParameters->NumberOfBinsPerDecade()*G4lrint(std::log10(scale));
455   scale = nbin/G4Log(scale);                      451   scale = nbin/G4Log(scale);
456                                                   452   
457   G4LossTableBuilder* bld = lManager->GetTable    453   G4LossTableBuilder* bld = lManager->GetTableBuilder();
458   G4EmTableUtil::BuildLambdaTable(this, partic    454   G4EmTableUtil::BuildLambdaTable(this, particle, modelManager,
459                                   bld, theLamb    455                                   bld, theLambdaTable, theCuts,
460                                   minKinEnergy    456                                   minKinEnergy, maxKinEnergy, scale,
461                                   verboseLevel    457                                   verboseLevel, spline);
462   return theLambdaTable;                          458   return theLambdaTable;
463 }                                                 459 }
464                                                   460 
465 //....oooOO0OOooo........oooOO0OOooo........oo    461 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
466                                                   462 
467 void G4VEnergyLossProcess::StreamInfo(std::ost    463 void G4VEnergyLossProcess::StreamInfo(std::ostream& out,
468                 const G4ParticleDefinition& pa    464                 const G4ParticleDefinition& part, G4bool rst) const
469 {                                                 465 {
470   G4String indent = (rst ? "  " : "");            466   G4String indent = (rst ? "  " : "");
471   out << std::setprecision(6);                    467   out << std::setprecision(6);
472   out << G4endl << indent << GetProcessName()     468   out << G4endl << indent << GetProcessName()  << ": ";
473   if (!rst) out << " for " << part.GetParticle    469   if (!rst) out << " for " << part.GetParticleName();
474   out << "  XStype:" << fXSType                   470   out << "  XStype:" << fXSType 
475       << "  SubType=" << GetProcessSubType() <    471       << "  SubType=" << GetProcessSubType() << G4endl
476       << "      dE/dx and range tables from "     472       << "      dE/dx and range tables from "
477       << G4BestUnit(minKinEnergy,"Energy")        473       << G4BestUnit(minKinEnergy,"Energy")
478       << " to " << G4BestUnit(maxKinEnergy,"En    474       << " to " << G4BestUnit(maxKinEnergy,"Energy")
479       << " in " << nBins << " bins" << G4endl     475       << " in " << nBins << " bins" << G4endl
480       << "      Lambda tables from threshold t    476       << "      Lambda tables from threshold to "
481       << G4BestUnit(maxKinEnergy,"Energy")        477       << G4BestUnit(maxKinEnergy,"Energy")
482       << ", " << theParameters->NumberOfBinsPe    478       << ", " << theParameters->NumberOfBinsPerDecade() 
483       << " bins/decade, spline: " << spline       479       << " bins/decade, spline: " << spline
484       << G4endl;                                  480       << G4endl;
485   if(nullptr != theRangeTableForLoss && isIoni    481   if(nullptr != theRangeTableForLoss && isIonisation) {
486     out << "      StepFunction=(" << dRoverRan    482     out << "      StepFunction=(" << dRoverRange << ", "
487         << finalRange/mm << " mm)"                483         << finalRange/mm << " mm)"
488         << ", integ: " << fXSType                 484         << ", integ: " << fXSType
489         << ", fluct: " << lossFluctuationFlag     485         << ", fluct: " << lossFluctuationFlag
490         << ", linLossLim= " << linLossLimit       486         << ", linLossLim= " << linLossLimit
491         << G4endl;                                487         << G4endl;
492   }                                               488   }
493   StreamProcessInfo(out);                         489   StreamProcessInfo(out);
494   modelManager->DumpModelList(out, verboseLeve    490   modelManager->DumpModelList(out, verboseLevel);
495   if(nullptr != theCSDARangeTable && isIonisat    491   if(nullptr != theCSDARangeTable && isIonisation) {
496     out << "      CSDA range table up"            492     out << "      CSDA range table up"
497         << " to " << G4BestUnit(maxKinEnergyCS    493         << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy")
498         << " in " << nBinsCSDA << " bins" << G    494         << " in " << nBinsCSDA << " bins" << G4endl;
499   }                                               495   }
500   if(nSCoffRegions>0 && isIonisation) {           496   if(nSCoffRegions>0 && isIonisation) {
501     out << "      Subcutoff sampling in " << n    497     out << "      Subcutoff sampling in " << nSCoffRegions 
502         << " regions" << G4endl;                  498         << " regions" << G4endl;
503   }                                               499   }
504   if(2 < verboseLevel) {                          500   if(2 < verboseLevel) {
505     for(std::size_t i=0; i<7; ++i) {              501     for(std::size_t i=0; i<7; ++i) {
506       auto ta = theData->Table(i);                502       auto ta = theData->Table(i);
507       out << "      " << tnames[i] << " addres    503       out << "      " << tnames[i] << " address: " << ta << G4endl; 
508       if(nullptr != ta) { out << *ta << G4endl    504       if(nullptr != ta) { out << *ta << G4endl; }
509     }                                             505     }
510   }                                               506   }
511 }                                                 507 }
512                                                   508 
513 //....oooOO0OOooo........oooOO0OOooo........oo    509 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
514                                                   510 
515 void G4VEnergyLossProcess::ActivateSubCutoff(c    511 void G4VEnergyLossProcess::ActivateSubCutoff(const G4Region* r)
516 {                                                 512 {
517   if(nullptr == scoffRegions) {                   513   if(nullptr == scoffRegions) {
518     scoffRegions = new std::vector<const G4Reg    514     scoffRegions = new std::vector<const G4Region*>;
519   }                                               515   }
520   // the region is in the list                    516   // the region is in the list
521   if(!scoffRegions->empty()) {                    517   if(!scoffRegions->empty()) {
522     for (auto & reg : *scoffRegions) {            518     for (auto & reg : *scoffRegions) {
523       if (reg == r) { return; }                   519       if (reg == r) { return; }
524     }                                             520     }
525   }                                               521   }
526   // new region                                   522   // new region 
527   scoffRegions->push_back(r);                     523   scoffRegions->push_back(r);
528   ++nSCoffRegions;                                524   ++nSCoffRegions;
529 }                                                 525 }
530                                                   526 
531 //....oooOO0OOooo........oooOO0OOooo........oo    527 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
532                                                   528 
533 G4bool G4VEnergyLossProcess::IsRegionForCubcut    529 G4bool G4VEnergyLossProcess::IsRegionForCubcutProcessor(const G4Track& aTrack)
534 {                                                 530 {
535   if(0 == nSCoffRegions) { return true; }         531   if(0 == nSCoffRegions) { return true; }
536   const G4Region* r = aTrack.GetVolume()->GetL    532   const G4Region* r = aTrack.GetVolume()->GetLogicalVolume()->GetRegion();
537   for(auto & reg : *scoffRegions) {               533   for(auto & reg : *scoffRegions) {
538     if(r == reg) { return true; }                 534     if(r == reg) { return true; }
539   }                                               535   }
540   return false;                                   536   return false;
541 }                                                 537 }
542                                                   538 
543 //....oooOO0OOooo........oooOO0OOooo........oo    539 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
544                                                   540 
545 void G4VEnergyLossProcess::StartTracking(G4Tra    541 void G4VEnergyLossProcess::StartTracking(G4Track* track)
546 {                                                 542 {
547   // reset parameters for the new track           543   // reset parameters for the new track
548   theNumberOfInteractionLengthLeft = -1.0;        544   theNumberOfInteractionLengthLeft = -1.0;
549   mfpKinEnergy = DBL_MAX;                         545   mfpKinEnergy = DBL_MAX;
550   preStepLambda = 0.0;                         << 
551   currentCouple = nullptr;                        546   currentCouple = nullptr;
552                                                   547 
553   // reset ion                                    548   // reset ion
554   if(isIon) {                                     549   if(isIon) {
555     const G4double newmass = track->GetDefinit    550     const G4double newmass = track->GetDefinition()->GetPDGMass();
556     massRatio = (nullptr == baseParticle) ? CL << 551     if(nullptr != baseParticle) {
557       : baseParticle->GetPDGMass()/newmass;    << 552       massRatio = baseParticle->GetPDGMass()/newmass;
558     logMassRatio = G4Log(massRatio);           << 553       logMassRatio = G4Log(massRatio);
                                                   >> 554     } else if(isIon) {
                                                   >> 555       massRatio = CLHEP::proton_mass_c2/newmass;
                                                   >> 556       logMassRatio = G4Log(massRatio);
                                                   >> 557     } else {
                                                   >> 558       massRatio = 1.0;
                                                   >> 559       logMassRatio = 0.0;
                                                   >> 560     }
559   }                                               561   }  
560   // forced biasing only for primary particles    562   // forced biasing only for primary particles
561   if(nullptr != biasManager) {                    563   if(nullptr != biasManager) {
562     if(0 == track->GetParentID()) {               564     if(0 == track->GetParentID()) {
563       biasFlag = true;                            565       biasFlag = true; 
564       biasManager->ResetForcedInteraction();      566       biasManager->ResetForcedInteraction(); 
565     }                                             567     }
566   }                                               568   }
567 }                                                 569 }
568                                                   570 
569 //....oooOO0OOooo........oooOO0OOooo........oo    571 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
570                                                   572 
571 G4double G4VEnergyLossProcess::AlongStepGetPhy    573 G4double G4VEnergyLossProcess::AlongStepGetPhysicalInteractionLength(
572                              const G4Track& tr << 574                              const G4Track&,G4double,G4double,G4double&,
573                              G4GPILSelection*     575                              G4GPILSelection* selection)
574 {                                                 576 {
575   G4double x = DBL_MAX;                           577   G4double x = DBL_MAX;
576   *selection = aGPILSelection;                    578   *selection = aGPILSelection;
577   if(isIonisation && currentModel->IsActive(pr    579   if(isIonisation && currentModel->IsActive(preStepScaledEnergy)) {
578     GetScaledRangeForScaledEnergy(preStepScale << 580     GetScaledRangeForScaledEnergy(preStepScaledEnergy, preStepLogScaledEnergy);
579     x = (useCutAsFinalRange) ? std::min(finalR << 581     const G4double finR = (rndmStepFlag) ? std::min(finalRange,
580       currentCouple->GetProductionCuts()->GetP    582       currentCouple->GetProductionCuts()->GetProductionCut(1)) : finalRange;
581     x = (fRange > x) ? fRange*dRoverRange + x* << 583     x = (fRange > finR) ? 
