Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.hh,v 1.33 2006/06/29 19:54:45 gunter Exp $ >> 27 // GEANT4 tag $Name: geant4-08-01 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 42 // 09-08-04 optimise integral option (V.Ivanchenko) >> 43 // 11-08-04 add protected methods to access cuts (V.Ivanchenko) >> 44 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 45 // 16-09-04 Add flag for LambdaTable and method RecalculateLambda (VI) >> 46 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivantchenko) >> 47 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) >> 48 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) >> 49 // 09-05-05 Fix problem in logic when path boundary between materials (VI) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 01-02-06 put default value A=0. to keep compatibility with v5.2 (mma) >> 52 // 13-05-06 Add method to access model by index (V.Ivanchenko) 38 // 53 // 39 // Class Description: 54 // Class Description: 40 // 55 // 41 // It is the base class - EM discrete and rest << 56 // It is the unified Discrete process 42 57 43 // ------------------------------------------- 58 // ------------------------------------------------------------------- 44 // 59 // 45 60 46 #ifndef G4VEmProcess_h 61 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 62 #define G4VEmProcess_h 1 48 63 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 << 51 #include "G4VDiscreteProcess.hh" 64 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 65 #include "globals.hh" 53 #include "G4Material.hh" 66 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 67 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 68 #include "G4Track.hh" >> 69 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 70 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 71 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" 72 #include "G4ParticleChangeForGamma.hh" 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 73 65 class G4Step; 74 class G4Step; 66 class G4VEmModel; 75 class G4VEmModel; 67 class G4DataVector; 76 class G4DataVector; 68 class G4VParticleChange; 77 class G4VParticleChange; 69 class G4PhysicsTable; 78 class G4PhysicsTable; 70 class G4PhysicsVector; 79 class G4PhysicsVector; 71 class G4EmBiasingManager; << 72 class G4LossTableManager; << 73 80 74 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 82 76 class G4VEmProcess : public G4VDiscreteProcess 83 class G4VEmProcess : public G4VDiscreteProcess 77 { 84 { 78 public: 85 public: 79 86 80 G4VEmProcess(const G4String& name, G4Process << 87 G4VEmProcess(const G4String& name, >> 88 G4ProcessType type = fElectromagnetic); 81 89 82 ~G4VEmProcess() override; << 90 virtual ~G4VEmProcess(); 83 91 84 //------------------------------------------ 92 //------------------------------------------------------------------------ 85 // Virtual methods to be implemented in conc 93 // Virtual methods to be implemented in concrete processes 86 //------------------------------------------ 94 //------------------------------------------------------------------------ 87 95 88 void ProcessDescription(std::ostream& outFil << 96 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 89 97 90 protected: << 98 virtual void PrintInfo() = 0; 91 99 92 virtual void StreamProcessInfo(std::ostream& << 100 protected: 93 101 94 virtual void InitialiseProcess(const G4Parti 102 virtual void InitialiseProcess(const G4ParticleDefinition*) = 0; 95 103 >> 104 virtual std::vector<G4DynamicParticle*>* SecondariesPostStep( >> 105 G4VEmModel*, >> 106 const G4MaterialCutsCouple*, >> 107 const G4DynamicParticle*) = 0; >> 108 96 //------------------------------------------ 109 //------------------------------------------------------------------------ 97 // Implementation of virtual methods common << 110 // Methods with standard implementation; may be overwritten if needed 98 //------------------------------------------ 111 //------------------------------------------------------------------------ 99 112 100 public: << 113 virtual G4double RecalculateLambda(G4double kinEnergy, 101 << 114 const G4MaterialCutsCouple* couple); 102 // Initialise for build of tables << 103 void PreparePhysicsTable(const G4ParticleDef << 104 << 105 // Build physics table during initialisation << 106 void BuildPhysicsTable(const