Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.hh,v 1.55 2009/09/23 14:42:47 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 42 // 09-08-04 optimise integral option (V.Ivanchenko) >> 43 // 11-08-04 add protected methods to access cuts (V.Ivanchenko) >> 44 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 45 // 16-09-04 Add flag for LambdaTable and method RecalculateLambda (VI) >> 46 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 47 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 48 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) >> 49 // 09-05-05 Fix problem in logic when path boundary between materials (VI) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 01-02-06 put default value A=0. to keep compatibility with v5.2 (mma) >> 52 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 53 // 12-09-06 add SetModel() (mma) >> 54 // 25-09-07 More accurate handling zero xsect in >> 55 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 56 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 57 // 15-07-08 Reorder class members for further multi-thread development (VI) 38 // 58 // 39 // Class Description: 59 // Class Description: 40 // 60 // 41 // It is the base class - EM discrete and rest << 61 // It is the unified Discrete process 42 62 43 // ------------------------------------------- 63 // ------------------------------------------------------------------- 44 // 64 // 45 65 46 #ifndef G4VEmProcess_h 66 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 67 #define G4VEmProcess_h 1 48 68 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 << 51 #include "G4VDiscreteProcess.hh" 69 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 70 #include "globals.hh" 53 #include "G4Material.hh" 71 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 72 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 73 #include "G4Track.hh" >> 74 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 75 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 76 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" 77 #include "G4ParticleChangeForGamma.hh" 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 78 65 class G4Step; 79 class G4Step; 66 class G4VEmModel; 80 class G4VEmModel; 67 class G4DataVector; 81 class G4DataVector; 68 class G4VParticleChange; 82 class G4VParticleChange; 69 class G4PhysicsTable; 83 class G4PhysicsTable; 70 class G4PhysicsVector; 84 class G4PhysicsVector; 71 class G4EmBiasingManager; << 72 class G4LossTableManager; << 73 85 74 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 87 76 class G4VEmProcess : public G4VDiscreteProcess 88 class G4VEmProcess : public G4VDiscreteProcess 77 { 89 { 78 public: 90 public: 79 91 80 G4VEmProcess(const G4String& name, G4Process << 92 G4VEmProcess(const G4String& name, >> 93 G4ProcessType type = fElectromagnetic); 81 94 82 ~G4VEmProcess() override; << 95 virtual ~G4VEmProcess(); 83 96 84 //------------------------------------------ 97 //------------------------------------------------------------------------ 85 // Virtual methods to be implemented in conc 98 // Virtual methods to be implemented in concrete processes 86 //------------------------------------------ 99 //------------------------------------------------------------------------ 87 100 88 void ProcessDescription(std::ostream& outFil << 101 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 89 102 90 protected: << 103 virtual void PrintInfo() = 0; 91 104 92 virtual void StreamProcessInfo(std::ostream& << 105 protected: 93 106 94 virtual void InitialiseProcess(const G4Parti 107 virtual void InitialiseProcess(const G4ParticleDefinition*) = 0; 95 108 96 //------------------------------------------ 109 //------------------------------------------------------------------------ 97 // Implementation of virtual methods common 110 // Implementation of virtual methods common to all Discrete processes 98 //------------------------------------------ 111 //------------------------------------------------------------------------ 99 112 100 public: 113 public: 101 114 102 // Initialise for build of tables 115 // Initialise for build of tables 103 void PreparePhysicsTable(const G4ParticleDef << 116 void PreparePhysicsTable(const G4ParticleDefinition&); 104 117 105 // Build physics table during initialisation 118 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 119 void BuildPhysicsTable(const G4ParticleDefinition&); 107 120 108 // Called before tracking of each new G4Trac << 121 void PrintInfoDefinition(); 109 void StartTracking(G4Track*) override; << 