582       : fRange;                                << 584       fRange*dRoverRange + finR*(1.0-dRoverRange)*(2.0-finR/fRange) : fRange; 
583     /*                                         << 
584       G4cout<<"AlongStepGPIL: " << GetProcessN << 
585   << " fRange=" << fRange << " finR=" << finR  << 
586     */                                         << 
587   }                                               585   }
                                                   >> 586   //G4cout<<"AlongStepGPIL: " << GetProcessName()<<": e= "<<preStepKinEnergy 
                                                   >> 587   //<<" stepLimit= "<<x<<G4endl;
588   return x;                                       588   return x;
589 }                                                 589 }
590                                                   590 
591 //....oooOO0OOooo........oooOO0OOooo........oo    591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
592                                                   592 
593 G4double G4VEnergyLossProcess::PostStepGetPhys    593 G4double G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength(
594                              const G4Track& tr    594                              const G4Track& track,
595                              G4double   previo    595                              G4double   previousStepSize,
596                              G4ForceCondition*    596                              G4ForceCondition* condition)
597 {                                                 597 {
598   // condition is set to "Not Forced"             598   // condition is set to "Not Forced"
599   *condition = NotForced;                         599   *condition = NotForced;
600   G4double x = DBL_MAX;                           600   G4double x = DBL_MAX;
601                                                   601 
602   // initialisation of material, mass, charge,    602   // initialisation of material, mass, charge, model 
603   // at the beginning of the step                 603   // at the beginning of the step
604   DefineMaterial(track.GetMaterialCutsCouple()    604   DefineMaterial(track.GetMaterialCutsCouple());
605   preStepKinEnergy       = track.GetKineticEne    605   preStepKinEnergy       = track.GetKineticEnergy();
                                                   >> 606   preStepLogKinEnergy    = track.GetDynamicParticle()->GetLogKineticEnergy();
606   preStepScaledEnergy    = preStepKinEnergy*ma    607   preStepScaledEnergy    = preStepKinEnergy*massRatio;
                                                   >> 608   preStepLogScaledEnergy = preStepLogKinEnergy + logMassRatio;
607   SelectModel(preStepScaledEnergy);               609   SelectModel(preStepScaledEnergy);
608                                                   610 
609   if(!currentModel->IsActive(preStepScaledEner    611   if(!currentModel->IsActive(preStepScaledEnergy)) { 
610     theNumberOfInteractionLengthLeft = -1.0;      612     theNumberOfInteractionLengthLeft = -1.0;
611     mfpKinEnergy = DBL_MAX;                    << 
612     preStepLambda = 0.0;                       << 
613     currentInteractionLength = DBL_MAX;           613     currentInteractionLength = DBL_MAX;
614     return x;                                  << 614     return x; 
615   }                                               615   }
616                                                   616 
617   // change effective charge of a charged part    617   // change effective charge of a charged particle on fly
618   if(isIon) {                                     618   if(isIon) {
619     const G4double q2 = currentModel->ChargeSq    619     const G4double q2 = currentModel->ChargeSquareRatio(track);
620     fFactor = q2*biasFactor;                   << 620     if(q2 != chargeSqRatio) { 
621     if(baseMat) { fFactor *= (*theDensityFacto << 621       fFactor *= q2/chargeSqRatio;
622     reduceFactor = 1.0/(fFactor*massRatio);    << 622       reduceFactor = 1.0/(fFactor*massRatio);
                                                   >> 623       chargeSqRatio = q2;
                                                   >> 624     }
623     if (lossFluctuationFlag) {                    625     if (lossFluctuationFlag) {
624       auto fluc = currentModel->GetModelOfFluc    626       auto fluc = currentModel->GetModelOfFluctuations();
625       fluc->SetParticleAndCharge(track.GetDefi    627       fluc->SetParticleAndCharge(track.GetDefinition(), q2);
626     }                                             628     }
627   }                                               629   }
628                                                   630 
629   // forced biasing only for primary particles    631   // forced biasing only for primary particles
630   if(biasManager) {                               632   if(biasManager) {
631     if(0 == track.GetParentID() && biasFlag &&    633     if(0 == track.GetParentID() && biasFlag && 
632        biasManager->ForcedInteractionRegion((G    634        biasManager->ForcedInteractionRegion((G4int)currentCoupleIndex)) {
633       return biasManager->GetStepLimit((G4int)    635       return biasManager->GetStepLimit((G4int)currentCoupleIndex, previousStepSize);
634     }                                             636     }
635   }                                               637   }
636                                                   638 
637   ComputeLambdaForScaledEnergy(preStepScaledEn << 639   // compute mean free path
638                                                << 640   ComputeLambdaForScaledEnergy(preStepScaledEnergy, preStepLogScaledEnergy);
                                                   >> 641 
639   // zero cross section                           642   // zero cross section
640   if(preStepLambda <= 0.0) {                      643   if(preStepLambda <= 0.0) { 
641     theNumberOfInteractionLengthLeft = -1.0;      644     theNumberOfInteractionLengthLeft = -1.0;
642     currentInteractionLength = DBL_MAX;           645     currentInteractionLength = DBL_MAX;
643   } else {                                        646   } else {
644                                                   647 
645     // non-zero cross section                     648     // non-zero cross section
646     if (theNumberOfInteractionLengthLeft < 0.0    649     if (theNumberOfInteractionLengthLeft < 0.0) {
647                                                   650 
648       // beggining of tracking (or just after     651       // beggining of tracking (or just after DoIt of this process)
649       theNumberOfInteractionLengthLeft = -G4Lo    652       theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() );
650       theInitialNumberOfInteractionLength = th    653       theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 
651                                                   654 
652     } else if(currentInteractionLength < DBL_M    655     } else if(currentInteractionLength < DBL_MAX) {
653                                                   656 
654       // subtract NumberOfInteractionLengthLef    657       // subtract NumberOfInteractionLengthLeft using previous step
655       theNumberOfInteractionLengthLeft -=         658       theNumberOfInteractionLengthLeft -= 
656         previousStepSize/currentInteractionLen    659         previousStepSize/currentInteractionLength;
657                                                   660 
658       theNumberOfInteractionLengthLeft =          661       theNumberOfInteractionLengthLeft = 
659         std::max(theNumberOfInteractionLengthL    662         std::max(theNumberOfInteractionLengthLeft, 0.0);
660     }                                             663     }
661                                                   664 
662     // new mean free path and step limit          665     // new mean free path and step limit
663     currentInteractionLength = 1.0/preStepLamb    666     currentInteractionLength = 1.0/preStepLambda;
664     x = theNumberOfInteractionLengthLeft * cur    667     x = theNumberOfInteractionLengthLeft * currentInteractionLength;
665   }                                               668   }
666 #ifdef G4VERBOSE                                  669 #ifdef G4VERBOSE
667   if (verboseLevel>2) {                           670   if (verboseLevel>2) {
668     G4cout << "G4VEnergyLossProcess::PostStepG    671     G4cout << "G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength ";
669     G4cout << "[ " << GetProcessName() << "]"     672     G4cout << "[ " << GetProcessName() << "]" << G4endl; 
670     G4cout << " for " << track.GetDefinition()    673     G4cout << " for " << track.GetDefinition()->GetParticleName() 
671            << " in Material  " <<  currentMate    674            << " in Material  " <<  currentMaterial->GetName()
672            << " Ekin(MeV)= " << preStepKinEner    675            << " Ekin(MeV)= " << preStepKinEnergy/MeV 
673            << " track material: " << track.Get    676            << " track material: " << track.GetMaterial()->GetName()
674            <<G4endl;                              677            <<G4endl;
675     G4cout << "MeanFreePath = " << currentInte    678     G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" 
676            << "InteractionLength= " << x/cm <<    679            << "InteractionLength= " << x/cm <<"[cm] " <<G4endl;
677   }                                               680   }
678 #endif                                            681 #endif
679   return x;                                       682   return x;
680 }                                                 683 }
681                                                   684 
682 //....oooOO0OOooo........oooOO0OOooo........oo    685 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
683                                                   686 
684 void                                              687 void
685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 688 G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e, G4double loge)
686 {                                                 689 {
687   // cross section increased with energy          690   // cross section increased with energy
688   if(fXSType == fEmIncreasing) {                  691   if(fXSType == fEmIncreasing) {
689     if(e*invLambdaFactor < mfpKinEnergy) {        692     if(e*invLambdaFactor < mfpKinEnergy) {
690       preStepLambda = GetLambdaForScaledEnergy << 693       mfpKinEnergy = e;
691       mfpKinEnergy = (preStepLambda > 0.0) ? e << 694       preStepLambda = GetLambdaForScaledEnergy(e, loge); 
692     }                                             695     }
693                                                   696 
694     // cross section has one peak                 697     // cross section has one peak
695   } else if(fXSType == fEmOnePeak) {              698   } else if(fXSType == fEmOnePeak) {
696     const G4double epeak = (*theEnergyOfCrossS    699     const G4double epeak = (*theEnergyOfCrossSectionMax)[basedCoupleIndex];
697     if(e <= epeak) {                              700     if(e <= epeak) {
698       if(e*invLambdaFactor < mfpKinEnergy) {      701       if(e*invLambdaFactor < mfpKinEnergy) {
699         preStepLambda = GetLambdaForScaledEner << 702         mfpKinEnergy = e;
700         mfpKinEnergy = (preStepLambda > 0.0) ? << 703         preStepLambda = GetLambdaForScaledEnergy(e, loge); 
701       }                                           704       }
702     } else if(e < mfpKinEnergy) {                 705     } else if(e < mfpKinEnergy) { 
703       const G4double e1 = std::max(epeak, e*la    706       const G4double e1 = std::max(epeak, e*lambdaFactor);
704       mfpKinEnergy = e1;                          707       mfpKinEnergy = e1;
705       preStepLambda = GetLambdaForScaledEnergy    708       preStepLambda = GetLambdaForScaledEnergy(e1);
706     }                                             709     }
707                                                   710 