G4ParticleDefin << 107 << 108 // Called before tracking of each new G4Trac << 109 void StartTracking(G4Track*) override; << 110 << 111 // implementation of virtual method, specifi << 112 G4double PostStepGetPhysicalInteractionLengt << 113 const G4Track& tr << 114 G4double previo << 115 G4ForceCondition* << 116 << 117 // implementation of virtual method, specifi << 118 G4VParticleChange* PostStepDoIt(const G4Trac << 119 << 120 // Store PhysicsTable in a file. << 121 // Return false in case of failure at I/O << 122 G4bool StorePhysicsTable(const G4ParticleDef << 123 const G4String& dir << 124 G4bool ascii = fals << 125 << 126 // Retrieve Physics from a file. << 127 // (return true if the Physics Table can be << 128 // (return false if the process has no funct << 129 // File name should is constructed as proces << 130 // should be placed under the directory spec << 131 G4bool RetrievePhysicsTable(const G4Particle << 132 const G4String& << 133 G4bool ascii) ov << 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 115 138 //------------------------------------------ 116 //------------------------------------------------------------------------ 139 // Specific methods for Discrete EM post ste << 117 // Generic methods common to all processes 140 //------------------------------------------ 118 //------------------------------------------------------------------------ 141 119 142 // The main method to access cross section p << 120 public: 143 inline G4double GetLambda(G4double kinEnergy << 144 const G4MaterialCu << 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 121 151 // It returns the cross section of the proce << 122 void PrintInfoDefinition(); 152 G4double ComputeCrossSectionPerAtom(G4double << 153 G4double << 154 G4double << 155 123 156 inline G4double MeanFreePath(const G4Track& << 124 virtual G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 157 125 158 //------------------------------------------ << 126 void PreparePhysicsTable(const G4ParticleDefinition&); 159 // Specific methods to build and access Phys << 127 // Initialise for build of tables 160 //------------------------------------------ << 128 >> 129 void BuildPhysicsTable(const G4ParticleDefinition&); >> 130 // Build physics table during initialisation 161 131 162 // Binning for lambda table << 163 void SetLambdaBinning(G4int nbins); 132 void SetLambdaBinning(G4int nbins); >> 133 G4int LambdaBinning() const; >> 134 // Binning for lambda table 164 135 165 // Min kinetic energy for tables << 166 void SetMinKinEnergy(G4double e); 136 void SetMinKinEnergy(G4double e); >> 137 G4double MinKinEnergy() const; >> 138 // Min kinetic energy for tables 167 139 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 << 171 // Max kinetic energy for tables << 172 void SetMaxKinEnergy(G4double e); 140 void SetMaxKinEnergy(G4double e); >> 141 G4double MaxKinEnergy() const; >> 142 // Max kinetic energy for tables 173 143 174 // Cross section table pointers << 144 void SetLambdaFactor(G4double val); 175 inline G4PhysicsTable* LambdaTable() const; << 176 inline G4PhysicsTable* LambdaTablePrim() con << 177 inline void SetLambdaTable(G4PhysicsTable*); << 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 179 << 180 // Integral method type and peak positions << 181 inline std::vector<G4double>* EnergyOfCrossS << 182 inline void SetEnergyOfCrossSectionMax(std:: << 183 inline G4CrossSectionType CrossSectionType() << 184 inline void SetCrossSectionType(G4CrossSecti << 185 << 186 //------------------------------------------ << 187 // Define and access particle type << 188 //------------------------------------------ << 189 << 190 inline const G4ParticleDefinition* Particle( << 191 inline const G4ParticleDefinition* Secondary << 192 << 193 protected: << 194 << 195 //------------------------------------------ << 196 // Specific methods to set, access, modify m << 197 //------------------------------------------ << 198 << 199 // Select model in run time << 200 inline G4VEmModel* SelectModel(G4double kinE << 201 << 202 public: << 203 << 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 << 206 st << 207 << 208 // Add model for region, smaller value of or << 209 // model will be selected for a given energy << 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 211 << 212 // Assign a model to a process