110 122 111 // implementation of virtual method, specifi 123 // implementation of virtual method, specific for G4VEmProcess 112 G4double PostStepGetPhysicalInteractionLengt 124 G4double PostStepGetPhysicalInteractionLength( 113 const G4Track& tr 125 const G4Track& track, 114 G4double previo 126 G4double previousStepSize, 115 G4ForceCondition* << 127 G4ForceCondition* condition >> 128 ); 116 129 117 // implementation of virtual method, specifi 130 // implementation of virtual method, specific for G4VEmProcess 118 G4VParticleChange* PostStepDoIt(const G4Trac << 131 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 119 132 120 // Store PhysicsTable in a file. 133 // Store PhysicsTable in a file. 121 // Return false in case of failure at I/O 134 // Return false in case of failure at I/O 122 G4bool StorePhysicsTable(const G4ParticleDef 135 G4bool StorePhysicsTable(const G4ParticleDefinition*, 123 const G4String& dir << 136 const G4String& directory, 124 G4bool ascii = fals << 137 G4bool ascii = false); 125 138 126 // Retrieve Physics from a file. 139 // Retrieve Physics from a file. 127 // (return true if the Physics Table can be 140 // (return true if the Physics Table can be build by using file) 128 // (return false if the process has no funct 141 // (return false if the process has no functionality or in case of failure) 129 // File name should is constructed as proces 142 // File name should is constructed as processName+particleName and the 130 // should be placed under the directory spec << 143 // should be placed under the directory specifed by the argument. 131 G4bool RetrievePhysicsTable(const G4Particle 144 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 132 const G4String& << 145 const G4String& directory, 133 G4bool ascii) ov << 146 G4bool ascii); 134 147 135 // allowing check process name << 148 // deexcitation activated per G4Region 136 virtual G4VEmProcess* GetEmProcess(const G4S << 149 void ActivateDeexcitation(G4bool, const G4Region* r = 0); 137 150 138 //------------------------------------------ 151 //------------------------------------------------------------------------ 139 // Specific methods for Discrete EM post ste 152 // Specific methods for Discrete EM post step simulation 140 //------------------------------------------ 153 //------------------------------------------------------------------------ 141 154 142 // The main method to access cross section p << 155 // It returns the cross section per volume for energy/ material 143 inline G4double GetLambda(G4double kinEnergy << 156 G4double CrossSectionPerVolume(G4double kineticEnergy, 144 const G4MaterialCu << 157 const G4MaterialCutsCouple* couple); 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 158 151 // It returns the cross section of the proce 159 // It returns the cross section of the process per atom 152 G4double ComputeCrossSectionPerAtom(G4double << 160 inline G4double ComputeCrossSectionPerAtom(G4double kineticEnergy, 153 G4double << 161 G4double Z, G4double A=0., 154 G4double << 162 G4double cut=0.0); 155 163 156 inline G4double MeanFreePath(const G4Track& 164 inline G4double MeanFreePath(const G4Track& track); 157 165 >> 166 // It returns cross section per volume >> 167 inline G4double GetLambda(G4double& kinEnergy, >> 168 const G4MaterialCutsCouple* couple); >> 169 158 //------------------------------------------ 170 //------------------------------------------------------------------------ 159 // Specific methods to build and access Phys 171 // Specific methods to build and access Physics Tables 160 //------------------------------------------ 172 //------------------------------------------------------------------------ 161 173 162 // Binning for lambda table 174 // Binning for lambda table 163 void SetLambdaBinning(G4int nbins); << 175 inline void SetLambdaBinning(G4int nbins); >> 176 inline G4int LambdaBinning() const; 164 177 165 // Min kinetic energy for tables 178 // Min kinetic energy for tables 166 void SetMinKinEnergy(G4double e); << 179 inline void SetMinKinEnergy(G4double e); 167 << 180 inline G4double MinKinEnergy() const; 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 181 171 // Max kinetic energy for tables 182 // Max kinetic energy for tables 172 void SetMaxKinEnergy(G4double e); << 183 inline void SetMaxKinEnergy(G4double e); >> 184 inline G4double MaxKinEnergy() const; >> 185 >> 186 inline void SetPolarAngleLimit(G4double a); >> 187 inline G4double PolarAngleLimit() const; 173 188 174 // Cross section table pointers << 189 inline const G4PhysicsTable* LambdaTable() const; 