708     // cross section has more than one peaks      711     // cross section has more than one peaks
709   } else if(fXSType == fEmTwoPeaks) {             712   } else if(fXSType == fEmTwoPeaks) {
710     G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple    713     G4TwoPeaksXS* xs = (*fXSpeaks)[basedCoupleIndex];
711     const G4double e1peak = xs->e1peak;           714     const G4double e1peak = xs->e1peak;
712                                                   715 
713     // below the 1st peak                         716     // below the 1st peak
714     if(e <= e1peak) {                             717     if(e <= e1peak) {
715       if(e*invLambdaFactor < mfpKinEnergy) {      718       if(e*invLambdaFactor < mfpKinEnergy) {
716         preStepLambda = GetLambdaForScaledEner << 719         mfpKinEnergy = e;
717         mfpKinEnergy = (preStepLambda > 0.0) ? << 720         preStepLambda = GetLambdaForScaledEnergy(e, loge); 
718       }                                           721       }
719       return;                                     722       return;
720     }                                             723     }
721     const G4double e1deep = xs->e1deep;           724     const G4double e1deep = xs->e1deep;
722     // above the 1st peak, below the deep         725     // above the 1st peak, below the deep
723     if(e <= e1deep) {                             726     if(e <= e1deep) {
724       if(mfpKinEnergy >= e1deep || e <= mfpKin    727       if(mfpKinEnergy >= e1deep || e <= mfpKinEnergy) { 
725         const G4double e1 = std::max(e1peak, e    728         const G4double e1 = std::max(e1peak, e*lambdaFactor);
726         mfpKinEnergy = e1;                        729         mfpKinEnergy = e1;
727         preStepLambda = GetLambdaForScaledEner    730         preStepLambda = GetLambdaForScaledEnergy(e1); 
728       }                                           731       }
729       return;                                     732       return;
730     }                                             733     }
731     const G4double e2peak = xs->e2peak;           734     const G4double e2peak = xs->e2peak;
732     // above the deep, below 2nd peak             735     // above the deep, below 2nd peak
733     if(e <= e2peak) {                             736     if(e <= e2peak) {
734       if(e*invLambdaFactor < mfpKinEnergy) {      737       if(e*invLambdaFactor < mfpKinEnergy) {
735         mfpKinEnergy = e;                         738         mfpKinEnergy = e;
736         preStepLambda = GetLambdaForScaledEner << 739         preStepLambda = GetLambdaForScaledEnergy(e, loge); 
737       }                                           740       }
738       return;                                     741       return;
739     }                                             742     }
740     const G4double e2deep = xs->e2deep;           743     const G4double e2deep = xs->e2deep;
741     // above the 2nd peak, below the deep         744     // above the 2nd peak, below the deep
742     if(e <= e2deep) {                             745     if(e <= e2deep) {
743       if(mfpKinEnergy >= e2deep || e <= mfpKin    746       if(mfpKinEnergy >= e2deep || e <= mfpKinEnergy) { 
744         const G4double e1 = std::max(e2peak, e    747         const G4double e1 = std::max(e2peak, e*lambdaFactor);
745         mfpKinEnergy = e1;                        748         mfpKinEnergy = e1;
746         preStepLambda = GetLambdaForScaledEner    749         preStepLambda = GetLambdaForScaledEnergy(e1); 
747       }                                           750       }
748       return;                                     751       return;
749     }                                             752     }
750     const G4double e3peak = xs->e3peak;           753     const G4double e3peak = xs->e3peak;
751     // above the deep, below 3d peak              754     // above the deep, below 3d peak
752     if(e <= e3peak) {                             755     if(e <= e3peak) {
753       if(e*invLambdaFactor < mfpKinEnergy) {      756       if(e*invLambdaFactor < mfpKinEnergy) {
754         mfpKinEnergy = e;                         757         mfpKinEnergy = e;
755         preStepLambda = GetLambdaForScaledEner << 758         preStepLambda = GetLambdaForScaledEnergy(e, loge); 
756       }                                           759       }
757       return;                                     760       return;
758     }                                             761     }
759     // above 3d peak                              762     // above 3d peak
760     if(e <= mfpKinEnergy) {                       763     if(e <= mfpKinEnergy) { 
761       const G4double e1 = std::max(e3peak, e*l    764       const G4double e1 = std::max(e3peak, e*lambdaFactor);
762       mfpKinEnergy = e1;                          765       mfpKinEnergy = e1;
763       preStepLambda = GetLambdaForScaledEnergy    766       preStepLambda = GetLambdaForScaledEnergy(e1); 
764     }                                             767     }
765     // integral method is not used                768     // integral method is not used
766   } else {                                        769   } else {
767     preStepLambda = GetLambdaForScaledEnergy(e << 770     preStepLambda = GetLambdaForScaledEnergy(e, loge); 
768   }                                               771   }
769 }                                                 772 }
770                                                   773 
771 //....oooOO0OOooo........oooOO0OOooo........oo    774 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
772                                                   775 
773 G4VParticleChange* G4VEnergyLossProcess::Along    776 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track,
774                                                   777                                                        const G4Step& step)
775 {                                                 778 {
776   fParticleChange.InitializeForAlongStep(track    779   fParticleChange.InitializeForAlongStep(track);
777   // The process has range table - calculate e    780   // The process has range table - calculate energy loss
778   if(!isIonisation || !currentModel->IsActive(    781   if(!isIonisation || !currentModel->IsActive(preStepScaledEnergy)) {
779     return &fParticleChange;                      782     return &fParticleChange;
780   }                                               783   }
781                                                   784 
                                                   >> 785   // Get the actual (true) Step length
782   G4double length = step.GetStepLength();         786   G4double length = step.GetStepLength();
                                                   >> 787   if(length <= 0.0) { return &fParticleChange; }
783   G4double eloss  = 0.0;                          788   G4double eloss  = 0.0;
784                                                   789  
785   /*                                           << 790   /*
786   if(-1 < verboseLevel) {                         791   if(-1 < verboseLevel) {
787     const G4ParticleDefinition* d = track.GetP    792     const G4ParticleDefinition* d = track.GetParticleDefinition();
788     G4cout << "AlongStepDoIt for "                793     G4cout << "AlongStepDoIt for "
789            << GetProcessName() << " and partic    794            << GetProcessName() << " and particle " << d->GetParticleName()
790            << "  eScaled(MeV)=" << preStepScal    795            << "  eScaled(MeV)=" << preStepScaledEnergy/MeV
791            << "  range(mm)=" << fRange/mm << "    796            << "  range(mm)=" << fRange/mm << "  s(mm)=" << length/mm
792            << "  rf=" << reduceFactor << "  q^    797            << "  rf=" << reduceFactor << "  q^2=" << chargeSqRatio
793            << " md=" << d->GetPDGMass() << "      798            << " md=" << d->GetPDGMass() << "  status=" << track.GetTrackStatus()
794            << "  " << track.GetMaterial()->Get    799            << "  " << track.GetMaterial()->GetName() << G4endl;
795   }                                               800   }
796   */                                              801   */
797   const G4DynamicParticle* dynParticle = track    802   const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
798                                                   803 
799   // define new weight for primary and seconda    804   // define new weight for primary and secondaries
800   G4double weight = fParticleChange.GetParentW    805   G4double weight = fParticleChange.GetParentWeight();
801   if(weightFlag) {                                806   if(weightFlag) {
802     weight /= biasFactor;                         807     weight /= biasFactor;
803     fParticleChange.ProposeWeight(weight);        808     fParticleChange.ProposeWeight(weight);
804   }                                               809   }
805                                                   810 
806   // stopping, check actual range and kinetic  << 811   // stopping
807   if (length >= fRange || preStepKinEnergy <=     812   if (length >= fRange || preStepKinEnergy <= lowestKinEnergy) {
808     eloss = preStepKinEnergy;                     813     eloss = preStepKinEnergy;
809     if (useDeexcitation) {                        814     if (useDeexcitation) {
810       atomDeexcitation->AlongStepDeexcitation(    815       atomDeexcitation->AlongStepDeexcitation(scTracks, step, 
811                                                   816                                               eloss, (G4int)currentCoupleIndex);
812       if(scTracks.size() > 0) { FillSecondarie    817       if(scTracks.size() > 0) { FillSecondariesAlongStep(weight); }
813       eloss = std::max(eloss, 0.0);               818       eloss = std::max(eloss, 0.0);
814     }                                             819     }
815     fParticleChange.SetProposedKineticEnergy(0    820     fParticleChange.SetProposedKineticEnergy(0.0);
816     fParticleChange.ProposeLocalEnergyDeposit(    821     fParticleChange.ProposeLocalEnergyDeposit(eloss);
817     return &fParticleChange;                      822     return &fParticleChange;
818   }                                               823   }
819   // zero step length with non-zero range      << 
820   if(length <= 0.0) { return &fParticleChange; << 
821                                                << 
822   // Short step                                   824   // Short step
823   eloss = length*GetDEDXForScaledEnergy(preSte    825   eloss = length*GetDEDXForScaledEnergy(preStepScaledEnergy,
824                                         LogSca << 826                                         preStepLogScaledEnergy);
825   /*                                           << 827   //G4cout << "Short STEP: eloss= " << eloss << G4endl;
826   G4cout << "##### Short STEP: eloss= " << elo << 828 
827    << " Escaled=" << preStepScaledEnergy       << 
828    << " R=" << fRange                          << 
829    << " L=" << length                          << 
830    << " fFactor=" << fFactor << " minE=" << mi << 
831    << " idxBase=" << basedCoupleIndex << G4end << 
832   */                                           << 
833   // Long step                                    829   // Long step
834   if(eloss > preStepKinEnergy*linLossLimit) {     830   if(eloss > preStepKinEnergy*linLossLimit) {
835                                                   831 
836     const G4double x = (fRange - length)/reduc << 832     G4double x = (fRange - length)/reduceFactor;
837     const G4double de = preStepKinEnergy - Sca << 833     //G4cout << "x= " << x << "  " << theInverseRangeTable << G4endl;
838     if(de > 0.0) { eloss = de; }               << 834     eloss = preStepKinEnergy - ScaledKinEnergyForLoss(x)/massRatio;
                                                   >> 835    
839     /*                                            836     /*