local list, t << 213 // the derived process should execute AddEmM << 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 215 << 216 inline G4int NumberOfModels() const; << 217 << 218 // return a model from the local list << 219 inline G4VEmModel* EmModel(std::size_t index << 220 << 221 // Access to active model << 222 inline const G4VEmModel* GetCurrentModel() c << 223 << 224 // Access to models << 225 inline G4VEmModel* GetModelByIndex(G4int idx << 226 << 227 // Access to the current G4Element << 228 const G4Element* GetCurrentElement() const; << 229 << 230 // Biasing parameters << 231 void SetCrossSectionBiasingFactor(G4double f << 232 inline G4double CrossSectionBiasingFactor() << 233 145 234 // Activate forced interaction << 146 G4bool StorePhysicsTable(const G4ParticleDefinition*, 235 void ActivateForcedInteraction(G4double leng << 147 const G4String& directory, 236 const G4Strin << 148 G4bool ascii = false); 237 G4bool flag = << 149 // Store PhysicsTable in a file. >> 150 // Return false in case of failure at I/O 238 151 239 void ActivateSecondaryBiasing(const G4String << 152 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 240 G4double energ << 153 const G4String& directory, >> 154 G4bool ascii); >> 155 // Retrieve Physics from a file. >> 156 // (return true if the Physics Table can be build by using file) >> 157 // (return false if the process has no functionality or in case of failure) >> 158 // File name should is constructed as processName+particleName and the >> 159 // should be placed under the directory specifed by the argument. >> 160 >> 161 void AddEmModel(G4int, G4VEmModel*, const G4Region* region = 0); >> 162 // Add EM model coupled for the region >> 163 >> 164 void UpdateEmModel(const G4String&, G4double, G4double); >> 165 // Define new energy range for the model identified by the name >> 166 >> 167 G4double GetLambda(G4double& kinEnergy, const G4MaterialCutsCouple* couple); >> 168 // It returns the Lambda of the process >> 169 >> 170 const G4PhysicsTable* LambdaTable() const; >> 171 >> 172 G4double MicroscopicCrossSection(G4double kineticEnergy, >> 173 const G4MaterialCutsCouple* couple); >> 174 // It returns the cross section of the process for energy/ material 241 175 242 inline void SetEmMasterProcess(const G4VEmPr << 176 G4double ComputeCrossSectionPerAtom(G4double kineticEnergy, >> 177 G4double Z, G4double A=0.); >> 178 // It returns the cross section of the process per atom 243 179 244 inline void SetBuildTableFlag(G4bool val); << 180 G4double MeanFreePath( const G4Track& track, >> 181 G4double previousStepSize, >> 182 G4ForceCondition* condition); 245 183 246 inline void CurrentSetup(const G4MaterialCut << 184 const G4ParticleDefinition* Particle() const; >> 185 const G4ParticleDefinition* SecondaryParticle() const; 247 186 248 inline G4bool UseBaseMaterial() const; << 187 void ActivateDeexcitation(G4bool, const G4Region* r = 0); 249 188 250 void BuildLambdaTable(); << 189 G4VEmModel* SelectModelForMaterial(G4double kinEnergy, >> 190 size_t& idxRegion) const; 251 191 252 void StreamInfo(std::ostream& outFile, const << 192 void SetIntegral(G4bool val); 253 G4bool rst=false) const; << 193 G4bool IsIntegral() const; 254 194 255 // hide copy constructor and assignment oper << 195 void SetApplyCuts(G4bool val); 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 196 259 //------------------------------------------ << 197 // Access to models 260 // Other generic methods << 198 G4VEmModel* GetModelByIndex(G4int idx = 0); 261 //------------------------------------------ << 262 199 263 protected: 200 protected: 264 201 265 G4double GetMeanFreePath(const G4Track& trac << 202 void SetParticle(const G4ParticleDefinition* p); 266 G4double previousSt << 267 G4ForceCondition* c << 268 << 269 G4PhysicsVector* LambdaPhysicsVector(const G << 270 << 271 inline void DefineMaterial(const G4MaterialC << 272 << 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 << 282 inline G4ParticleChangeForGamma* GetParticle << 283 << 284 inline void SetParticle(const G4ParticleDefi << 285 203 286 inline void SetSecondaryParticle(const G4Par << 204 void SetSecondaryParticle(const G4ParticleDefinition* p); 287 << 288 inline std::size_t CurrentMaterialCutsCouple << 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 205 292 inline G4bool