175 inline G4PhysicsTable* LambdaTable() const; << 176 inline G4PhysicsTable* LambdaTablePrim() con << 177 inline void SetLambdaTable(G4PhysicsTable*); << 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 179 << 180 // Integral method type and peak positions << 181 inline std::vector<G4double>* EnergyOfCrossS << 182 inline void SetEnergyOfCrossSectionMax(std:: << 183 inline G4CrossSectionType CrossSectionType() << 184 inline void SetCrossSectionType(G4CrossSecti << 185 190 186 //------------------------------------------ 191 //------------------------------------------------------------------------ 187 // Define and access particle type 192 // Define and access particle type 188 //------------------------------------------ 193 //------------------------------------------------------------------------ 189 194 190 inline const G4ParticleDefinition* Particle( 195 inline const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary 196 inline const G4ParticleDefinition* SecondaryParticle() const; 192 197 193 protected: << 194 << 195 //------------------------------------------ 198 //------------------------------------------------------------------------ 196 // Specific methods to set, access, modify m 199 // Specific methods to set, access, modify models and basic parameters 197 //------------------------------------------ 200 //------------------------------------------------------------------------ 198 << 201 >> 202 protected: 199 // Select model in run time 203 // Select model in run time 200 inline G4VEmModel* SelectModel(G4double kinE << 204 inline G4VEmModel* SelectModel(G4double& kinEnergy, size_t index); 201 205 202 public: 206 public: 203 << 207 // Select model by energy and region index 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 208 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 206 st << 209 size_t& idxRegion) const; 207 210 208 // Add model for region, smaller value of or 211 // Add model for region, smaller value of order defines which 209 // model will be selected for a given energy 212 // model will be selected for a given energy interval 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 213 void AddEmModel(G4int, G4VEmModel*, const G4Region* region = 0); 211 214 212 // Assign a model to a process local list, t << 215 // Assign a model to a process 213 // the derived process should execute AddEmM << 216 void SetModel(G4VEmModel*, G4int index = 1); 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 217 215 << 218 // return the assigned model 216 inline G4int NumberOfModels() const; << 219 G4VEmModel* Model(G4int index = 1); 217 << 220 218 // return a model from the local list << 221 // Define new energy range for the model identified by the name 219 inline G4VEmModel* EmModel(std::size_t index << 222 void UpdateEmModel(const G4String&, G4double, G4double); 220 << 221 // Access to active model << 222 inline const G4VEmModel* GetCurrentModel() c << 223 223 224 // Access to models 224 // Access to models 225 inline G4VEmModel* GetModelByIndex(G4int idx << 225 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false); 226 << 227 // Access to the current G4Element << 228 const G4Element* GetCurrentElement() const; << 229 226 230 // Biasing parameters << 227 inline void SetLambdaFactor(G4double val); 231 void SetCrossSectionBiasingFactor(G4double f << 232 inline G4double CrossSectionBiasingFactor() << 233 228 234 // Activate forced interaction << 229 inline void SetIntegral(G4bool val); 235 void ActivateForcedInteraction(G4double leng << 230 inline G4bool IsIntegral() const; 236 const G4Strin << 237 G4bool flag = << 238 231 239 void ActivateSecondaryBiasing(const G4String << 232 inline void SetApplyCuts(G4bool val); 240 G4double energ << 241 << 242 inline void SetEmMasterProcess(const G4VEmPr << 243 << 244 inline void SetBuildTableFlag(G4bool val); << 245 << 246 inline void CurrentSetup(const G4MaterialCut << 247 << 248 inline G4bool UseBaseMaterial() const; << 249 << 250 void BuildLambdaTable(); << 251 << 252 void StreamInfo(std::ostream& outFile, const << 253 G4bool rst=false) const; << 254 << 255 // hide copy constructor and assignment oper << 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 233 259 //------------------------------------------ 234 //------------------------------------------------------------------------ 260 // Other generic methods 235 // Other generic methods 261 //------------------------------------------ 236 //------------------------------------------------------------------------ 262 237 263 protected: 