840     if(-1 < verboseLevel)                         837     if(-1 < verboseLevel) 
841       G4cout << "  Long STEP: rPre(mm)="       << 838       G4cout << "Long STEP: rPre(mm)= " 
842              << GetScaledRangeForScaledEnergy(    839              << GetScaledRangeForScaledEnergy(preStepScaledEnergy)/mm
843              << " x(mm)=" << x/mm              << 840              << " rPost(mm)= " << x/mm
844              << " eloss(MeV)=" << eloss/MeV    << 841              << " ePre(MeV)= " << preStepScaledEnergy/MeV
845        << " rFactor=" << reduceFactor          << 842              << " eloss(MeV)= " << eloss/MeV << " eloss0(MeV)= "
846        << " massRatio=" << massRatio           << 843              << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV
                                                   >> 844              << " lim(MeV)= " << preStepKinEnergy*linLossLimit/MeV
847              << G4endl;                           845              << G4endl;
848     */                                            846     */
849   }                                               847   }
850                                                   848 
851   /*                                              849   /*
852   if(-1 < verboseLevel ) {                        850   if(-1 < verboseLevel ) {
853     G4cout << "Before fluct: eloss(MeV)= " <<     851     G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV
854            << " e-eloss= " << preStepKinEnergy    852            << " e-eloss= " << preStepKinEnergy-eloss
855            << " step(mm)= " << length/mm << "     853            << " step(mm)= " << length/mm << " range(mm)= " << fRange/mm
856            << " fluct= " << lossFluctuationFla    854            << " fluct= " << lossFluctuationFlag << G4endl;
857   }                                               855   }
858   */                                              856   */
859                                                   857 
860   const G4double cut = (*theCuts)[currentCoupl    858   const G4double cut = (*theCuts)[currentCoupleIndex];
861   G4double esec = 0.0;                            859   G4double esec = 0.0;
862                                                   860 
863   // Corrections, which cannot be tabulated       861   // Corrections, which cannot be tabulated
864   if(isIon) {                                     862   if(isIon) {
865     currentModel->CorrectionsAlongStep(current    863     currentModel->CorrectionsAlongStep(currentCouple, dynParticle, 
866                                        length,    864                                        length, eloss);
867     eloss = std::max(eloss, 0.0);                 865     eloss = std::max(eloss, 0.0);
868   }                                               866   }
869                                                   867 
870   // Sample fluctuations if not full energy lo    868   // Sample fluctuations if not full energy loss
871   if(eloss >= preStepKinEnergy) {                 869   if(eloss >= preStepKinEnergy) {
872     eloss = preStepKinEnergy;                     870     eloss = preStepKinEnergy;
873                                                   871 
874   } else if (lossFluctuationFlag) {               872   } else if (lossFluctuationFlag) {
875     const G4double tmax = currentModel->MaxSec    873     const G4double tmax = currentModel->MaxSecondaryKinEnergy(dynParticle);
876     const G4double tcut = std::min(cut, tmax);    874     const G4double tcut = std::min(cut, tmax);
877     G4VEmFluctuationModel* fluc = currentModel    875     G4VEmFluctuationModel* fluc = currentModel->GetModelOfFluctuations();
878     eloss = fluc->SampleFluctuations(currentCo    876     eloss = fluc->SampleFluctuations(currentCouple,dynParticle,
879                                      tcut, tma    877                                      tcut, tmax, length, eloss);
880     /*                                            878     /*
881     if(-1 < verboseLevel)                         879     if(-1 < verboseLevel) 
882       G4cout << "After fluct: eloss(MeV)= " <<    880       G4cout << "After fluct: eloss(MeV)= " << eloss/MeV
883              << " fluc= " << (eloss-eloss0)/Me    881              << " fluc= " << (eloss-eloss0)/MeV
884              << " ChargeSqRatio= " << chargeSq    882              << " ChargeSqRatio= " << chargeSqRatio
885              << " massRatio= " << massRatio <<    883              << " massRatio= " << massRatio << " tmax= " << tmax << G4endl;
886     */                                            884     */
887   }                                               885   }
888                                                   886 
889   // deexcitation                                 887   // deexcitation
890   if (useDeexcitation) {                          888   if (useDeexcitation) {
891     G4double esecfluo = preStepKinEnergy;         889     G4double esecfluo = preStepKinEnergy;
892     G4double de = esecfluo;                       890     G4double de = esecfluo;
893     atomDeexcitation->AlongStepDeexcitation(sc    891     atomDeexcitation->AlongStepDeexcitation(scTracks, step, 
894                                             de    892                                             de, (G4int)currentCoupleIndex);
895                                                   893 
896     // sum of de-excitation energies              894     // sum of de-excitation energies
897     esecfluo -= de;                               895     esecfluo -= de;
898                                                   896 
899     // subtracted from energy loss                897     // subtracted from energy loss
900     if(eloss >= esecfluo) {                       898     if(eloss >= esecfluo) {
901       esec  += esecfluo;                          899       esec  += esecfluo;
902       eloss -= esecfluo;                          900       eloss -= esecfluo;
903     } else {                                      901     } else {
904       esec += esecfluo;                           902       esec += esecfluo;
905       eloss = 0.0;                                903       eloss = 0.0; 
906     }                                             904     } 
907   }                                               905   }
908   if(nullptr != subcutProducer && IsRegionForC    906   if(nullptr != subcutProducer && IsRegionForCubcutProcessor(track)) {
909     subcutProducer->SampleSecondaries(step, sc    907     subcutProducer->SampleSecondaries(step, scTracks, eloss, cut);
910   }                                               908   }
911   // secondaries from atomic de-excitation and    909   // secondaries from atomic de-excitation and subcut
912   if(!scTracks.empty()) { FillSecondariesAlong    910   if(!scTracks.empty()) { FillSecondariesAlongStep(weight); }
913                                                   911 
914   // Energy balance                               912   // Energy balance
915   G4double finalT = preStepKinEnergy - eloss -    913   G4double finalT = preStepKinEnergy - eloss - esec;
916   if (finalT <= lowestKinEnergy) {                914   if (finalT <= lowestKinEnergy) {
917     eloss += finalT;                              915     eloss += finalT;
918     finalT = 0.0;                                 916     finalT = 0.0;
919   } else if(isIon) {                              917   } else if(isIon) {
920     fParticleChange.SetProposedCharge(            918     fParticleChange.SetProposedCharge(
921       currentModel->GetParticleCharge(track.Ge    919       currentModel->GetParticleCharge(track.GetParticleDefinition(),
922                                       currentM    920                                       currentMaterial,finalT));
923   }                                               921   }
924   eloss = std::max(eloss, 0.0);                   922   eloss = std::max(eloss, 0.0);
925                                                   923 
926   fParticleChange.SetProposedKineticEnergy(fin    924   fParticleChange.SetProposedKineticEnergy(finalT);
927   fParticleChange.ProposeLocalEnergyDeposit(el    925   fParticleChange.ProposeLocalEnergyDeposit(eloss);
928   /*                                              926   /*
929   if(-1 < verboseLevel) {                         927   if(-1 < verboseLevel) {
930     G4double del = finalT + eloss + esec - pre    928     G4double del = finalT + eloss + esec - preStepKinEnergy;
931     G4cout << "Final value eloss(MeV)= " << el    929     G4cout << "Final value eloss(MeV)= " << eloss/MeV
932            << " preStepKinEnergy= " << preStep    930            << " preStepKinEnergy= " << preStepKinEnergy
933            << " postStepKinEnergy= " << finalT    931            << " postStepKinEnergy= " << finalT
934            << " de(keV)= " << del/keV             932            << " de(keV)= " << del/keV
935            << " lossFlag= " << lossFluctuation    933            << " lossFlag= " << lossFluctuationFlag
936            << "  status= " << track.GetTrackSt    934            << "  status= " << track.GetTrackStatus()
937            << G4endl;                             935            << G4endl;
938   }                                               936   }
939   */                                              937   */
940   return &fParticleChange;                        938   return &fParticleChange;
941 }                                                 939 }
942                                                   940 
943 //....oooOO0OOooo........oooOO0OOooo........oo    941 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
944                                                   942 
945 void G4VEnergyLossProcess::FillSecondariesAlon    943 void G4VEnergyLossProcess::FillSecondariesAlongStep(G4double wt)
946 {                                                 944 {
947   const std::size_t n0 = scTracks.size();         945   const std::size_t n0 = scTracks.size();
948   G4double weight = wt;                           946   G4double weight = wt;
949   // weight may be changed by biasing manager     947   // weight may be changed by biasing manager
950   if(biasManager) {                               948   if(biasManager) {
951     if(biasManager->SecondaryBiasingRegion((G4    949     if(biasManager->SecondaryBiasingRegion((G4int)currentCoupleIndex)) {
952       weight *=                                   950       weight *=
953         biasManager->ApplySecondaryBiasing(scT    951         biasManager->ApplySecondaryBiasing(scTracks, (G4int)currentCoupleIndex);
954     }                                             952     }
955   }                                               953   } 
956                                                   954 
957   // fill secondaries                             955   // fill secondaries
958   const std::size_t n = scTracks.size();          956   const std::size_t n = scTracks.size();
959   fParticleChange.SetNumberOfSecondaries((G4in    957   fParticleChange.SetNumberOfSecondaries((G4int)n);
960                                                   958 
961   for(std::size_t i=0; i<n; ++i) {                959   for(std::size_t i=0; i<n; ++i) {
962     G4Track* t = scTracks[i];                     960     G4Track* t = scTracks[i];
963     if(nullptr != t) {                            961     if(nullptr != t) {
964       t->SetWeight(weight);                       962       t->SetWeight(weight); 
965       pParticleChange->AddSecondary(t);           963       pParticleChange->AddSecondary(t);
966       G4int pdg = t->GetDefinition()->GetPDGEn << 964       if(i >= n0) { t->SetCreatorModelID(biasID); }
967       if (i < n0) {                            << 
968         if (pdg == 22) {                       << 
969     t->SetCreatorModelID(gpixeID);             << 
970         } else if (pdg == 11) {                << 
971           t->SetCreatorModelID(epixeID);       << 
972         } else {                               << 
973           t->SetCreatorModelID(biasID);        << 