ApplyCuts() const; << 206 G4double GetMeanFreePath(const G4Track& track, >> 207 G4double previousStepSize, >> 208 G4ForceCondition* condition); 293 209 294 inline G4double GetGammaEnergyCut(); << 210 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 295 211 296 inline G4double GetElectronEnergyCut(); << 212 G4VEmModel* SelectModel(G4double& kinEnergy); 297 213 298 inline void SetStartFromNullFlag(G4bool val) << 214 size_t CurrentMaterialCutsCoupleIndex() const {return currentMaterialIndex;}; 299 215 300 inline void SetSplineFlag(G4bool val); << 216 void ResetNumberOfInteractionLengthLeft(); 301 217 302 const G4Element* GetTargetElement() const; << 218 G4double GetGammaEnergyCut(); >> 219 G4double GetElectronEnergyCut(); 303 220 304 const G4Isotope* GetTargetIsotope() const; << 221 void SetBuildTableFlag(G4bool val); 305 222 306 // these two methods assume that vectors are << 223 void SetStartFromNullFlag(G4bool val); 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 224 311 private: 225 private: 312 226 313 void PrintWarning(G4String tit, G4double val << 227 void Clear(); 314 << 315 void ComputeIntegralLambda(G4double kinEnerg << 316 << 317 inline G4double LogEkin(const G4Track&); << 318 << 319 inline G4double GetLambdaFromTable(G4double << 320 << 321 inline G4double GetLambdaFromTable(G4double << 322 << 323 inline G4double GetLambdaFromTablePrim(G4dou << 324 << 325 inline G4double GetLambdaFromTablePrim(G4dou << 326 228 327 inline G4double GetCurrentLambda(G4double ki << 229 void DefineMaterial(const G4MaterialCutsCouple* couple); 328 230 329 inline G4double GetCurrentLambda(G4double ki << 231 void ComputeIntegralLambda(G4double kinEnergy); 330 232 331 inline G4double ComputeCurrentLambda(G4doubl << 233 G4double GetLambdaFromTable(G4double kinEnergy); 332 234 333 // ======== pointers ========= << 235 G4double GetCurrentLambda(G4double kinEnergy); 334 236 335 G4EmModelManager* modelManager = << 237 G4double ComputeCurrentLambda(G4double kinEnergy); 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 238 349 // ======== tables and vectors ======== << 239 void BuildLambdaTable(); 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 << 360 // ======== pointers ========= << 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 << 367 private: << 368 << 369 const std::vector<G4double>* theDensityFacto << 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 240 386 G4double mfpKinEnergy = DBL_MAX; << 241 void FindLambdaMax(); 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 242 390 private: << 243 // hide assignment operator 391 244 392 G4CrossSectionType fXSType = fEmNoIntegral; << 245 G4VEmProcess(G4VEmProcess &); >> 246 G4VEmProcess & operator=(const G4VEmProcess &right); 393 247 394 G4int numberOfModels = 0; << 248 // ===================================================================== 395 G4int nLambdaBins = 84; << 396 249 397 protected: 250 protected: 398 251 399 G4int mainSecondaries = 1; << 252 G4ParticleChangeForGamma fParticleChange; 400 G4int secID = _EM; << 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 << 410 G4bool isTheMaster = false; << 411 G4bool baseMat = false; << 412 253 413 private: 254 private: 414 255 415 G4bool buildLambdaTable = true; << 256 G4EmModelManager* modelManager; 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 257 428 // ======== particle change ========= << 258 // tables and vectors 429 std::vector<G4DynamicParticle*> secParticles << 259 G4PhysicsTable* theLambdaTable; 430 G4ParticleChangeForGamma fParticleChange; << 260 G4double* theEnergyOfCrossSectionMax; 431 << 261 G4double* theCrossSectionMax; 432 private: << 262 433 << 263 const G4ParticleDefinition* particle; 434 // ======== local vectors ========= << 264 const G4ParticleDefinition* secondaryParticle; 435 std::vector<G4VEmModel*> emModels; << 265 const G4ParticleDefinition* theGamma; >> 266 const G4ParticleDefinition* theElectron; >> 267 const G4ParticleDefinition* thePositron; >> 268 >> 269 const std::vector<G4double>* theCutsGamma; >> 270 const std::vector<G4double>* theCutsElectron; >> 271 const std::vector<G4double>* theCutsPositron; >> 272 >> 273 G4int nLambdaBins; >> 274 >> 275 G4double minKinEnergy; >> 276 G4double maxKinEnergy; >> 277 G4double lambdaFactor; >> 278 >> 279 // cash >> 280 const G4Material* currentMaterial; >> 281 