238 protected: 264 239 265 G4double GetMeanFreePath(const G4Track& trac 240 G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 241 G4double previousStepSize, 267 G4ForceCondition* c << 242 G4ForceCondition* condition); 268 243 269 G4PhysicsVector* LambdaPhysicsVector(const G 244 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 245 271 inline void DefineMaterial(const G4MaterialC << 246 inline G4double RecalculateLambda(G4double kinEnergy, 272 << 247 const G4MaterialCutsCouple* couple); 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 248 282 inline G4ParticleChangeForGamma* GetParticle 249 inline G4ParticleChangeForGamma* GetParticleChange(); 283 250 284 inline void SetParticle(const G4ParticleDefi 251 inline void SetParticle(const G4ParticleDefinition* p); 285 252 286 inline void SetSecondaryParticle(const G4Par 253 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 287 254 288 inline std::size_t CurrentMaterialCutsCouple << 255 inline size_t CurrentMaterialCutsCoupleIndex() const; 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 << 292 inline G4bool ApplyCuts() const; << 293 256 294 inline G4double GetGammaEnergyCut(); 257 inline G4double GetGammaEnergyCut(); 295 258 296 inline G4double GetElectronEnergyCut(); 259 inline G4double GetElectronEnergyCut(); 297 260 298 inline void SetStartFromNullFlag(G4bool val) << 261 inline void SetBuildTableFlag(G4bool val); 299 << 300 inline void SetSplineFlag(G4bool val); << 301 << 302 const G4Element* GetTargetElement() const; << 303 << 304 const G4Isotope* GetTargetIsotope() const; << 305 262 306 // these two methods assume that vectors are << 263 inline void SetStartFromNullFlag(G4bool val); 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 264 311 private: 265 private: 312 266 313 void PrintWarning(G4String tit, G4double val << 267 void Clear(); 314 268 315 void ComputeIntegralLambda(G4double kinEnerg << 269 void BuildLambdaTable(); 316 270 317 inline G4double LogEkin(const G4Track&); << 271 void FindLambdaMax(); 318 272 319 inline G4double GetLambdaFromTable(G4double << 273 inline void InitialiseStep(const G4Track&); 320 274 321 inline G4double GetLambdaFromTable(G4double << 275 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 322 276 323 inline G4double GetLambdaFromTablePrim(G4dou << 277 inline void ComputeIntegralLambda(G4double kinEnergy); 324 278 325 inline G4double GetLambdaFromTablePrim(G4dou << 279 inline G4double GetLambdaFromTable(G4double kinEnergy); 326 280 327 inline G4double GetCurrentLambda(G4double ki 281 inline G4double GetCurrentLambda(G4double kinEnergy); 328 282 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl 283 inline G4double ComputeCurrentLambda(G4double kinEnergy); 332 284 333 // ======== pointers ========= << 285 // copy constructor and hide assignment operator >> 286 G4VEmProcess(G4VEmProcess &); >> 287 G4VEmProcess & operator=(const G4VEmProcess &right); 334 288 335 G4EmModelManager* modelManager = << 289 // ======== Parameters of the class fixed at construction ========= 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 290 358 protected: << 291 G4EmModelManager* modelManager; >> 292 const G4ParticleDefinition* theGamma; >> 293 const G4ParticleDefinition* theElectron; >> 294 const G4ParticleDefinition* thePositron; >> 295 const G4ParticleDefinition* secondaryParticle; 359 296 360 // ======== pointers ========= << 297 G4bool buildLambdaTable; 361 298 362 const G4MaterialCutsCouple* currentCouple = << 299 // ======== Parameters of the class fixed at initialisation ======= 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 300 367 private: << 301 std::vector<G4VEmModel*> emModels; 368 302 369 const std::vector<G4double>* theDensityFacto << 303 // tables and vectors 370 const std::vector<G4int>* theDensityIdx = nu << 304 G4PhysicsTable* theLambdaTable; >> 305 G4double* theEnergyOfCrossSectionMax; >> 306 G4double* theCrossSectionMax; 371 307 372 // ======== parameters ========= << 308 const std::vector<G4double>* theCuts; 373 G4double minKinEnergy; << 309 const std::vector<G4double>* theCutsGamma; 374 G4double maxKinEnergy; << 310 const std::vector<G4double>* theCutsElectron; 375 G4double minKinEnergyPrim = DBL_MAX; << 311 const std::vector<G4double>* theCutsPositron; 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 312 384 protected: << 313 G4int nLambdaBins; 385 314 386 G4double mfpKinEnergy = DBL_MAX; << 315 G4double minKinEnergy; 387 G4double preStepKinEnergy = 0.0; << 316 G4double maxKinEnergy; 388 G4double preStepLambda = 0.0; << 317 G4double lambdaFactor; >> 318 