974   }                                            << 
975       } else {                                 << 
976   t->SetCreatorModelID(biasID);                << 
977       }                                        << 
978     }                                             965     }
979   }                                               966   }
980   scTracks.clear();                               967   scTracks.clear();
981 }                                                 968 }
982                                                   969 
983 //....oooOO0OOooo........oooOO0OOooo........oo    970 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
984                                                   971 
985 G4VParticleChange* G4VEnergyLossProcess::PostS    972 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track,
986                                                   973                                                       const G4Step& step)
987 {                                                 974 {
988   // clear number of interaction lengths in an    975   // clear number of interaction lengths in any case
989   theNumberOfInteractionLengthLeft = -1.0;        976   theNumberOfInteractionLengthLeft = -1.0;
990   mfpKinEnergy = DBL_MAX;                         977   mfpKinEnergy = DBL_MAX;
991                                                   978 
992   fParticleChange.InitializeForPostStep(track)    979   fParticleChange.InitializeForPostStep(track);
993   const G4double finalT = track.GetKineticEner    980   const G4double finalT = track.GetKineticEnergy();
994                                                   981 
995   const G4double postStepScaledEnergy = finalT    982   const G4double postStepScaledEnergy = finalT*massRatio;
996   SelectModel(postStepScaledEnergy);              983   SelectModel(postStepScaledEnergy);
997                                                   984 
998   if(!currentModel->IsActive(postStepScaledEne    985   if(!currentModel->IsActive(postStepScaledEnergy)) { 
999     return &fParticleChange;                      986     return &fParticleChange; 
1000   }                                              987   }
1001   /*                                             988   /*
1002   if(1 < verboseLevel) {                         989   if(1 < verboseLevel) {
1003     G4cout<<GetProcessName()<<" PostStepDoIt:    990     G4cout<<GetProcessName()<<" PostStepDoIt: E(MeV)= "<< finalT/MeV<< G4endl;
1004   }                                              991   }
1005   */                                             992   */
1006   // forced process - should happen only once    993   // forced process - should happen only once per track
1007   if(biasFlag) {                                 994   if(biasFlag) {
1008     if(biasManager->ForcedInteractionRegion((    995     if(biasManager->ForcedInteractionRegion((G4int)currentCoupleIndex)) {
1009       biasFlag = false;                          996       biasFlag = false;
1010     }                                            997     }
1011   }                                              998   }
1012   const G4DynamicParticle* dp = track.GetDyna    999   const G4DynamicParticle* dp = track.GetDynamicParticle();
1013                                                  1000 
1014   // Integral approach                           1001   // Integral approach
1015   if (fXSType != fEmNoIntegral) {                1002   if (fXSType != fEmNoIntegral) {
1016     const G4double logFinalT = dp->GetLogKine    1003     const G4double logFinalT = dp->GetLogKineticEnergy();
1017     G4double lx = GetLambdaForScaledEnergy(po    1004     G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy,
1018                                            lo    1005                                            logFinalT + logMassRatio);
1019     lx = std::max(lx, 0.0);                      1006     lx = std::max(lx, 0.0);
1020                                                  1007 
1021     // if both lg and lx are zero then no int    1008     // if both lg and lx are zero then no interaction
1022     if(preStepLambda*G4UniformRand() >= lx) {    1009     if(preStepLambda*G4UniformRand() >= lx) {
1023       return &fParticleChange;                   1010       return &fParticleChange;
1024     }                                            1011     }
1025   }                                              1012   }
1026                                                  1013 
1027   // define new weight for primary and second    1014   // define new weight for primary and secondaries
1028   G4double weight = fParticleChange.GetParent    1015   G4double weight = fParticleChange.GetParentWeight();
1029   if(weightFlag) {                               1016   if(weightFlag) {
1030     weight /= biasFactor;                        1017     weight /= biasFactor;
1031     fParticleChange.ProposeWeight(weight);       1018     fParticleChange.ProposeWeight(weight);
1032   }                                              1019   }
1033                                                  1020 
1034   const G4double tcut = (*theCuts)[currentCou    1021   const G4double tcut = (*theCuts)[currentCoupleIndex];
1035                                                  1022 
1036   // sample secondaries                          1023   // sample secondaries
1037   secParticles.clear();                          1024   secParticles.clear();
1038   currentModel->SampleSecondaries(&secParticl    1025   currentModel->SampleSecondaries(&secParticles, currentCouple, dp, tcut);
1039                                                  1026 
1040   const G4int num0 = (G4int)secParticles.size    1027   const G4int num0 = (G4int)secParticles.size();
1041                                                  1028 
1042   // bremsstrahlung splitting or Russian roul    1029   // bremsstrahlung splitting or Russian roulette  
1043   if(biasManager) {                              1030   if(biasManager) {
1044     if(biasManager->SecondaryBiasingRegion((G    1031     if(biasManager->SecondaryBiasingRegion((G4int)currentCoupleIndex)) {
1045       G4double eloss = 0.0;                      1032       G4double eloss = 0.0;
1046       weight *= biasManager->ApplySecondaryBi    1033       weight *= biasManager->ApplySecondaryBiasing(
1047                                       secPart    1034                                       secParticles,
1048                                       track,     1035                                       track, currentModel, 
1049                                       &fParti    1036                                       &fParticleChange, eloss,
1050                                       (G4int)    1037                                       (G4int)currentCoupleIndex, tcut, 
1051                                       step.Ge    1038                                       step.GetPostStepPoint()->GetSafety());
1052       if(eloss > 0.0) {                          1039       if(eloss > 0.0) {
1053         eloss += fParticleChange.GetLocalEner    1040         eloss += fParticleChange.GetLocalEnergyDeposit();
1054         fParticleChange.ProposeLocalEnergyDep    1041         fParticleChange.ProposeLocalEnergyDeposit(eloss);
1055       }                                          1042       }
1056     }                                            1043     }
1057   }                                              1044   }
1058                                                  1045 
1059   // save secondaries                            1046   // save secondaries
1060   const G4int num = (G4int)secParticles.size(    1047   const G4int num = (G4int)secParticles.size();
1061   if(num > 0) {                                  1048   if(num > 0) {
1062                                                  1049 
1063     fParticleChange.SetNumberOfSecondaries(nu    1050     fParticleChange.SetNumberOfSecondaries(num);
1064     G4double time = track.GetGlobalTime();       1051     G4double time = track.GetGlobalTime();
1065                                                  1052 
1066     G4int n1(0), n2(0);                          1053     G4int n1(0), n2(0);
1067     if(num0 > mainSecondaries) {                 1054     if(num0 > mainSecondaries) { 
1068       currentModel->FillNumberOfSecondaries(n    1055       currentModel->FillNumberOfSecondaries(n1, n2);
1069     }                                            1056     }
1070                                                  1057 
1071     for (G4int i=0; i<num; ++i) {                1058     for (G4int i=0; i<num; ++i) {
1072       if(nullptr != secParticles[i]) {           1059       if(nullptr != secParticles[i]) {
1073         G4Track* t = new G4Track(secParticles    1060         G4Track* t = new G4Track(secParticles[i], time, track.GetPosition());
1074         t->SetTouchableHandle(track.GetToucha    1061         t->SetTouchableHandle(track.GetTouchableHandle());
1075         if (biasManager) {                       1062         if (biasManager) {
1076           t->SetWeight(weight * biasManager->    1063           t->SetWeight(weight * biasManager->GetWeight(i));
1077         } else {                                 1064         } else {
1078           t->SetWeight(weight);                  1065           t->SetWeight(weight);
1079         }                                        1066         }
1080         if(i < num0) {                           1067         if(i < num0) {
1081           t->SetCreatorModelID(secID);           1068           t->SetCreatorModelID(secID);
1082         } else if(i < num0 + n1) {               1069         } else if(i < num0 + n1) {
1083           t->SetCreatorModelID(tripletID);       1070           t->SetCreatorModelID(tripletID);
1084         } else {                                 1071         } else {
1085           t->SetCreatorModelID(biasID);          1072           t->SetCreatorModelID(biasID);
1086         }                                        1073         }
1087                                                  1074 
1088         //G4cout << "Secondary(post step) has    1075         //G4cout << "Secondary(post step) has weight " << t->GetWeight() 
1089         //       << ", kenergy " << t->GetKin    1076         //       << ", kenergy " << t->GetKineticEnergy()/MeV << " MeV" 
1090         //       << " time= " << time/ns << "    1077         //       << " time= " << time/ns << " ns " << G4endl;
1091         pParticleChange->AddSecondary(t);        1078         pParticleChange->AddSecondary(t);
1092       }                                          1079       }
1093     }                                            1080     }
1094   }                                              1081   }
1095                                                  1082 
1096   if(0.0 == fParticleChange.GetProposedKineti    1083   if(0.0 == fParticleChange.GetProposedKineticEnergy() &&
1097      fAlive == fParticleChange.GetTrackStatus    1084      fAlive == fParticleChange.GetTrackStatus()) {
1098     if(particle->GetProcessManager()->GetAtRe    1085     if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
1099          { fParticleChange.ProposeTrackStatus    1086          { fParticleChange.ProposeTrackStatus(fStopButAlive); }
1100     else { fParticleChange.ProposeTrackStatus    1087     else { fParticleChange.ProposeTrackStatus(fStopAndKill); }
1101   }                                              1088   }
1102                                                  1089 
1103   /*                                             1090   /*
1104   if(-1 < verboseLevel) {                        1091   if(-1 < verboseLevel) {
1105     G4cout << "::PostStepDoIt: Sample seconda    1092     G4cout << "::PostStepDoIt: Sample secondary; Efin= " 
1106     << fParticleChange.GetProposedKineticEner    1093     << fParticleChange.GetProposedKineticEnergy()/MeV
1107            << " MeV; model= (" << currentMode    1094            << " MeV; model= (" << currentModel->LowEnergyLimit()
