Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 36 // 36 // 37 // Modifications: Vladimir Ivanchenko 37 // Modifications: Vladimir Ivanchenko 38 // 38 // 39 // 39 // 40 // Class Description: 40 // Class Description: 41 // 41 // 42 // It is the unified energy loss process it ca 42 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 43 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 44 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 45 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 46 // that information on fly. 47 // ------------------------------------------- 47 // ------------------------------------------------------------------- 48 // 48 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 51 52 #include "G4VEnergyLossProcess.hh" 52 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" 53 #include "G4PhysicalConstants.hh" 54 #include "G4SystemOfUnits.hh" 54 #include "G4SystemOfUnits.hh" 55 #include "G4ProcessManager.hh" 55 #include "G4ProcessManager.hh" 56 #include "G4LossTableManager.hh" 56 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" 57 #include "G4LossTableBuilder.hh" 58 #include "G4Step.hh" 58 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 59 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" 60 #include "G4ParticleTable.hh" 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 61 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 62 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 63 #include "G4DataVector.hh" 67 #include "G4PhysicsLogVector.hh" 64 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 65 #include "G4VParticleChange.hh" >> 66 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 67 #include "G4Electron.hh" >> 68 #include "G4Positron.hh" 70 #include "G4ProcessManager.hh" 69 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 70 #include "G4UnitsTable.hh" >> 71 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 72 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 73 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 74 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" 75 #include "G4SafetyHelper.hh" 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" 76 #include "G4TransportationManager.hh" >> 77 #include "G4EmConfigurator.hh" 78 #include "G4VAtomDeexcitation.hh" 78 #include "G4VAtomDeexcitation.hh" 79 #include "G4VSubCutProducer.hh" 79 #include "G4VSubCutProducer.hh" 80 #include "G4EmBiasingManager.hh" 80 #include "G4EmBiasingManager.hh" 81 #include "G4Log.hh" 81 #include "G4Log.hh" 82 #include <iostream> 82 #include <iostream> 83 83 84 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 85 86 namespace << 87 { << 88 G4String tnames[7] = << 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 90 } << 91 << 92 << 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con 86 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 94 G4P 87 G4ProcessType type): 95 G4VContinuousDiscreteProcess(name, type) << 88 G4VContinuousDiscreteProcess(name, type), >> 89 secondaryParticle(nullptr), >> 90 nSCoffRegions(0), >> 91 idxSCoffRegions(nullptr), >> 92 nProcesses(0), >> 93 theDEDXTable(nullptr), >> 94 theDEDXSubTable(nullptr), >> 95 theDEDXunRestrictedTable(nullptr), >> 96 theIonisationTable(nullptr), >> 97 theIonisationSubTable(nullptr), >> 98 theRangeTableForLoss(nullptr), >> 99 theCSDARangeTable(nullptr), >> 100 theSecondaryRangeTable(nullptr), >> 101 theInverseRangeTable(nullptr), >> 102 theLambdaTable(nullptr), >> 103 theSubLambdaTable(nullptr), >> 104 baseParticle(nullptr), >> 105 lossFluctuationFlag(true), >> 106 rndmStepFlag(false), >> 107 tablesAreBuilt(false), >> 108 integral(true), >> 109 isIon(false), >> 110 isIonisation(true), >> 111 useSubCutoff(false), >> 112 useDeexcitation(false), >> 113 currentCouple(nullptr), >> 114 mfpKinEnergy(0.0), >> 115 particle(nullptr) 96 { 116 { 97 theParameters = G4EmParameters::Instance(); 117 theParameters = G4EmParameters::Instance(); 98 SetVerboseLevel(1); 118 SetVerboseLevel(1); 99 119 100 // low energy limit 120 // low energy limit 101 lowestKinEnergy = theParameters->LowestElect << 121 lowestKinEnergy = theParameters->LowestElectronEnergy(); 102 << 122 preStepKinEnergy = 0.0; 103 // Size of tables << 123 preStepLogKinEnergy = LOG_EKIN_MIN; 104 minKinEnergy = 0.1*CLHEP::keV; << 124 preStepRangeEnergy = 0.0; 105 maxKinEnergy = 100.0*CLHEP::TeV; << 125 computedRange = DBL_MAX; 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 126 >> 127 // Size of tables assuming spline >> 128 minKinEnergy = 0.1*keV; >> 129 maxKinEnergy = 100.0*TeV; 107 nBins = 84; 130 nBins = 84; >> 131 maxKinEnergyCSDA = 1.0*GeV; 108 nBinsCSDA = 35; 132 nBinsCSDA = 35; >> 133 actMinKinEnergy = actMaxKinEnergy = actBinning = actLinLossLimit >> 134 = actLossFluc = actIntegral = actStepFunc = false; 109 135 110 invLambdaFactor = 1.0/lambdaFactor; << 136 // default linear loss limit for spline 111 << 137 linLossLimit = 0.01; 112 // default linear loss limit << 138 dRoverRange = 0.2; 113 finalRange = 1.*CLHEP::mm; << 139 finalRange = CLHEP::mm; >> 140 >> 141 // default lambda factor >> 142 lambdaFactor = 0.8; >> 143 logLambdafactor = G4Log(lambdaFactor); >> 144 >> 145 // cross section biasing >> 146 biasFactor = 1.0; >> 147 >> 148 // particle types >> 149 theElectron = G4Electron::Electron(); >> 150 thePositron = G4Positron::Positron(); >> 151 theGamma = G4Gamma::Gamma(); >> 152 theGenericIon = nullptr; 114 153 115 // run time objects 154 // run time objects 116 pParticleChange = &fParticleChange; 155 pParticleChange = &fParticleChange; 117 fParticleChange.SetSecondaryWeightByProcess( 156 fParticleChange.SetSecondaryWeightByProcess(true); 118 modelManager = new G4EmModelManager(); 157 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT 158 safetyHelper = G4TransportationManager::GetTransportationManager() 120 ->GetSafetyHelper(); 159 ->GetSafetyHelper(); 121 aGPILSelection = CandidateForSelection; 160 aGPILSelection = CandidateForSelection; 122 161 123 // initialise model 162 // initialise model 124 lManager = G4LossTableManager::Instance(); 163 lManager = G4LossTableManager::Instance(); 125 lManager->Register(this); 164 lManager->Register(this); 126 isMaster = lManager->IsMaster(); << 127 << 128 G4LossTableBuilder* bld = lManager->GetTable 165 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 129 theDensityFactor = bld->GetDensityFactors(); 166 theDensityFactor = bld->GetDensityFactors(); 130 theDensityIdx = bld->GetCoupleIndexes(); 167 theDensityIdx = bld->GetCoupleIndexes(); 131 168 132 scTracks.reserve(10); << 169 fluctModel = nullptr; 133 secParticles.reserve(12); << 170 currentModel = nullptr; 134 emModels = new std::vector<G4VEmModel*>; << 171 atomDeexcitation = nullptr; >> 172 subcutProducer = nullptr; >> 173 >> 174 biasManager = nullptr; >> 175 biasFlag = false; >> 176 weightFlag = false; >> 177 isMaster = true; >> 178 lastIdx = 0; >> 179 >> 180 idxDEDX = idxDEDXSub = idxDEDXunRestricted = idxIonisation = >> 181 idxIonisationSub = idxRange = idxCSDA = idxSecRange = >> 182 idxInverseRange = idxLambda = idxSubLambda = 0; >> 183 >> 184 scTracks.reserve(5); >> 185 secParticles.reserve(5); >> 186 >> 187 theCuts = theSubCuts = nullptr; >> 188 currentMaterial = nullptr; >> 189 currentCoupleIndex = basedCoupleIndex = 0; >> 190 massRatio = fFactor = reduceFactor = chargeSqRatio = 1.0; >> 191 preStepLambda = preStepScaledEnergy = fRange = logMassRatio = 0.0; >> 192 preStepLogScaledEnergy = LOG_EKIN_MIN; >> 193 >> 194 secID = biasID = subsecID = -1; 135 } 195 } 136 196 137 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 198 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 199 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 200 { 141 if (isMaster) { << 201 /* 142 if(nullptr == baseParticle) { delete theDa << 202 G4cout << "** G4VEnergyLossProcess::~G4VEnergyLossProcess() for " 143 delete theEnergyOfCrossSectionMax; << 203 << GetProcessName() << " isMaster: " << isMaster 144 if(nullptr != fXSpeaks) { << 204 << " basePart: " << baseParticle 145 for(auto const & v : *fXSpeaks) { delete << 205 << G4endl; 146 delete fXSpeaks; << 206 */ >> 207 Clean(); >> 208 >> 209 // G4cout << " isIonisation " << isIonisation << " " >> 210 // << theDEDXTable << " " << theIonisationTable << G4endl; >> 211 >> 212 if (isMaster && !baseParticle) { >> 213 if(theDEDXTable) { >> 214 >> 215 //G4cout << " theIonisationTable " << theIonisationTable << G4endl; >> 216 if(theIonisationTable == theDEDXTable) { theIonisationTable = nullptr; } >> 217 //G4cout << " delete theDEDXTable " << theDEDXTable << G4endl; >> 218 theDEDXTable->clearAndDestroy(); >> 219 delete theDEDXTable; >> 220 theDEDXTable = nullptr; >> 221 if(theDEDXSubTable) { >> 222 if(theIonisationSubTable == theDEDXSubTable) >> 223 { theIonisationSubTable = nullptr; } >> 224 theDEDXSubTable->clearAndDestroy(); >> 225 delete theDEDXSubTable; >> 226 theDEDXSubTable = nullptr; >> 227 } >> 228 } >> 229 //G4cout << " theIonisationTable " << theIonisationTable << G4endl; >> 230 if(theIonisationTable) { >> 231 //G4cout << " delete theIonisationTable " << theIonisationTable << G4endl; >> 232 theIonisationTable->clearAndDestroy(); >> 233 delete theIonisationTable; >> 234 theIonisationTable = nullptr; >> 235 } >> 236 if(theIonisationSubTable) { >> 237 theIonisationSubTable->clearAndDestroy(); >> 238 delete theIonisationSubTable; >> 239 theIonisationSubTable = nullptr; >> 240 } >> 241 if(theDEDXunRestrictedTable && isIonisation) { >> 242 theDEDXunRestrictedTable->clearAndDestroy(); >> 243 delete theDEDXunRestrictedTable; >> 244 theDEDXunRestrictedTable = nullptr; >> 245 } >> 246 if(theCSDARangeTable && isIonisation) { >> 247 theCSDARangeTable->clearAndDestroy(); >> 248 delete theCSDARangeTable; >> 249 theCSDARangeTable = nullptr; >> 250 } >> 251 //G4cout << "delete RangeTable: " << theRangeTableForLoss << G4endl; >> 252 if(theRangeTableForLoss && isIonisation) { >> 253 theRangeTableForLoss->clearAndDestroy(); >> 254 delete theRangeTableForLoss; >> 255 theRangeTableForLoss = nullptr; >> 256 } >> 257 //G4cout << "delete InvRangeTable: " << theInverseRangeTable << G4endl; >> 258 if(theInverseRangeTable && isIonisation /*&& !isIon*/) { >> 259 theInverseRangeTable->clearAndDestroy(); >> 260 delete theInverseRangeTable; >> 261 theInverseRangeTable = nullptr; >> 262 } >> 263 //G4cout << "delete LambdaTable: " << theLambdaTable << G4endl; >> 264 if(theLambdaTable) { >> 265 theLambdaTable->clearAndDestroy(); >> 266 delete theLambdaTable; >> 267 theLambdaTable = nullptr; >> 268 } >> 269 if(theSubLambdaTable) { >> 270 theSubLambdaTable->clearAndDestroy(); >> 271 delete theSubLambdaTable; >> 272 theSubLambdaTable = nullptr; 147 } 273 } 148 } 274 } >> 275 149 delete modelManager; 276 delete modelManager; 150 delete biasManager; 277 delete biasManager; 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); 278 lManager->DeRegister(this); >> 279 //G4cout << "** all removed" << G4endl; >> 280 } >> 281 >> 282 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 283 >> 284 void G4VEnergyLossProcess::Clean() >> 285 { >> 286 /* >> 287 if(1 < verboseLevel) { >> 288 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() >> 289 << G4endl; >> 290 } >> 291 */ >> 292 delete [] idxSCoffRegions; >> 293 >> 294 tablesAreBuilt = false; >> 295 >> 296 scProcesses.clear(); >> 297 nProcesses = 0; >> 298 >> 299 idxDEDX = idxDEDXSub = idxDEDXunRestricted = idxIonisation = >> 300 idxIonisationSub = idxRange = idxCSDA = idxSecRange = >> 301 idxInverseRange = idxLambda = idxSubLambda = 0; 154 } 302 } 155 303 156 //....oooOO0OOooo........oooOO0OOooo........oo 304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 305 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg 306 G4double G4VEnergyLossProcess::MinPrimaryEnergy(const G4ParticleDefinition*, 159 307 const G4Material*, 160 308 G4double cut) 161 { 309 { 162 return cut; 310 return cut; 163 } 311 } 164 312 165 //....oooOO0OOooo........oooOO0OOooo........oo 313 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 314 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 315 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, 168 G4VEmFlu 316 G4VEmFluctuationModel* fluc, 169 const G4 317 const G4Region* region) 170 { 318 { 171 if(nullptr == ptr) { return; } << 319 modelManager->AddEmModel(order, p, fluc, region); 172 G4VEmFluctuationModel* afluc = (nullptr == f << 320 if(p) { p->SetParticleChange(pParticleChange, fluc); } 173 modelManager->AddEmModel(order, ptr, afluc, << 321 } 174 ptr->SetParticleChange(pParticleChange, aflu << 322 >> 323 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 324 >> 325 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 326 G4double emin, G4double emax) >> 327 { >> 328 modelManager->UpdateEmModel(nam, emin, emax); 175 } 329 } 176 330 177 //....oooOO0OOooo........oooOO0OOooo........oo 331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 332 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod 333 void G4VEnergyLossProcess::SetEmModel(G4VEmModel* ptr, G4int) 180 { 334 { 181 if(nullptr == ptr) { return; } << 335 for(auto & em : emModels) { if(em == ptr) { return; } } 182 if(!emModels->empty()) { << 336 emModels.push_back(ptr); 183 for(auto & em : *emModels) { if(em == ptr) << 184 } << 185 emModels->push_back(ptr); << 186 } 337 } 187 338 188 //....oooOO0OOooo........oooOO0OOooo........oo 339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 189 340 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 341 G4VEmModel* G4VEnergyLossProcess::EmModel(size_t index) const 191 << 192 { 342 { 193 massRatio = massratio; << 343 return (index < emModels.size()) ? emModels[index] : nullptr; 194 logMassRatio = G4Log(massRatio); << 344 } 195 fFactor = charge2ratio*biasFactor; << 345 196 if(baseMat) { fFactor *= (*theDensityFactor) << 346 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 197 chargeSqRatio = charge2ratio; << 347 198 reduceFactor = 1.0/(fFactor*massRatio); << 348 G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx, G4bool ver) const >> 349 { >> 350 return modelManager->GetModel(idx, ver); >> 351 } >> 352 >> 353 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 354 >> 355 G4int G4VEnergyLossProcess::NumberOfModels() const >> 356 { >> 357 return modelManager->NumberOfModels(); 199 } 358 } 200 359 201 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 