Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.cc 76957 2013-11-19 15:07:20Z gcosmo $ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4VEnergyLossProcess 33 // File name: G4VEnergyLossProcess 32 // 34 // 33 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 34 // 36 // 35 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 36 // 38 // 37 // Modifications: Vladimir Ivanchenko << 39 // Modifications: 38 // 40 // >> 41 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) >> 42 // 04-12-02 Minor change in PostStepDoIt (V.Ivanchenko) >> 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) >> 44 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 45 // 04-01-03 Fix problem of very small steps for ions (V.Ivanchenko) >> 46 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 47 // 24-01-03 Temporarily close a control on usage of couples (V.Ivanchenko) >> 48 // 24-01-03 Make models region aware (V.Ivanchenko) >> 49 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 50 // 06-02-03 Add control on tmax in PostStepDoIt (V.Ivanchenko) >> 51 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 52 // 15-02-03 Lambda table can be scaled (V.Ivanchenko) >> 53 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 54 // 18-02-03 Add control on CutCouple usage (V.Ivanchenko) >> 55 // 26-02-03 Simplify control on GenericIons (V.Ivanchenko) >> 56 // 06-03-03 Control on GenericIons using SubType+ update verbose (V.Ivanchenko) >> 57 // 10-03-03 Add Ion registration (V.Ivanchenko) >> 58 // 22-03-03 Add Initialisation of cash (V.Ivanchenko) >> 59 // 26-03-03 Remove finalRange modification (V.Ivanchenko) >> 60 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 61 // 26-04-03 Fix retrieve tables (V.Ivanchenko) >> 62 // 06-05-03 Set defalt finalRange = 1 mm (V.Ivanchenko) >> 63 // 12-05-03 Update range calculations + lowKinEnergy (V.Ivanchenko) >> 64 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 65 // 23-05-03 Remove tracking cuts (V.Ivanchenko) >> 66 // 03-06-03 Fix initialisation problem for STD ionisation (V.Ivanchenko) >> 67 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 68 // 03-11-03 Fix initialisation problem in RetrievePhysicsTable (V.Ivanchenko) >> 69 // 04-11-03 Add checks in RetrievePhysicsTable (V.Ivanchenko) >> 70 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 71 // 21-01-04 Migrade to G4ParticleChangeForLoss (V.Ivanchenko) >> 72 // 27-02-04 Fix problem of loss in low presure gases, cleanup precise range >> 73 // calculation, use functions ForLoss in AlongStepDoIt (V.Ivanchenko) >> 74 // 10-03-04 Fix a problem of Precise Range table (V.Ivanchenko) >> 75 // 19-03-04 Fix a problem energy below lowestKinEnergy (V.Ivanchenko) >> 76 // 31-03-04 Fix a problem of retrieve tables (V.Ivanchenko) >> 77 // 21-07-04 Check weather AtRest are active or not (V.Ivanchenko) >> 78 // 03-08-04 Add pointer of DEDX table to all processes (V.Ivanchenko) >> 79 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 80 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 81 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 82 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 83 // 11-03-05 Shift verbose level by 1 (V.Ivantchenko) >> 84 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 85 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 86 // 25-07-05 Add extra protection PostStep for non-integral mode (V.Ivanchenko) >> 87 // 12-08-05 Integral=false; SetStepFunction(0.2, 0.1*mm) (mma) >> 88 // 18-08-05 Return back both AlongStep and PostStep from 7.0 (V.Ivanchenko) >> 89 // 02-09-05 Default StepFunction 0.2 1 mm + integral (V.Ivanchenko) >> 90 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 91 // 05-10-05 protection against 0 energy loss added (L.Urban) >> 92 // 17-10-05 protection above has been removed (L.Urban) >> 93 // 06-01-06 reset currentCouple when StepFunction is changed (V.Ivanchenko) >> 94 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 95 // 18-01-06 Clean up subcutoff including recalculation of presafety (VI) >> 96 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 97 // 22-03-06 Add control on warning printout AlongStep (VI) >> 98 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 99 // 07-06-06 Do not reflect AlongStep in subcutoff regime (V.Ivanchenko) >> 100 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 101 // 16-01-07 add IonisationTable and IonisationSubTable (V.Ivanchenko) >> 102 // 16-02-07 set linLossLimit=1.e-6 (V.Ivanchenko) >> 103 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 104 // 10-04-07 use unique SafetyHelper (V.Ivanchenko) >> 105 // 12-04-07 Add verbosity at destruction (V.Ivanchenko) >> 106 // 25-04-07 move initialisation of safety helper to BuildPhysicsTable (VI) >> 107 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 108 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) >> 109 // 01-25-09 (Xin Dong) Phase II change for Geant4 multi-threading: >> 110 // New methods SlavePreparePhysicsTable, SlaveBuildPhysicsTable >> 111 // Worker threads share physics tables with the master thread for >> 112 // this kind of process. This member function is used by worker >> 113 // threads to achieve the partial effect of the master thread when >> 114 // it builds physcis tables. >> 115 // 15-10-10 Fixed 4-momentum balance if deexcitation is active (L.Pandola) >> 116 // 30-05-12 Call new ApplySecondaryBiasing so 2ries may be unique (D. Sawkey) >> 117 // 30-05-12 Fix bug in forced biasing: now called on first step (D. Sawkey) >> 118 // 04-06-13 Adoptation to MT mode, adding internal cache to GetRangeForLoss, >> 119 // more accurate initialisation for ions (V.Ivanchenko) 39 // 120 // 40 // Class Description: 121 // Class Description: 41 // 122 // 42 // It is the unified energy loss process it ca 123 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 124 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 125 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 126 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 127 // that information on fly. 47 // ------------------------------------------- 128 // ------------------------------------------------------------------- 48 // 129 // 49 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 //....oooOO0OOooo........oooOO0OOooo........oo 131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 132 52 #include "G4VEnergyLossProcess.hh" 133 #include "G4VEnergyLossProcess.hh" 53 #include "G4PhysicalConstants.hh" 134 #include "G4PhysicalConstants.hh" 54 #include "G4SystemOfUnits.hh" 135 #include "G4SystemOfUnits.hh" 55 #include "G4ProcessManager.hh" 136 #include "G4ProcessManager.hh" 56 #include "G4LossTableManager.hh" 137 #include "G4LossTableManager.hh" 57 #include "G4LossTableBuilder.hh" 138 #include "G4LossTableBuilder.hh" 58 #include "G4Step.hh" 139 #include "G4Step.hh" 59 #include "G4ParticleDefinition.hh" 140 #include "G4ParticleDefinition.hh" 60 #include "G4ParticleTable.hh" 141 #include "G4ParticleTable.hh" 61 #include "G4EmParameters.hh" << 62 #include "G4EmUtility.hh" << 63 #include "G4EmTableUtil.hh" << 64 #include "G4VEmModel.hh" 142 #include "G4VEmModel.hh" 65 #include "G4VEmFluctuationModel.hh" 143 #include "G4VEmFluctuationModel.hh" 66 #include "G4DataVector.hh" 144 #include "G4DataVector.hh" 67 #include "G4PhysicsLogVector.hh" 145 #include "G4PhysicsLogVector.hh" 68 #include "G4VParticleChange.hh" 146 #include "G4VParticleChange.hh" >> 147 #include "G4Gamma.hh" 69 #include "G4Electron.hh" 148 #include "G4Electron.hh" >> 149 #include "G4Positron.hh" 70 #include "G4ProcessManager.hh" 150 #include "G4ProcessManager.hh" 71 #include "G4UnitsTable.hh" 151 #include "G4UnitsTable.hh" >> 152 #include "G4ProductionCutsTable.hh" 72 #include "G4Region.hh" 153 #include "G4Region.hh" 73 #include "G4RegionStore.hh" 154 #include "G4RegionStore.hh" 74 #include "G4PhysicsTableHelper.hh" 155 #include "G4PhysicsTableHelper.hh" 75 #include "G4SafetyHelper.hh" 156 #include "G4SafetyHelper.hh" 76 #include "G4EmDataHandler.hh" << 77 #include "G4TransportationManager.hh" 157 #include "G4TransportationManager.hh" >> 158 #include "G4EmConfigurator.hh" 78 #include "G4VAtomDeexcitation.hh" 159 #include "G4VAtomDeexcitation.hh" 79 #include "G4VSubCutProducer.hh" << 80 #include "G4EmBiasingManager.hh" 160 #include "G4EmBiasingManager.hh" 81 #include "G4Log.hh" 161 #include "G4Log.hh" 82 #include <iostream> << 83 162 84 //....oooOO0OOooo........oooOO0OOooo........oo 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 164 86 namespace << 87 { << 88 G4String tnames[7] = << 89 {"DEDX","Ionisation","DEDXnr","CSDARange", << 90 } << 91 << 92 << 93 G4VEnergyLossProcess::G4VEnergyLossProcess(con 165 G4VEnergyLossProcess::G4VEnergyLossProcess(const G4String& name, 94 G4P << 166 G4ProcessType type): 95 G4VContinuousDiscreteProcess(name, type) << 167 G4VContinuousDiscreteProcess(name, type), >> 168 secondaryParticle(0), >> 169 nSCoffRegions(0), >> 170 idxSCoffRegions(0), >> 171 nProcesses(0), >> 172 theDEDXTable(0), >> 173 theDEDXSubTable(0), >> 174 theDEDXunRestrictedTable(0), >> 175 theIonisationTable(0), >> 176 theIonisationSubTable(0), >> 177 theRangeTableForLoss(0), >> 178 theCSDARangeTable(0), >> 179 theSecondaryRangeTable(0), >> 180 theInverseRangeTable(0), >> 181 theLambdaTable(0), >> 182 theSubLambdaTable(0), >> 183 theDensityFactor(0), >> 184 theDensityIdx(0), >> 185 baseParticle(0), >> 186 minSubRange(0.1), >> 187 lossFluctuationFlag(true), >> 188 rndmStepFlag(false), >> 189 tablesAreBuilt(false), >> 190 integral(true), >> 191 isIon(false), >> 192 isIonisation(true), >> 193 useSubCutoff(false), >> 194 useDeexcitation(false), >> 195 particle(0), >> 196 currentCouple(0), >> 197 nWarnings(0), >> 198 mfpKinEnergy(0.0) 96 { 199 { 97 theParameters = G4EmParameters::Instance(); << 98 SetVerboseLevel(1); 200 SetVerboseLevel(1); 99 201 100 // low energy limit 202 // low energy limit 101 lowestKinEnergy = theParameters->LowestElect << 203 lowestKinEnergy = 1.*eV; 102 << 204 preStepKinEnergy = 0.0; 103 // Size of tables << 205 preStepRangeEnergy = 0.0; 104 minKinEnergy = 0.1*CLHEP::keV; << 206 computedRange = DBL_MAX; 105 maxKinEnergy = 100.0*CLHEP::TeV; << 207 106 maxKinEnergyCSDA = 1.0*CLHEP::GeV; << 208 // Size of tables assuming spline 107 nBins = 84; << 209 minKinEnergy = 0.1*keV; >> 210 maxKinEnergy = 10.0*TeV; >> 211 nBins = 77; >> 212 maxKinEnergyCSDA = 1.0*GeV; 108 nBinsCSDA = 35; 213 nBinsCSDA = 35; 109 214 110 invLambdaFactor = 1.0/lambdaFactor; << 215 // default linear loss limit for spline >> 216 linLossLimit = 0.01; >> 217 >> 218 // default dRoverRange and finalRange >> 219 SetStepFunction(0.2, 1.0*mm); 111 220 112 // default linear loss limit << 221 // default lambda factor 113 finalRange = 1.*CLHEP::mm; << 222 lambdaFactor = 0.8; >> 223 >> 224 // cross section biasing >> 225 biasFactor = 1.0; >> 226 >> 227 // particle types >> 228 theElectron = G4Electron::Electron(); >> 229 thePositron = G4Positron::Positron(); >> 230 theGamma = G4Gamma::Gamma(); >> 231 theGenericIon = 0; 114 232 115 // run time objects 233 // run time objects 116 pParticleChange = &fParticleChange; 234 pParticleChange = &fParticleChange; 117 fParticleChange.SetSecondaryWeightByProcess( 235 fParticleChange.SetSecondaryWeightByProcess(true); 118 modelManager = new G4EmModelManager(); 236 modelManager = new G4EmModelManager(); 119 safetyHelper = G4TransportationManager::GetT 237 safetyHelper = G4TransportationManager::GetTransportationManager() 120 ->GetSafetyHelper(); 238 ->GetSafetyHelper(); 121 aGPILSelection = CandidateForSelection; 239 aGPILSelection = CandidateForSelection; 122 240 123 // initialise model 241 // initialise model 124 lManager = G4LossTableManager::Instance(); 242 lManager = G4LossTableManager::Instance(); 125 lManager->Register(this); 243 lManager->Register(this); 126 isMaster = lManager->IsMaster(); << 244 fluctModel = 0; >> 245 atomDeexcitation = 0; 127 246 128 G4LossTableBuilder* bld = lManager->GetTable << 247 biasManager = 0; 129 theDensityFactor = bld->GetDensityFactors(); << 248 biasFlag = false; 130 theDensityIdx = bld->GetCoupleIndexes(); << 249 weightFlag = false; >> 250 isMaster = true; >> 251 lastIdx = 0; >> 252 >> 253 idxDEDX = idxDEDXSub = idxDEDXunRestricted = idxIonisation = >> 254 idxIonisationSub = idxRange = idxCSDA = idxSecRange = >> 255 idxInverseRange = idxLambda = idxSubLambda = 0; 131 256 132 scTracks.reserve(10); << 257 scTracks.reserve(5); 133 secParticles.reserve(12); << 258 secParticles.reserve(5); 134 emModels = new std::vector<G4VEmModel*>; << 259 >> 260 secID = biasID = subsecID = -1; 135 } 261 } 136 262 137 //....oooOO0OOooo........oooOO0OOooo........oo 263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 264 139 G4VEnergyLossProcess::~G4VEnergyLossProcess() 265 G4VEnergyLossProcess::~G4VEnergyLossProcess() 140 { 266 { 141 if (isMaster) { << 267 /* 142 if(nullptr == baseParticle) { delete theDa << 268 G4cout << "** G4VEnergyLossProcess::~G4VEnergyLossProcess() for " 143 delete theEnergyOfCrossSectionMax; << 269 << GetProcessName() 144 if(nullptr != fXSpeaks) { << 270 << " isMaster: " << isMaster << G4endl; 145 for(auto const & v : *fXSpeaks) { delete << 271 */ 146 delete fXSpeaks; << 272 Clean(); >> 273 >> 274 if ( !baseParticle && isMaster ) { >> 275 //G4cout << " isIonisation " << isIonisation << " " >> 276 // << theDEDXTable << G4endl; >> 277 >> 278 if(theDEDXTable) { >> 279 if(theIonisationTable == theDEDXTable) { theIonisationTable = 0; } >> 280 delete theDEDXTable; >> 281 if(theDEDXSubTable) { >> 282 if(theIonisationSubTable == theDEDXSubTable) >> 283 { theIonisationSubTable = 0; } >> 284 delete theDEDXSubTable; >> 285 } >> 286 } >> 287 delete theIonisationTable; >> 288 delete theIonisationSubTable; >> 289 if(theDEDXunRestrictedTable && isIonisation) { >> 290 delete theDEDXunRestrictedTable; >> 291 } >> 292 if(theCSDARangeTable && isIonisation) { >> 293 delete theCSDARangeTable; 147 } 294 } >> 295 if(theRangeTableForLoss && isIonisation) { >> 296 delete theRangeTableForLoss; >> 297 } >> 298 if(theInverseRangeTable && isIonisation) { >> 299 delete theInverseRangeTable; >> 300 } >> 301 delete theLambdaTable; >> 302 delete theSubLambdaTable; 148 } 303 } >> 304 149 delete modelManager; 305 delete modelManager; 150 delete biasManager; 306 delete biasManager; 151 delete scoffRegions; << 152 delete emModels; << 153 lManager->DeRegister(this); 307 lManager->DeRegister(this); >> 308 //G4cout << "** all removed" << G4endl; >> 309 } >> 310 >> 311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 312 >> 313 void G4VEnergyLossProcess::Clean() >> 314 { >> 315 /* >> 316 if(1 < verboseLevel) { >> 317 G4cout << "G4VEnergyLossProcess::Clear() for " << GetProcessName() >> 318 << G4endl; >> 319 } >> 320 */ >> 321 delete [] idxSCoffRegions; >> 322 >> 323 tablesAreBuilt = false; >> 324 >> 325 scProcesses.clear(); >> 326 nProcesses = 0; >> 327 >> 328 idxDEDX = idxDEDXSub = idxDEDXunRestricted = idxIonisation = >> 329 idxIonisationSub = idxRange = idxCSDA = idxSecRange = >> 330 idxInverseRange = idxLambda = idxSubLambda = 0; 154 } 331 } 155 332 156 //....oooOO0OOooo........oooOO0OOooo........oo 333 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 157 334 158 G4double G4VEnergyLossProcess::MinPrimaryEnerg 335 G4double G4VEnergyLossProcess::MinPrimaryEnergy(const G4ParticleDefinition*, 159 << 336 const G4Material*, 160 << 337 G4double cut) 161 { 338 { 162 return cut; 339 return cut; 163 } 340 } 164 341 165 //....oooOO0OOooo........oooOO0OOooo........oo 342 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 343 167 void G4VEnergyLossProcess::AddEmModel(G4int or << 344 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, 168 G4VEmFlu << 345 G4VEmFluctuationModel* fluc, 169 const G4 << 346 const G4Region* region) 170 { 347 { 171 if(nullptr == ptr) { return; } << 348 modelManager->AddEmModel(order, p, fluc, region); 172 G4VEmFluctuationModel* afluc = (nullptr == f << 349 if(p) { p->SetParticleChange(pParticleChange, fluc); } 173 modelManager->AddEmModel(order, ptr, afluc, << 174 ptr->SetParticleChange(pParticleChange, aflu << 175 } 350 } 176 351 177 //....oooOO0OOooo........oooOO0OOooo........oo 352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 353 179 void G4VEnergyLossProcess::SetEmModel(G4VEmMod << 354 void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 355 G4double emin, G4double emax) 180 { 356 { 181 if(nullptr == ptr) { return; } << 357 modelManager->UpdateEmModel(nam, emin, emax); 182 if(!emModels->empty()) { << 183 for(auto & em : *emModels) { if(em == ptr) << 184 } << 185 emModels->push_back(ptr); << 186 } 358 } 187 359 188 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 189 361 190 void G4VEnergyLossProcess::SetDynamicMassCharg << 362 void G4VEnergyLossProcess::SetEmModel(G4VEmModel* p, G4int index) 191 << 192 { 363 { 193 massRatio = massratio; << 364 G4int n = emModels.size(); 194 logMassRatio = G4Log(massRatio); << 365 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } 195 fFactor = charge2ratio*biasFactor; << 366 emModels[index] = p; 196 if(baseMat) { fFactor *= (*theDensityFactor) << 367 } 197 chargeSqRatio = charge2ratio; << 368 198 reduceFactor = 1.0/(fFactor*massRatio); << 369 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 370 >> 371 G4VEmModel* G4VEnergyLossProcess::EmModel(G4int index) const >> 372 { >> 373 G4VEmModel* p = 0; >> 374 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 375 return p; >> 376 } >> 377 >> 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 379 >> 380 G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx, G4bool ver) const >> 381 { >> 382 return modelManager->GetModel(idx, ver); >> 383 } >> 384 >> 385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 386 >> 387 G4int G4VEnergyLossProcess::NumberOfModels() const >> 388 { >> 389 return modelManager->NumberOfModels(); 199 } 390 } 200 391 201 //....oooOO0OOooo........oooOO0OOooo........oo 392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 202 393 203 void 394 void 204 G4VEnergyLossProcess::PreparePhysicsTable(cons 395 G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 205 { 396 { 206 particle = G4EmTableUtil::CheckIon(this, &pa << 397 if(1 < verboseLevel) { 207 verboseLe << 398 G4cout << "G4VEnergyLossProcess::PreparePhysicsTable for " >> 399 << GetProcessName() << " for " << part.GetParticleName() >> 400 << " " << this << G4endl; >> 401 } >> 402 >> 403 if(GetMasterProcess() != this) { isMaster = false; } >> 404 >> 405 currentCouple = 0; >> 406 preStepLambda = 0.0; >> 407 mfpKinEnergy = DBL_MAX; >> 408 fRange = DBL_MAX; >> 409 preStepKinEnergy = 0.0; >> 410 preStepRangeEnergy = 0.0; >> 411 chargeSqRatio = 1.0; >> 412 massRatio = 1.0; >> 413 reduceFactor = 1.0; >> 414 fFactor = 1.0; >> 415 lastIdx = 0; >> 416 >> 417 // Are particle defined? >> 418 if( !particle ) { particle = ∂ } >> 419 >> 420 if(part.GetParticleType() == "nucleus") { >> 421 >> 422 G4String pname = part.GetParticleName(); >> 423 if(pname != "deuteron" && pname != "triton" && >> 424 pname != "alpha+" && pname != "helium" && >> 425 pname != "hydrogen") { >> 426 >> 427 if(!theGenericIon) { >> 428 theGenericIon = >> 429 G4ParticleTable::GetParticleTable()->FindParticle("GenericIon"); >> 430 } >> 431 isIon = true; >> 432 if(theGenericIon && particle != theGenericIon) { >> 433 G4ProcessManager* pm = theGenericIon->GetProcessManager(); >> 434 G4ProcessVector* v = pm->GetAlongStepProcessVector(); >> 435 size_t n = v->size(); >> 436 for(size_t j=0; j<n; ++j) { >> 437 if((*v)[j] == this) { >> 438 particle = theGenericIon; >> 439 break; >> 440 } >> 441 } >> 442 } >> 443 } >> 444 } 208 445 209 if( particle != &part ) { 446 if( particle != &part ) { 210 if(!isIon) { lManager->RegisterExtraPartic << 447 if(!isIon) { >> 448 lManager->RegisterExtraParticle(&part, this); >> 449 } 211 if(1 < verboseLevel) { 450 if(1 < verboseLevel) { 212 G4cout << "### G4VEnergyLossProcess::Pre 451 G4cout << "### G4VEnergyLossProcess::PreparePhysicsTable()" 213 << " interrupted for " << GetProc << 452 << " interrupted for " 214 << part.GetParticleName() << " is << 453 << part.GetParticleName() << " isIon= " << isIon 215 << " spline=" << spline << G4endl << 454 << " particle " << particle << " GenericIon " << theGenericIon >> 455 << G4endl; 216 } 456 } 217 return; 457 return; 218 } 458 } 219 459 220 tablesAreBuilt = false; << 460 Clean(); 221 if (GetProcessSubType() == fIonisation) { Se << 461 lManager->PreparePhysicsTable(&part, this, isMaster); 222 << 223 G4LossTableBuilder* bld = lManager->GetTable 462 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 224 lManager->PreparePhysicsTable(&part, this); << 225 463 226 // Base particle and set of models can be de 464 // Base particle and set of models can be defined here 227 InitialiseEnergyLossProcess(particle, basePa 465 InitialiseEnergyLossProcess(particle, baseParticle); 228 466 229 // parameters of the process << 467 const G4ProductionCutsTable* theCoupleTable= 230 if(!actLossFluc) { lossFluctuationFlag = the << 468 G4ProductionCutsTable::GetProductionCutsTable(); 231 useCutAsFinalRange = theParameters->UseCutAs << 469 size_t n = theCoupleTable->GetTableSize(); 232 if(!actMinKinEnergy) { minKinEnergy = thePar << 470 233 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 471 theDEDXAtMaxEnergy.resize(n, 0.0); 234 if(!actBinning) { nBins = theParameters->Num << 472 theRangeAtMaxEnergy.resize(n, 0.0); 235 maxKinEnergyCSDA = theParameters->MaxEnergyF << 473 theEnergyOfCrossSectionMax.resize(n, 0.0); 236 nBinsCSDA = theParameters->NumberOfBinsPerDe << 474 theCrossSectionMax.resize(n, DBL_MAX); 237 *G4lrint(std::log10(maxKinEnergyCSDA/minKi << 238 if(!actLinLossLimit) { linLossLimit = thePar << 239 lambdaFactor = theParameters->LambdaFactor() << 240 invLambdaFactor = 1.0/lambdaFactor; << 241 if(isMaster) { SetVerboseLevel(theParameters << 242 else { SetVerboseLevel(theParameters->Worker << 243 // integral option may be disabled << 244 if(!theParameters->Integral()) { fXSType = f << 245 << 246 theParameters->DefineRegParamForLoss(this); << 247 << 248 fRangeEnergy = 0.0; << 249 << 250 G4double initialCharge = particle->GetPDGCha << 251 G4double initialMass = particle->GetPDGMas << 252 << 253 theParameters->FillStepFunction(particle, th << 254 << 255 // parameters for scaling from the base part << 256 if (nullptr != baseParticle) { << 257 massRatio = (baseParticle->GetPDGMass() << 258 logMassRatio = G4Log(massRatio); << 259 G4double q = initialCharge/baseParticle->G << 260 chargeSqRatio = q*q; << 261 if(chargeSqRatio > 0.0) { reduceFactor = 1 << 262 } << 263 lowestKinEnergy = (initialMass < CLHEP::MeV) << 264 ? theParameters->LowestElectronEnergy() << 265 : theParameters->LowestMuHadEnergy(); << 266 475 267 // Tables preparation 476 // Tables preparation 268 if (isMaster && nullptr == baseParticle) { << 477 if (isMaster && !baseParticle) { 269 if(nullptr == theData) { theData = new G4E << 270 478 271 if(nullptr != theDEDXTable && isIonisation << 479 if(theDEDXTable && isIonisation) { 272 if(nullptr != theIonisationTable && theD << 480 if(theIonisationTable && theDEDXTable != theIonisationTable) { 273 theData->CleanTable(0); << 481 theDEDXTable->clearAndDestroy(); 274 theDEDXTable = theIonisationTable; 482 theDEDXTable = theIonisationTable; 275 theIonisationTable = nullptr; << 483 } 276 } << 484 if(theDEDXSubTable && theIonisationSubTable && >> 485 theDEDXSubTable != theIonisationSubTable) { >> 486 theDEDXSubTable->clearAndDestroy(); >> 487 theDEDXSubTable = theIonisationSubTable; >> 488 } 277 } 489 } 278 490 279 theDEDXTable = theData->MakeTable(theDEDXT << 491 theDEDXTable = G4PhysicsTableHelper::PreparePhysicsTable(theDEDXTable); 280 bld->InitialiseBaseMaterials(theDEDXTable) 492 bld->InitialiseBaseMaterials(theDEDXTable); 281 theData->UpdateTable(theIonisationTable, 1 << 282 493 283 if (theParameters->BuildCSDARange()) { << 494 if(theDEDXSubTable) { 284 theDEDXunRestrictedTable = theData->Make << 495 theDEDXSubTable = 285 if(isIonisation) { theCSDARangeTable = t << 496 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); 286 } 497 } 287 498 288 theLambdaTable = theData->MakeTable(4); << 499 if (lManager->BuildCSDARange()) { >> 500 theDEDXunRestrictedTable = >> 501 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXunRestrictedTable); >> 502 theCSDARangeTable = >> 503 G4PhysicsTableHelper::PreparePhysicsTable(theCSDARangeTable); >> 504 } >> 505 >> 506 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 507 289 if(isIonisation) { 508 if(isIonisation) { 290 theRangeTableForLoss = theData->MakeTabl << 509 theRangeTableForLoss = 291 theInverseRangeTable = theData->MakeTabl << 510 G4PhysicsTableHelper::PreparePhysicsTable(theRangeTableForLoss); >> 511 theInverseRangeTable = >> 512 G4PhysicsTableHelper::PreparePhysicsTable(theInverseRangeTable); >> 513 } >> 514 >> 515 if (nSCoffRegions) { >> 516 theDEDXSubTable = >> 517 G4PhysicsTableHelper::PreparePhysicsTable(theDEDXSubTable); >> 518 theSubLambdaTable = >> 519 G4PhysicsTableHelper::PreparePhysicsTable(theSubLambdaTable); 292 } 520 } 293 } 521 } 294 522 295 // forced biasing 523 // forced biasing 296 if(nullptr != biasManager) { << 524 if(biasManager) { 297 biasManager->Initialise(part,GetProcessNam 525 biasManager->Initialise(part,GetProcessName(),verboseLevel); 298 biasFlag = false; 526 biasFlag = false; 299 } 527 } 300 baseMat = bld->GetBaseMaterialFlag(); << 528 301 numberOfModels = modelManager->NumberOfModel << 529 G4double initialCharge = particle->GetPDGCharge(); 302 currentModel = modelManager->GetModel(0); << 530 G4double initialMass = particle->GetPDGMass(); 303 G4EmTableUtil::UpdateModels(this, modelManag << 531 304 numberOfModels, << 532 if (baseParticle) { 305 mainSecondaries, << 533 massRatio = (baseParticle->GetPDGMass())/initialMass; 306 theParameters->U << 534 G4double q = initialCharge/baseParticle->GetPDGCharge(); 307 theCuts = modelManager->Initialise(particle, << 535 chargeSqRatio = q*q; 308 verboseLe << 536 if(chargeSqRatio > 0.0) { reduceFactor = 1.0/(chargeSqRatio*massRatio); } 309 // subcut processor << 310 if(isIonisation) { << 311 subcutProducer = lManager->SubCutProducer( << 312 } 537 } 313 if(1 == nSCoffRegions) { << 538 314 if((*scoffRegions)[0]->GetName() == "Defau << 539 // defined ID of secondary particles 315 delete scoffRegions; << 540 if(isMaster) { 316 scoffRegions = nullptr; << 541 G4String nam1 = GetProcessName(); 317 nSCoffRegions = 0; << 542 G4String nam4 = nam1 + "_split"; >> 543 G4String nam5 = nam1 + "_subcut"; >> 544 secID = G4PhysicsModelCatalog::Register(nam1); >> 545 biasID = G4PhysicsModelCatalog::Register(nam4); >> 546 subsecID= G4PhysicsModelCatalog::Register(nam5); >> 547 } >> 548 >> 549 // initialisation of models >> 550 G4int nmod = modelManager->NumberOfModels(); >> 551 for(G4int i=0; i<nmod; ++i) { >> 552 G4VEmModel* mod = modelManager->GetModel(i); >> 553 mod->SetMasterThread(isMaster); >> 554 if(mod->HighEnergyLimit() > maxKinEnergy) { >> 555 mod->SetHighEnergyLimit(maxKinEnergy); >> 556 } >> 557 } >> 558 >> 559 theCuts = modelManager->Initialise(particle, secondaryParticle, >> 560 minSubRange, verboseLevel); >> 561 >> 562 // Sub Cutoff >> 563 if (nSCoffRegions>0) { >> 564 theSubCuts = modelManager->SubCutoff(); >> 565 >> 566 if(nSCoffRegions>0) { idxSCoffRegions = new G4bool[n]; } >> 567 for (size_t j=0; j<n; ++j) { >> 568 >> 569 const G4MaterialCutsCouple* couple = >> 570 theCoupleTable->GetMaterialCutsCouple(j); >> 571 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); >> 572 >> 573 if(nSCoffRegions>0) { >> 574 G4bool reg = false; >> 575 for(G4int i=0; i<nSCoffRegions; ++i) { >> 576 if( pcuts == scoffRegions[i]->GetProductionCuts()) { reg = true; } >> 577 } >> 578 idxSCoffRegions[j] = reg; >> 579 } 318 } 580 } 319 } 581 } 320 582 321 if(1 < verboseLevel) { 583 if(1 < verboseLevel) { 322 G4cout << "G4VEnergyLossProcess::PrepearPh 584 G4cout << "G4VEnergyLossProcess::PrepearPhysicsTable() is done " 323 << " for " << GetProcessName() << " << 585 << " for local " << particle->GetParticleName() 324 << " isIon= " << isIon << " spline= << 586 << " isIon= " << isIon; 325 if(baseParticle) { << 587 if(baseParticle) { G4cout << "; base: " << baseParticle->GetParticleName(); } 326 G4cout << "; base: " << baseParticle->Ge << 327 } << 328 G4cout << G4endl; << 329 G4cout << " chargeSqRatio= " << chargeSqRa 588 G4cout << " chargeSqRatio= " << chargeSqRatio 330 << " massRatio= " << massRatio 589 << " massRatio= " << massRatio 331 << " reduceFactor= " << reduceFacto 590 << " reduceFactor= " << reduceFactor << G4endl; 332 if (nSCoffRegions > 0) { << 591 if (nSCoffRegions) { 333 G4cout << " SubCut secondary production << 592 G4cout << " SubCutoff Regime is ON for regions: " << G4endl; 334 for (G4int i=0; i<nSCoffRegions; ++i) { 593 for (G4int i=0; i<nSCoffRegions; ++i) { 335 const G4Region* r = (*scoffRegions)[i] << 