1108            << ", " <<  currentModel->HighEner    1095            << ", " <<  currentModel->HighEnergyLimit() << ")"
1109            << "  preStepLambda= " << preStepL    1096            << "  preStepLambda= " << preStepLambda
1110            << "  dir= " << track.GetMomentumD    1097            << "  dir= " << track.GetMomentumDirection()
1111            << "  status= " << track.GetTrackS    1098            << "  status= " << track.GetTrackStatus()
1112            << G4endl;                            1099            << G4endl;
1113   }                                              1100   }
1114   */                                             1101   */
1115   return &fParticleChange;                       1102   return &fParticleChange;
1116 }                                                1103 }
1117                                                  1104 
1118 //....oooOO0OOooo........oooOO0OOooo........o    1105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1119                                                  1106 
1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl    1107 G4bool G4VEnergyLossProcess::StorePhysicsTable(
1121        const G4ParticleDefinition* part, cons    1108        const G4ParticleDefinition* part, const G4String& dir, G4bool ascii)
1122 {                                                1109 {
1123   if (!isMaster || nullptr != baseParticle ||    1110   if (!isMaster || nullptr != baseParticle || part != particle ) return true;
1124   for(std::size_t i=0; i<7; ++i) {               1111   for(std::size_t i=0; i<7; ++i) {
1125     // ionisation table only for ionisation p << 1112     if(nullptr != theData->Table(i)) {
1126     if (nullptr == theData->Table(i) || (!isI << 1113       if(1 < verboseLevel) {
1127       continue;                               << 1114   G4cout << "G4VEnergyLossProcess::StorePhysicsTable i=" << i
1128     }                                         << 1115          << "  " << particle->GetParticleName()
1129     if (-1 < verboseLevel) {                  << 1116          << "  " << GetProcessName()
1130       G4cout << "G4VEnergyLossProcess::StoreP << 1117          << "  " << tnames[i] << "  " << theData->Table(i) << G4endl;
1131        << "  " << particle->GetParticleName() << 1118       }
1132        << "  " << GetProcessName()            << 1119       if(!G4EmTableUtil::StoreTable(this, part, theData->Table(i), 
1133        << "  " << tnames[i] << "  " << theDat << 1120             dir, tnames[i], verboseLevel, ascii)) { 
1134     }                                         << 1121   return false;
1135     if (!G4EmTableUtil::StoreTable(this, part << 1122       }
1136            dir, tnames[i], verboseLevel, asci << 
1137       return false;                           << 
1138     }                                            1123     }
1139   }                                              1124   }
1140   return true;                                   1125   return true;
1141 }                                                1126 }
1142                                                  1127 
1143 //....oooOO0OOooo........oooOO0OOooo........o    1128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
1144                                                  1129 
1145 G4bool                                           1130 G4bool 
1146 G4VEnergyLossProcess::RetrievePhysicsTable(co    1131 G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 
1147                                            co    1132                                            const G4String& dir, G4bool ascii)
1148 {                                                1133 {
1149   if (!isMaster || nullptr != baseParticle ||    1134   if (!isMaster || nullptr != baseParticle || part != particle ) return true;
1150   for(std::size_t i=0; i<7; ++i) {               1135   for(std::size_t i=0; i<7; ++i) {
1151     // ionisation table only for ionisation p << 
1152     if (!isIonisation && 1 == i) { continue;  << 
1153     if(!G4EmTableUtil::RetrieveTable(this, pa    1136     if(!G4EmTableUtil::RetrieveTable(this, part, theData->Table(i), dir, tnames[i],
1154                                      verboseL    1137                                      verboseLevel, ascii, spline)) { 
1155       return false;                              1138       return false;
1156     }                                            1139     }
1157   }                                              1140   }
1158   return true;                                   1141   return true;
1159 }                                                1142 }
1160                                                  1143 
1161 //....oooOO0OOooo........oooOO0OOooo........o    1144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162                                                  1145 
1163 G4double G4VEnergyLossProcess::GetDEDXDispers    1146 G4double G4VEnergyLossProcess::GetDEDXDispersion(
1164                                   const G4Mat    1147                                   const G4MaterialCutsCouple *couple,
1165                                   const G4Dyn    1148                                   const G4DynamicParticle* dp,
1166                                         G4dou    1149                                         G4double length)
1167 {                                                1150 {
1168   DefineMaterial(couple);                        1151   DefineMaterial(couple);
1169   G4double ekin = dp->GetKineticEnergy();        1152   G4double ekin = dp->GetKineticEnergy();
1170   SelectModel(ekin*massRatio);                   1153   SelectModel(ekin*massRatio);
1171   G4double tmax = currentModel->MaxSecondaryK    1154   G4double tmax = currentModel->MaxSecondaryKinEnergy(dp);
1172   G4double tcut = std::min(tmax,(*theCuts)[cu    1155   G4double tcut = std::min(tmax,(*theCuts)[currentCoupleIndex]);
1173   G4double d = 0.0;                              1156   G4double d = 0.0;
1174   G4VEmFluctuationModel* fm = currentModel->G    1157   G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations();
1175   if(nullptr != fm) { d = fm->Dispersion(curr    1158   if(nullptr != fm) { d = fm->Dispersion(currentMaterial,dp,tcut,tmax,length); }
1176   return d;                                      1159   return d;
1177 }                                                1160 }
1178                                                  1161 
1179 //....oooOO0OOooo........oooOO0OOooo........o    1162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1180                                                  1163 
1181 G4double                                         1164 G4double
1182 G4VEnergyLossProcess::CrossSectionPerVolume(G    1165 G4VEnergyLossProcess::CrossSectionPerVolume(G4double kineticEnergy,
1183                                             c    1166                                             const G4MaterialCutsCouple* couple,
1184                                             G    1167                                             G4double logKineticEnergy)
1185 {                                                1168 {
1186   // Cross section per volume is calculated      1169   // Cross section per volume is calculated
1187   DefineMaterial(couple);                        1170   DefineMaterial(couple);
1188   G4double cross = 0.0;                          1171   G4double cross = 0.0;
1189   if (nullptr != theLambdaTable) {               1172   if (nullptr != theLambdaTable) {
1190     cross = GetLambdaForScaledEnergy(kineticE    1173     cross = GetLambdaForScaledEnergy(kineticEnergy * massRatio,
1191                                      logKinet    1174                                      logKineticEnergy + logMassRatio);
1192   } else {                                       1175   } else {
1193     SelectModel(kineticEnergy*massRatio);        1176     SelectModel(kineticEnergy*massRatio);
1194     cross = (!baseMat) ? biasFactor : biasFac    1177     cross = (!baseMat) ? biasFactor : biasFactor*(*theDensityFactor)[currentCoupleIndex];
1195     cross *= (currentModel->CrossSectionPerVo    1178     cross *= (currentModel->CrossSectionPerVolume(currentMaterial, particle, kineticEnergy,
1196                                                  1179                                                   (*theCuts)[currentCoupleIndex]));
1197   }                                              1180   }
1198   return std::max(cross, 0.0);                   1181   return std::max(cross, 0.0);
1199 }                                                1182 }
1200                                                  1183 
1201 //....oooOO0OOooo........oooOO0OOooo........o    1184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1202                                                  1185 
1203 G4double G4VEnergyLossProcess::MeanFreePath(c    1186 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track)
1204 {                                                1187 {
1205   DefineMaterial(track.GetMaterialCutsCouple(    1188   DefineMaterial(track.GetMaterialCutsCouple());
1206   const G4double kinEnergy    = track.GetKine    1189   const G4double kinEnergy    = track.GetKineticEnergy();
1207   const G4double logKinEnergy = track.GetDyna    1190   const G4double logKinEnergy = track.GetDynamicParticle()->GetLogKineticEnergy();
1208   const G4double cs = GetLambdaForScaledEnerg    1191   const G4double cs = GetLambdaForScaledEnergy(kinEnergy * massRatio, 
1209                                                  1192                                                logKinEnergy + logMassRatio);
1210   return (0.0 < cs) ? 1.0/cs : DBL_MAX;          1193   return (0.0 < cs) ? 1.0/cs : DBL_MAX;
1211 }                                                1194 }
1212                                                  1195 
1213 //....oooOO0OOooo........oooOO0OOooo........o    1196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1214                                                  1197 
1215 G4double G4VEnergyLossProcess::ContinuousStep    1198 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, 
1216                                                  1199                                                    G4double x, G4double y, 
1217                                                  1200                                                    G4double& z)
1218 {                                                1201 {
1219   return AlongStepGetPhysicalInteractionLengt    1202   return AlongStepGetPhysicalInteractionLength(track, x, y, z, &aGPILSelection);
1220 }                                                1203 }
1221                                                  1204 
1222 //....oooOO0OOooo........oooOO0OOooo........o    1205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1223                                                  1206 
1224 G4double G4VEnergyLossProcess::GetMeanFreePat    1207 G4double G4VEnergyLossProcess::GetMeanFreePath(
1225                              const G4Track& t    1208                              const G4Track& track,
1226                              G4double,           1209                              G4double,
1227                              G4ForceCondition    1210                              G4ForceCondition* condition)
1228                                                  1211 
1229 {                                                1212 {
1230   *condition = NotForced;                        1213   *condition = NotForced;
1231   return MeanFreePath(track);                    1214   return MeanFreePath(track);
1232 }                                                1215 }
1233                                                  1216 
1234 //....oooOO0OOooo........oooOO0OOooo........o    1217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1235                                                  1218 
1236 G4double G4VEnergyLossProcess::GetContinuousS    1219 G4double G4VEnergyLossProcess::GetContinuousStepLimit(
1237                 const G4Track&,                  1220                 const G4Track&,