202 361 203 void 362 void 204 G4VEnergyLossProcess::PreparePhysicsTable(cons 363 G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 205 { 364 { 206 particle = G4EmTableUtil::CheckIon(this, &pa << 365 if(1 < verboseLevel) { 207 verboseLe << 366 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " >> 367 << GetProcessName() << " for " << part.GetParticleName() >> 368 << " " << this << G4endl; >> 369 } >> 370 isMaster = lManager->IsMaster(); >> 371 >> 372 currentCouple = nullptr; >> 373 preStepLambda = 0.0; >> 374 mfpKinEnergy = DBL_MAX; >> 375 fRange = DBL_MAX; >> 376 preStepKinEnergy = 0.0; >> 377 preStepLogKinEnergy = LOG_EKIN_MIN; >> 378 preStepRangeEnergy = 0.0; >> 379 chargeSqRatio = 1.0; >> 380 massRatio = 1.0; >> 381 logMassRatio = 0.; >> 382 reduceFactor = 1.0; >> 383 fFactor = 1.0; >> 384 lastIdx = 0; >> 385 >> 386 // Are particle defined? >> 387 if( !particle ) { particle = ∂ } >> 388 >> 389 if(part.GetParticleType() == "nucleus") { >> 390 >> 391 G4String pname = part.GetParticleName(); >> 392 if(pname != "deuteron" && pname != "triton" && >> 393 pname != "alpha+" && pname != "helium" && >> 394 pname != "hydrogen") { >> 395 >> 396 if(!theGenericIon) { >> 397 theGenericIon = >> 398 G4ParticleTable::GetParticleTable()->FindParticle("GenericIon"); >> 399 } >> 400 isIon = true; >> 401 if(theGenericIon && particle != theGenericIon) { >> 402 G4ProcessManager* pm = theGenericIon->GetProcessManager(); >> 403 G4ProcessVector* v = pm->GetAlongStepProcessVector(); >> 404 size_t n = v->size(); >> 405 for(size_t j=0; j<n; ++j) { >> 406 if((*v)[j] == this) { >> 407 particle = theGenericIon; >> 408 break; >> 409 } >> 410 } >> 411 } >> 412 } >> 413 } 208 414 209 if( particle != &part ) { 415 if( particle != &part ) { 210 if(!isIon) { lManager->RegisterExtraPartic << 416 if(!isIon) { >> 417 lManager->RegisterExtraParticle(&part, this); >> 418 } 211 if(1 < verboseLevel) { 419 if(1 < verboseLevel) { 212 G4cout << "### G4VEnergyLossProcess::Pre 420 G4cout << "### G4VEnergyLossProcess::PreparePhysicsTable()" 213 << " interrupted for " << GetProc << 421 << " interrupted for " 214 << part.GetParticleName() << " is << 422 << part.GetParticleName() << " isIon= " << isIon 215 << " spline=" << spline << G4endl << 423 << " particle " << particle << " GenericIon " << theGenericIon >> 424 << G4endl; 216 } 425 } 217 return; 426 return; 218 } 427 } 219 428 220 tablesAreBuilt = false; << 429 Clean(); 221 if (GetProcessSubType() == fIonisation) { Se << 430 lManager->PreparePhysicsTable(&part, this, isMaster); 222 << 223 G4LossTableBuilder* bld = lManager->GetTable 431 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 224 lManager->PreparePhysicsTable(&part, this); << 225 432 226 // Base particle and set of models can be de 433 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 434 InitialiseEnergyLossProcess(particle, baseParticle); 228 435 >> 436 const G4ProductionCutsTable* theCoupleTable= >> 437 G4ProductionCutsTable::GetProductionCutsTable(); >> 438 size_t n = theCoupleTable->GetTableSize(); >> 439 >> 440 theDEDXAtMaxEnergy.resize(n, 0.0); >> 441 theRangeAtMaxEnergy.resize(n, 0.0); >> 442 theEnergyOfCrossSectionMax.resize(n, 0.0); >> 443 theCrossSectionMax.resize(n, DBL_MAX); >> 444 229 // parameters of the process 445 // parameters of the process >> 446 if(!actIntegral) { integral = theParameters->Integral(); } 230 if(!actLossFluc) { lossFluctuationFlag = the 447 if(!actLossFluc) { lossFluctuationFlag = theParameters->LossFluctuation(); } 231 useCutAsFinalRange = theParameters->UseCutAs << 448 rndmStepFlag = theParameters->UseCutAsFinalRange(); 232 if(!actMinKinEnergy) { minKinEnergy = thePar 449 if(!actMinKinEnergy) { minKinEnergy = theParameters->MinKinEnergy(); } 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar 450 if(!actMaxKinEnergy) { maxKinEnergy = theParameters->MaxKinEnergy(); } 234 if(!actBinning) { nBins = theParameters->Num << 451 if(!actBinning) { >> 452 nBins = theParameters->NumberOfBinsPerDecade() >> 453 *G4lrint(std::log10(maxKinEnergy/minKinEnergy)); >> 454 } 235 maxKinEnergyCSDA = theParameters->MaxEnergyF 455 maxKinEnergyCSDA = theParameters->MaxEnergyForCSDARange(); 236 nBinsCSDA = theParameters->NumberOfBinsPerDe 456 nBinsCSDA = theParameters->NumberOfBinsPerDecade() 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi 457 *G4lrint(std::log10(maxKinEnergyCSDA/minKinEnergy)); 238 if(!actLinLossLimit) { linLossLimit = thePar 458 if(!actLinLossLimit) { linLossLimit = theParameters->LinearLossLimit(); } 239 lambdaFactor = theParameters->LambdaFactor() << 459 lambdaFactor = theParameters->LambdaFactor(); 240 invLambdaFactor = 1.0/lambdaFactor; << 460 logLambdafactor = G4Log(lambdaFactor); 241 if(isMaster) { SetVerboseLevel(theParameters 461 if(isMaster) { SetVerboseLevel(theParameters->Verbose()); } 242 else { SetVerboseLevel(theParameters->Worker << 462 else { SetVerboseLevel(theParameters->WorkerVerbose()); } 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 463 246 theParameters->DefineRegParamForLoss(this); << 464 G4bool isElec = true; 247 << 465 if(particle->GetPDGMass() > CLHEP::MeV) { isElec = false; } 248 fRangeEnergy = 0.0; << 466 theParameters->DefineRegParamForLoss(this, isElec); 249 467 250 G4double initialCharge = particle->GetPDGCha 468 G4double initialCharge = particle->GetPDGCharge(); 251 G4double initialMass = particle->GetPDGMas 469 G4double initialMass = particle->GetPDGMass(); 252 470 253 theParameters->FillStepFunction(particle, th << 471 if (baseParticle) { 254 << 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() 472 massRatio = (baseParticle->GetPDGMass())/initialMass; 258 logMassRatio = G4Log(massRatio); 473 logMassRatio = G4Log(massRatio); 259 G4double q = initialCharge/baseParticle->G 474 G4double q = initialCharge/baseParticle->GetPDGCharge(); 260 chargeSqRatio = q*q; 475 chargeSqRatio = q*q; 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 476 if(chargeSqRatio > 0.0) { reduceFactor = 1.0/(chargeSqRatio*massRatio); } 262 } 477 } 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 478 lowestKinEnergy = (initialMass < MeV) ? theParameters->LowestElectronEnergy() 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); 479 : theParameters->LowestMuHadEnergy(); 266 480 267 // Tables preparation 481 // Tables preparation 268 if (isMaster && nullptr == baseParticle) { << 482 if (isMaster && !baseParticle) { 269 if(nullptr == theData) { theData = new G4E << 270 483 271 if(nullptr != theDEDXTable && isIonisation << 484 if(theDEDXTable && isIonisation) { 272 if(nullptr != theIonisationTable && theD << 485 if(theIonisationTable && theDEDXTable != theIonisationTable) { 273 theData->CleanTable(0); << 486 theDEDXTable->clearAndDestroy(); 274 theDEDXTable = theIonisationTable; << 487 delete theDEDXTable; 275 theIonisationTable = nullptr; << 488 theDEDXTable = theIonisationTable; 276 } << 489 } >> 490 if(theDEDXSubTable && theIonisationSubTable && >> 491 theDEDXSubTable != theIonisationSubTable) { >> 492 theDEDXSubTable->clearAndDestroy(); >> 493 delete theDEDXSubTable; >> 494 theDEDXSubTable = theIonisationSubTable; >> 495 } 277 } 496 } 278 497 279 theDEDXTable = theData->MakeTable(theDEDXT << 498 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 280 bld->InitialiseBaseMaterials(theDEDXTable) 499 bld->InitialiseBaseMaterials(theDEDXTable); 281 theData->UpdateTable(theIonisationTable, 1 << 500 >> 501 if(theDEDXSubTable) { >> 502 theDEDXSubTable = >> 503 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); >> 504 } 282 505 283 if (theParameters->BuildCSDARange()) { 506 if (theParameters->BuildCSDARange()) { 284 theDEDXunRestrictedTable = theData->Make << 507 theDEDXunRestrictedTable = 285 if(isIonisation) { theCSDARangeTable = t << 508 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); >> 509 theCSDARangeTable = >> 510 G4PhysicsTableHelper::PreparePhysicsTable(theCSDARangeTable); 286 } 511 } 287 512 288 theLambdaTable = theData->MakeTable(4); << 513 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 514 289 if(isIonisation) { 515 if(isIonisation) { 290 theRangeTableForLoss = theData->MakeTabl << 516 theRangeTableForLoss = 291 theInverseRangeTable = theData->MakeTabl << 517 G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 518 theInverseRangeTable = >> 519 G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); 292 } 520 } 293 } << 294 521 >> 522 if (nSCoffRegions && !lManager->SubCutProducer()) { >> 523 theDEDXSubTable = >> 524 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); >> 525 theSubLambdaTable = >> 526 G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); >> 527 } >> 528 } >> 529 /* >> 530 G4cout << "** G4VEnergyLossProcess::PreparePhysicsTable() for " >> 531 << GetProcessName() << " and " << particle->GetParticleName() >> 532 << " isMaster: " << isMaster << " isIonisation: " >> 533 << isIonisation << G4endl; >> 534 G4cout << " theDEDX: " << theDEDXTable >> 535 << " theRange: " << theRangeTableForLoss >> 536 << " theInverse: " << theInverseRangeTable >> 537 << " theLambda: " << theLambdaTable << G4endl; >> 538 */ 295 // forced biasing 539 // forced biasing 296 if(nullptr != biasManager) { << 540 if(biasManager) { 297 biasManager->Initialise(part,GetProcessNam 541 biasManager->Initialise(part,GetProcessName(),verboseLevel); 298 biasFlag = false; 542 biasFlag = false; 299 } 543 } 300 baseMat = bld->GetBaseMaterialFlag(); << 544 301 numberOfModels = modelManager->NumberOfModel << 545 // defined ID of secondary particles 302 currentModel = modelManager->GetModel(0); << 546 if(isMaster) { 303 G4EmTableUtil::UpdateModels(this, modelManag << 547 G4String nam1 = GetProcessName(); 304 numberOfModels, << 548 G4String nam4 = nam1 + "_split"; 305 mainSecondaries, << 549 G4String nam5 = nam1 + "_subcut"; 306 theParameters->U << 550 secID = G4PhysicsModelCatalog::Register(nam1); 307 theCuts = modelManager->Initialise(particle, << 551 biasID = G4PhysicsModelCatalog::Register(nam4); 308 verboseLe << 552 subsecID= G4PhysicsModelCatalog::Register(nam5); 309 // subcut processor << 553 } 310 if(isIonisation) { << 554 311 subcutProducer = lManager->SubCutProducer( << 555 // initialisation of models >> 556 G4int nmod = modelManager->NumberOfModels(); >> 557 for(G4int i=0; i<nmod; ++i) { >> 558 G4VEmModel* mod = modelManager->GetModel(i); >> 559 mod->SetMasterThread(isMaster); >> 560 mod->SetAngularGeneratorFlag( >> 561 theParameters->UseAngularGeneratorForIonisation()); >> 562 if(mod->HighEnergyLimit() > maxKinEnergy) { >> 563 mod->SetHighEnergyLimit(maxKinEnergy); >> 564 } 312 } 565 } 313 if(1 == nSCoffRegions) { << 566 theCuts = modelManager->Initialise(particle, secondaryParticle, 314 if((*scoffRegions)[0]->GetName() == "Defau << 567 theParameters->MinSubRange(), 315 delete scoffRegions; << 568 verboseLevel); 316 scoffRegions = nullptr; << 569 317 nSCoffRegions = 0; << 570 // Sub Cutoff >> 571 if(nSCoffRegions > 0) { >> 572 if(theParameters->MinSubRange() < 1.0) { useSubCutoff = true; } >> 573 >> 574 theSubCuts = modelManager->SubCutoff(); >> 575 >> 576 idxSCoffRegions = new G4bool[n]; >> 577 for (size_t j=0; j<n; ++j) { >> 578 >> 579 const G4MaterialCutsCouple* couple = >> 580 theCoupleTable->GetMaterialCutsCouple(j); >> 581 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); >> 582 >> 583 G4bool reg = false; >> 584 for(G4int i=0; i<nSCoffRegions; ++i) { >> 585 if( pcuts == scoffRegions[i]->GetProductionCuts()) { >> 586 reg = true; >> 587 break; >> 588 } >> 589 } >> 590 idxSCoffRegions[j] = reg; 318 } 591 } 319 } 592 } 320 593 321 if(1 < verboseLevel) { 594 if(1 < verboseLevel) { 322 G4cout << "G4VEnergyLossProcess::PrepearPh 595 G4cout << "G4VEnergyLossProcess::PrepearPhysicsTable() is done " 323 << " for " << GetProcessName() << " << 596 << " for local " << particle->GetParticleName() 324 << " isIon= " << isIon << " spline= << 597 << " isIon= " << isIon; 325 if(baseParticle) { 598 if(baseParticle) { 326 G4cout << "; base: " << baseParticle->Ge 599 G4cout << "; base: " << baseParticle->GetParticleName(); 327 } 600 } 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa 601 G4cout << " chargeSqRatio= " << chargeSqRatio 330 << " massRatio= " << massRatio 602 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 603 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 604 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 605 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { 606 for (G4int i=0; i<nSCoffRegions; ++i) { 335 const G4Region* r = (*scoffRegions)[i] << 607 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( 608 G4cout << " " << r->GetName() << G4endl; 337 } 609 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 610 } 341 } 611 } 342 } 612 } 343 613 344 //....oooOO0OOooo........oooOO0OOooo........oo 614 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 615 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 616 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 617 { 348 if(1 < verboseLevel) { 618 if(1 < verboseLevel) { 349 G4cout << "### G4VEnergyLossProcess::Build 619 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 620 << GetProcessName() 351 << " and particle " << part.GetPart 621 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 622 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { 623 if(baseParticle) { 354 G4cout << "; base: " << baseParticle->Ge 624 G4cout << "; base: " << baseParticle->GetParticleName(); 355 } 625 } 356 G4cout << G4endl; << 626 G4cout << " TablesAreBuilt= " << tablesAreBuilt 357 G4cout << " TablesAreBuilt= " << tables << 627 << " isIon= " << isIon << " " << this << G4endl; 358 << " spline=" << spline << " ptr: " << 359 } 628 } 360 629 361 if(&part == particle) { 630 if(&part == particle) { >> 631 362 if(isMaster) { 632 if(isMaster) { 363 lManager->BuildPhysicsTable(particle, th 633 lManager->BuildPhysicsTable(particle, this); 364 634 365 } else { 635 } else { 366 const auto masterProcess = << 636 >> 637 const G4VEnergyLossProcess* masterProcess = 367 static_cast<const G4VEnergyLossProcess 638 static_cast<const G4VEnergyLossProcess*>(GetMasterProcess()); 368 639 369 numberOfModels = modelManager->NumberOfM << 640 // copy table pointers from master thread 370 G4EmTableUtil::BuildLocalElossProcess(th << 641 SetDEDXTable(masterProcess->DEDXTable(),fRestricted); 371 pa << 642 SetDEDXTable(masterProcess->DEDXTableForSubsec(),fSubRestricted); >> 