594 const G4Region* r = scoffRegions[i]; 336 G4cout << " " << r->GetName( << 595 G4cout << " " << r->GetName() << G4endl; 337 } 596 } 338 } else if(nullptr != subcutProducer) { << 339 G4cout << " SubCut secondary production << 340 } 597 } 341 } 598 } 342 } 599 } 343 600 344 //....oooOO0OOooo........oooOO0OOooo........oo 601 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 345 602 346 void G4VEnergyLossProcess::BuildPhysicsTable(c 603 void G4VEnergyLossProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 347 { 604 { 348 if(1 < verboseLevel) { << 605 G4bool verb = false; >> 606 if(1 < verboseLevel || verb) { >> 607 >> 608 //if(1 < verboseLevel) { 349 G4cout << "### G4VEnergyLossProcess::Build 609 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() for " 350 << GetProcessName() 610 << GetProcessName() 351 << " and particle " << part.GetPart 611 << " and particle " << part.GetParticleName() 352 << "; the first particle " << parti << 612 << "; local: " << particle->GetParticleName(); 353 if(baseParticle) { 613 if(baseParticle) { 354 G4cout << "; base: " << baseParticle->Ge 614 G4cout << "; base: " << baseParticle->GetParticleName(); 355 } 615 } 356 G4cout << G4endl; << 616 G4cout << " TablesAreBuilt= " << tablesAreBuilt 357 G4cout << " TablesAreBuilt= " << tables << 617 << " isIon= " << isIon << " " << this << G4endl; 358 << " spline=" << spline << " ptr: " << 359 } 618 } 360 619 >> 620 G4bool master = true; >> 621 const G4VEnergyLossProcess* masterProcess = >> 622 static_cast<const G4VEnergyLossProcess*>(GetMasterProcess()); >> 623 if(masterProcess != this) { master = false; } >> 624 361 if(&part == particle) { 625 if(&part == particle) { 362 if(isMaster) { << 626 >> 627 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 628 if(master) { >> 629 theDensityFactor = bld->GetDensityFactors(); >> 630 theDensityIdx = bld->GetCoupleIndexes(); 363 lManager->BuildPhysicsTable(particle, th 631 lManager->BuildPhysicsTable(particle, this); 364 632 365 } else { 633 } else { 366 const auto masterProcess = << 367 static_cast<const G4VEnergyLossProcess << 368 634 369 numberOfModels = modelManager->NumberOfM << 635 // define density factors for worker thread 370 G4EmTableUtil::BuildLocalElossProcess(th << 636 bld->InitialiseBaseMaterials(masterProcess->DEDXTable()); 371 pa << 637 theDensityFactor = bld->GetDensityFactors(); >> 638 theDensityIdx = bld->GetCoupleIndexes(); >> 639 >> 640 // copy table pointers from master thread >> 641 SetDEDXTable(masterProcess->DEDXTable(),fRestricted); >> 642 SetDEDXTable(masterProcess->DEDXTableForSubsec(),fSubRestricted); >> 643 SetDEDXTable(masterProcess->DEDXunRestrictedTable(),fTotal); >> 644 SetDEDXTable(masterProcess->IonisationTable(),fIsIonisation); >> 645 SetDEDXTable(masterProcess->IonisationTableForSubsec(),fIsSubIonisation); >> 646 SetRangeTableForLoss(masterProcess->RangeTableForLoss()); >> 647 SetCSDARangeTable(masterProcess->CSDARangeTable()); >> 648 SetSecondaryRangeTable(masterProcess->SecondaryRangeTable()); >> 649 SetInverseRangeTable(masterProcess->InverseRangeTable()); >> 650 SetLambdaTable(masterProcess->LambdaTable()); >> 651 SetSubLambdaTable(masterProcess->SubLambdaTable()); >> 652 isIonisation = masterProcess->IsIonisationProcess(); >> 653 372 tablesAreBuilt = true; 654 tablesAreBuilt = true; 373 baseMat = masterProcess->UseBaseMaterial << 655 // local initialisation of models >> 656 G4bool printing = true; >> 657 G4int numberOfModels = modelManager->NumberOfModels(); >> 658 for(G4int i=0; i<numberOfModels; ++i) { >> 659 G4VEmModel* mod = GetModelByIndex(i, printing); >> 660 G4VEmModel* mod0= masterProcess->GetModelByIndex(i,printing); >> 661 mod->InitialiseLocal(particle, mod0); >> 662 } >> 663 374 lManager->LocalPhysicsTables(particle, t 664 lManager->LocalPhysicsTables(particle, this); 375 } 665 } 376 666 377 // needs to be done only once 667 // needs to be done only once 378 safetyHelper->InitialiseHelper(); 668 safetyHelper->InitialiseHelper(); 379 } << 669 } >> 670 // explicitly defined printout by particle name >> 671 G4String num = part.GetParticleName(); >> 672 if(1 < verboseLevel || >> 673 (0 < verboseLevel && (num == "e-" || >> 674 num == "e+" || num == "mu+" || >> 675 num == "mu-" || num == "proton"|| >> 676 num == "pi+" || num == "pi-" || >> 677 num == "kaon+" || num == "kaon-" || >> 678 num == "alpha" || num == "anti_proton" || >> 679 num == "GenericIon"))) >> 680 { >> 681 PrintInfoDefinition(part); >> 682 } >> 683 380 // Added tracking cut to avoid tracking arti 684 // Added tracking cut to avoid tracking artifacts 381 // and identified deexcitation flag << 685 // identify deexcitation flag 382 if(isIonisation) { 686 if(isIonisation) { >> 687 fParticleChange.SetLowEnergyLimit(lowestKinEnergy); 383 atomDeexcitation = lManager->AtomDeexcitat 688 atomDeexcitation = lManager->AtomDeexcitation(); 384 if(nullptr != atomDeexcitation) { << 689 if(atomDeexcitation) { 385 if(atomDeexcitation->IsPIXEActive()) { u 690 if(atomDeexcitation->IsPIXEActive()) { useDeexcitation = true; } 386 } 691 } 387 } 692 } 388 693 389 // protection against double printout << 694 //if(1 < verboseLevel || verb) { 390 if(theParameters->IsPrintLocked()) { return; << 391 << 392 // explicitly defined printout by particle n << 393 G4String num = part.GetParticleName(); << 394 if(1 < verboseLevel || << 395 (0 < verboseLevel && (num == "e-" || << 396 num == "e+" || n << 397 num == "mu-" || n << 398 num == "pi+" || n << 399 num == "kaon+" || n << 400 num == "alpha" || n << 401 num == "GenericIon" << 402 StreamInfo(G4cout, part); << 403 } << 404 if(1 < verboseLevel) { 695 if(1 < verboseLevel) { 405 G4cout << "### G4VEnergyLossProcess::Build 696 G4cout << "### G4VEnergyLossProcess::BuildPhysicsTable() done for " 406 << GetProcessName() 697 << GetProcessName() 407 << " and particle " << part.GetPart 698 << " and particle " << part.GetParticleName(); 408 if(isIonisation) { G4cout << " isIonisati << 699 if(isIonisation) { G4cout << " isIonisation flag = 1"; } 409 G4cout << " baseMat=" << baseMat << G4endl << 700 G4cout << G4endl; 410 } 701 } 411 } 702 } 412 703 413 //....oooOO0OOooo........oooOO0OOooo........oo 704 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 705 415 G4PhysicsTable* G4VEnergyLossProcess::BuildDED 706 G4PhysicsTable* G4VEnergyLossProcess::BuildDEDXTable(G4EmTableType tType) 416 { 707 { 417 G4PhysicsTable* table = nullptr; << 708 G4bool verb = false; >> 709 if(1 < verboseLevel || verb) { >> 710 G4cout << "G4VEnergyLossProcess::BuildDEDXTable() of type " << tType >> 711 << " for " << GetProcessName() >> 712 << " and particle " << particle->GetParticleName() >> 713 << G4endl; >> 714 } >> 715 G4PhysicsTable* table = 0; 418 G4double emax = maxKinEnergy; 716 G4double emax = maxKinEnergy; 419 G4int bin = nBins; 717 G4int bin = nBins; 420 718 421 if(fTotal == tType) { 719 if(fTotal == tType) { 422 emax = maxKinEnergyCSDA; 720 emax = maxKinEnergyCSDA; 423 bin = nBinsCSDA; 721 bin = nBinsCSDA; 424 table = theDEDXunRestrictedTable; 722 table = theDEDXunRestrictedTable; 425 } else if(fRestricted == tType) { 723 } else if(fRestricted == tType) { 426 table = theDEDXTable; 724 table = theDEDXTable; >> 725 } else if(fSubRestricted == tType) { >> 726 table = theDEDXSubTable; 427 } else { 727 } else { 428 G4cout << "G4VEnergyLossProcess::BuildDEDX 728 G4cout << "G4VEnergyLossProcess::BuildDEDXTable WARNING: wrong type " 429 << tType << G4endl; << 729 << tType << G4endl; 430 } 730 } 431 if(1 < verboseLevel) { << 731 432 G4cout << "G4VEnergyLossProcess::BuildDEDX << 732 // Access to materials 433 << " for " << GetProcessName() << 733 const G4ProductionCutsTable* theCoupleTable= 434 << " and " << particle->GetParticle << 734 G4ProductionCutsTable::GetProductionCutsTable(); 435 << "spline=" << spline << G4endl; << 735 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 736 >> 737 if(1 < verboseLevel || verb) { >> 738 G4cout << numOfCouples << " materials" >> 739 << " minKinEnergy= " << minKinEnergy >> 740 << " maxKinEnergy= " << emax >> 741 << " nbin= " << bin >> 742 << " EmTableType= " << tType >> 743 << " table= " << table << " " << this >> 744 << G4endl; 436 } 745 } 437 if(nullptr == table) { return table; } << 746 if(!table) { return table; } 438 747 439 G4LossTableBuilder* bld = lManager->GetTable 748 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 440 G4EmTableUtil::BuildDEDXTable(this, particle << 749 G4bool splineFlag = lManager->SplineFlag(); 441 table, minKinE << 750 G4PhysicsLogVector* aVector = 0; 442 verboseLevel, << 751 G4PhysicsLogVector* bVector = 0; >> 752 >> 753 for(size_t i=0; i<numOfCouples; ++i) { >> 754 >> 755 if(1 < verboseLevel || verb) { >> 756 G4cout << "G4VEnergyLossProcess::BuildDEDXVector Idx= " << i >> 757 << " flagTable= " << table->GetFlag(i) >> 758 << " Flag= " << bld->GetFlag(i) << G4endl; >> 759 } >> 760 if(bld->GetFlag(i)) { >> 761 >> 762 // create physics vector and fill it >> 763 const G4MaterialCutsCouple* couple = >> 764 theCoupleTable->GetMaterialCutsCouple(i); >> 765 delete (*table)[i]; >> 766 if(!bVector) { >> 767 aVector = new G4PhysicsLogVector(minKinEnergy, emax, bin); >> 768 bVector = aVector; >> 769 } else { >> 770 aVector = new G4PhysicsLogVector(*bVector); >> 771 } >> 772 aVector->SetSpline(splineFlag); >> 773 >> 774 modelManager->FillDEDXVector(aVector, couple, tType); >> 775 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 776 >> 777 // Insert vector for this material into the table >> 778 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); >> 779 } >> 780 } >> 781 >> 782 if(1 < verboseLevel || verb) { >> 783 G4cout << "G4VEnergyLossProcess::BuildDEDXTable(): table is built for " >> 784 << particle->GetParticleName() >> 785 << " and process " << GetProcessName() >> 786 << G4endl; >> 787 //if(2 < verboseLevel) G4cout << (*table) << G4endl; >> 788 } >> 789 443 return table; 790 return table; 444 } 791 } 445 792 446 //....oooOO0OOooo........oooOO0OOooo........oo 793 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 447 794 448 G4PhysicsTable* G4VEnergyLossProcess::BuildLam << 795 G4PhysicsTable* G4VEnergyLossProcess::BuildLambdaTable(G4EmTableType tType) 449 { 796 { 450 if(nullptr == theLambdaTable) { return theLa << 797 G4PhysicsTable* table = 0; >> 798 >> 799 if(fRestricted == tType) { >> 800 table = theLambdaTable; >> 801 } else if(fSubRestricted == tType) { >> 802 table = theSubLambdaTable; >> 803 } else { >> 804 G4cout << "G4VEnergyLossProcess::BuildLambdaTable WARNING: wrong type " >> 805 << tType << G4endl; >> 806 } >> 807 >> 808 if(1 < verboseLevel) { >> 809 G4cout << "G4VEnergyLossProcess::BuildLambdaTable() of type " >> 810 << tType << " for process " >> 811 << GetProcessName() << " and particle " >> 812 << particle->GetParticleName() >> 813 << " EmTableType= " << tType >> 814 << " table= " << table >> 815 << G4endl; >> 816 } >> 817 if(!table) {return table;} >> 818 >> 819 // Access to materials >> 820 const G4ProductionCutsTable* theCoupleTable= >> 821 G4ProductionCutsTable::GetProductionCutsTable(); >> 822 size_t numOfCouples = theCoupleTable->GetTableSize(); 451 823 452 G4double scale = theParameters->MaxKinEnergy << 453 G4int nbin = << 454 theParameters->NumberOfBinsPerDecade()*G4l << 455 scale = nbin/G4Log(scale); << 456 << 457 G4LossTableBuilder* bld = lManager->GetTable 824 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 458 G4EmTableUtil::BuildLambdaTable(this, partic << 825 theDensityFactor = bld->GetDensityFactors(); 459 bld, theLamb << 826 theDensityIdx = bld->GetCoupleIndexes(); 460 minKinEnergy << 461 verboseLevel << 462 return theLambdaTable; << 463 } << 464 827 465 //....oooOO0OOooo........oooOO0OOooo........oo << 828 G4bool splineFlag = lManager->SplineFlag(); >> 829 G4PhysicsLogVector* aVector = 0; >> 830 G4double scale = G4Log(maxKinEnergy/minKinEnergy); >> 831 >> 832 for(size_t i=0; i<numOfCouples; ++i) { >> 833 >> 834 if (bld->GetFlag(i)) { >> 835 >> 836 // create physics vector and fill it >> 837 const G4MaterialCutsCouple* couple = >> 838 theCoupleTable->GetMaterialCutsCouple(i); >> 839 delete (*table)[i]; >> 840 >> 841 G4bool startNull = true; >> 842 G4double emin = >> 843 MinPrimaryEnergy(particle,couple->GetMaterial(),(*theCuts)[i]); >> 844 if(minKinEnergy > emin) { >> 845 emin = minKinEnergy; >> 846 startNull = false; >> 847 } >> 848 >> 849 G4double emax = maxKinEnergy; >> 850 if(emax <= emin) { emax = 2*emin; } >> 851 G4int bin = G4lrint(nBins*G4Log(emax/emin)/scale); >> 852 if(bin < 3) { bin = 3; } >> 853 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 854 aVector->SetSpline(splineFlag); 466 855 467 void G4VEnergyLossProcess::StreamInfo(std::ost << 856 modelManager->FillLambdaVector(aVector, couple, startNull, tType); 468 const G4ParticleDefinition& pa << 857 if(splineFlag) { aVector->FillSecondDerivatives(); } 469 { << 858 470 G4String indent = (rst ? " " : ""); << 859 // Insert vector for this material into the table 471 out << std::setprecision(6); << 860 G4PhysicsTableHelper::SetPhysicsVector(table, i, aVector); 472 out << G4endl << indent << GetProcessName() << 473 if (!rst) out << " for " << part.GetParticle << 474 out << " XStype:" << fXSType << 475 << " SubType=" << GetProcessSubType() < << 476 << " dE/dx and range tables from " << 477 << G4BestUnit(minKinEnergy,"Energy") << 478 << " to " << G4BestUnit(maxKinEnergy,"En << 479 << " in " << nBins << " bins" << G4endl << 480 << " Lambda tables from threshold t << 481 << G4BestUnit(maxKinEnergy,"Energy") << 482 << ", " << theParameters->NumberOfBinsPe << 483 << " bins/decade, spline: " << spline << 484 << G4endl; << 485 if(nullptr != theRangeTableForLoss && isIoni << 486 out << " StepFunction=(" << dRoverRan << 487 << finalRange/mm << " mm)" << 488 << ", integ: " << fXSType << 489 << ", fluct: " << lossFluctuationFlag << 490 << ", linLossLim= " << linLossLimit << 491 << G4endl; << 492 } << 493 StreamProcessInfo(out); << 494 modelManager->DumpModelList(out, verboseLeve << 495 if(nullptr != theCSDARangeTable && isIonisat << 496 out << " CSDA range table up" << 497 << " to " << G4BestUnit(maxKinEnergyCS << 498 << " in " << nBinsCSDA << " bins" << G << 499 } << 500 if(nSCoffRegions>0 && isIonisation) { << 501 out << " Subcutoff sampling in " << n << 502 << " regions" << G4endl; << 503 } << 504 if(2 < verboseLevel) { << 505 for(std::size_t i=0; i<7; ++i) { << 506 auto ta = theData->Table(i); << 507 out << " " << tnames[i] << " addres << 508 