Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.hh,v 1.61 2010-08-17 17:36:59 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 42 // 09-08-04 optimise integral option (V.Ivanchenko) >> 43 // 11-08-04 add protected methods to access cuts (V.Ivanchenko) >> 44 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 45 // 16-09-04 Add flag for LambdaTable and method RecalculateLambda (VI) >> 46 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 47 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 48 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) >> 49 // 09-05-05 Fix problem in logic when path boundary between materials (VI) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 01-02-06 put default value A=0. to keep compatibility with v5.2 (mma) >> 52 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 53 // 12-09-06 add SetModel() (mma) >> 54 // 25-09-07 More accurate handling zero xsect in >> 55 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 56 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 57 // 15-07-08 Reorder class members for further multi-thread development (VI) >> 58 // 17-02-10 Added pointer currentParticle (VI) 38 // 59 // 39 // Class Description: 60 // Class Description: 40 // 61 // 41 // It is the base class - EM discrete and rest << 62 // It is the unified Discrete process 42 63 43 // ------------------------------------------- 64 // ------------------------------------------------------------------- 44 // 65 // 45 66 46 #ifndef G4VEmProcess_h 67 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 68 #define G4VEmProcess_h 1 48 69 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 << 51 #include "G4VDiscreteProcess.hh" 70 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 71 #include "globals.hh" 53 #include "G4Material.hh" 72 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 73 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 74 #include "G4Track.hh" >> 75 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 76 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 77 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" 78 #include "G4ParticleChangeForGamma.hh" 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 79 65 class G4Step; 80 class G4Step; 66 class G4VEmModel; 81 class G4VEmModel; 67 class G4DataVector; 82 class G4DataVector; 68 class G4VParticleChange; 83 class G4VParticleChange; 69 class G4PhysicsTable; 84 class G4PhysicsTable; 70 class G4PhysicsVector; 85 class G4PhysicsVector; 71 class G4EmBiasingManager; 86 class G4EmBiasingManager; 72 class G4LossTableManager; << 73 87 74 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 89 76 class G4VEmProcess : public G4VDiscreteProcess 90 class G4VEmProcess : public G4VDiscreteProcess 77 { 91 { 78 public: 92 public: 79 93 80 G4VEmProcess(const G4String& name, G4Process << 94 G4VEmProcess(const G4String& name, >> 95 G4ProcessType type = fElectromagnetic); 81 96 82 ~G4VEmProcess() override; << 97 virtual ~G4VEmProcess(); 83 98 84 //------------------------------------------ 99 //------------------------------------------------------------------------ 85 // Virtual methods to be implemented in conc 100 // Virtual methods to be implemented in concrete processes 86 //------------------------------------------ 101 //------------------------------------------------------------------------ 87 102 88 void ProcessDescription(std::ostream& outFil << 103 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 89 104 90 protected: << 105 virtual void PrintInfo() = 0; 91 106 92 virtual void StreamProcessInfo(std::ostream& << 107 protected: 93 108 94 virtual void InitialiseProcess(const G4Parti 109 virtual void InitialiseProcess(const G4ParticleDefinition*) = 0; 95 110 96 //------------------------------------------ 111 //------------------------------------------------------------------------ >> 112 // Method with standard implementation; may be overwritten if needed >> 113 //------------------------------------------------------------------------ >> 114 >> 115 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, >> 116 const G4Material*); >> 117 >> 118 //------------------------------------------------------------------------ 97 // Implementation of virtual methods common 119 // Implementation of virtual methods common to all Discrete processes 98 //------------------------------------------ 120 //------------------------------------------------------------------------ 99 121 100 public: 122 public: 101 123 102 // Initialise for build of tables 124 // Initialise