643 SetDEDXTable(masterProcess->DEDXunRestrictedTable(),fTotal); >> 644 SetDEDXTable(masterProcess->IonisationTable(),fIsIonisation); >> 645 SetDEDXTable(masterProcess->IonisationTableForSubsec(),fIsSubIonisation); >> 646 SetRangeTableForLoss(masterProcess->RangeTableForLoss()); >> 647 SetCSDARangeTable(masterProcess->CSDARangeTable()); >> 648 SetSecondaryRangeTable(masterProcess->SecondaryRangeTable()); >> 649 SetInverseRangeTable(masterProcess->InverseRangeTable()); >> 650 SetLambdaTable(masterProcess->LambdaTable()); >> 651 SetSubLambdaTable(masterProcess->SubLambdaTable()); >> 652 isIonisation = masterProcess->IsIonisationProcess(); >> 653 372 tablesAreBuilt = true; 654 tablesAreBuilt = true; 373 baseMat = masterProcess->UseBaseMaterial << 655 // local initialisation of models >> 656 G4bool printing = true; >> 657 G4int numberOfModels = modelManager->NumberOfModels(); >> 658 for(G4int i=0; i<numberOfModels; ++i) { >> 659 G4VEmModel* mod = GetModelByIndex(i, printing); >> 660 G4VEmModel* mod0= masterProcess->GetModelByIndex(i,printing); >> 661 mod->InitialiseLocal(particle, mod0); >> 662 } >> 663 374 lManager->LocalPhysicsTables(particle, t 664 lManager->LocalPhysicsTables(particle, this); 375 } 665 } 376 666 377 // needs to be done only once 667 // needs to be done only once 378 safetyHelper->InitialiseHelper(); 668 safetyHelper->InitialiseHelper(); 379 } 669 } 380 // Added tracking cut to avoid tracking arti << 381 // and identified deexcitation flag << 382 if(isIonisation) { << 383 atomDeexcitation = lManager->AtomDeexcitat << 384 if(nullptr != atomDeexcitation) { << 385 if(atomDeexcitation->IsPIXEActive()) { u << 386 } << 387 } << 388 << 389 // protection against double printout << 390 if(theParameters->IsPrintLocked()) { return; << 391 << 392 // explicitly defined printout by particle n 670 // explicitly defined printout by particle name 393 G4String num = part.GetParticleName(); 671 G4String num = part.GetParticleName(); 394 if(1 < verboseLevel || 672 if(1 < verboseLevel || 395 (0 < verboseLevel && (num == "e-" || 673 (0 < verboseLevel && (num == "e-" || 396 num == "e+" || n 674 num == "e+" || num == "mu+" || 397 num == "mu-" || n 675 num == "mu-" || num == "proton"|| 398 num == "pi+" || n 676 num == "pi+" || num == "pi-" || 399 num == "kaon+" || n 677 num == "kaon+" || num == "kaon-" || 400 num == "alpha" || n 678 num == "alpha" || num == "anti_proton" || 401 num == "GenericIon" << 679 num == "GenericIon"|| num == "alpha++" || 402 StreamInfo(G4cout, part); << 680 num == "alpha+" ))) >> 681 { >> 682 StreamInfo(G4cout, part); >> 683 } >> 684 >> 685 // Added tracking cut to avoid tracking artifacts >> 686 // identify deexcitation flag >> 687 if(isIonisation) { >> 688 atomDeexcitation = lManager->AtomDeexcitation(); >> 689 if(nSCoffRegions > 0) { subcutProducer = lManager->SubCutProducer(); } >> 690 if(atomDeexcitation) { >> 691 if(atomDeexcitation->IsPIXEActive()) { useDeexcitation = true; } >> 692 } 403 } 693 } >> 694 /* >> 695 G4cout << "** G4VEnergyLossProcess::BuildPhysicsTable() for " >> 696 << GetProcessName() << " and " << particle->GetParticleName() >> 697 << " isMaster: " << isMaster << " isIonisation: " >> 698 << isIonisation << G4endl; >> 699 G4cout << " theDEDX: " << theDEDXTable >> 700 << " theRange: " << theRangeTableForLoss >> 701 << " theInverse: " << theInverseRangeTable >> 702 << " theLambda: " << theLambdaTable << G4endl; >> 703 */ >> 704 //if(1 < verboseLevel || verb) { 404 if(1 < verboseLevel) { 705 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 706 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 707 << GetProcessName() 407 << " and particle " << part.GetPart 708 << " and particle " << part.GetParticleName(); 408 if(isIonisation) { G4cout << " isIonisati << 709 if(isIonisation) { G4cout << " isIonisation flag = 1"; } 409 G4cout << " baseMat=" << baseMat << G4endl << 710 G4cout << G4endl; 410 } 711 } 411 } 712 } 412 713 413 //....oooOO0OOooo........oooOO0OOooo........oo 714 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 715 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED 716 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType) 416 { 717 { >> 718 if(1 < verboseLevel ) { >> 719 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType >> 720 << " for " << GetProcessName() >> 721 << " and particle " << particle->GetParticleName() >> 722 << G4endl; >> 723 } 417 G4PhysicsTable* table = nullptr; 724 G4PhysicsTable* table = nullptr; 418 G4double emax = maxKinEnergy; 725 G4double emax = maxKinEnergy; 419 G4int bin = nBins; 726 G4int bin = nBins; 420 727 421 if(fTotal == tType) { 728 if(fTotal == tType) { 422 emax = maxKinEnergyCSDA; 729 emax = maxKinEnergyCSDA; 423 bin = nBinsCSDA; 730 bin = nBinsCSDA; 424 table = theDEDXunRestrictedTable; 731 table = theDEDXunRestrictedTable; 425 } else if(fRestricted == tType) { 732 } else if(fRestricted == tType) { 426 table = theDEDXTable; 733 table = theDEDXTable; >> 734 } else if(fSubRestricted == tType) { >> 735 table = theDEDXSubTable; 427 } else { 736 } else { 428 G4cout << "G4VEnergyLossProcess::BuildDEDX 737 G4cout << "G4VEnergyLossProcess::BuildDEDXTable WARNING: wrong type " 429 << tType << G4endl; 738 << tType << G4endl; 430 } 739 } >> 740 >> 741 // Access to materials >> 742 const G4ProductionCutsTable* theCoupleTable= >> 743 G4ProductionCutsTable::GetProductionCutsTable(); >> 744 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 745 431 if(1 < verboseLevel) { 746 if(1 < verboseLevel) { 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 747 G4cout << numOfCouples << " materials" 433 << " for " << GetProcessName() << 748 << " minKinEnergy= " << minKinEnergy 434 << " and " << particle->GetParticle << 749 << " maxKinEnergy= " << emax 435 << "spline=" << spline << G4endl; << 750 << " nbin= " << bin >> 751 << " EmTableType= " << tType >> 752 << " table= " << table << " " << this >> 753 << G4endl; 436 } 754 } 437 if(nullptr == table) { return table; } << 755 if(!table) { return table; } 438 756 439 G4LossTableBuilder* bld = lManager->GetTable 757 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 440 G4EmTableUtil::BuildDEDXTable(this, particle << 758 G4bool splineFlag = theParameters->Spline(); 441 table, minKinE << 759 G4PhysicsLogVector* aVector = nullptr; 442 verboseLevel, << 760 G4PhysicsLogVector* bVector = nullptr; >> 761 >> 762 for(size_t i=0; i<numOfCouples; ++i) { >> 763 >> 764 if(1 < verboseLevel) { >> 765 G4cout << "G4VEnergyLossProcess::BuildDEDXVector Idx= " << i >> 766 << " flagTable= " << table->GetFlag(i) >> 767 << " Flag= " << bld->GetFlag(i) << G4endl; >> 768 } >> 769 if(bld->GetFlag(i)) { >> 770 >> 771 // create physics vector and fill it >> 772 const G4MaterialCutsCouple* couple = >> 773 theCoupleTable->GetMaterialCutsCouple(i); >> 774 if((*table)[i]) { delete (*table)[i]; } >> 775 if(bVector) { >> 776 aVector = new G4PhysicsLogVector(*bVector); >> 777 } else { >> 778 bVector = new G4PhysicsLogVector(minKinEnergy, emax, bin); >> 779 aVector = bVector; >> 780 } >> 781 aVector->SetSpline(splineFlag); >> 782 >> 783 modelManager->FillDEDXVector(aVector, couple, tType); >> 784 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 785 >> 786 // Insert vector for this material into the table >> 787 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); >> 788 } >> 789 } >> 790 >> 791 if(1 < verboseLevel) { >> 792 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " >> 793 << particle->GetParticleName() >> 794 << " and process " << GetProcessName() >> 795 << G4endl; >> 796 if(2 < verboseLevel) G4cout << (*table) << G4endl; >> 797 } >> 798 443 return table; 799 return table; 444 } 800 } 445 801 446 //....oooOO0OOooo........oooOO0OOooo........oo 802 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 803 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 804 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType tType) 449 { 805 { 450 if(nullptr == theLambdaTable) { return theLa << 806 G4PhysicsTable* table = nullptr; >> 807 >> 808 if(fRestricted == tType) { >> 809 table = theLambdaTable; >> 810 } else if(fSubRestricted == tType) { >> 811 table = theSubLambdaTable; >> 812 } else { >> 813 G4cout << "G4VEnergyLossProcess::BuildLambdaTable WARNING: wrong type " >> 814 << tType << G4endl; >> 815 } >> 816 >> 817 if(1 < verboseLevel) { >> 818 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() of type " >> 819 << tType << " for process " >> 820 << GetProcessName() << " and particle " >> 821 << particle->GetParticleName() >> 822 << " EmTableType= " << tType >> 823 << " table= " << table >> 824 << G4endl; >> 825 } >> 826 if(!table) {return table;} >> 827 >> 828 // Access to materials >> 829 const G4ProductionCutsTable* theCoupleTable= >> 830 G4ProductionCutsTable::GetProductionCutsTable(); >> 831 size_t numOfCouples = theCoupleTable->GetTableSize(); 451 832 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable 833 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 458 G4EmTableUtil::BuildLambdaTable(this, partic << 834 theDensityFactor = bld->GetDensityFactors(); 459 bld, theLamb << 835 theDensityIdx = bld->GetCoupleIndexes(); 460 minKinEnergy << 836 461 verboseLevel << 837 G4bool splineFlag = theParameters->Spline(); 462 return theLambdaTable; << 838 G4PhysicsLogVector* aVector = nullptr; >> 839 G4double scale = G4Log(maxKinEnergy/minKinEnergy); >> 840 >> 841 for(size_t i=0; i<numOfCouples; ++i) { >> 842 >> 843 if (bld->GetFlag(i)) { >> 844 >> 845 // create physics vector and fill it >> 846 const G4MaterialCutsCouple* couple = >> 847 theCoupleTable->GetMaterialCutsCouple(i); >> 848 delete (*table)[i]; >> 849 >> 850 G4bool startNull = true; >> 851 G4double emin = >> 852 MinPrimaryEnergy(particle,couple->GetMaterial(),(*theCuts)[i]); >> 853 if(minKinEnergy > emin) { >> 854 emin = minKinEnergy; >> 855 startNull = false; >> 856 } >> 857 >> 858 G4double emax = maxKinEnergy; >> 859 if(emax <= emin) { emax = 2*emin; } >> 860 G4int bin = G4lrint(nBins*G4Log(emax/emin)/scale); >> 861 bin = std::max(bin, 3); >> 862 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 863 aVector->SetSpline(splineFlag); >> 864 >> 865 modelManager->FillLambdaVector(aVector, couple, startNull, tType); >> 866 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 867 >> 868 // Insert vector for this material into the table >> 869 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); >> 870 } >> 871 } >> 872 >> 873 if(1 < verboseLevel) { >> 874 G4cout << "Lambda table is built for " >> 875 << particle->GetParticleName() >> 876 << G4endl; >> 877 } >> 878 >> 879 return table; 463 } 880 } 464 881 465 //....oooOO0OOooo........oooOO0OOooo........oo 882 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 466 883 467 void G4VEnergyLossProcess::StreamInfo(std::ost 884 void G4VEnergyLossProcess::StreamInfo(std::ostream& out, 468 const G4ParticleDefinition& pa 885 const G4ParticleDefinition& part, G4bool rst) const 469 { 886 { 470 G4String indent = (rst ? " " : ""); 887 G4String indent = (rst ? " " : ""); 471 out << std::setprecision(6); 888 out << std::setprecision(6); 472 out << G4endl << indent << GetProcessName() 889 out << G4endl << indent << GetProcessName() << ": "; 473 if (!rst) out << " for " << part.GetParticle 890 if (!rst) out << " for " << part.GetParticleName(); 474 out << " XStype:" << fXSType << 891 out << " SubType=" << GetProcessSubType() << G4endl 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " 892 << " dE/dx and range tables from " 477 << G4BestUnit(minKinEnergy,"Energy") 893 << G4BestUnit(minKinEnergy,"Energy") 478 << " to " << G4BestUnit(maxKinEnergy,"En 894 << " to " << G4BestUnit(maxKinEnergy,"Energy") 479 << " in " << nBins << " bins" << G4endl 895 << " in " << nBins << " bins" << G4endl 480 << " Lambda tables from threshold t 896 << " Lambda tables from threshold to " 481 << G4BestUnit(maxKinEnergy,"Energy") 897 << G4BestUnit(maxKinEnergy,"Energy") 482 << ", " << theParameters->NumberOfBinsPe 898 << ", " << theParameters->NumberOfBinsPerDecade() 483 << " bins/decade, spline: " << spline << 899 << " bins/decade, spline: " >> 900 << theParameters->Spline() 484 << G4endl; 901 << G4endl; 485 if(nullptr != theRangeTableForLoss && isIoni << 902 if(theRangeTableForLoss && isIonisation) { 486 out << " StepFunction=(" << dRoverRan 903 out << " StepFunction=(" << dRoverRange << ", " 487 << finalRange/mm << " mm)" 904 << finalRange/mm << " mm)" 488 << ", integ: " << fXSType << 905 << ", integ: " << integral 489 << ", fluct: " << lossFluctuationFlag 906 << ", fluct: " << lossFluctuationFlag 490 << ", linLossLim= " << linLossLimit 907 << ", linLossLim= " << linLossLimit 491 << G4endl; 908 << G4endl; 492 } 909 } 493 StreamProcessInfo(out); 910 StreamProcessInfo(out); 494 modelManager->DumpModelList(out, verboseLeve 911 modelManager->DumpModelList(out, verboseLevel); 495 if(nullptr != theCSDARangeTable && isIonisat << 912 if(theCSDARangeTable && isIonisation) { 496 out << " CSDA range table up" 913 out << " CSDA range table up" 497 << " to " << G4BestUnit(maxKinEnergyCS 914 << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy") 498 << " in " << nBinsCSDA << " bins" << G 915 << " in " << nBinsCSDA << " bins" << G4endl; 499 } 916 } 500 if(nSCoffRegions>0 && isIonisation) { 917 if(nSCoffRegions>0 && isIonisation) { 501 out << " Subcutoff sampling in " << n 918 out << " Subcutoff sampling in " << nSCoffRegions 502 << " regions" << G4endl; 919 << " regions" << G4endl; 503 } 920 } 504 if(2 < verboseLevel) { 921 if(2 < verboseLevel) { 505 for(std::size_t i=0; i<7; ++i) { << 922 out << " DEDXTable address= " << theDEDXTable << G4endl; 506 auto ta = theData->Table(i); << 923 if(theDEDXTable && isIonisation) out << (*theDEDXTable) << G4endl; 507 out << " " << tnames[i] << " addres << 924 out << "non restricted DEDXTable address= " 508 if(nullptr != ta) { out << *ta << G4endl << 925 << theDEDXunRestrictedTable << G4endl; >> 926 if(theDEDXunRestrictedTable && isIonisation) { >> 927 out << (*theDEDXunRestrictedTable) << G4endl; >> 928 } >> 929 if(theDEDXSubTable && isIonisation) { >> 930 out << (*theDEDXSubTable) << G4endl; >> 931 } >> 932 out << " CSDARangeTable address= " << theCSDARangeTable << G4endl; >> 933 if(theCSDARangeTable && isIonisation) { >> 934 out << (*theCSDARangeTable) << G4endl; >> 935 } >> 936 out << " RangeTableForLoss