if(nullptr != ta) { out << *ta << G4endl << 509 } 861 } 510 } 862 } >> 863 >> 864 if(1 < verboseLevel) { >> 865 G4cout << "Lambda table is built for " >> 866 << particle->GetParticleName() >> 867 << G4endl; >> 868 } >> 869 >> 870 return table; 511 } 871 } 512 872 513 //....oooOO0OOooo........oooOO0OOooo........oo 873 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 514 874 515 void G4VEnergyLossProcess::ActivateSubCutoff(c << 875 void >> 876 G4VEnergyLossProcess::PrintInfoDefinition(const G4ParticleDefinition& part) 516 { 877 { 517 if(nullptr == scoffRegions) { << 878 if(0 < verboseLevel) { 518 scoffRegions = new std::vector<const G4Reg << 879 G4cout << G4endl << GetProcessName() << ": for " 519 } << 880 << part.GetParticleName() 520 // the region is in the list << 881 << " SubType= " << GetProcessSubType() 521 if(!scoffRegions->empty()) { << 882 << G4endl; 522 for (auto & reg : *scoffRegions) { << 883 G4cout << " dE/dx and range tables from " 523 if (reg == r) { return; } << 884 << G4BestUnit(minKinEnergy,"Energy") >> 885 << " to " << G4BestUnit(maxKinEnergy,"Energy") >> 886 << " in " << nBins << " bins" << G4endl >> 887 << " Lambda tables from threshold to " >> 888 << G4BestUnit(maxKinEnergy,"Energy") >> 889 << " in " << nBins << " bins, spline: " >> 890 << lManager->SplineFlag() >> 891 << G4endl; >> 892 if(theRangeTableForLoss && isIonisation) { >> 893 G4cout << " finalRange(mm)= " << finalRange/mm >> 894 << ", dRoverRange= " << dRoverRange >> 895 << ", integral: " << integral >> 896 << ", fluct: " << lossFluctuationFlag >> 897 << ", linLossLimit= " << linLossLimit >> 898 << G4endl; >> 899 } >> 900 PrintInfo(); >> 901 modelManager->DumpModelList(verboseLevel); >> 902 if(theCSDARangeTable && isIonisation) { >> 903 G4cout << " CSDA range table up" >> 904 << " to " << G4BestUnit(maxKinEnergyCSDA,"Energy") >> 905 << " in " << nBinsCSDA << " bins" << G4endl; >> 906 } >> 907 if(nSCoffRegions>0 && isIonisation) { >> 908 G4cout << " Subcutoff sampling in " << nSCoffRegions >> 909 << " regions" << G4endl; >> 910 } >> 911 if(2 < verboseLevel) { >> 912 G4cout << " DEDXTable address= " << theDEDXTable << G4endl; >> 913 if(theDEDXTable && isIonisation) G4cout << (*theDEDXTable) << G4endl; >> 914 G4cout << "non restricted DEDXTable address= " >> 915 << theDEDXunRestrictedTable << G4endl; >> 916 if(theDEDXunRestrictedTable && isIonisation) { >> 917 G4cout << (*theDEDXunRestrictedTable) << G4endl; >> 918 } >> 919 if(theDEDXSubTable && isIonisation) { >> 920 G4cout << (*theDEDXSubTable) << G4endl; >> 921 } >> 922 G4cout << " CSDARangeTable address= " << theCSDARangeTable >> 923 << G4endl; >> 924 if(theCSDARangeTable && isIonisation) { >> 925 G4cout << (*theCSDARangeTable) << G4endl; >> 926 } >> 927 G4cout << " RangeTableForLoss address= " << theRangeTableForLoss >> 928 << G4endl; >> 929 if(theRangeTableForLoss && isIonisation) { >> 930 G4cout << (*theRangeTableForLoss) << G4endl; >> 931 } >> 932 G4cout << " InverseRangeTable address= " << theInverseRangeTable >> 933 << G4endl; >> 934 if(theInverseRangeTable && isIonisation) { >> 935 G4cout << (*theInverseRangeTable) << G4endl; >> 936 } >> 937 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; >> 938 if(theLambdaTable && isIonisation) { >> 939 G4cout << (*theLambdaTable) << G4endl; >> 940 } >> 941 G4cout << " SubLambdaTable address= " << theSubLambdaTable >> 942 << G4endl; >> 943 if(theSubLambdaTable && isIonisation) { >> 944 G4cout << (*theSubLambdaTable) << G4endl; >> 945 } 524 } 946 } 525 } 947 } 526 // new region << 527 scoffRegions->push_back(r); << 528 ++nSCoffRegions; << 529 } 948 } 530 949 531 //....oooOO0OOooo........oooOO0OOooo........oo 950 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 532 951 533 G4bool G4VEnergyLossProcess::IsRegionForCubcut << 952 void G4VEnergyLossProcess::ActivateSubCutoff(G4bool val, const G4Region* r) 534 { 953 { 535 if(0 == nSCoffRegions) { return true; } << 954 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 536 const G4Region* r = aTrack.GetVolume()->GetL << 955 const G4Region* reg = r; 537 for(auto & reg : *scoffRegions) { << 956 if (!reg) { 538 if(r == reg) { return true; } << 957 reg = regionStore->GetRegion("DefaultRegionForTheWorld", false); >> 958 } >> 959 >> 960 // the region is in the list >> 961 if (nSCoffRegions) { >> 962 for (G4int i=0; i<nSCoffRegions; ++i) { >> 963 if (reg == scoffRegions[i]) { >> 964 return; >> 965 } >> 966 } >> 967 } >> 968 >> 969 // new region >> 970 if(val) { >> 971 useSubCutoff = true; >> 972 scoffRegions.push_back(reg); >> 973 ++nSCoffRegions; >> 974 } else { >> 975 useSubCutoff = false; 539 } 976 } 540 return false; << 541 } 977 } 542 978 543 //....oooOO0OOooo........oooOO0OOooo........oo 979 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 544 980 545 void G4VEnergyLossProcess::StartTracking(G4Tra 981 void G4VEnergyLossProcess::StartTracking(G4Track* track) 546 { 982 { >> 983 /* >> 984 G4cout << track->GetDefinition()->GetParticleName() >> 985 << " e(MeV)= " << track->GetKineticEnergy() >> 986 << " baseParticle " << baseParticle << " proc " << this; >> 987 if(particle) G4cout << " " << particle->GetParticleName(); >> 988 G4cout << " isIon= " << isIon << " dedx " << theDEDXTable <<G4endl; >> 989 */ 547 // reset parameters for the new track 990 // reset parameters for the new track 548 theNumberOfInteractionLengthLeft = -1.0; 991 theNumberOfInteractionLengthLeft = -1.0; 549 mfpKinEnergy = DBL_MAX; << 992 mfpKinEnergy = DBL_MAX; 550 preStepLambda = 0.0; << 993 preStepRangeEnergy = 0.0; 551 currentCouple = nullptr; << 552 994 553 // reset ion 995 // reset ion 554 if(isIon) { 996 if(isIon) { 555 const G4double newmass = track->GetDefinit << 997 chargeSqRatio = 0.5; 556 massRatio = (nullptr == baseParticle) ? CL << 998 557 : baseParticle->GetPDGMass()/newmass; << 999 G4double newmass = track->GetDefinition()->GetPDGMass(); 558 logMassRatio = G4Log(massRatio); << 1000 if(baseParticle) { >> 1001 massRatio = baseParticle->GetPDGMass()/newmass; >> 1002 } else if(theGenericIon) { >> 1003 massRatio = proton_mass_c2/newmass; >> 1004 } else { >> 1005 massRatio = 1.0; >> 1006 } 559 } 1007 } 560 // forced biasing only for primary particles 1008 // forced biasing only for primary particles 561 if(nullptr != biasManager) { << 1009 if(biasManager) { 562 if(0 == track->GetParentID()) { 1010 if(0 == track->GetParentID()) { >> 1011 // primary particle 563 biasFlag = true; 1012 biasFlag = true; 564 biasManager->ResetForcedInteraction(); 1013 biasManager->ResetForcedInteraction(); 565 } 1014 } 566 } 1015 } 567 } 1016 } 568 1017 569 //....oooOO0OOooo........oooOO0OOooo........oo 1018 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 570 1019 571 G4double G4VEnergyLossProcess::AlongStepGetPhy 1020 G4double G4VEnergyLossProcess::AlongStepGetPhysicalInteractionLength( 572 const G4Track& tr << 1021 const G4Track&,G4double,G4double,G4double&, 573 G4GPILSelection* 1022 G4GPILSelection* selection) 574 { 1023 { 575 G4double x = DBL_MAX; 1024 G4double x = DBL_MAX; 576 *selection = aGPILSelection; 1025 *selection = aGPILSelection; 577 if(isIonisation && currentModel->IsActive(pr << 1026 if(isIonisation) { 578 GetScaledRangeForScaledEnergy(preStepScale << 1027 fRange = GetScaledRangeForScaledEnergy(preStepScaledEnergy)*reduceFactor; 579 x = (useCutAsFinalRange) ? std::min(finalR << 1028 x = fRange; 580 currentCouple->GetProductionCuts()->GetP << 1029 G4double finR = finalRange; 581 x = (fRange > x) ? fRange*dRoverRange + x* << 1030 if(rndmStepFlag) { 582 : fRange; << 1031 finR = std::min(finR, 583 /* << 1032 currentCouple->GetProductionCuts()->GetProductionCut(1)); 584 G4cout<<"AlongStepGPIL: " << GetProcessN << 1033 } 585 << " fRange=" << fRange << " finR=" << finR << 1034 if(fRange > finR) { >> 1035 x = fRange*dRoverRange + finR*(1.0 - dRoverRange)*(2.0 - finR/fRange); >> 1036 } >> 1037 /* >> 1038 if(particle->GetPDGMass() > 0.9*GeV) >> 1039 G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 1040 <<" range= "<<fRange << " idx= " << basedCoupleIndex >> 1041 << " finR= " << finR >> 1042 << " limit= " << x <<G4endl; >> 1043 G4cout << "massRatio= " << massRatio << " Q^2= " << chargeSqRatio >> 1044 << " finR= " << finR << " dRoverRange= " << dRoverRange >> 1045 << " finalRange= " << finalRange << G4endl; 586 */ 1046 */ 587 } 1047 } >> 1048 //G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy >> 1049 //<<" stepLimit= "<<x<<G4endl; 588 return x; 1050 return x; 589 } 1051 } 590 1052 591 //....oooOO0OOooo........oooOO0OOooo........oo 1053 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 592 1054 593 G4double G4VEnergyLossProcess::PostStepGetPhys 1055 G4double G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength( 594 const G4Track& tr 1056 const G4Track& track, 595 G4double previo 1057 G4double previousStepSize, 596 G4ForceCondition* 1058 G4ForceCondition* condition) 597 { 1059 { 598 // condition is set to "Not Forced" 1060 // condition is set to "Not Forced" 599 *condition = NotForced; 1061 *condition = NotForced; 600 G4double x = DBL_MAX; 1062 G4double x = DBL_MAX; 601 1063 602 // initialisation of material, mass, charge, 1064 // initialisation of material, mass, charge, model 603 // at the beginning of the step 1065 // at the beginning of the step 604 DefineMaterial(track.GetMaterialCutsCouple() 1066 DefineMaterial(track.GetMaterialCutsCouple()); 605 preStepKinEnergy = track.GetKineticEne << 1067 preStepKinEnergy = track.GetKineticEnergy(); 606 preStepScaledEnergy = preStepKinEnergy*ma << 1068 preStepScaledEnergy = preStepKinEnergy*massRatio; 607 SelectModel(preStepScaledEnergy); 1069 SelectModel(preStepScaledEnergy); 608 1070 609 if(!currentModel->IsActive(preStepScaledEner 1071 if(!currentModel->IsActive(preStepScaledEnergy)) { 610 theNumberOfInteractionLengthLeft = -1.0; << 611 mfpKinEnergy = DBL_MAX; << 612 preStepLambda = 0.0; << 613 currentInteractionLength = DBL_MAX; 1072 currentInteractionLength = DBL_MAX; 614 return x; << 1073 return x; 615 } 1074 } 616 1075 617 // change effective charge of a charged part << 1076 // change effective charge of an ion on fly 618 if(isIon) { 1077 if(isIon) { 619 const G4double q2 = currentModel->ChargeSq << 1078 G4double q2 = currentModel->ChargeSquareRatio(track); 620 fFactor = q2*biasFactor; << 1079 if(q2 != chargeSqRatio) { 621 if(baseMat) { fFactor *= (*theDensityFacto << 1080 chargeSqRatio = q2; 622 reduceFactor = 1.0/(fFactor*massRatio); << 1081 fFactor = q2*biasFactor*(*theDensityFactor)[currentCoupleIndex]; 623 if (lossFluctuationFlag) { << 1082 reduceFactor = 1.0/(fFactor*massRatio); 624 auto fluc = currentModel->GetModelOfFluc << 625 fluc->SetParticleAndCharge(track.GetDefi << 626 } 1083 } 627 } 1084 } >> 1085 // if(particle->GetPDGMass() > 0.9*GeV) >> 1086 //G4cout << "q2= "<<chargeSqRatio << " massRatio= " << massRatio << G4endl; >> 1087 // initialisation for sampling of the interaction length >> 1088 //if(previousStepSize <= 0.0) { theNumberOfInteractionLengthLeft = -1.0; } >> 1089 //if(theNumberOfInteractionLengthLeft < 0.0) { mfpKinEnergy = DBL_MAX; } 628 1090 629 // forced biasing only for primary particles 1091 // forced biasing only for primary particles 630 if(biasManager) { 1092 if(biasManager) { 631 if(0 == track.GetParentID() && biasFlag && << 1093 if(0 == track.GetParentID()) { 632 biasManager->ForcedInteractionRegion((G << 1094 if(biasFlag && 633 return biasManager->GetStepLimit((G4int) << 1095 biasManager->ForcedInteractionRegion(currentCoupleIndex)) { >> 1096 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); >> 1097 } 634 } 1098 } 635 } 1099 } 636 1100 637 ComputeLambdaForScaledEnergy(preStepScaledEn << 1101 // compute mean free path 638 << 1102 if(preStepScaledEnergy < mfpKinEnergy) { 639 // zero cross section << 1103 if (integral) { ComputeLambdaForScaledEnergy(preStepScaledEnergy); } 640 if(preStepLambda <= 0.0) { << 1104 else { preStepLambda = GetLambdaForScaledEnergy(preStepScaledEnergy); } 641 theNumberOfInteractionLengthLeft = -1.0; << 1105 642 currentInteractionLength = DBL_MAX; << 1106 // zero cross section 643 } else { << 1107 if(preStepLambda <= 0.0) { >> 1108 theNumberOfInteractionLengthLeft = -1.0; >> 1109 currentInteractionLength = DBL_MAX; >> 1110 } >> 1111 } 644 1112 645 // non-zero cross section << 1113 // non-zero cross section >> 1114 if(preStepLambda > 0.0) { 646 if (theNumberOfInteractionLengthLeft < 0.0 1115 if (theNumberOfInteractionLengthLeft < 0.0) { 647 1116 648 // beggining of tracking (or just after 1117 // beggining of tracking (or just after DoIt of this process) 649 theNumberOfInteractionLengthLeft = -G4Lo << 1118 // ResetNumberOfInteractionLengthLeft(); >> 1119 theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() ); 650 theInitialNumberOfInteractionLength = th 1120 theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 651 1121 652 } else if(currentInteractionLength < DBL_M 1122 } else if(currentInteractionLength < DBL_MAX) { 653 1123 654 // subtract NumberOfInteractionLengthLef 1124 // subtract NumberOfInteractionLengthLeft using previous step 655 theNumberOfInteractionLengthLeft -= 1125 theNumberOfInteractionLengthLeft -= 656 previousStepSize/currentInteractionLen << 1126 previousStepSize/currentInteractionLength; 657 << 1127 // SubtractNumberOfInteractionLengthLeft(previousStepSize); 658 theNumberOfInteractionLengthLeft = << 1128 if(theNumberOfInteractionLengthLeft < 0.) { 659 std::max(theNumberOfInteractionLengthL << 1129 theNumberOfInteractionLengthLeft = 0.0; >> 1130 //theNumberOfInteractionLengthLeft = perMillion; >> 1131 } 660 } 1132 } 661 1133 662 // new mean free path and step limit 1134 // new mean free path and step limit 663 currentInteractionLength = 1.0/preStepLamb 1135 currentInteractionLength = 1.0/preStepLambda; 664 x = theNumberOfInteractionLengthLeft * cur 1136 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 665 } 1137 } 666 #ifdef G4VERBOSE 1138 #ifdef G4VERBOSE 667 if (verboseLevel>2) { << 1139 if (verboseLevel>2){ >> 1140 // if(particle->GetPDGMass() > 0.9*GeV){ 668 G4cout << "G4VEnergyLossProcess::PostStepG 1141 G4cout << "G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength "; 669 G4cout << "[ " << GetProcessName() << "]" 1142 G4cout << "[ " << GetProcessName() << "]" << G4endl; 670 G4cout << " for " << track.GetDefinition() 1143 G4cout << " for " << track.GetDefinition()->GetParticleName() 671 << " in Material " << currentMate << 1144 << " in Material " << currentMaterial->GetName() 672 << " Ekin(MeV)= " << preStepKinEner << 1145 << " Ekin(MeV)= " << preStepKinEnergy/MeV 673 << " track material: " << track.Get << 1146 << " " << track.GetMaterial()->GetName() 674 <<G4endl; << 1147 <<G4endl; 675 G4cout << "MeanFreePath = " << currentInte 1148 G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" 676 << "InteractionLength= " << x/cm << << 1149 << "InteractionLength= " << x/cm <<"[cm] " <<G4endl; 677 } 1150 } 678 #endif 1151 #endif 679 return x; 1152 return x; 680 } 1153 } 681 1154 682 //....oooOO0OOooo........oooOO0OOooo........oo 1155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 1156 684 void << 685 G4VEnergyLossProcess::ComputeLambdaForScaledEn << 686 { << 687 // cross section increased with energy << 688 if(fXSType == fEmIncreasing) { << 689 if(e*invLambdaFactor < mfpKinEnergy) { << 690 preStepLambda = GetLambdaForScaledEnergy << 691 mfpKinEnergy = (preStepLambda > 0.0) ? e << 692 } << 693 << 694 // cross section has one peak << 695 } else if(fXSType == fEmOnePeak) { << 696 const G4double epeak = (*theEnergyOfCrossS << 697 if(e <= epeak) { << 698 if(e*invLambdaFactor < mfpKinEnergy) { << 699 preStepLambda = GetLambdaForScaledEner << 700 mfpKinEnergy = (preStepLambda > 0.0) ? << 701 } << 702 } else if(e < mfpKinEnergy) { << 703 const G4double e1 = std::max(epeak, e*la << 704 mfpKinEnergy = e1; << 705 preStepLambda = GetLambdaForScaledEnergy << 706 } << 707 << 708 // cross section has more than one peaks << 709 } else if(fXSType == fEmTwoPeaks) { << 710 G4TwoPeaksXS* xs = (*fXSpeaks)[basedCouple << 711 const G4double e1peak = xs->e1peak; << 712 << 713 // below the 1st peak << 714 if(e <= e1peak) { << 715 if(e*invLambdaFactor < mfpKinEnergy) { << 716 preStepLambda = GetLambdaForScaledEner << 717 mfpKinEnergy = (preStepLambda > 0.0) ? << 718 } << 719 return; << 720 } << 721 const G4double e1deep = xs->e1deep; << 722 // above the 1st peak, below the deep << 723 if(e <= e1deep) { << 724 if(mfpKinEnergy >= e1deep || e <= mfpKin << 725 const G4double e1 = std::max(e1peak, e << 726 mfpKinEnergy = e1; << 727 preStepLambda = GetLambdaForScaledEner << 728 } << 729 return; << 730 } << 731 const G4double e2peak = xs->e2peak; << 732 // above the deep, below 2nd peak << 733 if(e <= e2peak) { << 734 if(e*invLambdaFactor < mfpKinEnergy) { << 735 mfpKinEnergy = e; << 736 preStepLambda = GetLambdaForScaledEner << 737 } << 738 return; << 739 } << 740 const G4double e2deep = xs->e2deep; << 741 // above the 2nd peak, below the deep << 742 if(e <= e2deep) { << 743 if(mfpKinEnergy >= e2deep || e <= mfpKin << 744 const G4double e1 = std::max(e2peak, e << 745 mfpKinEnergy = e1; << 746 preStepLambda = GetLambdaForScaledEner << 747 } << 748 return; << 749 } << 750 const G4double e3peak = xs->e3peak; << 751 // above the deep, below 3d peak << 752 if(e <= e3peak) { << 753 if(e*invLambdaFactor < mfpKinEnergy) { << 754 mfpKinEnergy = e; << 755 preStepLambda = GetLambdaForScaledEner << 756 } << 757 return; << 758 } << 759 // above 3d peak << 760 if(e <= mfpKinEnergy) { << 761 const G4double e1 = std::max(e3peak, e*l << 762 mfpKinEnergy = e1; << 763 preStepLambda = GetLambdaForScaledEnergy << 764 } << 765 // integral method is not used << 766 } else { << 767 preStepLambda = GetLambdaForScaledEnergy(e << 768 } << 769 } << 770 << 771 //....oooOO0OOooo........oooOO0OOooo........oo << 772 << 773 G4VParticleChange* G4VEnergyLossProcess::Along 1157 G4VParticleChange* G4VEnergyLossProcess::AlongStepDoIt(const G4Track& track, 774 1158 const G4Step& step) 775 { 1159 { 776 fParticleChange.InitializeForAlongStep(track 1160 fParticleChange.InitializeForAlongStep(track); 777 // The process has range table - calculate e 1161 // The process has range table - calculate energy loss 778 if(!isIonisation || !currentModel->IsActive( 1162 if(!isIonisation || !currentModel->IsActive(preStepScaledEnergy)) { 779 return &fParticleChange; 1163 return &fParticleChange; 780 } 1164 } 781 1165 >> 1166 // Get the actual (true) Step length 782 G4double length = step.GetStepLength(); 1167 G4double length = step.GetStepLength(); >> 1168 if(length <= 0.0) { return &fParticleChange; } 783 G4double eloss = 0.0; 1169 G4double eloss = 0.0; 784 1170 785 /* << 1171 /* 786 if(-1 < verboseLevel) { 1172 if(-1 < verboseLevel) { 787 const G4ParticleDefinition* d = track.GetP 1173 const G4ParticleDefinition* d = track.GetParticleDefinition(); 788 G4cout << "AlongStepDoIt for " 1174 G4cout << "AlongStepDoIt for " 789 << GetProcessName() << " and partic << 1175 << GetProcessName() << " and particle " 790 << " eScaled(MeV)=" << preStepScal << 1176 << d->GetParticleName() 791 << " range(mm)=" << fRange/mm << " << 1177 << " eScaled(MeV)= " << preStepScaledEnergy/MeV 792 << " rf=" << reduceFactor << " q^ << 1178 << " range(mm)= " << fRange/mm 793 << " md=" << d->GetPDGMass() << " << 1179 << " s(mm)= " << length/mm 794 << " " << track.GetMaterial()->Get << 1180 << " rf= " << reduceFactor >> 1181 << " q^2= " << chargeSqRatio >> 1182 << " md= " << d->GetPDGMass() >> 1183 << " status= " << track.GetTrackStatus() >> 1184 << " " << track.GetMaterial()->GetName() >> 1185 << G4endl; 795 } 1186 } 796 */ 1187 */ >> 1188 797 const G4DynamicParticle* dynParticle = track 1189 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 798 1190 799 // define new weight for primary and seconda 1191 // define new weight for primary and secondaries 800 G4double weight = fParticleChange.GetParentW 1192 G4double weight = fParticleChange.GetParentWeight(); 801 if(weightFlag) { 1193 if(weightFlag) { 802 weight /= biasFactor; 1194 weight /= biasFactor; 803 fParticleChange.ProposeWeight(weight); 1195 fParticleChange.ProposeWeight(weight); 804 } 1196 } 805 1197 806 // stopping, check actual range and kinetic << 1198 // stopping 807 if (length >= fRange || preStepKinEnergy <= << 1199 if (length >= fRange) { 808 eloss = preStepKinEnergy; 1200 eloss = preStepKinEnergy; 809 if (useDeexcitation) { 1201 if (useDeexcitation) { 810 atomDeexcitation->AlongStepDeexcitation( 1202 atomDeexcitation->AlongStepDeexcitation(scTracks, step, 811 << 1203 eloss, currentCoupleIndex); 812 if(scTracks.size() > 0) { FillSecondarie << 1204 if(scTracks.size() > 0) { FillSecondariesAlongStep(eloss, weight); } 813 eloss = std::max(eloss, 0.0); << 1205 if(eloss < 0.0) { eloss = 0.0; } 814 } 1206 } 815 fParticleChange.SetProposedKineticEnergy(0 1207 fParticleChange.SetProposedKineticEnergy(0.0); 816 fParticleChange.ProposeLocalEnergyDeposit( 1208 fParticleChange.ProposeLocalEnergyDeposit(eloss); 817 return &fParticleChange; 1209 return &fParticleChange; 818 } 1210 } 819 // zero step length with non-zero range << 1211 //G4cout << theDEDXTable << " idx= " << basedCoupleIndex 820 if(length <= 0.0) { return &fParticleChange; << 1212 // << " " << GetProcessName() << " "<< currentMaterial->GetName()<<G4endl; 821 << 1213 //if(particle->GetParticleName() == "e-")G4cout << (*theDEDXTable) <<G4endl; 822 // Short step 1214 // Short step 823 eloss = length*GetDEDXForScaledEnergy(preSte << 1215 eloss = GetDEDXForScaledEnergy(preStepScaledEnergy)*length; 824 LogSca << 1216 825 /* << 1217 //G4cout << "eloss= " << eloss << G4endl; 826 G4cout << "##### Short STEP: eloss= " << elo << 1218 827 << " Escaled=" << preStepScaledEnergy << 828 << " R=" << fRange << 829 << " L=" << length << 830 << " fFactor=" << fFactor << " minE=" << mi << 831 << " idxBase=" << basedCoupleIndex << G4end << 832 */ << 833 // Long step 1219 // Long step 834 if(eloss > preStepKinEnergy*linLossLimit) { 1220 if(eloss > preStepKinEnergy*linLossLimit) { 835 1221 836 const G4double x = (fRange - length)/reduc << 1222 G4double x = (fRange - length)/reduceFactor; 837 const G4double de = preStepKinEnergy - Sca << 1223 //G4cout << "x= " << x << " " << theInverseRangeTable << G4endl; 838 if(de > 0.0) { eloss = de; } << 1224 eloss = preStepKinEnergy - ScaledKinEnergyForLoss(x)/massRatio; >> 1225 839 /* 1226 /* 840 if(-1 < verboseLevel) 1227 if(-1 < verboseLevel) 841 G4cout << " Long STEP: rPre(mm)=" << 1228 G4cout << "Long STEP: rPre(mm)= " 842 << GetScaledRangeForScaledEnergy( 1229 << GetScaledRangeForScaledEnergy(preStepScaledEnergy)/mm 843 << " x(mm)=" << x/mm << 1230 << " rPost(mm)= " << x/mm 844 << " eloss(MeV)=" << eloss/MeV << 1231 << " ePre(MeV)= " << preStepScaledEnergy/MeV 845 << " rFactor=" << reduceFactor << 1232 << " eloss(MeV)= " << eloss/MeV 846 << " massRatio=" << massRatio << 1233 << " eloss0(MeV)= " >> 1234 << GetDEDXForScaledEnergy(preStepScaledEnergy)*length/MeV >> 1235 << " lim(MeV)= " << preStepKinEnergy*linLossLimit/MeV 847 << G4endl; 1236 << G4endl; 848 */ 1237 */ 849 } 1238 } 850 1239 851 /* << 1240 /* >> 1241 G4double eloss0 = eloss; 852 if(-1 < verboseLevel ) { 1242 if(-1 < verboseLevel ) { 853 G4cout << "Before fluct: eloss(MeV)= " << 1243 G4cout << "Before fluct: eloss(MeV)= " << eloss/MeV 854 << " e-eloss= " << preStepKinEnergy 1244 << " e-eloss= " << preStepKinEnergy-eloss 855 << " step(mm)= " << length/mm << " << 1245 << " step(mm)= " << length/mm 856 << " fluct= " << lossFluctuationFla << 1246 << " range(mm)= " << fRange/mm >> 1247 << " fluct= " << lossFluctuationFlag >> 1248 << G4endl; 857 } 1249 } 858 */ 1250 */ 859 1251 860 const G4double cut = (*theCuts)[currentCoupl << 1252 G4double cut = (*theCuts)[currentCoupleIndex]; 861 G4double esec = 0.0; 1253 G4double esec = 0.0; 862 1254 >> 1255 // SubCutOff >> 1256 if(useSubCutoff) { >> 1257 if(idxSCoffRegions[currentCoupleIndex]) { >> 1258 >> 1259 G4bool yes = false; >> 1260 G4StepPoint* prePoint = step.GetPreStepPoint(); >> 1261 >> 1262 // Check boundary >> 1263 if(prePoint->GetStepStatus() == fGeomBoundary) { yes = true; } >> 1264 >> 1265 // Check PrePoint >> 1266 else { >> 1267 G4double preSafety = prePoint->GetSafety(); >> 1268 G4double rcut = >> 1269 currentCouple->GetProductionCuts()->GetProductionCut(1); >> 1270 >> 1271 // recompute presafety >> 1272 if(preSafety < rcut) { >> 1273 preSafety = safetyHelper->ComputeSafety(prePoint->GetPosition()); >> 1274 } >> 1275 >> 1276 if(preSafety < rcut) { yes = true; } >> 1277 >> 1278 // Check PostPoint >> 1279 else { >> 1280 G4double postSafety = preSafety - length; >> 1281 if(postSafety < rcut) { >> 1282 postSafety = safetyHelper->ComputeSafety( >> 1283 step.GetPostStepPoint()->GetPosition()); >> 1284 if(postSafety < rcut) { yes = true; } >> 1285 } >> 1286 } >> 1287 } >> 1288 >> 1289 // Decided to start subcut sampling >> 1290 if(yes) { >> 1291 >> 1292 cut = (*theSubCuts)[currentCoupleIndex]; >> 1293 eloss -= GetSubDEDXForScaledEnergy(preStepScaledEnergy)*length; >> 1294 esec = SampleSubCutSecondaries(scTracks, step, >> 1295 currentModel,currentCoupleIndex); >> 1296 // add bremsstrahlung sampling >> 1297 /* >> 1298 if(nProcesses > 0) { >> 1299 for(G4int i=0; i<nProcesses; ++i) { >> 1300 (scProcesses[i])->SampleSubCutSecondaries( >> 1301 scTracks, step, (scProcesses[i])-> >> 1302 SelectModelForMaterial(preStepKinEnergy, currentCoupleIndex), >> 1303 currentCoupleIndex); >> 1304 } >> 1305 } >> 1306 */ >> 1307 } >> 1308 } >> 1309 } >> 1310 863 // Corrections, which cannot be tabulated 1311 // Corrections, which cannot be tabulated 864 if(isIon) { 1312 if(isIon) { >> 1313 G4double eadd = 0.0; >> 1314 G4double eloss_before = eloss; 865 currentModel->CorrectionsAlongStep(current 1315 currentModel->CorrectionsAlongStep(currentCouple, dynParticle, 866 length, << 1316 eloss, eadd, length); 867 eloss = std::max(eloss, 0.0); << 1317 if(eloss < 0.0) { eloss = 0.5*eloss_before; } 868 } 1318 } 869 1319 870 // Sample fluctuations if not full energy lo << 1320 // Sample fluctuations 871 if(eloss >= preStepKinEnergy) { << 1321 if (lossFluctuationFlag) { 872 eloss = preStepKinEnergy; << 873 << 874 } else if (lossFluctuationFlag) { << 875 const G4double tmax = currentModel->MaxSec << 876 const G4double tcut = std::min(cut, tmax); << 877 G4VEmFluctuationModel* fluc = currentModel 1322 G4VEmFluctuationModel* fluc = currentModel->GetModelOfFluctuations(); 878 eloss = fluc->SampleFluctuations(currentCo << 1323 if(fluc && 879 tcut, tma << 1324 (eloss + esec + lowestKinEnergy) < preStepKinEnergy) { 880 /* << 1325 881 if(-1 < verboseLevel) << 1326 G4double tmax = >> 1327 std::min(currentModel->MaxSecondaryKinEnergy(dynParticle),cut); >> 1328 eloss = fluc->SampleFluctuations(currentCouple,dynParticle, >> 1329 tmax,length,eloss); >> 1330 /* >> 1331 if(-1 < verboseLevel) 882 G4cout << "After fluct: eloss(MeV)= " << 1332 G4cout << "After fluct: eloss(MeV)= " << eloss/MeV 883 << " fluc= " << (eloss-eloss0)/Me 1333 << " fluc= " << (eloss-eloss0)/MeV 884 << " ChargeSqRatio= " << chargeSq 1334 << " ChargeSqRatio= " << chargeSqRatio 885 << " massRatio= " << massRatio << << 1335 << " massRatio= " << massRatio 886 */ << 1336 << " tmax= " << tmax >> 1337 << G4endl; >> 1338 */ >> 1339 } 887 } 1340 } 888 1341 889 // deexcitation 1342 // deexcitation 890 if (useDeexcitation) { 1343 if (useDeexcitation) { 891 G4double esecfluo = preStepKinEnergy; << 1344 G4double esecfluo = preStepKinEnergy - esec; 892 G4double de = esecfluo; 1345 G4double de = esecfluo; >> 1346 //G4double eloss0 = eloss; >> 1347 /* >> 1348 G4cout << "### 1: E(keV)= " << preStepKinEnergy/keV >> 1349 << " Efluomax(keV)= " << de/keV >> 1350 << " Eloss(keV)= " << eloss/keV << G4endl; >> 1351 */ 893 atomDeexcitation->AlongStepDeexcitation(sc 1352 atomDeexcitation->AlongStepDeexcitation(scTracks, step, 894 de << 1353 de, currentCoupleIndex); 895 1354 896 // sum of de-excitation energies 1355 // sum of de-excitation energies 897 esecfluo -= de; 1356 esecfluo -= de; 898 1357 899 // subtracted from energy loss 1358 // subtracted from energy loss 900 if(eloss >= esecfluo) { 1359 if(eloss >= esecfluo) { 901 esec += esecfluo; 1360 esec += esecfluo; 902 eloss -= esecfluo; 1361 eloss -= esecfluo; 903 } else { 1362 } else { 904 esec += esecfluo; 1363 esec += esecfluo; 905 eloss = 0.0; 1364 eloss = 0.0; 906 } 1365 } >> 1366 /* >> 1367 if(esecfluo > 0.0) { >> 1368 G4cout << "### 2: E(keV)= " << preStepKinEnergy/keV >> 1369 << " Esec(keV)= " << esec/keV >> 1370 << " Esecf(kV)= " << esecfluo/keV >> 1371 << " Eloss0(kV)= " << eloss0/keV >> 1372 << " Eloss(keV)= " << eloss/keV >> 1373 << G4endl; >> 1374 } >> 1375 */ 907 } 1376 } 908 if(nullptr != subcutProducer && IsRegionForC << 1377 if(scTracks.size() > 0) { FillSecondariesAlongStep(eloss, weight); } 909 subcutProducer->SampleSecondaries(step, sc << 910 } << 911 // secondaries from atomic de-excitation and << 912 if(!scTracks.empty()) { FillSecondariesAlong << 913 1378 914 // Energy balance << 1379 // Energy balanse 915 G4double finalT = preStepKinEnergy - eloss - 1380 G4double finalT = preStepKinEnergy - eloss - esec; 916 if (finalT <= lowestKinEnergy) { 1381 if (finalT <= lowestKinEnergy) { 917 eloss += finalT; 1382 eloss += finalT; 918 finalT = 0.0; 1383 finalT = 0.0; 919 } else if(isIon) { 1384 } else if(isIon) { 920 fParticleChange.SetProposedCharge( 1385 fParticleChange.SetProposedCharge( 921 currentModel->GetParticleCharge(track.Ge 1386 currentModel->GetParticleCharge(track.GetParticleDefinition(), 922 currentM << 1387 currentMaterial,finalT)); 923 } 1388 } 924 eloss = std::max(eloss, 0.0); << 925 1389 >> 1390 if(eloss < 0.0) { eloss = 0.0; } 926 fParticleChange.SetProposedKineticEnergy(fin 1391 fParticleChange.SetProposedKineticEnergy(finalT); 927 fParticleChange.ProposeLocalEnergyDeposit(el 1392 fParticleChange.ProposeLocalEnergyDeposit(eloss); 928 /* << 1393 /* 929 if(-1 < verboseLevel) { 1394 if(-1 < verboseLevel) { 930 G4double del = finalT + eloss + esec - pre 1395 G4double del = finalT + eloss + esec - preStepKinEnergy; 931 G4cout << "Final value eloss(MeV)= " << el 1396 G4cout << "Final value eloss(MeV)= " << eloss/MeV 932 << " preStepKinEnergy= " << preStep 1397 << " preStepKinEnergy= " << preStepKinEnergy 933 << " postStepKinEnergy= " << finalT 1398 << " postStepKinEnergy= " << finalT 934 << " de(keV)= " << del/keV << 1399 << " de(keV)= " << del/keV 935 << " lossFlag= " << lossFluctuation 1400 << " lossFlag= " << lossFluctuationFlag 936 << " status= " << track.GetTrackSt 1401 << " status= " << track.GetTrackStatus() 937 << G4endl; 1402 << G4endl; 938 } 1403 } 939 */ 1404 */ 940 return &fParticleChange; 1405 return &fParticleChange; 941 } 1406 } 942 1407 943 //....oooOO0OOooo........oooOO0OOooo........oo 1408 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 944 1409 945 void G4VEnergyLossProcess::FillSecondariesAlon << 1410 void >> 1411 G4VEnergyLossProcess::FillSecondariesAlongStep(G4double&, G4double& weight) 946 { 1412 { 947 const std::size_t n0 = scTracks.size(); << 1413 G4int n0 = scTracks.size(); 948 G4double weight = wt; << 1414 949 // weight may be changed by biasing manager 1415 // weight may be changed by biasing manager 950 if(biasManager) { 1416 if(biasManager) { 951 if(biasManager->SecondaryBiasingRegion((G4 << 1417 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 952 weight *= 1418 weight *= 953 biasManager->ApplySecondaryBiasing(scT << 1419 biasManager->ApplySecondaryBiasing(scTracks, currentCoupleIndex); 954 } 1420 } 955 } 1421 } 956 1422 957 // fill secondaries 1423 // fill secondaries 958 const std::size_t n = scTracks.size(); << 1424 G4int n = scTracks.size(); 959 fParticleChange.SetNumberOfSecondaries((G4in << 1425 fParticleChange.SetNumberOfSecondaries(n); 960 1426 961 for(std::size_t i=0; i<n; ++i) { << 1427 for(G4int i=0; i<n; ++i) { 962 G4Track* t = scTracks[i]; 1428 G4Track* t = scTracks[i]; 963 if(nullptr != t) { << 1429 if(t) { 964 t->SetWeight(weight); 1430 t->SetWeight(weight); 965 pParticleChange->AddSecondary(t); 1431 pParticleChange->AddSecondary(t); 966 G4int pdg = t->GetDefinition()->GetPDGEn << 1432 if(i < n0) { t->SetCreatorModelIndex(secID); } 967 if (i < n0) { << 1433 else { t->SetCreatorModelIndex(biasID); } 968 if (pdg == 22) { << 1434 //G4cout << "Secondary(along step) has weight " << t->GetWeight() 969 t->SetCreatorModelID(gpixeID); << 1435 //<< ", kenergy " << t->GetKineticEnergy()/MeV << " MeV" <<G4endl; 970 } else if (pdg == 11) { << 971 t->SetCreatorModelID(epixeID); << 972 } else { << 973 t->SetCreatorModelID(biasID); << 974 } << 975 } else { << 976 t->SetCreatorModelID(biasID); << 977 } << 978 } 1436 } 979 } 1437 } 980 scTracks.clear(); 1438 scTracks.clear(); 981 } 1439 } 982 1440 983 //....oooOO0OOooo........oooOO0OOooo........oo 1441 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 984 1442 >> 1443 G4double >> 1444 G4VEnergyLossProcess::SampleSubCutSecondaries(std::vector<G4Track*>& tracks, >> 1445 const G4Step& step, >> 1446 G4VEmModel* model, >> 1447 G4int idx) >> 1448 { >> 1449 // Fast check weather subcutoff can work >> 1450 G4double esec = 0.0; >> 1451 G4double subcut = (*theSubCuts)[idx]; >> 1452 G4double cut = (*theCuts)[idx]; >> 1453 if(cut <= subcut) { return esec; } >> 1454 >> 1455 const G4Track* track = step.GetTrack(); >> 1456 const G4DynamicParticle* dp = track->GetDynamicParticle(); >> 1457 G4double e = dp->GetKineticEnergy()*massRatio; >> 1458 G4double cross = (*theDensityFactor)[idx]*chargeSqRatio >> 1459 *(((*theSubLambdaTable)[(*theDensityIdx)[idx]])->Value(e, idxSubLambda)); >> 1460 G4double length = step.GetStepLength(); >> 1461 >> 1462 // negligible probability to get any interaction >> 1463 if(length*cross < perMillion) { return esec; } >> 1464 /* >> 1465 if(-1 < verboseLevel) >> 1466 G4cout << "<<< Subcutoff for " << GetProcessName() >> 1467 << " cross(1/mm)= " << cross*mm << ">>>" >> 1468 << " e(MeV)= " << preStepScaledEnergy >> 1469 << " matIdx= " << currentCoupleIndex >> 1470 << G4endl; >> 1471 */ >> 1472 >> 1473 // Sample subcutoff secondaries >> 1474 G4StepPoint* preStepPoint = step.GetPreStepPoint(); >> 1475 G4StepPoint* postStepPoint = step.GetPostStepPoint(); >> 1476 G4ThreeVector prepoint = preStepPoint->GetPosition(); >> 1477 G4ThreeVector dr = postStepPoint->GetPosition() - prepoint; >> 1478 G4double pretime = preStepPoint->GetGlobalTime(); >> 1479 G4double dt = postStepPoint->GetGlobalTime() - pretime; >> 1480 //G4double dt = length/preStepPoint->GetVelocity(); >> 1481 G4double fragment = 0.0; >> 1482 >> 1483 do { >> 1484 G4double del = -std::log(G4UniformRand())/cross; >> 1485 fragment += del/length; >> 1486 if (fragment > 1.0) break; >> 1487 >> 1488 // sample secondaries >> 1489 secParticles.clear(); >> 1490 model->SampleSecondaries(&secParticles,track->GetMaterialCutsCouple(), >> 1491 dp,subcut,cut); >> 1492 >> 1493 // position of subcutoff particles >> 1494 G4ThreeVector r = prepoint + fragment*dr; >> 1495 std::vector<G4DynamicParticle*>::iterator it; >> 1496 for(it=secParticles.begin(); it!=secParticles.end(); ++it) { >> 1497 >> 1498 G4Track* t = new G4Track((*it), pretime + fragment*dt, r); >> 1499 t->SetTouchableHandle(track->GetTouchableHandle()); >> 1500 t->SetCreatorModelIndex(subsecID); >> 1501 tracks.push_back(t); >> 1502 esec += t->GetKineticEnergy(); >> 1503 if (t->GetParticleDefinition() == thePositron) { >> 1504 esec += 2.0*electron_mass_c2; >> 1505 } >> 1506 >> 1507 /* >> 1508 if(-1 < verboseLevel) >> 1509 G4cout << "New track " >> 1510 << t->GetParticleDefinition()->GetParticleName() >> 1511 << " e(keV)= " << t->GetKineticEnergy()/keV >> 1512 << " fragment= " << fragment >> 1513 << G4endl; >> 1514 */ >> 1515 } >> 1516 } while (fragment <= 1.0); >> 1517 return esec; >> 1518 } >> 1519 >> 1520 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1521 985 G4VParticleChange* G4VEnergyLossProcess::PostS 1522 G4VParticleChange* G4VEnergyLossProcess::PostStepDoIt(const G4Track& track, 986 1523 const G4Step& step) 987 { 1524 { 988 // clear number of interaction lengths in an << 1525 // In all cases clear number of interaction lengths 989 theNumberOfInteractionLengthLeft = -1.0; 1526 theNumberOfInteractionLengthLeft = -1.0; 990 mfpKinEnergy = DBL_MAX; << 1527 mfpKinEnergy = DBL_MAX; 991 1528 992 fParticleChange.InitializeForPostStep(track) 1529 fParticleChange.InitializeForPostStep(track); 993 const G4double finalT = track.GetKineticEner << 1530 G4double finalT = track.GetKineticEnergy(); >> 1531 if(finalT <= lowestKinEnergy) { return &fParticleChange; } 994 1532 995 const G4double postStepScaledEnergy = finalT << 1533 G4double postStepScaledEnergy = finalT*massRatio; 996 SelectModel(postStepScaledEnergy); << 997 1534 998 if(!currentModel->IsActive(postStepScaledEne 1535 if(!currentModel->IsActive(postStepScaledEnergy)) { 999 return &fParticleChange; 1536 return &fParticleChange; 1000 } 1537 } 1001 /* 1538 /* 1002 if(1 < verboseLevel) { << 1539 if(-1 < verboseLevel) { 1003 G4cout<<GetProcessName()<<" PostStepDoIt: << 1540 G4cout << GetProcessName() >> 1541 << "::PostStepDoIt: E(MeV)= " << finalT/MeV >> 1542 << G4endl; 1004 } 1543 } 1005 */ 1544 */ >> 1545 1006 // forced process - should happen only once 1546 // forced process - should happen only once per track 1007 if(biasFlag) { 1547 if(biasFlag) { 1008 if(biasManager->ForcedInteractionRegion(( << 1548 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 1009 biasFlag = false; 1549 biasFlag = false; 1010 } 1550 } 1011 } 1551 } 1012 const G4DynamicParticle* dp = track.GetDyna << 1013 1552 1014 // Integral approach 1553 // Integral approach 1015 if (fXSType != fEmNoIntegral) { << 1554 if (integral) { 1016 const G4double logFinalT = dp->GetLogKine << 1555 G4double lx = GetLambdaForScaledEnergy(postStepScaledEnergy); 1017 G4double lx = GetLambdaForScaledEnergy(po << 1556 /* 1018 lo << 1557 if(preStepLambda<lx && 1 < verboseLevel && nWarnings<200) { 1019 lx = std::max(lx, 0.0); << 1558 G4cout << "WARNING: for " << particle->GetParticleName() 1020 << 1559 << " and " << GetProcessName() 1021 // if both lg and lx are zero then no int << 1560 << " E(MeV)= " << finalT/MeV 1022 if(preStepLambda*G4UniformRand() >= lx) { << 1561 << " preLambda= " << preStepLambda >> 1562 << " < " << lx << " (postLambda) " >> 1563 << G4endl; >> 1564 ++nWarnings; >> 1565 } >> 1566 */ >> 1567 if(lx <= 0.0) { >> 1568 return &fParticleChange; >> 1569 } else if(preStepLambda*G4UniformRand() > lx) { 1023 return &fParticleChange; 1570 return &fParticleChange; 1024 } 1571 } 1025 } 1572 } 1026 1573 >> 1574 SelectModel(postStepScaledEnergy); >> 1575 1027 // define new weight for primary and second 1576 // define new weight for primary and secondaries 1028 G4double weight = fParticleChange.GetParent 1577 G4double weight = fParticleChange.GetParentWeight(); 1029 if(weightFlag) { 1578 if(weightFlag) { 1030 weight /= biasFactor; 1579 weight /= biasFactor; 1031 fParticleChange.ProposeWeight(weight); 1580 fParticleChange.ProposeWeight(weight); 1032 } 1581 } 1033 1582 1034 const G4double tcut = (*theCuts)[currentCou << 1583 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); >> 1584 G4double tcut = (*theCuts)[currentCoupleIndex]; 1035 1585 1036 // sample secondaries 1586 // sample secondaries 1037 secParticles.clear(); 1587 secParticles.clear(); 1038 currentModel->SampleSecondaries(&secParticl << 1588 //G4cout<< "Eprimary: "<<dynParticle->GetKineticEnergy()/MeV<<G4endl; >> 1589 currentModel->SampleSecondaries(&secParticles, currentCouple, >> 1590 dynParticle, tcut); 1039 1591 1040 const G4int num0 = (G4int)secParticles.size << 1592 G4int num0 = secParticles.size(); 1041 1593 1042 // bremsstrahlung splitting or Russian roul 1594 // bremsstrahlung splitting or Russian roulette 1043 if(biasManager) { 1595 if(biasManager) { 1044 if(biasManager->SecondaryBiasingRegion((G << 1596 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 1045 G4double eloss = 0.0; 1597 G4double eloss = 0.0; 1046 weight *= biasManager->ApplySecondaryBi 1598 weight *= biasManager->ApplySecondaryBiasing( 1047 secPart << 1599 secParticles, 1048 track, << 1600 track, currentModel, 1049 &fParti << 1601 &fParticleChange, eloss, 1050 (G4int) << 1602 currentCoupleIndex, tcut, 1051 step.Ge << 1603 step.GetPostStepPoint()->GetSafety()); 1052 if(eloss > 0.0) { 1604 if(eloss > 0.0) { 1053 eloss += fParticleChange.GetLocalEner << 1605 eloss += fParticleChange.GetLocalEnergyDeposit(); 1054 fParticleChange.ProposeLocalEnergyDep 1606 fParticleChange.ProposeLocalEnergyDeposit(eloss); 1055 } 1607 } 1056 } 1608 } 1057 } 1609 } 1058 1610 1059 // save secondaries 1611 // save secondaries 1060 const G4int num = (G4int)secParticles.size( << 1612 G4int num = secParticles.size(); 1061 if(num > 0) { 1613 if(num > 0) { 1062 1614 1063 fParticleChange.SetNumberOfSecondaries(nu 1615 fParticleChange.SetNumberOfSecondaries(num); 1064 G4double time = track.GetGlobalTime(); 1616 G4double time = track.GetGlobalTime(); 1065 1617 1066 G4int n1(0), n2(0); << 1067 if(num0 > mainSecondaries) { << 1068 currentModel->FillNumberOfSecondaries(n << 1069 } << 1070 << 1071 for (G4int i=0; i<num; ++i) { 1618 for (G4int i=0; i<num; ++i) { 1072 if(nullptr != secParticles[i]) { << 1619 if(secParticles[i]) { 1073 G4Track* t = new G4Track(secParticles << 1620 G4Track* t = new G4Track(secParticles[i], time, track.GetPosition()); 1074 t->SetTouchableHandle(track.GetToucha << 1621 t->SetTouchableHandle(track.GetTouchableHandle()); 1075 if (biasManager) { << 1622 t->SetWeight(weight); 1076 t->SetWeight(weight * biasManager-> << 1623 if(i < num0) { t->SetCreatorModelIndex(secID); } 1077 } else { << 1624 else { t->SetCreatorModelIndex(biasID); } 1078 t->SetWeight(weight); << 1625 1079 } << 1626 //G4cout << "Secondary(post step) has weight " << t->GetWeight() 1080 if(i < num0) { << 1627 // << ", kenergy " << t->GetKineticEnergy()/MeV << " MeV" 1081 t->SetCreatorModelID(secID); << 1628 // << " time= " << time/ns << " ns " << G4endl; 1082 } else if(i < num0 + n1) { << 1629 pParticleChange->AddSecondary(t); 1083 t->SetCreatorModelID(tripletID); << 1084 } else { << 1085 t->SetCreatorModelID(biasID); << 1086 } << 1087 << 1088 //G4cout << "Secondary(post step) has << 1089 // << ", kenergy " << t->GetKin << 1090 // << " time= " << time/ns << " << 1091 pParticleChange->AddSecondary(t); << 1092 } 1630 } 1093 } 1631 } 1094 } 1632 } 1095 1633 1096 if(0.0 == fParticleChange.GetProposedKineti 1634 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 1097 fAlive == fParticleChange.GetTrackStatus 1635 fAlive == fParticleChange.GetTrackStatus()) { 1098 if(particle->GetProcessManager()->GetAtRe 1636 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 1099 { fParticleChange.ProposeTrackStatus 1637 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 1100 else { fParticleChange.ProposeTrackStatus 1638 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 1101 } 1639 } 1102 1640 1103 /* 1641 /* 1104 if(-1 < verboseLevel) { 1642 if(-1 < verboseLevel) { 1105 G4cout << "::PostStepDoIt: Sample seconda 1643 G4cout << "::PostStepDoIt: Sample secondary; Efin= " 1106 << fParticleChange.GetProposedKineticEner 1644 << fParticleChange.GetProposedKineticEnergy()/MeV 1107 << " MeV; model= (" << currentMode 1645 << " MeV; model= (" << currentModel->LowEnergyLimit() 1108 << ", " << currentModel->HighEner 1646 << ", " << currentModel->HighEnergyLimit() << ")" 1109 << " preStepLambda= " << preStepL 1647 << " preStepLambda= " << preStepLambda 1110 << " dir= " << track.GetMomentumD 1648 << " dir= " << track.GetMomentumDirection() 1111 << " status= " << track.GetTrackS 1649 << " status= " << track.GetTrackStatus() 1112 << G4endl; 1650 << G4endl; 1113 } 1651 } 1114 */ 1652 */ 1115 return &fParticleChange; 1653 return &fParticleChange; 1116 } 1654 } 1117 1655 1118 //....oooOO0OOooo........oooOO0OOooo........o 1656 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1119 1657 1120 G4bool G4VEnergyLossProcess::StorePhysicsTabl 1658 G4bool G4VEnergyLossProcess::StorePhysicsTable( 1121 const G4ParticleDefinition* part, cons << 1659 const G4ParticleDefinition* part, const G4String& directory, >> 1660 G4bool ascii) 1122 { 1661 { 1123 if (!isMaster || nullptr != baseParticle || << 1662 G4bool res = true; 1124 for(std::size_t i=0; i<7; ++i) { << 1663 if ( baseParticle || part != particle ) return res; 1125 // ionisation table only for ionisation p << 1664 1126 if (nullptr == theData->Table(i) || (!isI << 1665 if(!StoreTable(part,theDEDXTable,ascii,directory,"DEDX")) 1127 continue; << 1666 {res = false;} 1128 } << 1667 1129 if (-1 < verboseLevel) { << 1668 if(!StoreTable(part,theDEDXunRestrictedTable,ascii,directory,"DEDXnr")) 1130 G4cout << "G4VEnergyLossProcess::StoreP << 1669 {res = false;} 1131 << " " << particle->GetParticleName() << 1670 1132 << " " << GetProcessName() << 1671 if(!StoreTable(part,theDEDXSubTable,ascii,directory,"SubDEDX")) 1133 << " " << tnames[i] << " " << theDat << 1672 {res = false;} 1134 } << 1673 1135 if (!G4EmTableUtil::StoreTable(this, part << 1674 if(!StoreTable(part,theIonisationTable,ascii,directory,"Ionisation")) 1136 dir, tnames[i], verboseLevel, asci << 1675 {res = false;} 1137 return false; << 1676 >> 1677 if(!StoreTable(part,theIonisationSubTable,ascii,directory,"SubIonisation")) >> 1678 {res = false;} >> 1679 >> 1680 if(isIonisation && >> 1681 !StoreTable(part,theCSDARangeTable,ascii,directory,"CSDARange")) >> 1682 {res = false;} >> 1683 >> 1684 if(isIonisation && >> 1685 !StoreTable(part,theRangeTableForLoss,ascii,directory,"Range")) >> 1686 {res = false;} >> 1687 >> 1688 if(isIonisation && >> 1689 !StoreTable(part,theInverseRangeTable,ascii,directory,"InverseRange")) >> 1690 {res = false;} >> 1691 >> 1692 if(!StoreTable(part,theLambdaTable,ascii,directory,"Lambda")) >> 1693 {res = false;} >> 1694 >> 1695 if(!StoreTable(part,theSubLambdaTable,ascii,directory,"SubLambda")) >> 1696 {res = false;} >> 1697 >> 1698 if ( res ) { >> 1699 if(0 < verboseLevel) { >> 1700 G4cout << "Physics tables are stored for " >> 1701 << particle->GetParticleName() >> 1702 << " and process " << GetProcessName() >> 1703 << " in the directory <" << directory >> 1704 << "> " << G4endl; 1138 } 1705 } >> 1706 } else { >> 1707 G4cout << "Fail to store Physics Tables for " >> 1708 << particle->GetParticleName() >> 1709 << " and process " << GetProcessName() >> 1710 << " in the directory <" << directory >> 1711 << "> " << G4endl; 1139 } 1712 } 1140 return true; << 1713 return res; 1141 } 1714 } 1142 1715 1143 //....oooOO0OOooo........oooOO0OOooo........o 1716 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 1144 1717 1145 G4bool 1718 G4bool 1146 G4VEnergyLossProcess::RetrievePhysicsTable(co 1719 G4VEnergyLossProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 1147 co << 1720 const G4String& directory, >> 1721 G4bool ascii) 1148 { 1722 { 1149 if (!isMaster || nullptr != baseParticle || << 1723 G4bool res = true; 1150 for(std::size_t i=0; i<7; ++i) { << 1724 const G4String particleName = part->GetParticleName(); 1151 // ionisation table only for ionisation p << 1725 1152 if (!isIonisation && 1 == i) { continue; << 1726 if(1 < verboseLevel) { 1153 if(!G4EmTableUtil::RetrieveTable(this, pa << 1727 G4cout << "G4VEnergyLossProcess::RetrievePhysicsTable() for " 1154 verboseL << 1728 << particleName << " and process " << GetProcessName() 1155 return false; << 1729 << "; tables_are_built= " << tablesAreBuilt >> 1730 << G4endl; >> 1731 } >> 1732 if(particle == part) { >> 1733 >> 1734 if ( !baseParticle ) { >> 1735 >> 1736 G4bool fpi = true; >> 1737 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"DEDX",fpi)) >> 1738 {fpi = false;} >> 1739 >> 1740 // ionisation table keeps individual dEdx and not sum of sub-processes >> 1741 if(!RetrieveTable(part,theDEDXTable,ascii,directory,"Ionisation",false)) >> 1742 {fpi = false;} >> 1743 >> 1744 if(!RetrieveTable(part,theRangeTableForLoss,ascii,directory,"Range",fpi)) >> 1745 {res = false;} >> 1746 >> 1747 if(!RetrieveTable(part,theDEDXunRestrictedTable,ascii,directory, >> 1748 "DEDXnr",false)) >> 1749 {res = false;} >> 1750 >> 1751 if(!RetrieveTable(part,theCSDARangeTable,ascii,directory, >> 1752 "CSDARange",false)) >> 1753 {res = false;} >> 1754 >> 1755 if(!RetrieveTable(part,theInverseRangeTable,ascii,directory, >> 1756 "InverseRange",fpi)) >> 1757 {res = false;} >> 1758 >> 1759 if(!RetrieveTable(part,theLambdaTable,ascii,directory,"Lambda",true)) >> 1760 {res = false;} >> 1761 >> 1762 G4bool yes = false; >> 1763 if(nSCoffRegions > 0) {yes = true;} >> 1764 >> 1765 if(!RetrieveTable(part,theDEDXSubTable,ascii,directory,"SubDEDX",yes)) >> 1766 {res = false;} >> 1767 >> 1768 if(!RetrieveTable(part,theSubLambdaTable,ascii,directory, >> 1769 "SubLambda",yes)) >> 1770 {res = false;} >> 1771 >> 1772 if(!fpi) yes = false; >> 1773 if(!RetrieveTable(part,theIonisationSubTable,ascii,directory, >> 1774 "SubIonisation",yes)) >> 1775 {res = false;} >> 1776 } >> 1777 } >> 1778 >> 1779 return res; >> 1780 } >> 1781 >> 1782 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1783 >> 1784 G4bool G4VEnergyLossProcess::StoreTable(const G4ParticleDefinition* part, >> 1785 G4PhysicsTable* aTable, G4bool ascii, >> 1786 const G4String& directory, >> 1787 const G4String& tname) >> 1788 { >> 1789 G4bool res = true; >> 1790 if ( aTable ) { >> 1791 const G4String name = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1792 if( !aTable->StorePhysicsTable(name,ascii)) res = false; >> 1793 } >> 1794 return res; >> 1795 } >> 1796 >> 1797 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... >> 1798 >> 1799 G4bool >> 1800 G4VEnergyLossProcess::RetrieveTable(const G4ParticleDefinition* part, >> 1801 G4PhysicsTable* aTable, >> 1802 G4bool ascii, >> 1803 const G4String& directory, >> 1804 const G4String& tname, >> 1805 G4bool mandatory) >> 1806 { >> 1807 G4bool isRetrieved = false; >> 1808 G4String filename = GetPhysicsTableFileName(part,directory,tname,ascii); >> 1809 if(aTable) { >> 1810 if(aTable->ExistPhysicsTable(filename)) { >> 1811 if(G4PhysicsTableHelper::RetrievePhysicsTable(aTable,filename,ascii)) { >> 1812 isRetrieved = true; >> 1813 if(lManager->SplineFlag()) { >> 1814 size_t n = aTable->length(); >> 1815 for(size_t i=0; i<n; ++i) { >> 1816 if((*aTable)[i]) { (*aTable)[i]->SetSpline(true); } >> 1817 } >> 1818 } >> 1819 if (0 < verboseLevel) { >> 1820 G4cout << tname << " table for " << part->GetParticleName() >> 1821 << " is Retrieved from <" << filename << ">" >> 1822 << G4endl; >> 1823 } >> 1824 } 1156 } 1825 } 1157 } 1826 } >> 1827 if(mandatory && !isRetrieved) { >> 1828 if(0 < verboseLevel) { >> 1829 G4cout << tname << " table for " << part->GetParticleName() >> 1830 << " from file <" >> 1831 << filename << "> is not Retrieved" >> 1832 << G4endl; >> 1833 } >> 1834 return false; >> 1835 } 1158 return true; 1836 return true; 1159 } 1837 } 1160 1838 1161 //....oooOO0OOooo........oooOO0OOooo........o 1839 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1162 1840 1163 G4double G4VEnergyLossProcess::GetDEDXDispers 1841 G4double G4VEnergyLossProcess::GetDEDXDispersion( 1164 const G4Mat 1842 const G4MaterialCutsCouple *couple, 1165 const G4Dyn 1843 const G4DynamicParticle* dp, 1166 G4dou 1844 G4double length) 1167 { 1845 { 1168 DefineMaterial(couple); 1846 DefineMaterial(couple); 1169 G4double ekin = dp->GetKineticEnergy(); 1847 G4double ekin = dp->GetKineticEnergy(); 1170 SelectModel(ekin*massRatio); 1848 SelectModel(ekin*massRatio); 1171 G4double tmax = currentModel->MaxSecondaryK 1849 G4double tmax = currentModel->MaxSecondaryKinEnergy(dp); 1172 G4double tcut = std::min(tmax,(*theCuts)[cu << 1850 tmax = std::min(tmax,(*theCuts)[currentCoupleIndex]); 1173 G4double d = 0.0; 1851 G4double d = 0.0; 1174 G4VEmFluctuationModel* fm = currentModel->G 1852 G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations(); 1175 if(nullptr != fm) { d = fm->Dispersion(curr << 1853 if(fm) { d = fm->Dispersion(currentMaterial,dp,tmax,length); } 1176 return d; 1854 return d; 1177 } 1855 } 1178 1856 1179 //....oooOO0OOooo........oooOO0OOooo........o 1857 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1180 1858 1181 G4double << 1859 G4double G4VEnergyLossProcess::CrossSectionPerVolume( 1182 G4VEnergyLossProcess::CrossSectionPerVolume(G << 1860 G4double kineticEnergy, const G4MaterialCutsCouple* couple) 1183 c << 1184 G << 1185 { 1861 { 1186 // Cross section per volume is calculated 1862 // Cross section per volume is calculated 1187 DefineMaterial(couple); 1863 DefineMaterial(couple); 1188 G4double cross = 0.0; 1864 G4double cross = 0.0; 1189 if (nullptr != theLambdaTable) { << 1865 if(theLambdaTable) { 1190 cross = GetLambdaForScaledEnergy(kineticE << 1866 cross = GetLambdaForScaledEnergy(kineticEnergy*massRatio); 1191 logKinet << 1192 } else { 1867 } else { 1193 SelectModel(kineticEnergy*massRatio); 1868 SelectModel(kineticEnergy*massRatio); 1194 cross = (!baseMat) ? biasFactor : biasFac << 1869 cross = biasFactor*(*theDensityFactor)[currentCoupleIndex] 1195 cross *= (currentModel->CrossSectionPerVo << 1870 *(currentModel->CrossSectionPerVolume(currentMaterial, 1196 << 1871 particle, kineticEnergy, >> 1872 (*theCuts)[currentCoupleIndex])); 1197 } 1873 } 1198 return std::max(cross, 0.0); << 1874 if(cross < 0.0) { cross = 0.0; } >> 1875 return cross; 1199 } 1876 } 1200 1877 1201 //....oooOO0OOooo........oooOO0OOooo........o 1878 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1202 1879 1203 G4double G4VEnergyLossProcess::MeanFreePath(c 1880 G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track) 1204 { 1881 { 1205 DefineMaterial(track.GetMaterialCutsCouple( 1882 DefineMaterial(track.GetMaterialCutsCouple()); 1206 const G4double kinEnergy = track.GetKine << 1883 preStepLambda = GetLambdaForScaledEnergy(track.GetKineticEnergy()*massRatio); 1207 const G4double logKinEnergy = track.GetDyna << 1884 G4double x = DBL_MAX; 1208 const G4double cs = GetLambdaForScaledEnerg << 1885 if(0.0 < preStepLambda) { x = 1.0/preStepLambda; } 1209 << 1886 return x; 1210 return (0.0 < cs) ? 1.0/cs : DBL_MAX; << 1211 } 1887 } 1212 1888 1213 //....oooOO0OOooo........oooOO0OOooo........o 1889 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1214 1890 1215 G4double G4VEnergyLossProcess::ContinuousStep 1891 G4double G4VEnergyLossProcess::ContinuousStepLimit(const G4Track& track, 1216 << 1892 G4double x, G4double y, 1217 << 1893 G4double& z) 1218 { 1894 { 1219 return AlongStepGetPhysicalInteractionLengt << 1895 G4GPILSelection sel; >> 1896 return AlongStepGetPhysicalInteractionLength(track, x, y, z, &sel); 1220 } 1897 } 1221 1898 1222 //....oooOO0OOooo........oooOO0OOooo........o 1899 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1223 1900 1224 G4double G4VEnergyLossProcess::GetMeanFreePat 1901 G4double G4VEnergyLossProcess::GetMeanFreePath( 1225 const G4Track& t 1902 const G4Track& track, 1226 G4double, 1903 G4double, 1227 G4ForceCondition 1904 G4ForceCondition* condition) 1228 1905 1229 { 1906 { 1230 *condition = NotForced; 1907 *condition = NotForced; 1231 return MeanFreePath(track); 1908 return MeanFreePath(track); 1232 } 1909 } 1233 1910 1234 //....oooOO0OOooo........oooOO0OOooo........o 1911 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1235 1912 1236 G4double G4VEnergyLossProcess::GetContinuousS 1913 G4double G4VEnergyLossProcess::GetContinuousStepLimit( 1237 const G4Track&, << 1914 const G4Track&, 1238 G4double, G4double, G4double& 1915 G4double, G4double, G4double&) 1239 { 1916 { 1240 return DBL_MAX; 1917 return DBL_MAX; 1241 } 1918 } 1242 1919 1243 //....oooOO0OOooo........oooOO0OOooo........o 1920 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1244 1921 1245 G4PhysicsVector* 1922 G4PhysicsVector* 1246 G4VEnergyLossProcess::LambdaPhysicsVector(con << 1923 G4VEnergyLossProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*, 1247 G4d << 1924 G4double) 1248 { 1925 { 1249 DefineMaterial(couple); << 1926 G4PhysicsVector* v = 1250 G4PhysicsVector* v = (*theLambdaTable)[base << 1927 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nBins); 1251 return new G4PhysicsVector(*v); << 1928 v->SetSpline(lManager->SplineFlag()); >> 1929 return v; >> 1930 } >> 1931 >> 1932 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1933 >> 1934 void G4VEnergyLossProcess::AddCollaborativeProcess( >> 1935 G4VEnergyLossProcess* p) >> 1936 { >> 1937 G4bool add = true; >> 1938 if(p->GetProcessName() != "eBrem") { add = false; } >> 1939 if(add && nProcesses > 0) { >> 1940 for(G4int i=0; i<nProcesses; ++i) { >> 1941 if(p == scProcesses[i]) { >> 1942 add = false; >> 1943 break; >> 1944 } >> 1945 } >> 1946 } >> 1947 if(add) { >> 1948 scProcesses.push_back(p); >> 1949 ++nProcesses; >> 1950 if (1 < verboseLevel) { >> 1951 G4cout << "### The process " << p->GetProcessName() >> 1952 << " is added to the list of collaborative processes of " >> 1953 << GetProcessName() << G4endl; >> 1954 } >> 1955 } 1252 } 1956 } 1253 1957 1254 //....oooOO0OOooo........oooOO0OOooo........o 1958 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1255 1959 1256 void 1960 void 1257 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsT 1961 G4VEnergyLossProcess::SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType) 1258 { 1962 { 1259 if(1 < verboseLevel) { << 1963 G4bool verb = false; 1260 G4cout << "### Set DEDX table " << p << " << 1261 << " " << theDEDXunRestrictedTable << << 1262 << " for " << particle->GetParticl << 1263 << " and process " << GetProcessNa << 1264 << " type=" << tType << " isIonisation:" << 1265 } << 1266 if(fTotal == tType) { 1964 if(fTotal == tType) { 1267 theDEDXunRestrictedTable = p; 1965 theDEDXunRestrictedTable = p; >> 1966 if(p) { >> 1967 size_t n = p->length(); >> 1968 G4PhysicsVector* pv = (*p)[0]; >> 1969 G4double emax = maxKinEnergyCSDA; >> 