G4double polarAngleLimit; 389 319 390 private: << 320 G4bool integral; >> 321 G4bool applyCuts; >> 322 G4bool startFromNull; >> 323 G4bool useDeexcitation; 391 324 392 G4CrossSectionType fXSType = fEmNoIntegral; << 325 G4int nDERegions; >> 326 std::vector<const G4Region*> deRegions; >> 327 G4bool* idxDERegions; 393 328 394 G4int numberOfModels = 0; << 329 // ======== Cashed values - may be state dependent ================ 395 G4int nLambdaBins = 84; << 396 330 397 protected: 331 protected: 398 332 399 G4int mainSecondaries = 1; << 333 G4ParticleChangeForGamma fParticleChange; 400 G4int secID = _EM; << 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 << 410 G4bool isTheMaster = false; << 411 G4bool baseMat = false; << 412 334 413 private: 335 private: 414 336 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles 337 std::vector<G4DynamicParticle*> secParticles; 430 G4ParticleChangeForGamma fParticleChange; << 431 338 432 private: << 339 G4VEmModel* currentModel; 433 340 434 // ======== local vectors ========= << 341 const G4ParticleDefinition* particle; 435 std::vector<G4VEmModel*> emModels; << 436 342 437 }; << 343 // cash 438 << 344 const G4Material* currentMaterial; 439 // ======== Run time inline methods ========== << 345 const G4MaterialCutsCouple* currentCouple; 440 << 346 size_t currentCoupleIndex; 441 //....oooOO0OOooo........oooOO0OOooo........oo << 347 442 << 348 G4double mfpKinEnergy; 443 inline std::size_t G4VEmProcess::CurrentMateri << 349 G4double preStepKinEnergy; 444 { << 350 G4double preStepLambda; 445 return currentCoupleIndex; << 446 } << 447 << 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 351 450 inline const G4MaterialCutsCouple* G4VEmProces << 352 }; 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu << 458 { << 459 return (*theCutsGamma)[currentCoupleIndex]; << 460 } << 461 << 462 //....oooOO0OOooo........oooOO0OOooo........oo << 463 << 464 inline G4double G4VEmProcess::GetElectronEnerg << 465 { << 466 return (*theCutsElectron)[currentCoupleIndex << 467 } << 468 353 469 //....oooOO0OOooo........oooOO0OOooo........oo 354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 << 471 inline void G4VEmProcess::DefineMaterial(const << 472 { << 473 if (couple != currentCouple) { << 474 currentCouple = couple; << 475 baseMaterial = currentMaterial = couple->G << 476 basedCoupleIndex = currentCoupleIndex = co << 477 fFactor = biasFactor; << 478 mfpKinEnergy = DBL_MAX; << 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } << 486 } << 487 << 488 //....oooOO0OOooo........oooOO0OOooo........oo 355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 356 490 inline << 357 inline G4double G4VEmProcess::ComputeCrossSectionPerAtom( 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 358 G4double kineticEnergy, G4double Z, G4double A, G4double cut) 492 { 359 { 493 if(1 < numberOfModels) { << 360 SelectModel(kineticEnergy, currentCoupleIndex); 494 currentModel = modelManager->SelectModel(k << 361 G4double x = 0.0; >> 362 if(currentModel) { >> 363 x = currentModel->ComputeCrossSectionPerAtom(particle,kineticEnergy, >> 364 Z,A,cut); 495 } 365 } 496 currentModel->SetCurrentCouple(currentCouple << 366 return x; 497 return currentModel; << 498 } 367 } 499 368 500 //....oooOO0OOooo........oooOO0OOooo........oo 369 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 501 370 502 inline << 371 inline G4double G4VEmProcess::MeanFreePath(const G4Track& track) 503 G4VEmModel* G4VEmProcess::SelectModelForMateri << 504 << 505 { 372 { 506 return modelManager->SelectModel(kinEnergy, << 373 DefineMaterial(track.GetMaterialCutsCouple()); >> 374 preStepLambda = GetCurrentLambda(track.GetKineticEnergy()); >> 375 G4double x = DBL_MAX; >> 376 if(DBL_MIN < preStepLambda) x = 1.0/preStepLambda; >> 377 return x; 507 } 378 } 508 379 509 //....oooOO0OOooo........oooOO0OOooo........oo 380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 510 381 511 inline G4double G4VEmProcess::GetLambdaFromTab << 382 inline G4double G4VEmProcess::GetLambda(G4double& kineticEnergy, >> 383 const G4MaterialCutsCouple* couple) 512 { 384 { 513 return ((*theLambdaTable)[basedCoupleIndex]) << 385 DefineMaterial(couple); >> 386 return GetCurrentLambda(kineticEnergy); 514 } 387 } 515 388 516 //....oooOO0OOooo........oooOO0OOooo........oo 389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 517 390 518 inline G4double G4VEmProcess::LogEkin(const G4 << 391 inline void G4VEmProcess::SetLambdaBinning(G4int nbins) 519 { 392 { 520 return track.GetDynamicParticle()->GetLogKin << 393 nLambdaBins = nbins; 521 } 394 } 522 395 523 //....oooOO0OOooo........oooOO0OOooo........oo 396 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 524 397 525 inline G4double G4VEmProcess::GetLambdaFromTab << 398 inline G4int G4VEmProcess::LambdaBinning() const 526 { 399 { 527 return ((*theLambdaTable)[basedCoupleIndex]) << 400 return nLambdaBins; 528 } 401 } 529 402 530 //....oooOO0OOooo........oooOO0OOooo........oo 403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 404 532 inline G4double G4VEmProcess::GetLambdaFromTab << 405 inline void G4VEmProcess::SetMinKinEnergy(G4double e) 533 { 406 { 534 return ((*theLambdaTablePrim)[basedCoupleInd << 407 minKinEnergy = e; 535 } 408 } 536 409 537 //....oooOO0OOooo........oooOO0OOooo........oo 410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 411 539 inline G4double G4VEmProcess::GetLambdaFromTab << 412 inline G4double G4VEmProcess::MinKinEnergy() const 540 { 413 { 541 return ((*theLambdaTablePrim)[basedCoupleInd << 414 return minKinEnergy; 542 } 415 } 543 416 544 //....oooOO0OOooo........oooOO0OOooo........oo 417 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 418 546 inline G4double G4VEmProcess::ComputeCurrentLa << 419 inline void G4VEmProcess::SetMaxKinEnergy(G4double e) 547 { 420 { 548 return currentModel->CrossSectionPerVolume(b << 421 maxKinEnergy = e; 549 } 422 } 550 423 551 //....oooOO0OOooo........oooOO0OOooo........oo 424 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 425 553 inline G4double G4VEmProcess::GetCurrentLambda << 426 inline G4double G4VEmProcess::MaxKinEnergy() const 554 { 427 { 555 if(currentCoupleIndex != coupleIdxLambda || << 428 return maxKinEnergy; 556 coupleIdxLambda = currentCoupleIndex; << 557 fLambdaEnergy = e; << 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 559 else if(nullptr != theLambdaTable) { fLamb << 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } 429 } 565 430 566 //....oooOO0OOooo........oooOO0OOooo........oo 431 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 567 432 568 inline G4double G4VEmProcess::GetCurrentLambda << 433 inline void G4VEmProcess::SetPolarAngleLimit(G4double val) 569 { 434 { 570 if(currentCoupleIndex != coupleIdxLambda || << 435 if(val < 0.0) polarAngleLimit = 0.0; 571 coupleIdxLambda = currentCoupleIndex; << 436 else if(val > pi) polarAngleLimit = pi; 572 fLambdaEnergy = e; << 437 else polarAngleLimit = val; 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } 438 } 580 439 581 //....oooOO0OOooo........oooOO0OOooo........oo 440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 582 441 583 inline void << 442 inline G4double G4VEmProcess::PolarAngleLimit() const 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { 443 { 586 DefineMaterial(couple); << 444 return polarAngleLimit; 587 SelectModel(energy*massRatio, currentCoupleI << 588 } 445 } 589 446 590 //....oooOO0OOooo........oooOO0OOooo........oo 447 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 591 448 592 inline G4double << 449 inline const G4PhysicsTable* G4VEmProcess::LambdaTable() const 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 594 G4double logKinEnergy) << 595 { 450 { 596 CurrentSetup(couple, kinEnergy); << 451 return theLambdaTable; 597 return GetCurrentLambda(kinEnergy, logKinEne << 598 } 452 } 599 453 600 //....oooOO0OOooo........oooOO0OOooo........oo 454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 601 455 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 456 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 603 { << 604 const G4double kinEnergy = track.GetKineticE << 605 CurrentSetup(track.GetMaterialCutsCouple(), << 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } << 610 << 611 // ======== Get/Set inline methods used at ini << 612 << 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { 457 { 615 return applyCuts; << 458 return particle; 616 } 459 } 617 460 618 //....oooOO0OOooo........oooOO0OOooo........oo 461 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 619 462 620 inline G4int G4VEmProcess::LambdaBinning() con << 463 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 621 { 464 { 622 return nLambdaBins; << 465 return secondaryParticle; 623 } 466 } 624 467 625 //....oooOO0OOooo........oooOO0OOooo........oo 468 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 626 469 627 inline G4double G4VEmProcess::MinKinEnergy() c << 470 inline >> 471 G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy, size_t index) 628 { 472 { 629 return minKinEnergy; << 473 currentModel = modelManager->SelectModel(kinEnergy, index); >> 474 