for build of tables 103 void PreparePhysicsTable(const G4ParticleDef << 125 void PreparePhysicsTable(const G4ParticleDefinition&); 104 126 105 // Build physics table during initialisation 127 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 128 void BuildPhysicsTable(const G4ParticleDefinition&); 107 129 108 // Called before tracking of each new G4Trac << 130 void PrintInfoDefinition(); 109 void StartTracking(G4Track*) override; << 110 131 111 // implementation of virtual method, specifi 132 // implementation of virtual method, specific for G4VEmProcess 112 G4double PostStepGetPhysicalInteractionLengt 133 G4double PostStepGetPhysicalInteractionLength( 113 const G4Track& tr 134 const G4Track& track, 114 G4double previo 135 G4double previousStepSize, 115 G4ForceCondition* << 136 G4ForceCondition* condition); 116 137 117 // implementation of virtual method, specifi 138 // implementation of virtual method, specific for G4VEmProcess 118 G4VParticleChange* PostStepDoIt(const G4Trac << 139 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 119 140 120 // Store PhysicsTable in a file. 141 // Store PhysicsTable in a file. 121 // Return false in case of failure at I/O 142 // Return false in case of failure at I/O 122 G4bool StorePhysicsTable(const G4ParticleDef 143 G4bool StorePhysicsTable(const G4ParticleDefinition*, 123 const G4String& dir << 144 const G4String& directory, 124 G4bool ascii = fals << 145 G4bool ascii = false); 125 146 126 // Retrieve Physics from a file. 147 // Retrieve Physics from a file. 127 // (return true if the Physics Table can be 148 // (return true if the Physics Table can be build by using file) 128 // (return false if the process has no funct 149 // (return false if the process has no functionality or in case of failure) 129 // File name should is constructed as proces 150 // File name should is constructed as processName+particleName and the 130 // should be placed under the directory spec << 151 // should be placed under the directory specifed by the argument. 131 G4bool RetrievePhysicsTable(const G4Particle 152 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 132 const G4String& << 153 const G4String& directory, 133 G4bool ascii) ov << 154 G4bool ascii); 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 155 138 //------------------------------------------ 156 //------------------------------------------------------------------------ 139 // Specific methods for Discrete EM post ste 157 // Specific methods for Discrete EM post step simulation 140 //------------------------------------------ 158 //------------------------------------------------------------------------ 141 159 142 // The main method to access cross section p << 160 // It returns the cross section per volume for energy/ material 143 inline G4double GetLambda(G4double kinEnergy << 161 G4double CrossSectionPerVolume(G4double kineticEnergy, 144 const G4MaterialCu << 162 const G4MaterialCutsCouple* couple); 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 163 151 // It returns the cross section of the proce 164 // It returns the cross section of the process per atom 152 G4double ComputeCrossSectionPerAtom(G4double 165 G4double ComputeCrossSectionPerAtom(G4double kineticEnergy, 153 G4double << 166 G4double Z, G4double A=0., 154 G4double << 167 G4double cut=0.0); >> 168 >> 169 G4double MeanFreePath(const G4Track& track); 155 170 156 inline G4double MeanFreePath(const G4Track& << 171 // It returns cross section per volume >> 172 inline G4double GetLambda(G4double& kinEnergy, >> 173 const G4MaterialCutsCouple* couple); 157 174 158 //------------------------------------------ 175 //------------------------------------------------------------------------ 159 // Specific methods to build and access Phys 176 // Specific methods to build and access Physics Tables 160 //------------------------------------------ 177 //------------------------------------------------------------------------ 161 178 162 // Binning for lambda table 179 // Binning for lambda table 163 void SetLambdaBinning(G4int nbins); << 180 inline void SetLambdaBinning(G4int nbins); >> 181 inline G4int LambdaBinning() const; 164 182 165 // Min kinetic energy for tables 183 // Min kinetic energy for tables 166 void SetMinKinEnergy(G4double e); << 184 inline void SetMinKinEnergy(G4double e); 167 << 185 inline G4double MinKinEnergy() const; 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 186 171 // Max kinetic energy for tables 187 // Max kinetic energy for tables 172 void SetMaxKinEnergy(G4double e); << 188 