1238                 G4double, G4double, G4double&    1221                 G4double, G4double, G4double&)
1239 {                                                1222 {
1240   return DBL_MAX;                                1223   return DBL_MAX;
1241 }                                                1224 }
1242                                                  1225 
1243 //....oooOO0OOooo........oooOO0OOooo........o    1226 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1244                                                  1227 
1245 G4PhysicsVector*                                 1228 G4PhysicsVector* 
1246 G4VEnergyLossProcess::LambdaPhysicsVector(con    1229 G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple, 
1247                                           G4d    1230                                           G4double)
1248 {                                                1231 {
1249   DefineMaterial(couple);                        1232   DefineMaterial(couple);
1250   G4PhysicsVector* v = (*theLambdaTable)[base    1233   G4PhysicsVector* v = (*theLambdaTable)[basedCoupleIndex];
1251   return new G4PhysicsVector(*v);                1234   return new G4PhysicsVector(*v);
1252 }                                                1235 }
1253                                                  1236 
1254 //....oooOO0OOooo........oooOO0OOooo........o    1237 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1255                                                  1238 
1256 void                                             1239 void 
1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT    1240 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType)
1258 {                                                1241 {
1259   if(1 < verboseLevel) {                         1242   if(1 < verboseLevel) {
1260     G4cout << "### Set DEDX table " << p << "    1243     G4cout << "### Set DEDX table " << p << "  " << theDEDXTable
1261      << "  " <<  theDEDXunRestrictedTable <<     1244      << "  " <<  theDEDXunRestrictedTable << "  " << theIonisationTable
1262            << " for " << particle->GetParticl    1245            << " for " << particle->GetParticleName()
1263            << " and process " << GetProcessNa    1246            << " and process " << GetProcessName() 
1264      << " type=" << tType << " isIonisation:"    1247      << " type=" << tType << " isIonisation:" << isIonisation << G4endl;
1265   }                                              1248   }
1266   if(fTotal == tType) {                          1249   if(fTotal == tType) {
1267     theDEDXunRestrictedTable = p;                1250     theDEDXunRestrictedTable = p;
1268   } else if(fRestricted == tType) {              1251   } else if(fRestricted == tType) {
1269     theDEDXTable = p;                            1252     theDEDXTable = p;
1270     if(isMaster && nullptr == baseParticle) {    1253     if(isMaster && nullptr == baseParticle) {
1271       theData->UpdateTable(theDEDXTable, 0);     1254       theData->UpdateTable(theDEDXTable, 0);
1272     }                                            1255     }
1273   } else if(fIsIonisation == tType) {            1256   } else if(fIsIonisation == tType) {
1274     theIonisationTable = p;                      1257     theIonisationTable = p;
1275     if(isMaster && nullptr == baseParticle) {    1258     if(isMaster && nullptr == baseParticle) {
1276       theData->UpdateTable(theIonisationTable    1259       theData->UpdateTable(theIonisationTable, 1);
1277     }                                            1260     }
1278   }                                              1261   }
1279 }                                                1262 }
1280                                                  1263 
1281 //....oooOO0OOooo........oooOO0OOooo........o    1264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1282                                                  1265 
1283 void G4VEnergyLossProcess::SetCSDARangeTable(    1266 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p)
1284 {                                                1267 {
1285   theCSDARangeTable = p;                         1268   theCSDARangeTable = p;
1286 }                                                1269 }
1287                                                  1270 
1288 //....oooOO0OOooo........oooOO0OOooo........o    1271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1289                                                  1272 
1290 void G4VEnergyLossProcess::SetRangeTableForLo    1273 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p)
1291 {                                                1274 {
1292   theRangeTableForLoss = p;                      1275   theRangeTableForLoss = p;
1293 }                                                1276 }
1294                                                  1277 
1295 //....oooOO0OOooo........oooOO0OOooo........o    1278 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1296                                                  1279 
1297 void G4VEnergyLossProcess::SetInverseRangeTab    1280 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p)
1298 {                                                1281 {
1299   theInverseRangeTable = p;                      1282   theInverseRangeTable = p;
1300 }                                                1283 }
1301                                                  1284 
1302 //....oooOO0OOooo........oooOO0OOooo........o    1285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1303                                                  1286 
1304 void G4VEnergyLossProcess::SetLambdaTable(G4P    1287 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p)
1305 {                                                1288 {
1306   if(1 < verboseLevel) {                         1289   if(1 < verboseLevel) {
1307     G4cout << "### Set Lambda table " << p <<    1290     G4cout << "### Set Lambda table " << p << " " << theLambdaTable 
1308            << " for " << particle->GetParticl    1291            << " for " << particle->GetParticleName()
1309            << " and process " << GetProcessNa    1292            << " and process " << GetProcessName() << G4endl;
1310   }                                              1293   }
1311   theLambdaTable = p;                            1294   theLambdaTable = p;
1312   tablesAreBuilt = true;                         1295   tablesAreBuilt = true;
1313                                                  1296 
1314   if(isMaster && nullptr != p) {                 1297   if(isMaster && nullptr != p) {
1315     delete theEnergyOfCrossSectionMax;           1298     delete theEnergyOfCrossSectionMax;
1316     theEnergyOfCrossSectionMax = nullptr;        1299     theEnergyOfCrossSectionMax = nullptr;
1317     if(fEmTwoPeaks == fXSType) {                 1300     if(fEmTwoPeaks == fXSType) {
1318       if(nullptr != fXSpeaks) {                  1301       if(nullptr != fXSpeaks) { 
1319   for(auto & ptr : *fXSpeaks) { delete ptr; }    1302   for(auto & ptr : *fXSpeaks) { delete ptr; }
1320   delete fXSpeaks;                               1303   delete fXSpeaks;
1321       }                                          1304       }
1322       G4LossTableBuilder* bld = lManager->Get    1305       G4LossTableBuilder* bld = lManager->GetTableBuilder();
1323       fXSpeaks = G4EmUtility::FillPeaksStruct    1306       fXSpeaks = G4EmUtility::FillPeaksStructure(p, bld);
1324       if(nullptr == fXSpeaks) { fXSType = fEm    1307       if(nullptr == fXSpeaks) { fXSType = fEmOnePeak; }
1325     }                                            1308     }
1326     if(fXSType == fEmOnePeak) {                  1309     if(fXSType == fEmOnePeak) { 
1327       theEnergyOfCrossSectionMax = G4EmUtilit    1310       theEnergyOfCrossSectionMax = G4EmUtility::FindCrossSectionMax(p);
1328       if(nullptr == theEnergyOfCrossSectionMa    1311       if(nullptr == theEnergyOfCrossSectionMax) { fXSType = fEmIncreasing; }
1329     }                                            1312     }
1330   }                                              1313   }
1331 }                                                1314 }
1332                                                  1315 
1333 //....oooOO0OOooo........oooOO0OOooo........o    1316 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1334                                                  1317 
1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe    1318 void G4VEnergyLossProcess::SetEnergyOfCrossSectionMax(std::vector<G4double>* p)
1336 {                                                1319 {
1337   theEnergyOfCrossSectionMax = p;                1320   theEnergyOfCrossSectionMax = p;
1338 }                                                1321 }
1339                                                  1322 
1340 //....oooOO0OOooo........oooOO0OOooo........o    1323 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1341                                                  1324 
1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std:    1325 void G4VEnergyLossProcess::SetTwoPeaksXS(std::vector<G4TwoPeaksXS*>* ptr)
1343 {                                                1326 {
1344   fXSpeaks = ptr;                                1327   fXSpeaks = ptr;
1345 }                                                1328 }
1346                                                  1329 
1347 //....oooOO0OOooo........oooOO0OOooo........o    1330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1348                                                  1331 
1349 const G4Element* G4VEnergyLossProcess::GetCur    1332 const G4Element* G4VEnergyLossProcess::GetCurrentElement() const
1350 {                                                1333 {
1351   return (nullptr != currentModel)               1334   return (nullptr != currentModel) 
1352     ? currentModel->GetCurrentElement(current    1335     ? currentModel->GetCurrentElement(currentMaterial) : nullptr;
1353 }                                                1336 }
1354                                                  1337 
1355 //....oooOO0OOooo........oooOO0OOooo........o    1338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1356                                                  1339 
1357 void G4VEnergyLossProcess::SetCrossSectionBia    1340 void G4VEnergyLossProcess::SetCrossSectionBiasingFactor(G4double f, 
1358                                                  1341                                                         G4bool flag)
1359 {                                                1342 {
1360   if(f > 0.0) {                                  1343   if(f > 0.0) { 
1361     biasFactor = f;                              1344     biasFactor = f; 
1362     weightFlag = flag;                           1345     weightFlag = flag;
1363     if(1 < verboseLevel) {                       1346     if(1 < verboseLevel) {
1364       G4cout << "### SetCrossSectionBiasingFa    1347       G4cout << "### SetCrossSectionBiasingFactor: for " 
1365              << " process " << GetProcessName    1348              << " process " << GetProcessName()
1366              << " biasFactor= " << f << " wei    1349              << " biasFactor= " << f << " weightFlag= " << flag 
1367              << G4endl;                          1350              << G4endl; 
1368     }                                            1351     }
1369   }                                              1352   }
1370 }                                                1353 }
1371                                                  1354 
1372 //....oooOO0OOooo........oooOO0OOooo........o    1355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1373                                                  1356 
1374 void G4VEnergyLossProcess::ActivateForcedInte    1357 void G4VEnergyLossProcess::ActivateForcedInteraction(G4double length, 
1375                                                  1358                                                      const G4String& region,