address= " << theRangeTableForLoss >> 937 << G4endl; >> 938 if(theRangeTableForLoss && isIonisation) { >> 939 out << (*theRangeTableForLoss) << G4endl; >> 940 } >> 941 out << " InverseRangeTable address= " << theInverseRangeTable >> 942 << G4endl; >> 943 if(theInverseRangeTable && isIonisation) { >> 944 out << (*theInverseRangeTable) << G4endl; >> 945 } >> 946 out << " LambdaTable address= " << theLambdaTable << G4endl; >> 947 if(theLambdaTable && isIonisation) { >> 948 out << (*theLambdaTable) << G4endl; >> 949 } >> 950 out << " SubLambdaTable address= " << theSubLambdaTable << G4endl; >> 951 if(theSubLambdaTable && isIonisation) { >> 952 out << (*theSubLambdaTable) << G4endl; 509 } 953 } 510 } 954 } 511 } 955 } 512 956 513 //....oooOO0OOooo........oooOO0OOooo........oo 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 958 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 959 void G4VEnergyLossProcess::ActivateSubCutoff(G4bool val, const G4Region* r) 516 { 960 { 517 if(nullptr == scoffRegions) { << 961 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 518 scoffRegions = new std::vector<const G4Reg << 962 const G4Region* reg = r; >> 963 if (!reg) { >> 964 reg = regionStore->GetRegion("DefaultRegionForTheWorld", false); 519 } 965 } >> 966 520 // the region is in the list 967 // the region is in the list 521 if(!scoffRegions->empty()) { << 968 if (nSCoffRegions > 0) { 522 for (auto & reg : *scoffRegions) { << 969 for (G4int i=0; i<nSCoffRegions; ++i) { 523 if (reg == r) { return; } << 970 if (reg == scoffRegions[i]) { >> 971 return; >> 972 } 524 } 973 } 525 } 974 } 526 // new region 975 // new region 527 scoffRegions->push_back(r); << 976 if(val) { 528 ++nSCoffRegions; << 977 scoffRegions.push_back(reg); 529 } << 978 ++nSCoffRegions; 530 << 531 //....oooOO0OOooo........oooOO0OOooo........oo << 532 << 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 534 { << 535 if(0 == nSCoffRegions) { return true; } << 536 const G4Region* r = aTrack.GetVolume()->GetL << 537 for(auto & reg : *scoffRegions) { << 538 if(r == reg) { return true; } << 539 } 979 } 540 return false; << 541 } 980 } 542 981 543 //....oooOO0OOooo........oooOO0OOooo........oo 982 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 544 983 545 void G4VEnergyLossProcess::StartTracking(G4Tra 984 void G4VEnergyLossProcess::StartTracking(G4Track* track) 546 { 985 { >> 986 /* >> 987 G4cout << track->GetDefinition()->GetParticleName() >> 988 << " e(MeV)= " << track->GetKineticEnergy() >> 989 << " baseParticle " << baseParticle << " proc " << this; >> 990 if(particle) G4cout << " " << particle->GetParticleName(); >> 991 G4cout << " isIon= " << isIon << " dedx " << theDEDXTable <<G4endl; >> 992 */ 547 // reset parameters for the new track 993 // reset parameters for the new track 548 theNumberOfInteractionLengthLeft = -1.0; 994 theNumberOfInteractionLengthLeft = -1.0; 549 mfpKinEnergy = DBL_MAX; << 995 currentInteractionLength = mfpKinEnergy = DBL_MAX; 550 preStepLambda = 0.0; << 996 preStepRangeEnergy = 0.0; 551 currentCouple = nullptr; << 552 997 553 // reset ion 998 // reset ion 554 if(isIon) { 999 if(isIon) { 555 const G4double newmass = track->GetDefinit << 1000 chargeSqRatio = 0.5; 556 massRatio = (nullptr == baseParticle) ? CL << 1001 557 : baseParticle->GetPDGMass()/newmass; << 1002 G4double newmass = track->GetDefinition()->GetPDGMass(); 558 logMassRatio = G4Log(massRatio); << 1003 if(baseParticle) { >> 1004 massRatio = baseParticle->GetPDGMass()/newmass; >> 1005 logMassRatio = G4Log(massRatio); >> 1006 } else if(theGenericIon) { >> 1007 massRatio = proton_mass_c2/newmass; >> 1008 logMassRatio = G4Log(massRatio); >> 1009 } else { >> 1010 massRatio = 1.0; >> 1011 logMassRatio = 0.0; >> 1012 } 559 } 1013 } 560 // forced biasing only for primary particles 1014 // forced biasing only for primary particles 561 if(nullptr != biasManager) { << 1015 if(biasManager) { 562 if(0 == track->GetParentID()) { 1016 if(0 == track->GetParentID()) { >> 1017 // primary particle 563 biasFlag = true; 1018 biasFlag = true; 564 biasManager->ResetForcedInteraction(); 1019 biasManager->ResetForcedInteraction(); 565 } 1020 } 566 } 1021 } 567 } 1022 } 568 1023 569 //....oooOO0OOooo........oooOO0OOooo........oo 1024 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 570 1025 571 G4double G4VEnergyLossProcess::AlongStepGetPhy 1026 G4double G4VEnergyLossProcess::AlongStepGetPhysicalInteractionLength( 572 const G4Track& tr << 1027 const G4Track&,G4double,G4double,G4double&, 573 G4GPILSelection* 1028 G4GPILSelection* selection) 574 { 1029 { 575 G4double x = DBL_MAX; 1030 G4double x = DBL_MAX; 576 *selection = aGPILSelection; 1031 *selection = aGPILSelection; 577 if(isIonisation && currentModel->IsActive(pr 1032 if(isIonisation && currentModel->IsActive(preStepScaledEnergy)) { 578 GetScaledRangeForScaledEnergy(preStepScale << 1033 fRange = reduceFactor*GetScaledRangeForScaledEnergy(preStepScaledEnergy, 579 x = (useCutAsFinalRange) ? std::min(finalR << 1034 preStepLogScaledEnergy); >> 1035 G4double finR = (rndmStepFlag) ? std::min(finalRange, 580 currentCouple->GetProductionCuts()->GetP 1036 currentCouple->GetProductionCuts()->GetProductionCut(1)) : finalRange; 581 x = (fRange > x) ? fRange*dRoverRange + x* << 1037 x = (fRange > finR) ? 582 : fRange; << 1038 fRange*dRoverRange + finR*(1.0-dRoverRange)*(2.0-finR/fRange) : fRange; 583 /* << 1039 // if(particle->GetPDGMass() > 0.9*GeV) 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 1040 /* 585 << " fRange=" << fRange << " finR=" << finR << 1041 G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 1042 <<" range= "<<fRange << " idx= " << basedCoupleIndex >> 1043 << " finR= " << finR >> 1044 << " limit= " << x <<G4endl; >> 1045 G4cout << "massRatio= " << massRatio << " Q^2= " << chargeSqRatio >> 1046 << " finR= " << finR << " dRoverRange= " << dRoverRange >> 1047 << " finalRange= " << finalRange << G4endl; 586 */ 1048 */ 587 } 1049 } >> 1050 //G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 1051 //<<" stepLimit= "<<x<<G4endl; 588 return x; 1052 return x; 589 } 1053 } 590 1054 591 //....oooOO0OOooo........oooOO0OOooo........oo 1055 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 1056 593 G4double G4VEnergyLossProcess::PostStepGetPhys 1057 G4double G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength( 594 const G4Track& tr 1058 const G4Track& track, 595 G4double previo 1059 G4double previousStepSize, 596 G4ForceCondition* 1060 G4ForceCondition* condition) 597 { 1061 { 598 // condition is set to "Not Forced" 1062 // condition is set to "Not Forced" 599 *condition = NotForced; 1063 *condition = NotForced; 600 G4double x = DBL_MAX; 1064 G4double x = DBL_MAX; 601 1065 602 // initialisation of material, mass, charge, 1066 // initialisation of material, mass, charge, model 603 // at the beginning of the step 1067 // at the beginning of the step 604 DefineMaterial(track.GetMaterialCutsCouple() 1068 DefineMaterial(track.GetMaterialCutsCouple()); 605 preStepKinEnergy = track.GetKineticEne 1069 preStepKinEnergy = track.GetKineticEnergy(); >> 1070 preStepLogKinEnergy = track.GetDynamicParticle()->GetLogKineticEnergy(); 606 preStepScaledEnergy = preStepKinEnergy*ma 1071 preStepScaledEnergy = preStepKinEnergy*massRatio; >> 1072 preStepLogScaledEnergy = preStepLogKinEnergy + logMassRatio; 607 SelectModel(preStepScaledEnergy); 1073 SelectModel(preStepScaledEnergy); 608 1074 609 if(!currentModel->IsActive(preStepScaledEner 1075 if(!currentModel->IsActive(preStepScaledEnergy)) { 610 theNumberOfInteractionLengthLeft = -1.0; 1076 theNumberOfInteractionLengthLeft = -1.0; 611 mfpKinEnergy = DBL_MAX; << 612 preStepLambda = 0.0; << 613 currentInteractionLength = DBL_MAX; 1077 currentInteractionLength = DBL_MAX; 614 return x; << 1078 return x; 615 } 1079 } 616 1080 617 // change effective charge of a charged part << 1081 // change effective charge of an ion on fly 618 if(isIon) { 1082 if(isIon) { 619 const G4double q2 = currentModel->ChargeSq << 1083 G4double q2 = currentModel->ChargeSquareRatio(track); 620 fFactor = q2*biasFactor; << 1084 if(q2 != chargeSqRatio && q2 > 0.0) { 621 if(baseMat) { fFactor *= (*theDensityFacto << 1085 chargeSqRatio = q2; 622 reduceFactor = 1.0/(fFactor*massRatio); << 1086 fFactor = q2*biasFactor*(*theDensityFactor)[currentCoupleIndex]; 623 if (lossFluctuationFlag) { << 1087 reduceFactor = 1.0/(fFactor*massRatio); 624 auto fluc = currentModel->GetModelOfFluc << 625 fluc->SetParticleAndCharge(track.GetDefi << 626 } 1088 } 627 } 1089 } >> 1090 // if(particle->GetPDGMass() > 0.9*GeV) >> 1091 //G4cout << "q2= "<<chargeSqRatio << " massRatio= " << massRatio << G4endl; 628 1092 629 // forced biasing only for primary particles 1093 // forced biasing only for primary particles 630 if(biasManager) { 1094 if(biasManager) { 631 if(0 == track.GetParentID() && biasFlag && 1095 if(0 == track.GetParentID() && biasFlag && 632 biasManager->ForcedInteractionRegion((G << 1096 biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 633 return biasManager->GetStepLimit((G4int) << 1097 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); 634 } 1098 } 635 } 1099 } 636 1100 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 1101 // compute mean free path 638 << 1102 if(preStepScaledEnergy < mfpKinEnergy) { 639 // zero cross section << 1103 if (integral) { 640 if(preStepLambda <= 0.0) { << 1104 ComputeLambdaForScaledEnergy(preStepScaledEnergy, preStepLogScaledEnergy); 641 theNumberOfInteractionLengthLeft = -1.0; << 1105 } else { 642 currentInteractionLength = DBL_MAX; << 1106 preStepLambda = 643 } else { << 1107 GetLambdaForScaledEnergy(preStepScaledEnergy, preStepLogScaledEnergy); >> 1108 } >> 1109 >> 1110 // zero cross section >> 1111 if(preStepLambda <= 0.0) { >> 1112 theNumberOfInteractionLengthLeft = -1.0; >> 1113 currentInteractionLength = DBL_MAX; >> 1114 } >> 1115 } 644 1116 645 // non-zero cross section << 1117 // non-zero cross section >> 1118 if(preStepLambda > 0.0) { 646 if (theNumberOfInteractionLengthLeft < 0.0 1119 if (theNumberOfInteractionLengthLeft < 0.0) { 647 1120 648 // beggining of tracking (or just after 1121 // beggining of tracking (or just after DoIt of this process) 649 theNumberOfInteractionLengthLeft = -G4Lo << 1122 theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() ); 650 theInitialNumberOfInteractionLength = th 1123 theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 651 1124 652 } else if(currentInteractionLength < DBL_M 1125 } else if(currentInteractionLength < DBL_MAX) { 653 1126 654 // subtract NumberOfInteractionLengthLef 1127 // subtract NumberOfInteractionLengthLeft using previous step 655 theNumberOfInteractionLengthLeft -= 1128 theNumberOfInteractionLengthLeft -= 656 previousStepSize/currentInteractionLen 1129 previousStepSize/currentInteractionLength; 657 1130 658 theNumberOfInteractionLengthLeft = 1131 theNumberOfInteractionLengthLeft = 659 std::max(theNumberOfInteractionLengthL 1132 std::max(theNumberOfInteractionLengthLeft, 0.0); 660 } 1133 } 661 1134 662 // new mean free path and step limit 1135 // new mean free path and step limit 663 currentInteractionLength = 1.0/preStepLamb 1136 currentInteractionLength = 1.0/preStepLambda; 664 x = theNumberOfInteractionLengthLeft * cur 1137 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 665 } 1138 } 666 #ifdef G4VERBOSE 1139 #ifdef G4VERBOSE 667 if (verboseLevel>2) { << 1140 if (verboseLevel>2){ >> 1141 // if(particle->GetPDGMass() > 0.9*GeV){ 668 G4cout << "G4VEnergyLossProcess::PostStepG 1142 G4cout << "G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength "; 669 G4cout << "[ " << GetProcessName() << "]" 1143 G4cout << "[ " << GetProcessName() << "]" << G4endl; 670 G4cout << " for " << track.GetDefinition() 1144 G4cout << " for " << track.GetDefinition()->GetParticleName() 671 << " in Material " << currentMate 1145 << " in Material " << currentMaterial->GetName() 672 << " Ekin(MeV)= " << preStepKinEner 1146 << " Ekin(MeV)= " << preStepKinEnergy/MeV 673 << " track material: " << track.Get << 1147 << " " << track.GetMaterial()->GetName() 674 <<G4endl; 1148 <<G4endl; 675 G4cout << "MeanFreePath = " << currentInte 1149 G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" 676 << "InteractionLength= " << x/cm << 1150 << "InteractionLength= " << x/cm <<"[cm] " <<G4endl; 677 } 1151 } 678 #endif 1152 #endif 679 return x; 1153 return x; 680 } 1154 } 681 1155 682 //....oooOO0OOooo........oooOO0OOooo........oo 1156 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 1157 684 void 1158 void 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 1159 G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e, G4double loge) 686 { 1160 { 687 // cross section increased with energy << 1161 // condition to skip recomputation of cross section 688 if(fXSType == fEmIncreasing) { << 1162 const G4double epeak = theEnergyOfCrossSectionMax[currentCoupleIndex]; 689 if(e*invLambdaFactor < mfpKinEnergy) { << 1163 if(e <= epeak && e/lambdaFactor >= mfpKinEnergy) { return; } 690 preStepLambda = GetLambdaForScaledEnergy << 1164 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 1165 // recomputation is needed 692 } << 1166 if (e <= epeak) { 693 << 1167 preStepLambda = GetLambdaForScaledEnergy(e, loge); 694 // cross section has one peak << 1168 mfpKinEnergy = e; 695 } else if(fXSType == fEmOnePeak) { << 1169 } else { 696 const G4double epeak = (*theEnergyOfCrossS << 1170 const G4double e1 = e*lambdaFactor; 697 if(e <= epeak) { << 1171 if (e1 > epeak) { 698 if(e*invLambdaFactor < mfpKinEnergy) { << 1172 preStepLambda = GetLambdaForScaledEnergy(e, loge); 699 preStepLambda = GetLambdaForScaledEner << 1173 mfpKinEnergy = e; 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 1174 const G4double preStepLambda1 = 701 } << 1175 GetLambdaForScaledEnergy(e1, loge+logLambdafactor); 702 } else if(e < mfpKinEnergy) { << 1176 if (preStepLambda1 > preStepLambda) { 703 const G4double e1 = std::max(epeak, e*la << 1177 mfpKinEnergy = e1; 704 mfpKinEnergy = e1; << 1178 preStepLambda = preStepLambda1; 705 preStepLambda = GetLambdaForScaledEnergy << 706 } << 707 << 708 // cross section has more than one peaks << 709 } else if(fXSType == fEmTwoPeaks) { << 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } 1179 } 757 return; << 1180 } else { 758 } << 1181 preStepLambda = fFactor*theCrossSectionMax[currentCoupleIndex]; 759 // above 3d peak << 1182 mfpKinEnergy = epeak; 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } 1183 } 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } 1184 } 769 } 1185 } 770 1186 771 //....oooOO0OOooo........oooOO0OOooo........oo 1187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 772 1188 773 G4VParticleChange* G4VEnergyLossProcess::Along 1189 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 1190 const G4Step& step) 775 { 1191 { 776 fParticleChange.InitializeForAlongStep(track 1192 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 1193 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( 1194 if(!isIonisation || !currentModel->IsActive(preStepScaledEnergy)) { 779 return &fParticleChange; 1195 return &fParticleChange; 780 } 1196 } 781 1197 >> 1198 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 1199 G4double length = step.GetStepLength(); >> 1200 if(length <= 0.0) { return &fParticleChange; } 783 G4double eloss = 0.0; 1201 G4double eloss = 0.0; 784 1202 785 /* << 1203 /* 786 if(-1 < verboseLevel) { 1204 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP 1205 const G4ParticleDefinition* d = track.GetParticleDefinition(); 788 G4cout << "AlongStepDoIt for " 1206 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 1207 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 1208 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 1209 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 1210 << " range(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 1211 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 1212 << " rf= " << reduceFactor >> 1213 << " q^2= " << chargeSqRatio >> 1214 << " md= " << d->GetPDGMass() >> 1215 << " status= " << track.GetTrackStatus() >> 1216 << " " << track.GetMaterial()->GetName() >> 1217 << G4endl; 795 } 1218 } 796 */ 1219 */ >> 1220 797 const G4DynamicParticle* dynParticle = track 1221 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 798 1222 799 // define new weight for primary and seconda 1223 // define new weight for primary and secondaries 800 G4double weight = fParticleChange.GetParentW 1224 G4double weight = fParticleChange.GetParentWeight(); 801 if(weightFlag) { 1225 if(weightFlag) { 802 weight /= biasFactor; 1226 weight /= biasFactor; 803 fParticleChange.ProposeWeight(weight); 1227 fParticleChange.ProposeWeight(weight); 804 } 1228 } 805 1229 806 // stopping, check actual range and kinetic << 1230 // stopping 807 if (length >= fRange || preStepKinEnergy <= 1231 if (length >= fRange || preStepKinEnergy <= lowestKinEnergy) { 808 eloss = preStepKinEnergy; 1232 eloss = preStepKinEnergy; 809 if (useDeexcitation) { 1233 if (useDeexcitation) { 810 atomDeexcitation->AlongStepDeexcitation( 1234 atomDeexcitation->AlongStepDeexcitation(scTracks, step, 811 << 1235 eloss, currentCoupleIndex); 812 if(scTracks.size() > 0) { FillSecondarie << 1236 if(scTracks.size() > 0) { FillSecondariesAlongStep(eloss, weight); } 813 eloss = std::max(eloss, 0.0); 1237 eloss = std::max(eloss, 0.0); 814 } 1238 } 815 fParticleChange.SetProposedKineticEnergy(0 1239 fParticleChange.SetProposedKineticEnergy(0.0); 816 fParticleChange.ProposeLocalEnergyDeposit( 1240 fParticleChange.ProposeLocalEnergyDeposit(eloss); 817 return &fParticleChange; 1241 return &fParticleChange; 818 } 1242 } 819 // zero step length with non-zero range << 1243 //G4cout << theDEDXTable << " idx= " << basedCoupleIndex 820 if(length <= 0.0) { return &fParticleChange; << 1244 // << " " << GetProcessName() << " "<< currentMaterial->GetName()<<G4endl; 821 << 1245 //if(particle->GetParticleName() == "e-")G4cout << (*theDEDXTable) <<G4endl; 822 // Short step 1246 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 1247 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy, preStepLogScaledEnergy); 824 LogSca << 1248 eloss *= length; 825 /* << 1249 826 G4cout << "##### Short STEP: eloss= " << elo << 1250 //G4cout << "eloss= " << eloss << G4endl; 827 << " Escaled=" << preStepScaledEnergy << 1251 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 1252 // Long step 834 if(eloss > preStepKinEnergy*linLossLimit) { 1253 if(eloss > preStepKinEnergy*linLossLimit) { 835 1254 836 const G4double x = (fRange - length)/reduc << 1255 G4double x = (fRange - length)/reduceFactor; 837 const G4double de = preStepKinEnergy - Sca << 1256 //G4cout << "x= " << x << " " << theInverseRangeTable << G4endl; 838 if(de > 0.0) { eloss = de; } << 1257 eloss = preStepKinEnergy - ScaledKinEnergyForLoss(x)/massRatio; >> 1258 839 /* 1259 /* 840 if(-1 < verboseLevel) 1260 if(-1 < verboseLevel) 841 G4cout << " Long STEP: rPre(mm)=" << 1261 G4cout << "Long STEP: rPre(mm)= " 842 << GetScaledRangeForScaledEnergy( 1262 << GetScaledRangeForScaledEnergy(preStepScaledEnergy)/mm 843 << " x(mm)=" << x/mm << 1263 << " rPost(mm)= " << x/mm 844 << " eloss(MeV)=" << eloss/MeV << 1264 << " ePre(MeV)= " << preStepScaledEnergy/MeV 845 << " rFactor=" << reduceFactor << 1265 << " eloss(MeV)= " << eloss/MeV 846 << " massRatio=" << massRatio << 1266 << " eloss0(MeV)= " >> 1267 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV >> 1268 << " lim(MeV)= " << preStepKinEnergy*linLossLimit/MeV 847 << G4endl; 1269 << G4endl; 848 */ 1270 */ 849 } 1271 } 850 1272 851 /* << 1273 /* >> 1274 G4double eloss0 = eloss; 852 if(-1 < verboseLevel ) { 1275 if(-1 < verboseLevel ) { 853 G4cout << "Before fluct: eloss(MeV)= " << 1276 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV 854 << " e-eloss= " << preStepKinEnergy 1277 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 1278 << " step(mm)= " << length/mm 856 << " fluct= " << lossFluctuationFla << 1279 << " range(mm)= " << fRange/mm >> 1280 << " fluct= " << lossFluctuationFlag >> 1281 << G4endl; 857 } 1282 } 858 */ 1283 */ 859 1284 860 const G4double cut = (*theCuts)[currentCoupl << 1285 G4double cut = (*theCuts)[currentCoupleIndex]; 861 G4double esec = 0.0; 1286 G4double esec = 0.0; 862 1287 >> 1288 //G4cout << "cut= " << cut << " useSubCut= " << useSubCutoff << G4endl; >> 1289 >> 1290 // SubCutOff >> 1291 if(useSubCutoff && !subcutProducer) { >> 1292 if(idxSCoffRegions[currentCoupleIndex]) { >> 1293 >> 1294 G4bool yes = false; >> 1295 const G4StepPoint* prePoint = step.GetPreStepPoint(); >> 1296 >> 1297 // Check boundary >> 1298 if(prePoint->GetStepStatus() == fGeomBoundary) { yes = true; } >> 1299 >> 1300 // Check PrePoint >> 1301 else { >> 1302 G4double preSafety = prePoint->GetSafety(); >> 1303 G4double rcut = >> 1304 currentCouple->GetProductionCuts()->GetProductionCut(1); >> 1305 >> 1306 // recompute presafety >> 1307 if(preSafety < rcut) { >> 1308 preSafety = safetyHelper->ComputeSafety(prePoint->GetPosition(), >> 1309 rcut); >> 1310 } >> 1311 >> 1312 if(preSafety < rcut) { yes = true; } >> 1313 >> 1314 // Check PostPoint >> 1315 else { >> 1316 G4double postSafety = preSafety - length; >> 1317 if(postSafety < rcut) { >> 1318 postSafety = safetyHelper->ComputeSafety( >> 1319 step.GetPostStepPoint()->GetPosition(), rcut); >> 1320 if(postSafety < rcut) { yes = true; } >> 1321 } >> 1322 } >> 1323 } >> 1324 >> 1325 // Decided to start subcut sampling >> 1326 if(yes) { >> 1327 >> 1328 cut = (*theSubCuts)[currentCoupleIndex]; >> 1329 eloss -= GetSubDEDXForScaledEnergy(preStepScaledEnergy)*length; >> 1330 esec = SampleSubCutSecondaries(scTracks, step, >> 1331 currentModel,currentCoupleIndex); >> 1332 // add bremsstrahlung sampling >> 1333 /* >> 1334 if(nProcesses > 0) { >> 1335 for(G4int i=0; i<nProcesses; ++i) { >> 1336 (scProcesses[i])->SampleSubCutSecondaries( >> 1337 scTracks, step, (scProcesses[i])-> >> 1338 SelectModelForMaterial(preStepKinEnergy, currentCoupleIndex), >> 1339 currentCoupleIndex); >> 1340 } >> 1341 } >> 1342 */ >> 1343 } >> 1344 } >> 1345 } >> 1346 863 // Corrections, which cannot be tabulated 1347 // Corrections, which cannot be tabulated 864 if(isIon) { 1348 if(isIon) { >> 1349 G4double eadd = 0.0; >> 1350 G4double eloss_before = eloss; 865 currentModel->CorrectionsAlongStep(current 1351 currentModel->CorrectionsAlongStep(currentCouple, dynParticle, 866 length, << 1352 eloss, eadd, length); 867 eloss = std::max(eloss, 0.0); << 1353 if(eloss < 0.0) { eloss = 0.5*eloss_before; } 868 } 1354 } 869 1355 870 // Sample fluctuations if not full energy lo << 1356 // Sample fluctuations 871 if(eloss >= preStepKinEnergy) { << 1357 if (lossFluctuationFlag) { 872 eloss = preStepKinEnergy; << 873 << 874 } else if (lossFluctuationFlag) { << 875 const G4double tmax = currentModel->MaxSec << 876 const G4double tcut = std::min(cut, tmax); << 877 G4VEmFluctuationModel* fluc = currentModel 1358 G4VEmFluctuationModel* fluc = currentModel->GetModelOfFluctuations(); 878 eloss = fluc->SampleFluctuations(currentCo << 1359 if(eloss + esec < preStepKinEnergy) { 879 tcut, tma << 1360 880 /* << 1361 G4double tmax = 881 if(-1 < verboseLevel) << 1362 std::min(currentModel->MaxSecondaryKinEnergy(dynParticle),cut); >> 1363 eloss = fluc->SampleFluctuations(currentCouple,dynParticle, >> 1364 tmax,length,eloss); >> 1365 /* >> 1366 if(-1 < verboseLevel) 882 G4cout << "After fluct: eloss(MeV)= " << 1367 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 883 << " fluc= " << (eloss-eloss0)/Me 1368 << " fluc= " << (eloss-eloss0)/MeV 884 << " ChargeSqRatio= " << chargeSq 1369 << " ChargeSqRatio= " << chargeSqRatio 885 << " massRatio= " << massRatio << << 1370 << " massRatio= " << massRatio 886 */ << 1371 << " tmax= " << tmax >> 1372 << G4endl; >> 1373 */ >> 1374 } 887 } 1375 } 888 1376 889 // deexcitation 1377 // deexcitation 890 if (useDeexcitation) { 1378 if (useDeexcitation) { 891 G4double esecfluo = preStepKinEnergy; << 1379 G4double esecfluo = preStepKinEnergy - esec; 892 G4double de = esecfluo; 1380 G4double de = esecfluo; >> 1381 //G4double eloss0 = eloss; >> 1382 /* >> 1383 G4cout << "### 1: E(keV)= " << preStepKinEnergy/keV >> 1384 << " Efluomax(keV)= " << de/keV >> 1385 << " Eloss(keV)= " << eloss/keV << G4endl; >> 1386 */ 893 atomDeexcitation->AlongStepDeexcitation(sc 1387 atomDeexcitation->AlongStepDeexcitation(scTracks, step, 894 de << 1388 de, currentCoupleIndex); 895 1389 896 // sum of de-excitation energies 1390 // sum of de-excitation energies 897 esecfluo -= de; 1391 esecfluo -= de; 898 1392 899 // subtracted from energy loss 1393 // subtracted from energy loss 900 if(eloss >= esecfluo) { 1394 if(eloss >= esecfluo) { 901 esec += esecfluo; 1395 esec += esecfluo; 902 eloss -= esecfluo; 1396 eloss -= esecfluo; 903 } else { 1397 } else { 904 esec += esecfluo; 1398 esec += esecfluo; 905 eloss = 0.0; 1399 eloss = 0.0; 906 } 1400 } >> 1401 /* >> 1402 if(esecfluo > 0.0) { >> 1403 G4cout << "### 2: E(keV)= " << preStepKinEnergy/keV >> 1404 << " Esec(keV)= " << esec/keV >> 1405 << " Esecf(kV)= " << esecfluo/keV >> 1406 << " Eloss0(kV)= " << eloss0/keV >> 1407 << " Eloss(keV)= " << eloss/keV >> 1408 << G4endl; >> 1409 } >> 1410 */ 907 } 1411 } 908 if(nullptr != subcutProducer && IsRegionForC << 1412 if(subcutProducer && idxSCoffRegions[currentCoupleIndex]) { 909 subcutProducer->SampleSecondaries(step, sc 1413 subcutProducer->SampleSecondaries(step, scTracks, eloss, cut); 910 } 1414 } 911 // secondaries from atomic de-excitation and << 1415 if(scTracks.size() > 0) { FillSecondariesAlongStep(eloss, weight); } 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 1416 914 // Energy balance 1417 // Energy balance 915 G4double finalT = preStepKinEnergy - eloss - 1418 G4double finalT = preStepKinEnergy - eloss - esec; 916 if (finalT <= lowestKinEnergy) { 1419 if (finalT <= lowestKinEnergy) { 917 eloss += finalT; 1420 eloss += finalT; 918 finalT = 0.0; 1421 finalT = 0.0; 919 } else if(isIon) { 1422 } else if(isIon) { 920 fParticleChange.SetProposedCharge( 1423 fParticleChange.SetProposedCharge( 921 currentModel->GetParticleCharge(track.Ge 1424 currentModel->GetParticleCharge(track.GetParticleDefinition(), 922 currentM 1425 currentMaterial,finalT)); 923 } 1426 } >> 1427 924 eloss = std::max(eloss, 0.0); 1428 eloss = std::max(eloss, 0.0); 925 1429 926 fParticleChange.SetProposedKineticEnergy(fin 1430 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 1431 fParticleChange.ProposeLocalEnergyDeposit(eloss); 928 /* 1432 /* 929 if(-1 < verboseLevel) { 1433 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre 1434 G4double del = finalT + eloss + esec - preStepKinEnergy; 931 G4cout << "Final value eloss(MeV)= " << el 1435 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 1436 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 1437 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV 1438 << " de(keV)= " << del/keV 935 << " lossFlag= " << lossFluctuation 1439 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt 1440 << " status= " << track.GetTrackStatus() 937 << G4endl; 1441 << G4endl; 938 } 1442 } 939 */ 1443 */ 940 return &fParticleChange; 1444 return &fParticleChange; 941 } 1445 } 942 1446 943 //....oooOO0OOooo........oooOO0OOooo........oo 1447 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 944 1448 945 void G4VEnergyLossProcess::FillSecondariesAlon << 1449 void >> 1450 G4VEnergyLossProcess::FillSecondariesAlongStep(G4double&, G4double& weight) 946 { 1451 { 947 const std::size_t n0 = scTracks.size(); << 1452 G4int n0 = scTracks.size(); 948 G4double weight = wt; << 1453 949 // weight may be changed by biasing manager 1454 // weight may be changed by biasing manager 950 if(biasManager) { 1455 if(biasManager) { 951 if(biasManager->SecondaryBiasingRegion((G4 << 1456 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 952 weight *= 1457 weight *= 953 biasManager->ApplySecondaryBiasing(scT << 1458 biasManager->ApplySecondaryBiasing(scTracks, currentCoupleIndex); 954 } 1459 } 955 } 1460 } 956 1461 957 // fill secondaries 1462 // fill secondaries 958 const std::size_t n = scTracks.size(); << 1463 G4int n = scTracks.size(); 959 fParticleChange.SetNumberOfSecondaries((G4in << 1464 fParticleChange.SetNumberOfSecondaries(n); 960 1465 961 for(std::size_t i=0; i<n; ++i) { << 1466 for(G4int i=0; i<n; ++i) { 962 G4Track* t = scTracks[i]; 1467 G4Track* t = scTracks[i]; 963 if(nullptr != t) { << 1468 if(t) { 964 t->SetWeight(weight); 1469 t->SetWeight(weight); 965 pParticleChange->AddSecondary(t); 1470 pParticleChange->AddSecondary(t); 966 G4int pdg = t->GetDefinition()->GetPDGEn << 1471 if(i >= n0) { t->SetCreatorModelIndex(biasID); } 