1970 >> 1971 for (size_t i=0; i<n; ++i) { >> 1972 G4double dedx = 0.0; >> 1973 pv = (*p)[i]; >> 1974 if(pv) { >> 1975 dedx = pv->Value(emax, idxDEDXunRestricted); >> 1976 } else { >> 1977 pv = (*p)[(*theDensityIdx)[i]]; >> 1978 if(pv) { >> 1979 dedx = >> 1980 pv->Value(emax, idxDEDXunRestricted)*(*theDensityFactor)[i]; >> 1981 } >> 1982 } >> 1983 theDEDXAtMaxEnergy[i] = dedx; >> 1984 //G4cout << "i= " << i << " emax(MeV)= " << emax/MeV<< " dedx= " >> 1985 //<< dedx << G4endl; >> 1986 } >> 1987 } >> 1988 1268 } else if(fRestricted == tType) { 1989 } else if(fRestricted == tType) { 1269 theDEDXTable = p; << 1990 if(verb) { 1270 if(isMaster && nullptr == baseParticle) { << 1991 G4cout<< "G4VEnergyLossProcess::SetDEDXTable " 1271 theData->UpdateTable(theDEDXTable, 0); << 1992 << particle->GetParticleName() >> 1993 << " oldTable " << theDEDXTable << " newTable " << p >> 1994 << " ion " << theIonisationTable >> 1995 << " IsMaster " << isMaster >> 1996 << " " << GetProcessName() << G4endl; >> 1997 G4cout << (*p) << G4endl; 1272 } 1998 } >> 1999 theDEDXTable = p; >> 2000 } else if(fSubRestricted == tType) { >> 2001 theDEDXSubTable = p; 1273 } else if(fIsIonisation == tType) { 2002 } else if(fIsIonisation == tType) { 1274 theIonisationTable = p; << 2003 if(verb) { 1275 if(isMaster && nullptr == baseParticle) { << 2004 G4cout<< "G4VEnergyLossProcess::SetIonisationTable " 1276 theData->UpdateTable(theIonisationTable << 2005 << particle->GetParticleName() >> 2006 << " oldTable " << theDEDXTable << " newTable " << p >> 2007 << " ion " << theIonisationTable >> 2008 << " IsMaster " << isMaster >> 2009 << " " << GetProcessName() << G4endl; 1277 } 2010 } >> 2011 theIonisationTable = p; >> 2012 } else if(fIsSubIonisation == tType) { >> 2013 theIonisationSubTable = p; 1278 } 2014 } 1279 } 2015 } 1280 2016 1281 //....oooOO0OOooo........oooOO0OOooo........o 2017 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1282 2018 1283 void G4VEnergyLossProcess::SetCSDARangeTable( 2019 void G4VEnergyLossProcess::SetCSDARangeTable(G4PhysicsTable* p) 1284 { 2020 { 1285 theCSDARangeTable = p; << 2021 theCSDARangeTable = p; >> 2022 >> 2023 if(p) { >> 2024 size_t n = p->length(); >> 2025 G4PhysicsVector* pv; >> 2026 G4double emax = maxKinEnergyCSDA; >> 2027 >> 2028 for (size_t i=0; i<n; ++i) { >> 2029 pv = (*p)[i]; >> 2030 G4double rmax = 0.0; >> 2031 if(pv) { rmax = pv->Value(emax, idxCSDA); } >> 2032 else { >> 2033 pv = (*p)[(*theDensityIdx)[i]]; >> 2034 if(pv) { rmax = pv->Value(emax, idxCSDA)/(*theDensityFactor)[i]; } >> 2035 } >> 2036 theRangeAtMaxEnergy[i] = rmax; >> 2037 //G4cout << "i= " << i << " Emax(MeV)= " << emax/MeV << " Rmax= " >> 2038 //<< rmax<< G4endl; >> 2039 } >> 2040 } 1286 } 2041 } 1287 2042 1288 //....oooOO0OOooo........oooOO0OOooo........o 2043 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1289 2044 1290 void G4VEnergyLossProcess::SetRangeTableForLo 2045 void G4VEnergyLossProcess::SetRangeTableForLoss(G4PhysicsTable* p) 1291 { 2046 { 1292 theRangeTableForLoss = p; 2047 theRangeTableForLoss = p; >> 2048 if(1 < verboseLevel) { >> 2049 G4cout << "### Set Range table " << p >> 2050 << " for " << particle->GetParticleName() >> 2051 << " and process " << GetProcessName() << G4endl; >> 2052 } >> 2053 } >> 2054 >> 2055 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 2056 >> 2057 void G4VEnergyLossProcess::SetSecondaryRangeTable(G4PhysicsTable* p) >> 2058 { >> 2059 theSecondaryRangeTable = p; >> 2060 if(1 < verboseLevel) { >> 2061 G4cout << "### Set SecondaryRange table " << p >> 2062 << " for " << particle->GetParticleName() >> 2063 << " and process " << GetProcessName() << G4endl; >> 2064 } 1293 } 2065 } 1294 2066 1295 //....oooOO0OOooo........oooOO0OOooo........o 2067 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1296 2068 1297 void G4VEnergyLossProcess::SetInverseRangeTab 2069 void G4VEnergyLossProcess::SetInverseRangeTable(G4PhysicsTable* p) 1298 { 2070 { 1299 theInverseRangeTable = p; 2071 theInverseRangeTable = p; >> 2072 if(1 < verboseLevel) { >> 2073 G4cout << "### Set InverseRange table " << p >> 2074 << " for " << particle->GetParticleName() >> 2075 << " and process " << GetProcessName() << G4endl; >> 2076 } 1300 } 2077 } 1301 2078 1302 //....oooOO0OOooo........oooOO0OOooo........o 2079 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1303 2080 1304 void G4VEnergyLossProcess::SetLambdaTable(G4P 2081 void G4VEnergyLossProcess::SetLambdaTable(G4PhysicsTable* p) 1305 { 2082 { 1306 if(1 < verboseLevel) { 2083 if(1 < verboseLevel) { 1307 G4cout << "### Set Lambda table " << p << << 2084 G4cout << "### Set Lambda table " << p 1308 << " for " << particle->GetParticl << 2085 << " for " << particle->GetParticleName() 1309 << " and process " << GetProcessNa 2086 << " and process " << GetProcessName() << G4endl; 1310 } 2087 } 1311 theLambdaTable = p; << 2088 theLambdaTable = p; 1312 tablesAreBuilt = true; 2089 tablesAreBuilt = true; 1313 2090 1314 if(isMaster && nullptr != p) { << 2091 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 1315 delete theEnergyOfCrossSectionMax; << 2092 theDensityFactor = bld->GetDensityFactors(); 1316 theEnergyOfCrossSectionMax = nullptr; << 2093 theDensityIdx = bld->GetCoupleIndexes(); 1317 if(fEmTwoPeaks == fXSType) { << 2094 1318 if(nullptr != fXSpeaks) { << 2095 if(theLambdaTable) { 1319 for(auto & ptr : *fXSpeaks) { delete ptr; } << 2096 size_t n = theLambdaTable->length(); 1320 delete fXSpeaks; << 2097 G4PhysicsVector* pv = (*theLambdaTable)[0]; >> 2098 G4double e, ss, smax, emax; >> 2099 >> 2100 size_t i; >> 2101 >> 2102 // first loop on existing vectors >> 2103 for (i=0; i<n; ++i) { >> 2104 pv = (*theLambdaTable)[i]; >> 2105 if(pv) { >> 2106 size_t nb = pv->GetVectorLength(); >> 2107 emax = DBL_MAX; >> 2108 smax = 0.0; >> 2109 if(nb > 0) { >> 2110 for (size_t j=0; j<nb; ++j) { >> 2111 e = pv->Energy(j); >> 2112 ss = (*pv)(j); >> 2113 if(ss > smax) { >> 2114 smax = ss; >> 2115 emax = e; >> 2116 } >> 2117 } >> 2118 } >> 2119 theEnergyOfCrossSectionMax[i] = emax; >> 2120 theCrossSectionMax[i] = smax; >> 2121 if(1 < verboseLevel) { >> 2122 G4cout << "For " << particle->GetParticleName() >> 2123 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 2124 << " lambda= " << smax << G4endl; >> 2125 } 1321 } 2126 } 1322 G4LossTableBuilder* bld = lManager->Get << 1323 fXSpeaks = G4EmUtility::FillPeaksStruct << 1324 if(nullptr == fXSpeaks) { fXSType = fEm << 1325 } 2127 } 1326 if(fXSType == fEmOnePeak) { << 2128 // second loop using base materials 1327 theEnergyOfCrossSectionMax = G4EmUtilit << 2129 for (i=0; i<n; ++i) { 1328 if(nullptr == theEnergyOfCrossSectionMa << 2130 pv = (*theLambdaTable)[i]; >> 2131 if(!pv){ >> 2132 G4int j = (*theDensityIdx)[i]; >> 2133 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 2134 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 2135 } 1329 } 2136 } 1330 } 2137 } 1331 } 2138 } 1332 2139 1333 //....oooOO0OOooo........oooOO0OOooo........o 2140 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1334 2141 1335 void G4VEnergyLossProcess::SetEnergyOfCrossSe << 2142 void G4VEnergyLossProcess::SetSubLambdaTable(G4PhysicsTable* p) 1336 { 2143 { 1337 theEnergyOfCrossSectionMax = p; << 2144 theSubLambdaTable = p; 1338 } << 2145 if(1 < verboseLevel) { 1339 << 2146 G4cout << "### Set SebLambda table " << p 1340 //....oooOO0OOooo........oooOO0OOooo........o << 2147 << " for " << particle->GetParticleName() 1341 << 2148 << " and process " << GetProcessName() << G4endl; 1342 void G4VEnergyLossProcess::SetTwoPeaksXS(std: << 2149 } 1343 { << 1344 fXSpeaks = ptr; << 1345 } 2150 } 1346 2151 1347 //....oooOO0OOooo........oooOO0OOooo........o 2152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1348 2153 1349 const G4Element* G4VEnergyLossProcess::GetCur 2154 const G4Element* G4VEnergyLossProcess::GetCurrentElement() const 1350 { 2155 { 1351 return (nullptr != currentModel) << 2156 const G4Element* elm = 0; 1352 ? currentModel->GetCurrentElement(current << 2157 if(currentModel) { elm = currentModel->GetCurrentElement(); } >> 2158 return elm; 1353 } 2159 } 1354 2160 1355 //....oooOO0OOooo........oooOO0OOooo........o 2161 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1356 2162 1357 void G4VEnergyLossProcess::SetCrossSectionBia 2163 void G4VEnergyLossProcess::SetCrossSectionBiasingFactor(G4double f, 1358 << 2164 G4bool flag) 1359 { 2165 { 1360 if(f > 0.0) { 2166 if(f > 0.0) { 1361 biasFactor = f; 2167 biasFactor = f; 1362 weightFlag = flag; 2168 weightFlag = flag; 1363 if(1 < verboseLevel) { 2169 if(1 < verboseLevel) { 1364 G4cout << "### SetCrossSectionBiasingFa 2170 G4cout << "### SetCrossSectionBiasingFactor: for " 1365 << " process " << GetProcessName << 2171 << " process " << GetProcessName() 1366 << " biasFactor= " << f << " wei << 2172 << " biasFactor= " << f << " weightFlag= " << flag 1367 << G4endl; << 2173 << G4endl; 1368 } 2174 } 1369 } 2175 } 1370 } 2176 } 1371 2177 1372 //....oooOO0OOooo........oooOO0OOooo........o 2178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1373 2179 1374 void G4VEnergyLossProcess::ActivateForcedInte << 2180 void 1375 << 2181 G4VEnergyLossProcess::ActivateForcedInteraction(G4double length, 1376 << 2182 const G4String& region, >> 2183 G4bool flag) 1377 { 2184 { 1378 if(nullptr == biasManager) { biasManager = << 2185 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 1379 if(1 < verboseLevel) { 2186 if(1 < verboseLevel) { 1380 G4cout << "### ActivateForcedInteraction: 2187 G4cout << "### ActivateForcedInteraction: for " 1381 << " process " << GetProcessName() << 2188 << " process " << GetProcessName() 1382 << " length(mm)= " << length/mm << 2189 << " length(mm)= " << length/mm 1383 << " in G4Region <" << region << 2190 << " in G4Region <" << region 1384 << "> weightFlag= " << flag << 2191 << "> weightFlag= " << flag 1385 << G4endl; << 2192 << G4endl; 1386 } 2193 } 1387 weightFlag = flag; 2194 weightFlag = flag; 1388 biasManager->ActivateForcedInteraction(leng 2195 biasManager->ActivateForcedInteraction(length, region); 1389 } 2196 } 1390 2197 1391 //....oooOO0OOooo........oooOO0OOooo........o 2198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1392 2199 1393 void 2200 void 1394 G4VEnergyLossProcess::ActivateSecondaryBiasin 2201 G4VEnergyLossProcess::ActivateSecondaryBiasing(const G4String& region, 1395 << 2202 G4double factor, 1396 << 2203 G4double energyLimit) 1397 { 2204 { 1398 if (0.0 <= factor) { 2205 if (0.0 <= factor) { >> 2206 1399 // Range cut can be applied only for e- 2207 // Range cut can be applied only for e- 1400 if(0.0 == factor && secondaryParticle != 2208 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 1401 { return; } 2209 { return; } 1402 2210 1403 if(nullptr == biasManager) { biasManager << 2211 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 1404 biasManager->ActivateSecondaryBiasing(reg 2212 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 1405 if(1 < verboseLevel) { 2213 if(1 < verboseLevel) { 1406 G4cout << "### ActivateSecondaryBiasing 2214 G4cout << "### ActivateSecondaryBiasing: for " 1407 << " process " << GetProcessName << 2215 << " process " << GetProcessName() 1408 << " factor= " << factor << 2216 << " factor= " << factor 1409 << " in G4Region <" << region << 2217 << " in G4Region <" << region 1410 << "> energyLimit(MeV)= " << ene << 2218 << "> energyLimit(MeV)= " << energyLimit/MeV 1411 << G4endl; << 2219 << G4endl; 1412 } 2220 } 1413 } 2221 } 1414 } 2222 } 1415 2223 1416 //....oooOO0OOooo........oooOO0OOooo........o 2224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1417 2225 1418 void G4VEnergyLossProcess::SetIonisation(G4bo << 1419 { << 1420 isIonisation = val; << 1421 aGPILSelection = (val) ? CandidateForSelect << 1422 } << 1423 << 1424 //....oooOO0OOooo........oooOO0OOooo........o << 1425 << 1426 void G4VEnergyLossProcess::SetLinearLossLimi << 1427 { << 1428 if(0.0 < val && val < 1.0) { << 1429 linLossLimit = val; << 1430 actLinLossLimit = true; << 1431 } else { PrintWarning("SetLinearLossLimit", << 1432 } << 1433 << 1434 //....oooOO0OOooo........oooOO0OOooo........o << 1435 << 1436 void G4VEnergyLossProcess::SetStepFunction(G4 << 1437 { << 1438 if(0.0 < v1 && 0.0 < v2) { << 1439 dRoverRange = std::min(1.0, v1); << 1440 finalRange = std::min(v2, 1.e+50); << 1441 } else { << 1442 PrintWarning("SetStepFunctionV1", v1); << 1443 PrintWarning("SetStepFunctionV2", v2); << 1444 } << 1445 } << 1446 << 1447 //....oooOO0OOooo........oooOO0OOooo........o << 1448 << 1449 void G4VEnergyLossProcess::SetLowestEnergyLim << 1450 { << 1451 if(1.e-18 < val && val < 1.e+50) { lowestKi << 1452 else { PrintWarning("SetLowestEnergyLimit", << 1453 } << 1454 << 1455 //....oooOO0OOooo........oooOO0OOooo........o << 1456 << 1457 void G4VEnergyLossProcess::SetDEDXBinning(G4i << 1458 { << 1459 if(2 < n && n < 1000000000) { << 1460 nBins = n; << 1461 actBinning = true; << 1462 } else { << 1463 G4double e = (G4double)n; << 1464 PrintWarning("SetDEDXBinning", e); << 1465 } << 1466 } << 1467 << 1468 //....oooOO0OOooo........oooOO0OOooo........o << 1469 << 1470 void G4VEnergyLossProcess::SetMinKinEnergy(G4 << 1471 { << 1472 if(1.e-18 < e && e < maxKinEnergy) { << 1473 minKinEnergy = e; << 1474 actMinKinEnergy = true; << 1475 } else { PrintWarning("SetMinKinEnergy", e) << 1476 } << 1477 << 1478 //....oooOO0OOooo........oooOO0OOooo........o << 1479 << 1480 void G4VEnergyLossProcess::SetMaxKinEnergy(G4 << 1481 { << 1482 if(minKinEnergy < e && e < 1.e+50) { << 1483 maxKinEnergy = e; << 1484 actMaxKinEnergy = true; << 1485 if(e < maxKinEnergyCSDA) { maxKinEnergyCS << 1486 } else { PrintWarning("SetMaxKinEnergy", e) << 1487 } << 1488 << 1489 //....oooOO0OOooo........oooOO0OOooo........o << 1490 << 1491 void G4VEnergyLossProcess::PrintWarning(const << 1492 { << 1493 G4String ss = "G4VEnergyLossProcess::" + ti << 1494 G4ExceptionDescription ed; << 1495 ed << "Parameter is out of range: " << val << 1496 << " it will have no effect!\n" << " Pr << 1497 << GetProcessName() << " nbins= " << nB << 1498 << " Emin(keV)= " << minKinEnergy/keV << 1499 << " Emax(GeV)= " << maxKinEnergy/GeV; << 1500 G4Exception(ss, "em0044", JustWarning, ed); << 1501 } << 1502 << 1503 //....oooOO0OOooo........oooOO0OOooo........o << 1504 << 1505 void G4VEnergyLossProcess::ProcessDescription << 1506 { << 1507 if(nullptr != particle) { StreamInfo(out, * << 1508 } << 1509 << 1510 //....oooOO0OOooo........oooOO0OOooo........o << 1511 2226