currentModel->SetCurrentCouple(currentCouple); >> 475 return currentModel; 630 } 476 } 631 477 632 //....oooOO0OOooo........oooOO0OOooo........oo 478 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 479 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 480 inline >> 481 G4VEmModel* G4VEmProcess::SelectModelForMaterial(G4double kinEnergy, >> 482 size_t& idxRegion) const 635 { 483 { 636 return maxKinEnergy; << 484 return modelManager->SelectModel(kinEnergy, idxRegion); 637 } 485 } 638 486 639 //....oooOO0OOooo........oooOO0OOooo........oo 487 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 640 488 641 inline G4double G4VEmProcess::CrossSectionBias << 489 inline void G4VEmProcess::SetLambdaFactor(G4double val) 642 { 490 { 643 return biasFactor; << 491 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 644 } 492 } 645 493 646 //....oooOO0OOooo........oooOO0OOooo........oo 494 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 495 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 496 inline void G4VEmProcess::SetIntegral(G4bool val) 649 { 497 { 650 return theLambdaTable; << 498 if(particle && particle != theGamma) integral = val; >> 499 if(integral) buildLambdaTable = true; 651 } 500 } 652 501 653 //....oooOO0OOooo........oooOO0OOooo........oo 502 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 503 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 504 inline G4bool G4VEmProcess::IsIntegral() const 656 { 505 { 657 return theLambdaTablePrim; << 506 return integral; 658 } 507 } 659 508 660 //....oooOO0OOooo........oooOO0OOooo........oo 509 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 510 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 511 inline void G4VEmProcess::SetApplyCuts(G4bool val) 663 { 512 { 664 theLambdaTable = ptr; << 513 applyCuts = val; 665 } 514 } 666 515 667 //....oooOO0OOooo........oooOO0OOooo........oo 516 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 668 517 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 518 inline G4double G4VEmProcess::RecalculateLambda(G4double e, >> 519 const G4MaterialCutsCouple* couple) 670 { 520 { 671 theLambdaTablePrim = ptr; << 521 DefineMaterial(couple); >> 522 return ComputeCurrentLambda(e); 672 } 523 } 673 524 674 //....oooOO0OOooo........oooOO0OOooo........oo 525 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 526 676 inline std::vector<G4double>* G4VEmProcess::En << 527 inline G4ParticleChangeForGamma* G4VEmProcess::GetParticleChange() 677 { 528 { 678 return theEnergyOfCrossSectionMax; << 529 return &fParticleChange; 679 } 530 } 680 531 681 //....oooOO0OOooo........oooOO0OOooo........oo 532 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 682 533 683 inline void << 534 inline void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { 535 { 686 theEnergyOfCrossSectionMax = ptr; << 536 particle = p; 687 } 537 } 688 538 689 //....oooOO0OOooo........oooOO0OOooo........oo 539 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 540 691 inline const G4ParticleDefinition* G4VEmProces << 541 inline void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 692 { 542 { 693 return particle; << 543 secondaryParticle = p; 694 } 544 } 695 545 696 //....oooOO0OOooo........oooOO0OOooo........oo 546 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 547 698 inline const G4ParticleDefinition* G4VEmProces << 548 inline size_t G4VEmProcess::CurrentMaterialCutsCoupleIndex() const 699 { 549 { 700 return secondaryParticle; << 550 return currentCoupleIndex; 701 } 551 } 702 552 703 //....oooOO0OOooo........oooOO0OOooo........oo 553 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 554 705 inline void G4VEmProcess::SetCrossSectionType( << 555 inline G4double G4VEmProcess::GetGammaEnergyCut() 706 { 556 { 707 fXSType = val; << 557 return (*theCutsGamma)[currentCoupleIndex]; 708 } 558 } 709 559 710 //....oooOO0OOooo........oooOO0OOooo........oo 560 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 711 561 712 inline G4CrossSectionType G4VEmProcess::CrossS << 562 inline G4double G4VEmProcess::GetElectronEnergyCut() 713 { 563 { 714 return fXSType; << 564 return (*theCutsElectron)[currentCoupleIndex]; 715 } 565 } 716 566 717 //....oooOO0OOooo........oooOO0OOooo........oo 567 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 568 719 inline void G4VEmProcess::SetBuildTableFlag(G4 569 inline void G4VEmProcess::SetBuildTableFlag(G4bool val) 720 { 570 { 721 buildLambdaTable = val; 571 buildLambdaTable = val; 722 } << 572 if(!val) integral = false; 723 << 724 //....oooOO0OOooo........oooOO0OOooo........oo << 