inline void SetMaxKinEnergy(G4double e); >> 189 inline G4double MaxKinEnergy() const; 173 190 174 // Cross section table pointers << 191 // Cross section table pointer 175 inline G4PhysicsTable* LambdaTable() const; << 192 inline const G4PhysicsTable* LambdaTable() const; 176 inline G4PhysicsTable* LambdaTablePrim() con << 177 inline void SetLambdaTable(G4PhysicsTable*); << 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 179 << 180 // Integral method type and peak positions << 181 inline std::vector<G4double>* EnergyOfCrossS << 182 inline void SetEnergyOfCrossSectionMax(std:: << 183 inline G4CrossSectionType CrossSectionType() << 184 inline void SetCrossSectionType(G4CrossSecti << 185 193 186 //------------------------------------------ 194 //------------------------------------------------------------------------ 187 // Define and access particle type 195 // Define and access particle type 188 //------------------------------------------ 196 //------------------------------------------------------------------------ 189 197 190 inline const G4ParticleDefinition* Particle( 198 inline const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary 199 inline const G4ParticleDefinition* SecondaryParticle() const; 192 200 193 protected: << 194 << 195 //------------------------------------------ 201 //------------------------------------------------------------------------ 196 // Specific methods to set, access, modify m 202 // Specific methods to set, access, modify models and basic parameters 197 //------------------------------------------ 203 //------------------------------------------------------------------------ 198 << 204 >> 205 protected: 199 // Select model in run time 206 // Select model in run time 200 inline G4VEmModel* SelectModel(G4double kinE << 207 inline G4VEmModel* SelectModel(G4double& kinEnergy, size_t index); 201 208 202 public: 209 public: 203 << 210 // Select model by energy and region index 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 211 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 206 st << 212 size_t& idxRegion) const; 207 213 208 // Add model for region, smaller value of or 214 // Add model for region, smaller value of order defines which 209 // model will be selected for a given energy 215 // model will be selected for a given energy interval 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 216 void AddEmModel(G4int, G4VEmModel*, const G4Region* region = 0); 211 << 212 // Assign a model to a process local list, t << 213 // the derived process should execute AddEmM << 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 215 << 216 inline G4int NumberOfModels() const; << 217 << 218 // return a model from the local list << 219 inline G4VEmModel* EmModel(std::size_t index << 220 217 221 // Access to active model << 218 // Assign a model to a process 222 inline const G4VEmModel* GetCurrentModel() c << 219 void SetModel(G4VEmModel*, G4int index = 1); >> 220 >> 221 // return the assigned model >> 222 G4VEmModel* Model(G4int index = 1); >> 223 >> 224 // Define new energy range for the model identified by the name >> 225 void UpdateEmModel(const G4String&, G4double, G4double); 223 226 224 // Access to models 227 // Access to models 225 inline G4VEmModel* GetModelByIndex(G4int idx << 228 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false); 226 229 227 // Access to the current G4Element << 230 // access atom on which interaction happens 228 const G4Element* GetCurrentElement() const; 231 const G4Element* GetCurrentElement() const; 229 232 230 // Biasing parameters 233 // Biasing parameters 231 void SetCrossSectionBiasingFactor(G4double f 234 void SetCrossSectionBiasingFactor(G4double f, G4bool flag = true); 232 inline G4double CrossSectionBiasingFactor() 235 inline G4double CrossSectionBiasingFactor() const; 233 236 234 // Activate forced interaction 237 // Activate forced interaction 235 void ActivateForcedInteraction(G4double leng 238 void ActivateForcedInteraction(G4double length = 0.0, 236 const G4Strin << 239 const G4String& r = "", 237 G4bool flag = << 240 G4bool flag = true); 238 << 239 void ActivateSecondaryBiasing(const G4String << 240 G4double energ << 241 << 242 inline void SetEmMasterProcess(const G4VEmPr << 243 241 244 inline void SetBuildTableFlag(G4bool val); << 242 // Single scattering parameters 245 << 243 inline void SetPolarAngleLimit(G4double a); 246 inline void CurrentSetup(const G4MaterialCut << 244 inline G4double PolarAngleLimit() const; 247 245 248 inline G4bool UseBaseMaterial() const; << 246 inline