1376                                                  1359                                                      G4bool flag)
1377 {                                                1360 {
1378   if(nullptr == biasManager) { biasManager =     1361   if(nullptr == biasManager) { biasManager = new G4EmBiasingManager(); }
1379   if(1 < verboseLevel) {                         1362   if(1 < verboseLevel) {
1380     G4cout << "### ActivateForcedInteraction:    1363     G4cout << "### ActivateForcedInteraction: for " 
1381            << " process " << GetProcessName()    1364            << " process " << GetProcessName()
1382            << " length(mm)= " << length/mm       1365            << " length(mm)= " << length/mm
1383            << " in G4Region <" << region         1366            << " in G4Region <" << region
1384            << "> weightFlag= " << flag           1367            << "> weightFlag= " << flag 
1385            << G4endl;                            1368            << G4endl; 
1386   }                                              1369   }
1387   weightFlag = flag;                             1370   weightFlag = flag;
1388   biasManager->ActivateForcedInteraction(leng    1371   biasManager->ActivateForcedInteraction(length, region);
1389 }                                                1372 }
1390                                                  1373 
1391 //....oooOO0OOooo........oooOO0OOooo........o    1374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1392                                                  1375 
1393 void                                             1376 void 
1394 G4VEnergyLossProcess::ActivateSecondaryBiasin    1377 G4VEnergyLossProcess::ActivateSecondaryBiasing(const G4String& region, 
1395                                                  1378                                                G4double factor, 
1396                                                  1379                                                G4double energyLimit)
1397 {                                                1380 {
1398   if (0.0 <= factor) {                           1381   if (0.0 <= factor) {
1399     // Range cut can be applied only for e-      1382     // Range cut can be applied only for e-
1400     if(0.0 == factor && secondaryParticle !=     1383     if(0.0 == factor && secondaryParticle != G4Electron::Electron())
1401       { return; }                                1384       { return; }
1402                                                  1385 
1403     if(nullptr == biasManager) { biasManager     1386     if(nullptr == biasManager) { biasManager = new G4EmBiasingManager(); }
1404     biasManager->ActivateSecondaryBiasing(reg    1387     biasManager->ActivateSecondaryBiasing(region, factor, energyLimit);
1405     if(1 < verboseLevel) {                       1388     if(1 < verboseLevel) {
1406       G4cout << "### ActivateSecondaryBiasing    1389       G4cout << "### ActivateSecondaryBiasing: for " 
1407              << " process " << GetProcessName    1390              << " process " << GetProcessName()
1408              << " factor= " << factor            1391              << " factor= " << factor
1409              << " in G4Region <" << region       1392              << " in G4Region <" << region 
1410              << "> energyLimit(MeV)= " << ene    1393              << "> energyLimit(MeV)= " << energyLimit/MeV
1411              << G4endl;                          1394              << G4endl; 
1412     }                                            1395     }
1413   }                                              1396   }
1414 }                                                1397 }
1415                                                  1398 
1416 //....oooOO0OOooo........oooOO0OOooo........o    1399 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1417                                                  1400 
1418 void G4VEnergyLossProcess::SetIonisation(G4bo    1401 void G4VEnergyLossProcess::SetIonisation(G4bool val)
1419 {                                                1402 {
1420   isIonisation = val;                            1403   isIonisation = val;
1421   aGPILSelection = (val) ? CandidateForSelect    1404   aGPILSelection = (val) ? CandidateForSelection : NotCandidateForSelection;
1422 }                                                1405 }
1423                                                  1406 
1424 //....oooOO0OOooo........oooOO0OOooo........o    1407 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1425                                                  1408 
1426  void G4VEnergyLossProcess::SetLinearLossLimi    1409  void G4VEnergyLossProcess::SetLinearLossLimit(G4double val)
1427 {                                                1410 {
1428   if(0.0 < val && val < 1.0) {                   1411   if(0.0 < val && val < 1.0) { 
1429     linLossLimit = val;                          1412     linLossLimit = val;
1430     actLinLossLimit = true;                      1413     actLinLossLimit = true; 
1431   } else { PrintWarning("SetLinearLossLimit",    1414   } else { PrintWarning("SetLinearLossLimit", val); }
1432 }                                                1415 }
1433                                                  1416 
1434 //....oooOO0OOooo........oooOO0OOooo........o    1417 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1435                                                  1418 
1436 void G4VEnergyLossProcess::SetStepFunction(G4    1419 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2)
1437 {                                                1420 {
1438   if(0.0 < v1 && 0.0 < v2) {                     1421   if(0.0 < v1 && 0.0 < v2) { 
1439     dRoverRange = std::min(1.0, v1);             1422     dRoverRange = std::min(1.0, v1);
1440     finalRange = std::min(v2, 1.e+50);           1423     finalRange = std::min(v2, 1.e+50);
1441   } else {                                       1424   } else {
1442     PrintWarning("SetStepFunctionV1", v1);       1425     PrintWarning("SetStepFunctionV1", v1); 
1443     PrintWarning("SetStepFunctionV2", v2);       1426     PrintWarning("SetStepFunctionV2", v2); 
1444   }                                              1427   }
1445 }                                                1428 }
1446                                                  1429 
1447 //....oooOO0OOooo........oooOO0OOooo........o    1430 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1448                                                  1431 
1449 void G4VEnergyLossProcess::SetLowestEnergyLim    1432 void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val)
1450 {                                                1433 {
1451   if(1.e-18 < val && val < 1.e+50) { lowestKi    1434   if(1.e-18 < val && val < 1.e+50) { lowestKinEnergy = val; }
1452   else { PrintWarning("SetLowestEnergyLimit",    1435   else { PrintWarning("SetLowestEnergyLimit", val); }
1453 }                                                1436 }
1454                                                  1437 
1455 //....oooOO0OOooo........oooOO0OOooo........o    1438 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1456                                                  1439 
1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i    1440 void G4VEnergyLossProcess::SetDEDXBinning(G4int n)
1458 {                                                1441 {
1459   if(2 < n && n < 1000000000) {                  1442   if(2 < n && n < 1000000000) { 
1460     nBins = n;                                   1443     nBins = n; 
1461     actBinning = true;                           1444     actBinning = true;
1462   } else {                                       1445   } else {
1463     G4double e = (G4double)n;                    1446     G4double e = (G4double)n;
1464     PrintWarning("SetDEDXBinning", e);           1447     PrintWarning("SetDEDXBinning", e); 
1465   }                                              1448   } 
1466 }                                                1449 }
1467                                                  1450 
1468 //....oooOO0OOooo........oooOO0OOooo........o    1451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1469                                                  1452 
1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4    1453 void G4VEnergyLossProcess::SetMinKinEnergy(G4double e)
1471 {                                                1454 {
1472   if(1.e-18 < e && e < maxKinEnergy) {           1455   if(1.e-18 < e && e < maxKinEnergy) { 
1473     minKinEnergy = e;                            1456     minKinEnergy = e; 
1474     actMinKinEnergy = true;                      1457     actMinKinEnergy = true;
1475   } else { PrintWarning("SetMinKinEnergy", e)    1458   } else { PrintWarning("SetMinKinEnergy", e); } 
1476 }                                                1459 }
1477                                                  1460 
1478 //....oooOO0OOooo........oooOO0OOooo........o    1461 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1479                                                  1462 
1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4    1463 void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e)
1481 {                                                1464 {
1482   if(minKinEnergy < e && e < 1.e+50) {           1465   if(minKinEnergy < e && e < 1.e+50) { 
1483     maxKinEnergy = e;                            1466     maxKinEnergy = e;
1484     actMaxKinEnergy = true;                      1467     actMaxKinEnergy = true;
1485     if(e < maxKinEnergyCSDA) { maxKinEnergyCS    1468     if(e < maxKinEnergyCSDA) { maxKinEnergyCSDA = e; }
1486   } else { PrintWarning("SetMaxKinEnergy", e)    1469   } else { PrintWarning("SetMaxKinEnergy", e); } 
1487 }                                                1470 }
1488                                                  1471 
1489 //....oooOO0OOooo........oooOO0OOooo........o    1472 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1490                                                  1473 
1491 void G4VEnergyLossProcess::PrintWarning(const    1474 void G4VEnergyLossProcess::PrintWarning(const G4String& tit, G4double val) const
1492 {                                                1475 {
1493   G4String ss = "G4VEnergyLossProcess::" + ti    1476   G4String ss = "G4VEnergyLossProcess::" + tit; 
1494   G4ExceptionDescription ed;                     1477   G4ExceptionDescription ed;
1495   ed << "Parameter is out of range: " << val     1478   ed << "Parameter is out of range: " << val 
1496      << " it will have no effect!\n" << "  Pr    1479      << " it will have no effect!\n" << "  Process " 
1497      << GetProcessName() << "  nbins= " << nB    1480      << GetProcessName() << "  nbins= " << nBins 
1498      << " Emin(keV)= " << minKinEnergy/keV       1481      << " Emin(keV)= " << minKinEnergy/keV 
1499      << " Emax(GeV)= " << maxKinEnergy/GeV;      1482      << " Emax(GeV)= " << maxKinEnergy/GeV;
1500   G4Exception(ss, "em0044", JustWarning, ed);    1483   G4Exception(ss, "em0044", JustWarning, ed);
1501 }                                                1484 }
1502                                                  1485 
1503 //....oooOO0OOooo........oooOO0OOooo........o    1486 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1504                                                  1487 
1505 void G4VEnergyLossProcess::ProcessDescription    1488 void G4VEnergyLossProcess::ProcessDescription(std::ostream& out) const
1506 {                                                1489 {
1507   if(nullptr != particle) { StreamInfo(out, *    1490   if(nullptr != particle) { StreamInfo(out, *particle, true); }
1508 }                                                1491 }
1509                                                  1492 
1510 //....oooOO0OOooo........oooOO0OOooo........o    1493 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1511                                                  1494