725 << 726 inline G4ParticleChangeForGamma* G4VEmProcess: << 727 { << 728 return &fParticleChange; << 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 << 733 inline void G4VEmProcess::SetParticle(const G4 << 734 { << 735 particle = p; << 736 currentParticle = p; << 737 } << 738 << 739 //....oooOO0OOooo........oooOO0OOooo........oo << 740 << 741 inline void G4VEmProcess::SetSecondaryParticle << 742 { << 743 secondaryParticle = p; << 744 } 573 } 745 574 746 //....oooOO0OOooo........oooOO0OOooo........oo 575 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 747 576 748 inline void G4VEmProcess::SetStartFromNullFlag 577 inline void G4VEmProcess::SetStartFromNullFlag(G4bool val) 749 { 578 { 750 startFromNull = val; 579 startFromNull = val; 751 } 580 } 752 581 753 //....oooOO0OOooo........oooOO0OOooo........oo 582 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 754 583 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 584 inline void G4VEmProcess::InitialiseStep(const G4Track& track) 756 { << 757 splineFlag = val; << 758 } << 759 << 760 //....oooOO0OOooo........oooOO0OOooo........oo << 761 << 762 inline G4int G4VEmProcess::DensityIndex(G4int << 763 { 585 { 764 return (*theDensityIdx)[idx]; << 586 preStepKinEnergy = track.GetKineticEnergy(); >> 587 DefineMaterial(track.GetMaterialCutsCouple()); >> 588 SelectModel(preStepKinEnergy, currentCoupleIndex); >> 589 if (theNumberOfInteractionLengthLeft < 0.0) mfpKinEnergy = DBL_MAX; 765 } 590 } 766 591 767 //....oooOO0OOooo........oooOO0OOooo........oo 592 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 593 769 inline G4double G4VEmProcess::DensityFactor(G4 << 594 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 770 { << 771 return (*theDensityFactor)[idx]; << 772 } << 773 << 774 //....oooOO0OOooo........oooOO0OOooo........oo << 775 << 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 777 { 595 { 778 return baseMat; << 596 if(couple != currentCouple) { >> 597 currentCouple = couple; >> 598 currentMaterial = couple->GetMaterial(); >> 599 currentCoupleIndex = couple->GetIndex(); >> 600 mfpKinEnergy = DBL_MAX; >> 601 } 779 } 602 } 780 603 781 //....oooOO0OOooo........oooOO0OOooo........oo 604 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 782 605 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 606 inline void G4VEmProcess::ComputeIntegralLambda(G4double e) 784 { 607 { 785 return currentModel; << 608 mfpKinEnergy = theEnergyOfCrossSectionMax[currentCoupleIndex]; 786 } << 609 if (e <= mfpKinEnergy) { 787 << 610 preStepLambda = GetLambdaFromTable(e); 788 //....oooOO0OOooo........oooOO0OOooo........oo << 611 789 << 612 } else { 790 inline void G4VEmProcess::SetEmMasterProcess(c << 613 G4double e1 = e*lambdaFactor; 791 { << 614 if(e1 > mfpKinEnergy) { 792 masterProc = ptr; << 615 preStepLambda = GetLambdaFromTable(e); >> 616 G4double preStepLambda1 = GetLambdaFromTable(e1); >> 617 if(preStepLambda1 > preStepLambda) { >> 618 mfpKinEnergy = e1; >> 619 preStepLambda = preStepLambda1; >> 620 } >> 621 } else { >> 622 preStepLambda = theCrossSectionMax[currentCoupleIndex]; >> 623 } >> 624 } 793 } 625 } 794 626 795 //....oooOO0OOooo........oooOO0OOooo........oo 627 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 796 628 797 inline G4int G4VEmProcess::NumberOfModels() co << 629 inline G4double G4VEmProcess::GetLambdaFromTable(G4double e) 798 { 630 { 799 return numberOfModels; << 631 return (((*theLambdaTable)[currentCoupleIndex])->Value(e)); 800 } 632 } 801 633 802 //....oooOO0OOooo........oooOO0OOooo........oo 634 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 635 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 636 inline G4double G4VEmProcess::GetCurrentLambda(G4double e) 805 { 637 { 806 return (index < emModels.size()) ? emModels[ << 638 G4double x = 0.0; >> 639 if(theLambdaTable) { x = GetLambdaFromTable(e); } >> 640 else { x = ComputeCurrentLambda(e); } >> 641 return x; 807 } 642 } 808 643 809 //....oooOO0OOooo........oooOO0OOooo........oo 644 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 810 645 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 646 inline G4double G4VEmProcess::ComputeCurrentLambda(G4double e) 812 { 647 { 813 return modelManager->GetModel(idx, ver); << 648 SelectModel(e, currentCoupleIndex); >> 649 return currentModel->CrossSectionPerVolume(currentMaterial,particle, >> 650 e,(*theCuts)[currentCoupleIndex]); 814 } 651 } 815 652 816 //....oooOO0OOooo........oooOO0OOooo........oo 653 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 654 818 #endif 655 #endif 819 656