void SetLambdaFactor(G4double val); 249 247 250 void BuildLambdaTable(); << 248 inline void SetIntegral(G4bool val); >> 249 inline G4bool IsIntegral() const; 251 250 252 void StreamInfo(std::ostream& outFile, const << 251 inline void SetApplyCuts(G4bool val); 253 G4bool rst=false) const; << 254 252 255 // hide copy constructor and assignment oper << 253 inline void SetBuildTableFlag(G4bool val); 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 254 259 //------------------------------------------ 255 //------------------------------------------------------------------------ 260 // Other generic methods 256 // Other generic methods 261 //------------------------------------------ 257 //------------------------------------------------------------------------ 262 258 263 protected: 259 protected: 264 260 265 G4double GetMeanFreePath(const G4Track& trac 261 G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 262 G4double previousStepSize, 267 G4ForceCondition* c << 263 G4ForceCondition* condition); 268 264 269 G4PhysicsVector* LambdaPhysicsVector(const G 265 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 266 271 inline void DefineMaterial(const G4MaterialC << 267 inline G4double RecalculateLambda(G4double kinEnergy, 272 << 268 const G4MaterialCutsCouple* couple); 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 269 282 inline G4ParticleChangeForGamma* GetParticle 270 inline G4ParticleChangeForGamma* GetParticleChange(); 283 271 284 inline void SetParticle(const G4ParticleDefi 272 inline void SetParticle(const G4ParticleDefinition* p); 285 273 286 inline void SetSecondaryParticle(const G4Par 274 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 287 275 288 inline std::size_t CurrentMaterialCutsCouple << 276 inline size_t CurrentMaterialCutsCoupleIndex() const; 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 << 292 inline G4bool ApplyCuts() const; << 293 277 294 inline G4double GetGammaEnergyCut(); 278 inline G4double GetGammaEnergyCut(); 295 279 296 inline G4double GetElectronEnergyCut(); 280 inline G4double GetElectronEnergyCut(); 297 281 298 inline void SetStartFromNullFlag(G4bool val) 282 inline void SetStartFromNullFlag(G4bool val); 299 283 300 inline void SetSplineFlag(G4bool val); << 301 << 302 const G4Element* GetTargetElement() const; << 303 << 304 const G4Isotope* GetTargetIsotope() const; << 305 << 306 // these two methods assume that vectors are << 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 << 311 private: 284 private: 312 285 313 void PrintWarning(G4String tit, G4double val << 286 void Clear(); 314 287 315 void ComputeIntegralLambda(G4double kinEnerg << 288 void BuildLambdaTable(); 316 289 317 inline G4double LogEkin(const G4Track&); << 290 void FindLambdaMax(); 318 291 319 inline G4double GetLambdaFromTable(G4double << 292 inline void InitialiseStep(const G4Track&); 320 293 321 inline G4double GetLambdaFromTable(G4double << 294 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 322 295 323 inline G4double GetLambdaFromTablePrim(G4dou << 296 inline void ComputeIntegralLambda(G4double kinEnergy); 324 297 325 inline G4double GetLambdaFromTablePrim(G4dou << 298 inline G4double GetLambdaFromTable(G4double kinEnergy); 326 299 327 inline G4double GetCurrentLambda(G4double ki 300 inline G4double GetCurrentLambda(G4double kinEnergy); 328 301 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl 302 inline G4double ComputeCurrentLambda(G4double kinEnergy); 332 303 333 // ======== pointers ========= << 304 // copy constructor and hide assignment operator >> 305 G4VEmProcess(G4VEmProcess &); >> 306 G4VEmProcess & operator=(const G4VEmProcess &right); >> 307 >> 308 // ======== Parameters of the class fixed at construction ========= >> 309 >> 310 G4EmModelManager* modelManager; >> 311 G4EmBiasingManager* biasManager; >> 312 const G4ParticleDefinition* theGamma; >> 313 const G4ParticleDefinition* theElectron; >> 314 const G4ParticleDefinition* thePositron; >> 315 const G4ParticleDefinition* secondaryParticle; >> 316 >> 317 G4bool buildLambdaTable; >> 318 >> 319 // ======== Parameters of the class fixed at initialisation ======= >> 320 >> 321 std::vector<G4VEmModel*> emModels; >> 322 >> 323 // tables and vectors >> 324 G4PhysicsTable* theLambdaTable; >> 325 std::vector<G4double> theEnergyOfCrossSectionMax; >> 326 std::vector<G4double> theCrossSectionMax; >> 327 >> 328 const std::vector<G4double>* theCuts; >> 329 const std::vector<G4double>* theCutsGamma; >> 330 const std::vector<G4double>* theCutsElectron; >> 331 const