967 if (i < n0) { << 1472 //G4cout << "Secondary(along step) has weight " << t->GetWeight() 968 if (pdg == 22) { << 1473 //<< ", kenergy " << t->GetKineticEnergy()/MeV << " MeV" <<G4endl; 969 t->SetCreatorModelID(gpixeID); << 970 } else if (pdg == 11) { << 971 t->SetCreatorModelID(epixeID); << 972 } else { << 973 t->SetCreatorModelID(biasID); << 974 } << 975 } else { << 976 t->SetCreatorModelID(biasID); << 977 } << 978 } 1474 } 979 } 1475 } 980 scTracks.clear(); 1476 scTracks.clear(); 981 } 1477 } 982 1478 983 //....oooOO0OOooo........oooOO0OOooo........oo 1479 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 1480 >> 1481 G4double >> 1482 G4VEnergyLossProcess::SampleSubCutSecondaries(std::vector<G4Track*>& tracks, >> 1483 const G4Step& step, >> 1484 G4VEmModel* model, >> 1485 G4int idx) >> 1486 { >> 1487 // Fast check weather subcutoff can work >> 1488 G4double esec = 0.0; >> 1489 G4double subcut = (*theSubCuts)[idx]; >> 1490 G4double cut = (*theCuts)[idx]; >> 1491 if(cut <= subcut) { return esec; } >> 1492 >> 1493 const G4Track* track = step.GetTrack(); >> 1494 const G4DynamicParticle* dp = track->GetDynamicParticle(); >> 1495 G4double e = dp->GetKineticEnergy()*massRatio; >> 1496 G4double cross = (*theDensityFactor)[idx]*chargeSqRatio >> 1497 *(((*theSubLambdaTable)[(*theDensityIdx)[idx]])->Value(e, idxSubLambda)); >> 1498 G4double length = step.GetStepLength(); >> 1499 >> 1500 // negligible probability to get any interaction >> 1501 if(length*cross < perMillion) { return esec; } >> 1502 /* >> 1503 if(-1 < verboseLevel) >> 1504 G4cout << "<<< Subcutoff for " << GetProcessName() >> 1505 << " cross(1/mm)= " << cross*mm << ">>>" >> 1506 << " e(MeV)= " << preStepScaledEnergy >> 1507 << " matIdx= " << currentCoupleIndex >> 1508 << G4endl; >> 1509 */ >> 1510 >> 1511 // Sample subcutoff secondaries >> 1512 G4StepPoint* preStepPoint = step.GetPreStepPoint(); >> 1513 G4StepPoint* postStepPoint = step.GetPostStepPoint(); >> 1514 G4ThreeVector prepoint = preStepPoint->GetPosition(); >> 1515 G4ThreeVector dr = postStepPoint->GetPosition() - prepoint; >> 1516 G4double pretime = preStepPoint->GetGlobalTime(); >> 1517 G4double dt = postStepPoint->GetGlobalTime() - pretime; >> 1518 G4double fragment = 0.0; >> 1519 >> 1520 do { >> 1521 G4double del = -G4Log(G4UniformRand())/cross; >> 1522 fragment += del/length; >> 1523 if (fragment > 1.0) { break; } >> 1524 >> 1525 // sample secondaries >> 1526 secParticles.clear(); >> 1527 model->SampleSecondaries(&secParticles,track->GetMaterialCutsCouple(), >> 1528 dp,subcut,cut); >> 1529 >> 1530 // position of subcutoff particles >> 1531 G4ThreeVector r = prepoint + fragment*dr; >> 1532 std::vector<G4DynamicParticle*>::iterator it; >> 1533 for(it=secParticles.begin(); it!=secParticles.end(); ++it) { >> 1534 >> 1535 G4Track* t = new G4Track((*it), pretime + fragment*dt, r); >> 1536 t->SetTouchableHandle(track->GetTouchableHandle()); >> 1537 t->SetCreatorModelIndex(subsecID); >> 1538 tracks.push_back(t); >> 1539 esec += t->GetKineticEnergy(); >> 1540 if (t->GetParticleDefinition() == thePositron) { >> 1541 esec += 2.0*electron_mass_c2; >> 1542 } >> 1543 >> 1544 /* >> 1545 if(-1 < verboseLevel) >> 1546 G4cout << "New track " >> 1547 << t->GetParticleDefinition()->GetParticleName() >> 1548 << " e(keV)= " << t->GetKineticEnergy()/keV >> 1549 << " fragment= " << fragment >> 1550 << G4endl; >> 1551 */ >> 1552 } >> 1553 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko >> 1554 } while (fragment <= 1.0); >> 1555 return esec; >> 1556 } >> 1557 >> 1558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1559 985 G4VParticleChange* G4VEnergyLossProcess::PostS 1560 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 1561 const G4Step& step) 987 { 1562 { 988 // clear number of interaction lengths in an << 1563 // In all cases clear number of interaction lengths 989 theNumberOfInteractionLengthLeft = -1.0; 1564 theNumberOfInteractionLengthLeft = -1.0; 990 mfpKinEnergy = DBL_MAX; << 1565 mfpKinEnergy = currentInteractionLength = DBL_MAX; 991 1566 992 fParticleChange.InitializeForPostStep(track) 1567 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 1568 G4double finalT = track.GetKineticEnergy(); >> 1569 if(finalT <= lowestKinEnergy) { return &fParticleChange; } 994 1570 995 const G4double postStepScaledEnergy = finalT << 1571 G4double postStepScaledEnergy = finalT*massRatio; 996 SelectModel(postStepScaledEnergy); 1572 SelectModel(postStepScaledEnergy); 997 1573 998 if(!currentModel->IsActive(postStepScaledEne 1574 if(!currentModel->IsActive(postStepScaledEnergy)) { 999 return &fParticleChange; 1575 return &fParticleChange; 1000 } 1576 } 1001 /* 1577 /* 1002 if(1 < verboseLevel) { << 1578 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 1579 G4cout << GetProcessName() >> 1580 << "::PostStepDoIt: E(MeV)= " << finalT/MeV >> 1581 << G4endl; 1004 } 1582 } 1005 */ 1583 */ >> 1584 1006 // forced process - should happen only once 1585 // forced process - should happen only once per track 1007 if(biasFlag) { 1586 if(biasFlag) { 1008 if(biasManager->ForcedInteractionRegion(( << 1587 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 1009 biasFlag = false; 1588 biasFlag = false; 1010 } 1589 } 1011 } 1590 } >> 1591 1012 const G4DynamicParticle* dp = track.GetDyna 1592 const G4DynamicParticle* dp = track.GetDynamicParticle(); >> 1593 const G4double logFinalT = dp->GetLogKineticEnergy(); >> 1594 // postStepLogScaledEnergy = logFinalT + logMassRatio; 1013 1595 1014 // Integral approach 1596 // Integral approach 1015 if (fXSType != fEmNoIntegral) { << 1597 if (integral) { 1016 const G4double logFinalT = dp->GetLogKine << 1598 const G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy, 1017 G4double lx = GetLambdaForScaledEnergy(po << 1599 logFinalT + logMassRatio); 1018 lo << 1600 /* 1019 lx = std::max(lx, 0.0); << 1601 if(preStepLambda<lx && 1 < verboseLevel) { 1020 << 1602 G4cout << "WARNING: for " << particle->GetParticleName() 1021 // if both lg and lx are zero then no int << 1603 << " and " << GetProcessName() 1022 if(preStepLambda*G4UniformRand() >= lx) { << 1604 << " E(MeV)= " << finalT/MeV >> 1605 << " preLambda= " << preStepLambda >> 1606 << " < " << lx << " (postLambda) " >> 1607 << G4endl; >> 1608 } >> 1609 */ >> 1610 if(lx <= 0.0 || preStepLambda*G4UniformRand() > lx) { 1023 return &fParticleChange; 1611 return &fParticleChange; 1024 } 1612 } 1025 } 1613 } 1026 1614 >> 1615 SelectModel(postStepScaledEnergy); >> 1616 1027 // define new weight for primary and second 1617 // define new weight for primary and secondaries 1028 G4double weight = fParticleChange.GetParent 1618 G4double weight = fParticleChange.GetParentWeight(); 1029 if(weightFlag) { 1619 if(weightFlag) { 1030 weight /= biasFactor; 1620 weight /= biasFactor; 1031 fParticleChange.ProposeWeight(weight); 1621 fParticleChange.ProposeWeight(weight); 1032 } 1622 } 1033 1623 1034 const G4double tcut = (*theCuts)[currentCou << 1624 G4double tcut = (*theCuts)[currentCoupleIndex]; 1035 1625 1036 // sample secondaries 1626 // sample secondaries 1037 secParticles.clear(); 1627 secParticles.clear(); >> 1628 //G4cout<< "@@@ Eprimary= "<<dynParticle->GetKineticEnergy()/MeV >> 1629 // << " cut= " << tcut/MeV << G4endl; 1038 currentModel->SampleSecondaries(&secParticl 1630 currentModel->SampleSecondaries(&secParticles, currentCouple, dp, tcut); 1039 1631 1040 const G4int num0 = (G4int)secParticles.size << 1632 G4int num0 = secParticles.size(); 1041 1633 1042 // bremsstrahlung splitting or Russian roul 1634 // bremsstrahlung splitting or Russian roulette 1043 if(biasManager) { 1635 if(biasManager) { 1044 if(biasManager->SecondaryBiasingRegion((G << 1636 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 1045 G4double eloss = 0.0; 1637 G4double eloss = 0.0; 1046 weight *= biasManager->ApplySecondaryBi 1638 weight *= biasManager->ApplySecondaryBiasing( 1047 secPart 1639 secParticles, 1048 track, 1640 track, currentModel, 1049 &fParti 1641 &fParticleChange, eloss, 1050 (G4int) << 1642 currentCoupleIndex, tcut, 1051 step.Ge 1643 step.GetPostStepPoint()->GetSafety()); 1052 if(eloss > 0.0) { 1644 if(eloss > 0.0) { 1053 eloss += fParticleChange.GetLocalEner 1645 eloss += fParticleChange.GetLocalEnergyDeposit(); 1054 fParticleChange.ProposeLocalEnergyDep 1646 fParticleChange.ProposeLocalEnergyDeposit(eloss); 1055 } 1647 } 1056 } 1648 } 1057 } 1649 } 1058 1650 1059 // save secondaries 1651 // save secondaries 1060 const G4int num = (G4int)secParticles.size( << 1652 G4int num = secParticles.size(); 1061 if(num > 0) { 1653 if(num > 0) { 1062 1654 1063 fParticleChange.SetNumberOfSecondaries(nu 1655 fParticleChange.SetNumberOfSecondaries(num); 1064 G4double time = track.GetGlobalTime(); 1656 G4double time = track.GetGlobalTime(); 1065 1657 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 << 1071 for (G4int i=0; i<num; ++i) { 1658 for (G4int i=0; i<num; ++i) { 1072 if(nullptr != secParticles[i]) { << 1659 if(secParticles[i]) { 1073 G4Track* t = new G4Track(secParticles 1660 G4Track* t = new G4Track(secParticles[i], time, track.GetPosition()); 1074 t->SetTouchableHandle(track.GetToucha 1661 t->SetTouchableHandle(track.GetTouchableHandle()); 1075 if (biasManager) { 1662 if (biasManager) { 1076 t->SetWeight(weight * biasManager-> 1663 t->SetWeight(weight * biasManager->GetWeight(i)); 1077 } else { 1664 } else { 1078 t->SetWeight(weight); 1665 t->SetWeight(weight); 1079 } 1666 } 1080 if(i < num0) { << 1667 if(i < num0) { t->SetCreatorModelIndex(secID); } 1081 t->SetCreatorModelID(secID); << 1668 else { t->SetCreatorModelIndex(biasID); } 1082 } else if(i < num0 + n1) { << 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 1669 1088 //G4cout << "Secondary(post step) has 1670 //G4cout << "Secondary(post step) has weight " << t->GetWeight() 1089 // << ", kenergy " << t->GetKin 1671 // << ", kenergy " << t->GetKineticEnergy()/MeV << " MeV" 1090 // << " time= " << time/ns << " 1672 // << " time= " << time/ns << " ns " << G4endl; 1091 pParticleChange->AddSecondary(t); 1673 pParticleChange->AddSecondary(t); 1092 } 1674 } 1093 } 1675 } 1094 } 1676 } 1095 1677 1096 if(0.0 == fParticleChange.GetProposedKineti 1678 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 1097 fAlive == fParticleChange.GetTrackStatus 1679 fAlive == fParticleChange.GetTrackStatus()) { 1098 if(particle->GetProcessManager()->GetAtRe 1680 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 1099 { fParticleChange.ProposeTrackStatus 1681 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 1100 else { fParticleChange.ProposeTrackStatus 1682 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 1101 } 1683 } 1102 1684 1103 /* 1685 /* 1104 if(-1 < verboseLevel) { 1686 if(-1 < verboseLevel) { 1105 G4cout << "::PostStepDoIt: Sample seconda 1687 G4cout << "::PostStepDoIt: Sample secondary; Efin= " 1106 << fParticleChange.GetProposedKineticEner 1688 << fParticleChange.GetProposedKineticEnergy()/MeV 1107 << " MeV; model= (" << currentMode 1689 << " MeV; model= (" << currentModel->LowEnergyLimit() 1108 << ", " << currentModel->HighEner 1690 << ", " << currentModel->HighEnergyLimit() << ")" 1109 << " preStepLambda= " << preStepL 1691 << " preStepLambda= " << preStepLambda 1110 << " dir= " << track.GetMomentumD 1692 << " dir= " << track.GetMomentumDirection() 1111 << " status= " << track.GetTrackS 1693 << " status= " << track.GetTrackStatus() 1112 << G4endl; 1694 << G4endl; 1113 } 1695 } 1114 */ 1696 */ 1115 return &fParticleChange; 1697 return &fParticleChange; 1116 } 1698 } 1117 1699 1118 //....oooOO0OOooo........oooOO0OOooo........o 1700 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 1701 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl 1702 G4bool G4VEnergyLossProcess::StorePhysicsTable( 1121 const G4ParticleDefinition* part, cons << 1703 const G4ParticleDefinition* part, const G4String& directory, >> 1704 G4bool ascii) 1122 { 1705 { 1123 if (!isMaster || nullptr != baseParticle || << 1706 G4bool res = true; 1124 for(std::size_t i=0; i<7; ++i) { << 1707 //G4cout << "G4VEnergyLossProcess::StorePhysicsTable: " << part->GetParticleName() 1125 // ionisation table only for ionisation p << 1708 // << " " << directory << " " << ascii << G4endl; 1126 if (nullptr == theData->Table(i) || (!isI << 1709 if (!isMaster || baseParticle || part != particle ) return res; 1127 continue; << 1710 1128 } << 1711 if(!StoreTable(part,theDEDXTable,ascii,directory,"DEDX")) 1129 if (-1 < verboseLevel) { << 1712 {res = false;} 1130 G4cout << "G4VEnergyLossProcess::StoreP << 1713 1131 << " " << particle->GetParticleName() << 1714 if(!StoreTable(part,theDEDXunRestrictedTable,ascii,directory,"DEDXnr")) 1132 << " " << GetProcessName() << 1715 {res = false;} 1133 << " " << tnames[i] << " " << theDat << 1716 1134 } << 1717 if(!StoreTable(part,theDEDXSubTable,ascii,directory,"SubDEDX")) 1135 if (!G4EmTableUtil::StoreTable(this, part << 1718 {res = false;} 1136 dir, tnames[i], verboseLevel, asci << 1719 1137 return false; << 1720 if(!StoreTable(part,theIonisationTable,ascii,directory,"Ionisation")) >> 1721 {res = false;} >> 1722 >> 1723 if(!StoreTable(part,theIonisationSubTable,ascii,directory,"SubIonisation")) >> 1724 {res = false;} >> 1725 >> 1726 if(isIonisation && >> 1727 !StoreTable(part,theCSDARangeTable,ascii,directory,"CSDARange")) >> 1728 {res = false;} >> 1729 >> 1730 if(isIonisation && >> 1731 !StoreTable(part,theRangeTableForLoss,ascii,directory,"Range")) >> 1732 {res = false;} >> 1733 >> 1734 if(isIonisation && >> 1735 !StoreTable(part,theInverseRangeTable,ascii,directory,"InverseRange")) >> 1736 {res = false;} >> 1737 >> 1738 if(!StoreTable(part,theLambdaTable,ascii,directory,"Lambda")) >> 1739 {res = false;} >> 1740 >> 1741 if(!StoreTable(part,theSubLambdaTable,ascii,directory,"SubLambda")) >> 1742 {res = false;} >> 1743 >> 1744 if ( !res ) { >> 1745 if(1 < verboseLevel) { >> 1746 G4cout << "Physics tables are stored for " >> 1747 << particle->GetParticleName() >> 1748 << " and process " << GetProcessName() >> 1749 << " in the directory <" << directory >> 1750 << "> " << G4endl; 1138 } 1751 } >> 1752 } else { >> 1753 G4cout << "Fail to store Physics Tables for " >> 1754 << particle->GetParticleName() >> 1755 << " and process " << GetProcessName() >> 1756 << " in the directory <" << directory >> 1757 << "> " << G4endl; 1139 } 