std::vector<G4double>* theCutsPositron; >> 332 const std::vector<G4double>* theDensityFactor; >> 333 const std::vector<G4int>* theDensityIdx; >> 334 >> 335 G4int nLambdaBins; >> 336 >> 337 G4double minKinEnergy; >> 338 G4double maxKinEnergy; >> 339 G4double lambdaFactor; >> 340 G4double polarAngleLimit; >> 341 G4double biasFactor; >> 342 >> 343 G4bool integral; >> 344 G4bool applyCuts; >> 345 G4bool startFromNull; 334 346 335 G4EmModelManager* modelManager = << 347 // ======== Cashed values - may be state dependent ================ 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 348 358 protected: 349 protected: 359 350 360 // ======== pointers ========= << 351 G4ParticleChangeForGamma fParticleChange; 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 352 367 private: 353 private: 368 354 369 const std::vector<G4double>* theDensityFacto << 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 << 386 G4double mfpKinEnergy = DBL_MAX; << 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 << 390 private: << 391 << 392 G4CrossSectionType fXSType = fEmNoIntegral; << 393 << 394 G4int numberOfModels = 0; << 395 G4int nLambdaBins = 84; << 396 << 397 protected: << 398 << 399 G4int mainSecondaries = 1; << 400 G4int secID = _EM; << 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 << 410 G4bool isTheMaster = false; << 411 G4bool baseMat = false; << 412 << 413 private: << 414 << 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles 355 std::vector<G4DynamicParticle*> secParticles; 430 G4ParticleChangeForGamma fParticleChange; << 431 356 432 private: << 357 G4VEmModel* currentModel; 433 358 434 // ======== local vectors ========= << 359 const G4ParticleDefinition* particle; 435 std::vector<G4VEmModel*> emModels; << 360 const G4ParticleDefinition* currentParticle; 436 361 >> 362 // cash >> 363 const G4Material* baseMaterial; >> 364 const G4Material* currentMaterial; >> 365 const G4MaterialCutsCouple* currentCouple; >> 366 size_t currentCoupleIndex; >> 367 size_t basedCoupleIndex; >> 368 >> 369 G4double mfpKinEnergy; >> 370 G4double preStepKinEnergy; >> 371 G4double preStepLambda; >> 372 G4double fFactor; >> 373 G4bool biasFlag; >> 374 G4bool weightFlag; 437 }; 375 }; 438 376 439 // ======== Run time inline methods ========== 377 // ======== Run time inline methods ================ 440 378 441 //....oooOO0OOooo........oooOO0OOooo........oo << 379 inline size_t G4VEmProcess::CurrentMaterialCutsCoupleIndex() const 442 << 443 inline std::size_t G4VEmProcess::CurrentMateri << 444 { 380 { 445 return currentCoupleIndex; 381 return currentCoupleIndex; 446 } 382 } 447 383 448 //....oooOO0OOooo........oooOO0OOooo........oo 384 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 449 385 450 inline const G4MaterialCutsCouple* G4VEmProces << 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu 386 inline G4double G4VEmProcess::GetGammaEnergyCut() 458 { 387 { 459 return (*theCutsGamma)[currentCoupleIndex]; 388 return (*theCutsGamma)[currentCoupleIndex]; 460 } 389 } 461 390 462 //....oooOO0OOooo........oooOO0OOooo........oo 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 463 392 464 inline G4double G4VEmProcess::GetElectronEnerg 393 inline G4double G4VEmProcess::GetElectronEnergyCut() 465 { 394 { 466 return (*theCutsElectron)[currentCoupleIndex 395 return (*theCutsElectron)[currentCoupleIndex]; 467 } 396 } 468 397 469 //....oooOO0OOooo........oooOO0OOooo........oo 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 399 471 inline void G4VEmProcess::DefineMaterial(const 400 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 401 { 473 if (couple != currentCouple) { << 402 if(couple != currentCouple) { 474 currentCouple = couple; << 403 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 404 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 405 baseMaterial = currentMaterial->GetBaseMaterial(); 477 fFactor = biasFactor; << 406 currentCoupleIndex = couple->GetIndex(); >> 407 basedCoupleIndex = (*theDensityIdx)[currentCoupleIndex]; >> 408 fFactor = biasFactor*(*theDensityFactor)[currentCoupleIndex]; >> 409 if(!baseMaterial) { baseMaterial = currentMaterial; } 478 mfpKinEnergy = DBL_MAX; 410 mfpKinEnergy = DBL_MAX; 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } 411 } 486 } 412 } 487 413 488 //....oooOO0OOooo........oooOO0OOooo........oo 414 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 415 490 inline 416 inline 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 417 G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy, size_t index) 492 { 418 { 493 if(1 < numberOfModels) { << 419 currentModel = modelManager->SelectModel(kinEnergy, index); 494 currentModel = modelManager->SelectModel(k << 495 } << 496 currentModel->SetCurrentCouple(currentCouple 420 currentModel->SetCurrentCouple(currentCouple); 497 return currentModel; 421 return currentModel; 498 } 422 } 499 423 500 //....oooOO0OOooo........oooOO0OOooo........oo 424 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 501 425 502 inline 426 inline 503 G4VEmModel* G4VEmProcess::SelectModelForMateri 427 G4VEmModel* G4VEmProcess::SelectModelForMaterial(G4double kinEnergy, 504 << 428 size_t& idxRegion) const 505 { 429 { 506 return modelManager->SelectModel(kinEnergy, << 430 return modelManager->SelectModel(kinEnergy, idxRegion); 507 } 431 } 508 432 509 //....oooOO0OOooo........oooOO0OOooo........oo 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 510 434 511 inline G4double G4VEmProcess::GetLambdaFromTab << 435 inline void G4VEmProcess::InitialiseStep(const G4Track& track) 512 { 436 { 513 return ((*theLambdaTable)[basedCoupleIndex]) << 437 currentParticle = track.GetParticleDefinition(); >> 438 preStepKinEnergy = track.GetKineticEnergy(); >> 439 DefineMaterial(track.GetMaterialCutsCouple()); >> 440 SelectModel(preStepKinEnergy, currentCoupleIndex); >> 441 if (theNumberOfInteractionLengthLeft < 0.0) { mfpKinEnergy = DBL_MAX; } 514 } 442 } 515 443 516 //....oooOO0OOooo........oooOO0OOooo........oo 444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 517 445 518 inline G4double G4VEmProcess::LogEkin(const G4 << 446 inline G4double G4VEmProcess::GetLambdaFromTable(G4double e) 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab << 533 { << 534 return ((*theLambdaTablePrim)[basedCoupleInd << 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo << 538 << 539 inline G4double G4VEmProcess::GetLambdaFromTab << 540 { 447 { 541 return ((*theLambdaTablePrim)[basedCoupleInd << 448 return fFactor*((*theLambdaTable)[basedCoupleIndex])->Value(e); 542 } 449 } 543 450 544 //....oooOO0OOooo........oooOO0OOooo........oo 451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 452 546 inline G4double G4VEmProcess::ComputeCurrentLa 453 inline G4double G4VEmProcess::ComputeCurrentLambda(G4double e) 547 { 454 { 548 return currentModel->CrossSectionPerVolume(b << 455 return fFactor * >> 456 (currentModel->CrossSectionPerVolume(baseMaterial,currentParticle, >> 457 e,(*theCuts)[currentCoupleIndex])); 549 } 458 } 550 459 551 //....oooOO0OOooo........oooOO0OOooo........oo 460 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 461 553 inline G4double G4VEmProcess::GetCurrentLambda 462 inline G4double G4VEmProcess::GetCurrentLambda(G4double e) 554 { 463 { 555 if(currentCoupleIndex != coupleIdxLambda || << 464 G4double x = 0.0; 556 coupleIdxLambda = currentCoupleIndex; << 465 if(theLambdaTable) { x = GetLambdaFromTable(e); } 557 fLambdaEnergy = e; << 466 else { x = ComputeCurrentLambda(e); } 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 467 return x; 559 else if(nullptr != theLambdaTable) { fLamb << 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } 468 } 565 469 566 //....oooOO0OOooo........oooOO0OOooo........oo 470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 567 471 568 inline G4double G4VEmProcess::GetCurrentLambda << 472 inline G4double 569 { << 473 G4VEmProcess::GetLambda(G4double& kinEnergy, 570 if(currentCoupleIndex != coupleIdxLambda || << 474 const G4MaterialCutsCouple* couple) 571 coupleIdxLambda = currentCoupleIndex; << 572 fLambdaEnergy = e; << 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } << 580 << 581 //....oooOO0OOooo........oooOO0OOooo........oo << 582 << 583 inline void << 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { 475 { 586 DefineMaterial(couple); 476 DefineMaterial(couple); 587 SelectModel(energy*massRatio, currentCoupleI << 477 SelectModel(kinEnergy, currentCoupleIndex); >> 478 return GetCurrentLambda(kinEnergy); 588 } 479 } 589 480 590 //....oooOO0OOooo........oooOO0OOooo........oo 481 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 591 482 592 inline G4double 483 inline G4double 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 484 G4VEmProcess::RecalculateLambda(G4double e, const G4MaterialCutsCouple* couple) 594 G4double logKinEnergy) << 595 { 485 { 596 CurrentSetup(couple, kinEnergy); << 486 DefineMaterial(couple); 597 return GetCurrentLambda(kinEnergy, logKinEne << 487 SelectModel(e, currentCoupleIndex); >> 488 return ComputeCurrentLambda(e); 598 } 489 } 599 490 600 //....oooOO0OOooo........oooOO0OOooo........oo 491 