1758 } 1140 return true; << 1759 return res; 1141 } 1760 } 1142 1761 1143 //....oooOO0OOooo........oooOO0OOooo........o 1762 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 1144 1763 1145 G4bool 1764 G4bool 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co 1765 G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 1147 co << 1766 const G4String& directory, >> 1767 G4bool ascii) 1148 { 1768 { 1149 if (!isMaster || nullptr != baseParticle || << 1769 G4bool res = true; 1150 for(std::size_t i=0; i<7; ++i) { << 1770 if (!isMaster) return res; 1151 // ionisation table only for ionisation p << 1771 const G4String particleName = part->GetParticleName(); 1152 if (!isIonisation && 1 == i) { continue; << 1772 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 1773 if(1 < verboseLevel) { 1154 verboseL << 1774 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1155 return false; << 1775 << particleName << " and process " << GetProcessName() >> 1776 << "; tables_are_built= " << tablesAreBuilt >> 1777 << G4endl; >> 1778 } >> 1779 if(particle == part) { >> 1780 >> 1781 if ( !baseParticle ) { >> 1782 >> 1783 G4bool fpi = true; >> 1784 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"DEDX",fpi)) >> 1785 {fpi = false;} >> 1786 >> 1787 // ionisation table keeps individual dEdx and not sum of sub-processes >> 1788 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"Ionisation",false)) >> 1789 {fpi = false;} >> 1790 >> 1791 if(!RetrieveTable(part,theRangeTableForLoss,ascii,directory,"Range",fpi)) >> 1792 {res = false;} >> 1793 >> 1794 if(!RetrieveTable(part,theDEDXunRestrictedTable,ascii,directory, >> 1795 "DEDXnr",false)) >> 1796 {res = false;} >> 1797 >> 1798 if(!RetrieveTable(part,theCSDARangeTable,ascii,directory, >> 1799 "CSDARange",false)) >> 1800 {res = false;} >> 1801 >> 1802 if(!RetrieveTable(part,theInverseRangeTable,ascii,directory, >> 1803 "InverseRange",fpi)) >> 1804 {res = false;} >> 1805 >> 1806 if(!RetrieveTable(part,theLambdaTable,ascii,directory,"Lambda",true)) >> 1807 {res = false;} >> 1808 >> 1809 G4bool yes = false; >> 1810 if(nSCoffRegions > 0) {yes = true;} >> 1811 >> 1812 if(!RetrieveTable(part,theDEDXSubTable,ascii,directory,"SubDEDX",yes)) >> 1813 {res = false;} >> 1814 >> 1815 if(!RetrieveTable(part,theSubLambdaTable,ascii,directory, >> 1816 "SubLambda",yes)) >> 1817 {res = false;} >> 1818 >> 1819 if(!fpi) yes = false; >> 1820 if(!RetrieveTable(part,theIonisationSubTable,ascii,directory, >> 1821 "SubIonisation",yes)) >> 1822 {res = false;} 1156 } 1823 } 1157 } 1824 } >> 1825 >> 1826 return res; >> 1827 } >> 1828 >> 1829 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1830 >> 1831 G4bool G4VEnergyLossProcess::StoreTable(const G4ParticleDefinition* part, >> 1832 G4PhysicsTable* aTable, G4bool ascii, >> 1833 const G4String& directory, >> 1834 const G4String& tname) >> 1835 { >> 1836 //G4cout << "G4VEnergyLossProcess::StoreTable: " << aTable >> 1837 // << " " << directory << " " << tname << G4endl; >> 1838 G4bool res = true; >> 1839 if ( aTable ) { >> 1840 const G4String name = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1841 G4cout << name << G4endl; >> 1842 //G4cout << *aTable << G4endl; >> 1843 if( !aTable->StorePhysicsTable(name,ascii)) res = false; >> 1844 } >> 1845 return res; >> 1846 } >> 1847 >> 1848 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1849 >> 1850 G4bool >> 1851 G4VEnergyLossProcess::RetrieveTable(const G4ParticleDefinition* part, >> 1852 G4PhysicsTable* aTable, >> 1853 G4bool ascii, >> 1854 const G4String& directory, >> 1855 const G4String& tname, >> 1856 G4bool mandatory) >> 1857 { >> 1858 G4bool isRetrieved = false; >> 1859 G4String filename = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1860 if(aTable) { >> 1861 if(aTable->ExistPhysicsTable(filename)) { >> 1862 if(G4PhysicsTableHelper::RetrievePhysicsTable(aTable,filename,ascii)) { >> 1863 isRetrieved = true; >> 1864 if(theParameters->Spline()) { >> 1865 size_t n = aTable->length(); >> 1866 for(size_t i=0; i<n; ++i) { >> 1867 if((*aTable)[i]) { (*aTable)[i]->SetSpline(true); } >> 1868 } >> 1869 } >> 1870 if (0 < verboseLevel) { >> 1871 G4cout << tname << " table for " << part->GetParticleName() >> 1872 << " is Retrieved from <" << filename << ">" >> 1873 << G4endl; >> 1874 } >> 1875 } >> 1876 } >> 1877 } >> 1878 if(mandatory && !isRetrieved) { >> 1879 if(0 < verboseLevel) { >> 1880 G4cout << tname << " table for " << part->GetParticleName() >> 1881 << " from file <" >> 1882 << filename << "> is not Retrieved" >> 1883 << G4endl; >> 1884 } >> 1885 return false; >> 1886 } 1158 return true; 1887 return true; 1159 } 1888 } 1160 1889 1161 //....oooOO0OOooo........oooOO0OOooo........o 1890 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 1891 1163 G4double G4VEnergyLossProcess::GetDEDXDispers 1892 G4double G4VEnergyLossProcess::GetDEDXDispersion( 1164 const G4Mat 1893 const G4MaterialCutsCouple *couple, 1165 const G4Dyn 1894 const G4DynamicParticle* dp, 1166 G4dou 1895 G4double length) 1167 { 1896 { 1168 DefineMaterial(couple); 1897 DefineMaterial(couple); 1169 G4double ekin = dp->GetKineticEnergy(); 1898 G4double ekin = dp->GetKineticEnergy(); 1170 SelectModel(ekin*massRatio); 1899 SelectModel(ekin*massRatio); 1171 G4double tmax = currentModel->MaxSecondaryK 1900 G4double tmax = currentModel->MaxSecondaryKinEnergy(dp); 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 1901 tmax = std::min(tmax,(*theCuts)[currentCoupleIndex]); 1173 G4double d = 0.0; 1902 G4double d = 0.0; 1174 G4VEmFluctuationModel* fm = currentModel->G 1903 G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations(); 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 1904 if(fm) { d = fm->Dispersion(currentMaterial,dp,tmax,length); } 1176 return d; 1905 return d; 1177 } 1906 } 1178 1907 1179 //....oooOO0OOooo........oooOO0OOooo........o 1908 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 1909 1181 G4double 1910 G4double 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G 1911 G4VEnergyLossProcess::CrossSectionPerVolume(G4double kineticEnergy, 1183 c 1912 const G4MaterialCutsCouple* couple, 1184 G 1913 G4double logKineticEnergy) 1185 { 1914 { 1186 // Cross section per volume is calculated 1915 // Cross section per volume is calculated 1187 DefineMaterial(couple); 1916 DefineMaterial(couple); 1188 G4double cross = 0.0; 1917 G4double cross = 0.0; 1189 if (nullptr != theLambdaTable) { << 1918 if (theLambdaTable) { 1190 cross = GetLambdaForScaledEnergy(kineticE 1919 cross = GetLambdaForScaledEnergy(kineticEnergy * massRatio, 1191 logKinet 1920 logKineticEnergy + logMassRatio); 1192 } else { 1921 } else { 1193 SelectModel(kineticEnergy*massRatio); 1922 SelectModel(kineticEnergy*massRatio); 1194 cross = (!baseMat) ? biasFactor : biasFac << 1923 cross = biasFactor*(*theDensityFactor)[currentCoupleIndex] 1195 cross *= (currentModel->CrossSectionPerVo << 1924 *(currentModel->CrossSectionPerVolume(currentMaterial, 1196 << 1925 particle, kineticEnergy, >> 1926 (*theCuts)[currentCoupleIndex])); 1197 } 1927 } 1198 return std::max(cross, 0.0); 1928 return std::max(cross, 0.0); 1199 } 1929 } 1200 1930 1201 //....oooOO0OOooo........oooOO0OOooo........o 1931 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 1932 1203 G4double G4VEnergyLossProcess::MeanFreePath(c 1933 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track) 1204 { 1934 { 1205 DefineMaterial(track.GetMaterialCutsCouple( 1935 DefineMaterial(track.GetMaterialCutsCouple()); 1206 const G4double kinEnergy = track.GetKine 1936 const G4double kinEnergy = track.GetKineticEnergy(); 1207 const G4double logKinEnergy = track.GetDyna 1937 const G4double logKinEnergy = track.GetDynamicParticle()->GetLogKineticEnergy(); 1208 const G4double cs = GetLambdaForScaledEnerg 1938 const G4double cs = GetLambdaForScaledEnergy(kinEnergy * massRatio, 1209 1939 logKinEnergy + logMassRatio); 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; 1940 return (0.0 < cs) ? 1.0/cs : DBL_MAX; 1211 } 1941 } 1212 1942 1213 //....oooOO0OOooo........oooOO0OOooo........o 1943 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 1944 1215 G4double G4VEnergyLossProcess::ContinuousStep 1945 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, 1216 1946 G4double x, G4double y, 1217 1947 G4double& z) 1218 { 1948 { 1219 return AlongStepGetPhysicalInteractionLengt << 1949 G4GPILSelection sel; >> 1950 return AlongStepGetPhysicalInteractionLength(track, x, y, z, &sel); 1220 } 1951 } 1221 1952 1222 //....oooOO0OOooo........oooOO0OOooo........o 1953 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 1954 1224 G4double G4VEnergyLossProcess::GetMeanFreePat 1955 G4double G4VEnergyLossProcess::GetMeanFreePath( 1225 const G4Track& t 1956 const G4Track& track, 1226 G4double, 1957 G4double, 1227 G4ForceCondition 1958 G4ForceCondition* condition) 1228 1959 1229 { 1960 { 1230 *condition = NotForced; 1961 *condition = NotForced; 1231 return MeanFreePath(track); 1962 return MeanFreePath(track); 1232 } 1963 } 1233 1964 1234 //....oooOO0OOooo........oooOO0OOooo........o 1965 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 1966 1236 G4double G4VEnergyLossProcess::GetContinuousS 1967 G4double G4VEnergyLossProcess::GetContinuousStepLimit( 1237 const G4Track&, 1968 const G4Track&, 1238 G4double, G4double, G4double& 1969 G4double, G4double, G4double&) 1239 { 1970 { 1240 return DBL_MAX; 1971 return DBL_MAX; 1241 } 1972 } 1242 1973 1243 //....oooOO0OOooo........oooOO0OOooo........o 1974 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1975 1245 G4PhysicsVector* 1976 G4PhysicsVector* 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1977 G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*, 1247 G4d 1978 G4double) 1248 { 1979 { 1249 DefineMaterial(couple); << 1980 G4PhysicsVector* v = 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1981 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nBins); 1251 return new G4PhysicsVector(*v); << 1982 v->SetSpline(theParameters->Spline()); >> 1983 return v; >> 1984 } >> 1985 >> 1986 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1987 >> 1988 void G4VEnergyLossProcess::AddCollaborativeProcess( >> 1989 G4VEnergyLossProcess* p) >> 1990 { >> 1991 G4bool add = true; >> 1992 if(p->GetProcessName() != "eBrem") { add = false; } >> 1993 if(add && nProcesses > 0) { >> 1994 for(G4int i=0; i<nProcesses; ++i) { >> 1995 if(p == scProcesses[i]) { >> 1996 add = false; >> 1997 break; >> 1998 } >> 1999 } >> 2000 } >> 2001 if(add) { >> 2002 scProcesses.push_back(p); >> 2003 ++nProcesses; >> 2004 if (1 < verboseLevel) { >> 2005 G4cout << "### The process " << p->GetProcessName() >> 2006 << " is added to the list of collaborative processes of " >> 2007 << GetProcessName() << G4endl; >> 2008 } >> 2009 } 1252 } 2010 } 1253 2011 1254 //....oooOO0OOooo........oooOO0OOooo........o 2012 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 2013 1256 void 2014 void 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT 2015 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType) 1258 { 2016 { 1259 if(1 < verboseLevel) { << 1260 G4cout << "### Set DEDX table " << p << " << 1261 << " " << theDEDXunRestrictedTable << << 1262 << " for " << particle->GetParticl << 1263 << " and process " << GetProcessNa << 1264 << " type=" << tType << " isIonisation:" << 1265 } << 1266 if(fTotal == tType) { 2017 if(fTotal == tType) { 1267 theDEDXunRestrictedTable = p; 2018 theDEDXunRestrictedTable = p; >> 2019 if(p) { >> 2020 size_t n = p->length(); >> 2021 G4PhysicsVector* pv = (*p)[0]; >> 2022 G4double emax = maxKinEnergyCSDA; >> 2023 >> 2024 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 2025 theDensityFactor = bld->GetDensityFactors(); >> 2026 theDensityIdx = bld->GetCoupleIndexes(); >> 2027 >> 2028 for (size_t i=0; i<n; ++i) { >> 2029 G4double dedx = 0.0; >> 2030 pv = (*p)[i]; >> 2031 if(pv) { >> 2032 dedx = pv->Value(emax, idxDEDXunRestricted); >> 2033 } else { >> 2034 pv = (*p)[(*theDensityIdx)[i]]; >> 2035 if(pv) { >> 2036 dedx = >> 2037 pv->Value(emax, idxDEDXunRestricted)*(*theDensityFactor)[i]; >> 2038 } >> 2039 } >> 2040 theDEDXAtMaxEnergy[i] = dedx; >> 2041 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " >> 2042 // << dedx << G4endl; >> 2043 } >> 2044 } >> 2045 1268 } else if(fRestricted == tType) { 2046 } else if(fRestricted == tType) { >> 2047 /* >> 2048 G4cout<< "G4VEnergyLossProcess::SetDEDXTable " >> 2049 << particle->GetParticleName() >> 2050 << " oldTable " << theDEDXTable << " newTable " << p >> 2051 << " ion " << theIonisationTable >> 2052 << " IsMaster " << isMaster >> 2053 << " " << GetProcessName() << G4endl; >> 2054 G4cout << (*p) << G4endl; >> 2055 */ 1269 theDEDXTable = p; 2056 theDEDXTable = p; 1270 if(isMaster && nullptr == baseParticle) { << 2057 } else if(fSubRestricted == tType) { 1271 theData->UpdateTable(theDEDXTable, 0); << 2058 theDEDXSubTable = p; 1272 } << 1273 } else if(fIsIonisation == tType) { 2059 } else if(fIsIonisation == tType) { >> 2060 /* >> 2061 G4cout<< "G4VEnergyLossProcess::SetIonisationTable " >> 2062 << particle->GetParticleName() >> 2063 << " oldTable " << theDEDXTable << " newTable " << p >> 2064 << " ion " << theIonisationTable >> 2065 << " IsMaster " << isMaster >> 2066 << " " << GetProcessName() << G4endl; >> 2067 */ 1274 theIonisationTable = p; 2068 theIonisationTable = p; 1275 if(isMaster && nullptr == baseParticle) { << 2069 } else if(fIsSubIonisation == tType) { 1276 theData->UpdateTable(theIonisationTable << 2070 theIonisationSubTable = p; 1277 } << 1278 } 2071 } 1279 } 2072 } 1280 2073 1281 //....oooOO0OOooo........oooOO0OOooo........o 2074 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 2075 1283 void G4VEnergyLossProcess::SetCSDARangeTable( 2076 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p) 1284 { 2077 { 1285 theCSDARangeTable = p; << 2078 theCSDARangeTable = p; >> 2079 >> 2080 if(p) { >> 2081 size_t n = p->length(); >> 2082 G4PhysicsVector* pv; >> 2083 G4double emax = maxKinEnergyCSDA; >> 2084 >> 2085 for (size_t i=0; i<n; ++i) { >> 2086 pv = (*p)[i]; >> 2087 G4double rmax = 0.0; >> 2088 if(pv) { rmax = pv->Value(emax, idxCSDA); } >> 2089 else { >> 2090 pv = (*p)[(*theDensityIdx)[i]]; >> 2091 if(pv) { rmax = pv->Value(emax, idxCSDA)/(*theDensityFactor)[i]; } >> 2092 } >> 2093 theRangeAtMaxEnergy[i] = rmax; >> 2094 //G4cout << "i= " << i << " Emax(MeV)= " << emax/MeV << " Rmax= " >> 2095 //<< rmax<< G4endl; >> 2096 } >> 2097 } 1286 } 2098 } 1287 2099 1288 //....oooOO0OOooo........oooOO0OOooo........o 2100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 2101 1290 void G4VEnergyLossProcess::SetRangeTableForLo 2102 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1291 { 2103 { 1292 theRangeTableForLoss = p; 2104 theRangeTableForLoss = p; >> 2105 if(1 < verboseLevel) { >> 2106 G4cout << "### Set Range table " << p >> 2107 << " for " << particle->GetParticleName() >> 2108 << " and process " << GetProcessName() << G4endl; >> 2109 } >> 2110 } >> 2111 >> 2112 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 2113 >> 2114 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) >> 2115 { >> 2116 theSecondaryRangeTable = p; >> 2117 if(1 < verboseLevel) { >> 2118 G4cout << "### Set SecondaryRange table " << p >> 2119 << " for " << particle->GetParticleName() >> 2120 << " and process " << GetProcessName() << G4endl; >> 2121 } 1293 } 2122 } 1294 2123 1295 //....oooOO0OOooo........oooOO0OOooo........o 2124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 2125 1297 void G4VEnergyLossProcess::SetInverseRangeTab 2126 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1298 { 2127 { 1299 theInverseRangeTable = p; 2128 theInverseRangeTable = p; >> 2129 if(1 < verboseLevel) { >> 2130 G4cout << "### Set InverseRange table " << p >> 2131 << " for " << particle->GetParticleName() >> 2132 << " and process " << GetProcessName() << G4endl; >> 2133 } 1300 } 2134 } 1301 2135 1302 //....oooOO0OOooo........oooOO0OOooo........o 2136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 2137 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P 2138 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1305 { 2139 { 1306 if(1 < verboseLevel) { 2140 if(1 < verboseLevel) { 1307 G4cout << "### Set Lambda table " << p << << 2141 G4cout << "### Set Lambda table " << p 1308 << " for " << particle->GetParticl 2142 << " for " << particle->GetParticleName() 1309 << " and process " << GetProcessNa 2143 << " and process " << GetProcessName() << G4endl; >> 2144 //G4cout << *p << G4endl; 1310 } 2145 } 1311 theLambdaTable = p; << 2146 theLambdaTable = p; 1312 tablesAreBuilt = true; 2147 tablesAreBuilt = true; 1313 2148 1314 if(isMaster && nullptr != p) { << 2149 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 1315 delete theEnergyOfCrossSectionMax; << 2150 theDensityFactor = bld->GetDensityFactors(); 1316 theEnergyOfCrossSectionMax = nullptr; << 2151 theDensityIdx = bld->GetCoupleIndexes(); 1317 if(fEmTwoPeaks == fXSType) { << 2152 1318 if(nullptr != fXSpeaks) { << 2153 if(theLambdaTable) { 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 2154 size_t n = theLambdaTable->length(); 1320 delete fXSpeaks; << 2155 G4PhysicsVector* pv = (*theLambdaTable)[0]; >> 2156 G4double e, ss, smax, emax; >> 2157 >> 2158 size_t i; >> 2159 >> 2160 // first loop on existing vectors >> 2161 for (i=0; i<n; ++i) { >> 2162 pv = (*theLambdaTable)[i]; >> 2163 if(pv) { >> 2164 size_t nb = pv->GetVectorLength(); >> 2165 emax = DBL_MAX; >> 2166 smax = 0.0; >> 2167 if(nb > 0) { >> 2168 for (size_t j=0; j<nb; ++j) { >> 2169 e = pv->Energy(j); >> 2170 ss = (*pv)(j); >> 2171 if(ss > smax) { >> 2172 smax = ss; >> 2173 emax = e; >> 2174 } >> 2175 } >> 2176 } >> 2177 theEnergyOfCrossSectionMax[i] = emax; >> 2178 theCrossSectionMax[i] = smax; >> 2179 if(1 < verboseLevel) { >> 2180 G4cout << "For " << particle->GetParticleName() >> 2181 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 2182 << " lambda= " << smax << G4endl; >> 2183 } 1321 } 2184 } 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } 2185 } 1326 if(fXSType == fEmOnePeak) { << 2186 // second loop using base materials 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 2187 for (i=0; i<n; ++i) { 1328 if(nullptr == theEnergyOfCrossSectionMa << 2188 pv = (*theLambdaTable)[i]; >> 2189 if(!pv){ >> 2190 G4int j = (*theDensityIdx)[i]; >> 2191 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 2192 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 2193 } 1329 } 2194 } 1330 } 2195 } 1331 } 2196 } 1332 2197 1333 //....oooOO0OOooo........oooOO0OOooo........o 2198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 2199 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 2200 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1336 { 2201 { 1337 theEnergyOfCrossSectionMax = p; << 2202 theSubLambdaTable = p; 1338 } << 2203 if(1 < verboseLevel) { 1339 << 2204 G4cout << "### Set SebLambda table " << p 1340 //....oooOO0OOooo........oooOO0OOooo........o << 2205 << " for " << particle->GetParticleName() 1341 << 2206 << " and process " << GetProcessName() << G4endl; 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 2207 } 1343 { << 1344 fXSpeaks = ptr; << 1345 } 2208 } 1346 2209 1347 //....oooOO0OOooo........oooOO0OOooo........o 2210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 2211 1349 const G4Element* G4VEnergyLossProcess::GetCur 2212 const G4Element* G4VEnergyLossProcess::GetCurrentElement() const 1350 { 2213 { 1351 return (nullptr != currentModel) << 2214 const G4Element* elm = nullptr; 1352 ? currentModel->GetCurrentElement(current << 2215 if(currentModel) { elm = currentModel->GetCurrentElement(); } >> 2216 return elm; 1353 } 2217 } 1354 2218 1355 //....oooOO0OOooo........oooOO0OOooo........o 2219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 2220 1357 void G4VEnergyLossProcess::SetCrossSectionBia 2221 void G4VEnergyLossProcess::SetCrossSectionBiasingFactor(G4double f, 1358 2222 G4bool flag) 1359 { 2223 { 1360 if(f > 0.0) { 2224 if(f > 0.0) { 1361 biasFactor = f; 2225 biasFactor = f; 1362 weightFlag = flag; 2226 weightFlag = flag; 1363 if(1 < verboseLevel) { 2227 if(1 < verboseLevel) { 1364 G4cout << "### SetCrossSectionBiasingFa 2228 G4cout << "### SetCrossSectionBiasingFactor: for " 1365 << " process " << GetProcessName 2229 << " process " << GetProcessName() 1366 << " biasFactor= " << f << " wei 2230 << " biasFactor= " << f << " weightFlag= " << flag 1367 << G4endl; 2231 << G4endl; 1368 } 2232 } 1369 } 2233 } 1370 } 2234 } 1371 2235 1372 //....oooOO0OOooo........oooOO0OOooo........o 2236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 2237 1374 void G4VEnergyLossProcess::ActivateForcedInte << 2238 void 1375 << 2239 G4VEnergyLossProcess::ActivateForcedInteraction(G4double length, 1376 << 2240 const G4String& region, >> 2241 G4bool flag) 1377 { 2242 { 1378 if(nullptr == biasManager) { biasManager = << 2243 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 1379 if(1 < verboseLevel) { 2244 if(1 < verboseLevel) { 1380 G4cout << "### ActivateForcedInteraction: 2245 G4cout << "### ActivateForcedInteraction: for " 1381 << " process " << GetProcessName() 2246 << " process " << GetProcessName() 1382 << " length(mm)= " << length/mm 2247 << " length(mm)= " << length/mm 1383 << " in G4Region <" << region 2248 << " in G4Region <" << region 1384 << "> weightFlag= " << flag 2249 << "> weightFlag= " << flag 1385 << G4endl; 2250 << G4endl; 1386 } 2251 } 1387 weightFlag = flag; 2252 weightFlag = flag; 1388 biasManager->ActivateForcedInteraction(leng 2253 biasManager->ActivateForcedInteraction(length, region); 1389 } 2254 } 1390 2255 1391 //....oooOO0OOooo........oooOO0OOooo........o 2256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 2257 1393 void 2258 void 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin 2259 G4VEnergyLossProcess::ActivateSecondaryBiasing(const G4String& region, 1395 2260 G4double factor, 1396 2261 G4double energyLimit) 1397 { 2262 { 1398 if (0.0 <= factor) { 2263 if (0.0 <= factor) { >> 2264 1399 // Range cut can be applied only for e- 2265 // Range cut can be applied only for e- 1400 if(0.0 == factor && secondaryParticle != 2266 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 1401 { return; } 2267 { return; } 1402 2268 1403 if(nullptr == biasManager) { biasManager << 2269 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 1404 biasManager->ActivateSecondaryBiasing(reg 2270 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 1405 if(1 < verboseLevel) { 2271 if(1 < verboseLevel) { 1406 G4cout << "### ActivateSecondaryBiasing 2272 G4cout << "### ActivateSecondaryBiasing: for " 1407 << " process " << GetProcessName 2273 << " process " << GetProcessName() 1408 << " factor= " << factor 2274 << " factor= " << factor 1409 << " in G4Region <" << region 2275 << " in G4Region <" << region 1410 << "> energyLimit(MeV)= " << ene 2276 << "> energyLimit(MeV)= " << energyLimit/MeV 1411 << G4endl; 2277 << G4endl; 1412 } 2278 } 1413 } 2279 } 1414 } 2280 } 1415 2281 1416 //....oooOO0OOooo........oooOO0OOooo........o 2282 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 2283 1418 void G4VEnergyLossProcess::SetIonisation(G4bo 2284 void G4VEnergyLossProcess::SetIonisation(G4bool val) 1419 { 2285 { 1420 isIonisation = val; 2286 isIonisation = val; 1421 aGPILSelection = (val) ? CandidateForSelect 2287 aGPILSelection = (val) ? CandidateForSelection : NotCandidateForSelection; 1422 } 2288 } 1423 2289 1424 //....oooOO0OOooo........oooOO0OOooo........o 2290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1425 2291 1426 void G4VEnergyLossProcess::SetLinearLossLimi 2292 void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) 1427 { 2293 { 1428 if(0.0 < val && val < 1.0) { 2294 if(0.0 < val && val < 1.0) { 1429 linLossLimit = val; 2295 linLossLimit = val; 1430 actLinLossLimit = true; 2296 actLinLossLimit = true; 1431 } else { PrintWarning("SetLinearLossLimit", 2297 } else { PrintWarning("SetLinearLossLimit", val); } 1432 } 2298 } 1433 2299 1434 //....oooOO0OOooo........oooOO0OOooo........o 2300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1435 2301 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 2302 void >> 2303 G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2, G4bool lock) 1437 { 2304 { 1438 if(0.0 < v1 && 0.0 < v2) { << 2305 if(actStepFunc) { return; } >> 2306 actStepFunc = lock; >> 2307 if(0.0 < v1 && 0.0 < v2 && v2 < 1.e+50) { 1439 dRoverRange = std::min(1.0, v1); 2308 dRoverRange = std::min(1.0, v1); 1440 finalRange = std::min(v2, 1.e+50); << 2309 finalRange = v2; >> 2310 } else if(v1 <= 0.0) { >> 2311 PrintWarning("SetStepFunction", v1); 1441 } else { 2312 } else { 1442 PrintWarning("SetStepFunctionV1", v1); << 2313 PrintWarning("SetStepFunction", v2); 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } 2314 } 1445 } 2315 } 1446 2316 1447 //....oooOO0OOooo........oooOO0OOooo........o 2317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1448 2318 1449 void G4VEnergyLossProcess::SetLowestEnergyLim 2319 void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val) 1450 { 2320 { 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi 2321 if(1.e-18 < val && val < 1.e+50) { lowestKinEnergy = val; } 1452 else { PrintWarning("SetLowestEnergyLimit", 2322 else { PrintWarning("SetLowestEnergyLimit", val); } 1453 } 2323 } 1454 2324 1455 //....oooOO0OOooo........oooOO0OOooo........o 2325 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1456 2326 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i 2327 void G4VEnergyLossProcess::SetDEDXBinning(G4int n) 1458 { 2328 { 1459 if(2 < n && n < 1000000000) { 2329 if(2 < n && n < 1000000000) { 1460 nBins = n; 2330 nBins = n; 1461 actBinning = true; 2331 actBinning = true; 1462 } else { 2332 } else { 1463 G4double e = (G4double)n; 2333 G4double e = (G4double)n; 1464 PrintWarning("SetDEDXBinning", e); 2334 PrintWarning("SetDEDXBinning", e); 1465 } 2335 } 1466 } 2336 } 1467 2337 1468 //....oooOO0OOooo........oooOO0OOooo........o 2338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1469 2339 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 2340 void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 1471 { 2341 { 1472 if(1.e-18 < e && e < maxKinEnergy) { 2342 if(1.e-18 < e && e < maxKinEnergy) { 1473 minKinEnergy = e; 2343 minKinEnergy = e; 1474 actMinKinEnergy = true; 2344 actMinKinEnergy = true; 1475 } else { PrintWarning("SetMinKinEnergy", e) 2345 } else { PrintWarning("SetMinKinEnergy", e); } 1476 } 2346 } 1477 2347 1478 //....oooOO0OOooo........oooOO0OOooo........o 2348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1479 2349 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 2350 void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 1481 { 2351 { 1482 if(minKinEnergy < e && e < 1.e+50) { 2352 if(minKinEnergy < e && e < 1.e+50) { 1483 maxKinEnergy = e; 2353 maxKinEnergy = e; 1484 actMaxKinEnergy = true; 2354 actMaxKinEnergy = true; 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS 2355 if(e < maxKinEnergyCSDA) { maxKinEnergyCSDA = e; } 1486 } else { PrintWarning("SetMaxKinEnergy", e) 2356 } else { PrintWarning("SetMaxKinEnergy", e); } 1487 } 2357 } 1488 2358 1489 //....oooOO0OOooo........oooOO0OOooo........o 2359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1490 2360 1491 void G4VEnergyLossProcess::PrintWarning(const << 2361 void G4VEnergyLossProcess::PrintWarning(G4String tit, G4double val) 1492 { 2362 { 1493 G4String ss = "G4VEnergyLossProcess::" + ti 2363 G4String ss = "G4VEnergyLossProcess::" + tit; 1494 G4ExceptionDescription ed; 2364 G4ExceptionDescription ed; 1495 ed << "Parameter is out of range: " << val 2365 ed << "Parameter is out of range: " << val 1496 << " it will have no effect!\n" << " Pr 2366 << " it will have no effect!\n" << " Process " 1497 << GetProcessName() << " nbins= " << nB 2367 << GetProcessName() << " nbins= " << nBins 1498 << " Emin(keV)= " << minKinEnergy/keV 2368 << " Emin(keV)= " << minKinEnergy/keV 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; 2369 << " Emax(GeV)= " << maxKinEnergy/GeV; 1500 G4Exception(ss, "em0044", JustWarning, ed); 2370 G4Exception(ss, "em0044", JustWarning, ed); 1501 } 2371 } 1502 2372 1503 //....oooOO0OOooo........oooOO0OOooo........o 2373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1504 2374 1505 void G4VEnergyLossProcess::ProcessDescription 2375 void G4VEnergyLossProcess::ProcessDescription(std::ostream& out) const 1506 { 2376 { 1507 if(nullptr != particle) { StreamInfo(out, * << 2377 if(particle) { StreamInfo(out, *particle, true); } 1508 } 2378 } 1509 2379 1510 //....oooOO0OOooo........oooOO0OOooo........o 2380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1511 2381