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 601 492 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 493 inline void G4VEmProcess::ComputeIntegralLambda(G4double e) 603 { 494 { 604 const G4double kinEnergy = track.GetKineticE << 495 mfpKinEnergy = theEnergyOfCrossSectionMax[currentCoupleIndex]; 605 CurrentSetup(track.GetMaterialCutsCouple(), << 496 if (e <= mfpKinEnergy) { 606 const G4double xs = GetCurrentLambda(kinEner << 497 preStepLambda = GetCurrentLambda(e); 607 track.GetDynamicP << 498 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 499 } else { >> 500 G4double e1 = e*lambdaFactor; >> 501 if(e1 > mfpKinEnergy) { >> 502 preStepLambda = GetCurrentLambda(e); >> 503 G4double preStepLambda1 = GetCurrentLambda(e1); >> 504 if(preStepLambda1 > preStepLambda) { >> 505 mfpKinEnergy = e1; >> 506 preStepLambda = preStepLambda1; >> 507 } >> 508 } else { >> 509 preStepLambda = fFactor*theCrossSectionMax[currentCoupleIndex]; >> 510 } >> 511 } 609 } 512 } 610 513 611 // ======== Get/Set inline methods used at ini 514 // ======== Get/Set inline methods used at initialisation ================ 612 515 613 inline G4bool G4VEmProcess::ApplyCuts() const << 516 inline void G4VEmProcess::SetLambdaBinning(G4int nbins) 614 { 517 { 615 return applyCuts; << 518 nLambdaBins = nbins; 616 } 519 } 617 520 618 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 619 522 620 inline G4int G4VEmProcess::LambdaBinning() con 523 inline G4int G4VEmProcess::LambdaBinning() const 621 { 524 { 622 return nLambdaBins; 525 return nLambdaBins; 623 } 526 } 624 527 625 //....oooOO0OOooo........oooOO0OOooo........oo 528 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 626 529 >> 530 inline void G4VEmProcess::SetMinKinEnergy(G4double e) >> 531 { >> 532 minKinEnergy = e; >> 533 } >> 534 >> 535 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 536 627 inline G4double G4VEmProcess::MinKinEnergy() c 537 inline G4double G4VEmProcess::MinKinEnergy() const 628 { 538 { 629 return minKinEnergy; 539 return minKinEnergy; 630 } 540 } 631 541 632 //....oooOO0OOooo........oooOO0OOooo........oo 542 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 543 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 544 inline void G4VEmProcess::SetMaxKinEnergy(G4double e) 635 { 545 { 636 return maxKinEnergy; << 546 maxKinEnergy = e; 637 } 547 } 638 548 639 //....oooOO0OOooo........oooOO0OOooo........oo 549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 640 550 641 inline G4double G4VEmProcess::CrossSectionBias << 551 inline G4double G4VEmProcess::MaxKinEnergy() const 642 { 552 { 643 return biasFactor; << 553 return maxKinEnergy; 644 } 554 } 645 555 646 //....oooOO0OOooo........oooOO0OOooo........oo 556 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 557 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 558 inline void G4VEmProcess::SetPolarAngleLimit(G4double val) 649 { 559 { 650 return theLambdaTable; << 560 if(val < 0.0) { polarAngleLimit = 0.0; } >> 561 else if(val > CLHEP::pi) { polarAngleLimit = CLHEP::pi; } >> 562 else { polarAngleLimit = val; } 651 } 563 } 652 564 653 //....oooOO0OOooo........oooOO0OOooo........oo 565 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 566 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 567 inline G4double G4VEmProcess::PolarAngleLimit() const 656 { 568 { 657 return theLambdaTablePrim; << 569 return polarAngleLimit; 658 } 570 } 659 571 660 //....oooOO0OOooo........oooOO0OOooo........oo 572 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 573 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 574 inline G4double G4VEmProcess::CrossSectionBiasingFactor() const 663 { 575 { 664 theLambdaTable = ptr; << 576 return biasFactor; 665 } 577 } 666 578 667 //....oooOO0OOooo........oooOO0OOooo........oo 579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 668 580 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 581 inline const G4PhysicsTable* G4VEmProcess::LambdaTable() const 670 { 582 { 671 theLambdaTablePrim = ptr; << 583 return theLambdaTable; 672 } 584 } 673 585 674 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 587 676 inline std::vector<G4double>* G4VEmProcess::En << 588 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 677 { 589 { 678 return theEnergyOfCrossSectionMax; << 590 return particle; 679 } 591 } 680 592 681 //....oooOO0OOooo........oooOO0OOooo........oo 593 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 682 594 683 inline void << 595 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { 596 { 686 theEnergyOfCrossSectionMax = ptr; << 597 return secondaryParticle; 687 } 598 } 688 599 689 //....oooOO0OOooo........oooOO0OOooo........oo 600 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 601 691 inline const G4ParticleDefinition* G4VEmProces << 602 inline void G4VEmProcess::SetLambdaFactor(G4double val) 692 { 603 { 693 return particle; << 604 if(val > 0.0 && val <= 1.0) { lambdaFactor = val; } 694 } 605 } 695 606 696 //....oooOO0OOooo........oooOO0OOooo........oo 607 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 608 698 inline const G4ParticleDefinition* G4VEmProces << 609 inline void G4VEmProcess::SetIntegral(G4bool val) 699 { 610 { 700 return secondaryParticle; << 611 if(particle && particle != theGamma) { integral = val; } 701 } 612 } 702 613 703 //....oooOO0OOooo........oooOO0OOooo........oo 614 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 615 705 inline void G4VEmProcess::SetCrossSectionType( << 616 inline G4bool G4VEmProcess::IsIntegral() const 706 { 617 { 707 fXSType = val; << 618 return integral; 708 } 619 } 709 620 710 //....oooOO0OOooo........oooOO0OOooo........oo 621 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 711 622 712 inline G4CrossSectionType G4VEmProcess::CrossS << 623 inline void G4VEmProcess::SetApplyCuts(G4bool val) 713 { 624 { 714 return fXSType; << 625 applyCuts = val; 715 } 626 } 716 627 717 //....oooOO0OOooo........oooOO0OOooo........oo 628 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 629 719 inline void G4VEmProcess::SetBuildTableFlag(G4 630 inline void G4VEmProcess::SetBuildTableFlag(G4bool val) 720 { 631 { 721 buildLambdaTable = val; 632 buildLambdaTable = val; 722 } 633 } 723 634 724 //....oooOO0OOooo........oooOO0OOooo........oo 635 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 636 726 inline G4ParticleChangeForGamma* G4VEmProcess: 637 inline G4ParticleChangeForGamma* G4VEmProcess::GetParticleChange() 727 { 638 { 728 return &fParticleChange; 639 return &fParticleChange; 729 } 640 } 730 641 731 //....oooOO0OOooo........oooOO0OOooo........oo 642 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 732 643 733 inline void G4VEmProcess::SetParticle(const G4 644 inline void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 734 { 645 { 735 particle = p; 646 particle = p; 736 currentParticle = p; 647 currentParticle = p; 737 } 648 } 738 649 739 //....oooOO0OOooo........oooOO0OOooo........oo 650 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 651 741 inline void G4VEmProcess::SetSecondaryParticle 652 inline void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 742 { 653 { 743 secondaryParticle = p; 654 secondaryParticle = p; 744 } 655 } 745 656 746 //....oooOO0OOooo........oooOO0OOooo........oo 657 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 747 658 748 inline void G4VEmProcess::SetStartFromNullFlag 659 inline void G4VEmProcess::SetStartFromNullFlag(G4bool val) 749 { 660 { 750 startFromNull = val; 661 startFromNull = val; 751 } << 752 << 753 //....oooOO0OOooo........oooOO0OOooo........oo << 754 << 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 756 { << 757 splineFlag = val; << 758 } << 759 << 760 //....oooOO0OOooo........oooOO0OOooo........oo << 761 << 762 inline G4int G4VEmProcess::DensityIndex(G4int << 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { << 771 return (*theDensityFactor)[idx]; << 772 } << 773 << 774 //....oooOO0OOooo........oooOO0OOooo........oo << 775 << 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 777 { << 778 return baseMat; << 779 } << 780 << 781 //....oooOO0OOooo........oooOO0OOooo........oo << 782 << 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 784 { << 785 return currentModel; << 786 } << 787 << 788 //....oooOO0OOooo........oooOO0OOooo........oo << 789 << 790 inline void G4VEmProcess::SetEmMasterProcess(c << 791 { << 792 masterProc = ptr; << 793 } << 794 << 795 //....oooOO0OOooo........oooOO0OOooo........oo << 796 << 797 inline G4int G4VEmProcess::NumberOfModels() co << 798 { << 799 return numberOfModels; << 800 } << 801 << 802 //....oooOO0OOooo........oooOO0OOooo........oo << 803 << 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 805 { << 806 return (index < emModels.size()) ? emModels[ << 807 } << 808 << 809 //....oooOO0OOooo........oooOO0OOooo........oo << 810 << 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 812 { << 813 return modelManager->GetModel(idx, ver); << 814 } 662 } 815 663 816 //....oooOO0OOooo........oooOO0OOooo........oo 664 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 665 818 #endif 666 #endif 819 667