const G4MaterialCutsCouple* currentCouple; >> 282 size_t currentMaterialIndex; >> 283 >> 284 G4double mfpKinEnergy; >> 285 G4double preStepKinEnergy; >> 286 G4double preStepLambda; >> 287 G4double preStepMFP; >> 288 >> 289 G4bool integral; >> 290 G4bool meanFreePath; >> 291 G4bool aboveCSmax; >> 292 G4bool buildLambdaTable; >> 293 G4bool applyCuts; >> 294 G4bool startFromNull; >> 295 >> 296 G4int nRegions; >> 297 std::vector<G4Region*> regions; >> 298 std::vector<G4bool> flagsDeexcitation; 436 299 437 }; 300 }; 438 301 439 // ======== Run time inline methods ========== << 440 << 441 //....oooOO0OOooo........oooOO0OOooo........oo 302 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 442 << 443 inline std::size_t G4VEmProcess::CurrentMateri << 444 { << 445 return currentCoupleIndex; << 446 } << 447 << 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 << 450 inline const G4MaterialCutsCouple* G4VEmProces << 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu << 458 { << 459 return (*theCutsGamma)[currentCoupleIndex]; << 460 } << 461 << 462 //....oooOO0OOooo........oooOO0OOooo........oo << 463 << 464 inline G4double G4VEmProcess::GetElectronEnerg << 465 { << 466 return (*theCutsElectron)[currentCoupleIndex << 467 } << 468 << 469 //....oooOO0OOooo........oooOO0OOooo........oo 303 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 304 471 inline void G4VEmProcess::DefineMaterial(const 305 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 306 { 473 if (couple != currentCouple) { << 307 if(couple != currentCouple) { 474 currentCouple = couple; << 308 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 309 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 310 currentMaterialIndex = couple->GetIndex(); 477 fFactor = biasFactor; << 311 if(!meanFreePath) ResetNumberOfInteractionLengthLeft(); 478 mfpKinEnergy = DBL_MAX; << 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } << 486 } << 487 << 488 //....oooOO0OOooo........oooOO0OOooo........oo << 489 << 490 inline << 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 492 { << 493 if(1 < numberOfModels) { << 494 currentModel = modelManager->SelectModel(k << 495 } 312 } 496 currentModel->SetCurrentCouple(currentCouple << 497 return currentModel; << 498 } 313 } 499 314 500 //....oooOO0OOooo........oooOO0OOooo........oo 315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 501 316 502 inline << 317 inline G4double G4VEmProcess::GetLambda(G4double& kineticEnergy, 503 G4VEmModel* G4VEmProcess::SelectModelForMateri << 318 const G4MaterialCutsCouple* couple) 504 << 505 { 319 { 506 return modelManager->SelectModel(kinEnergy, << 320 DefineMaterial(couple); 507 } << 321 return GetCurrentLambda(kineticEnergy); 508 << 509 //....oooOO0OOooo........oooOO0OOooo........oo << 510 << 511 inline G4double G4VEmProcess::GetLambdaFromTab << 512 { << 513 return ((*theLambdaTable)[basedCoupleIndex]) << 514 } << 515 << 516 //....oooOO0OOooo........oooOO0OOooo........oo << 517 << 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab << 533 { << 534 return ((*theLambdaTablePrim)[basedCoupleInd << 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo << 538 << 539 inline G4double G4VEmProcess::GetLambdaFromTab << 540 { << 541 return ((*theLambdaTablePrim)[basedCoupleInd << 542 } << 543 << 544 //....oooOO0OOooo........oooOO0OOooo........oo << 545 << 546 inline G4double G4VEmProcess::ComputeCurrentLa << 547 { << 548 return currentModel->CrossSectionPerVolume(b << 549 } 322 } 550 323 551 //....oooOO0OOooo........oooOO0OOooo........oo 324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 325 553 inline G4double G4VEmProcess::GetCurrentLambda 326 inline G4double G4VEmProcess::GetCurrentLambda(G4double e) 554 { 327 { 555 if(currentCoupleIndex != coupleIdxLambda || << 328 G4double x = 0.0; 556 coupleIdxLambda = currentCoupleIndex; << 329 if(theLambdaTable) x = GetLambdaFromTable(e); 557 fLambdaEnergy = e; << 330 else x = ComputeCurrentLambda(e); 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 331 return x; 559 else if(nullptr != theLambdaTable) { fLamb << 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } 332 } 565 333 566 //....oooOO0OOooo........oooOO0OOooo........oo 334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 567 335 568 inline G4double G4VEmProcess::GetCurrentLambda << 336 inline G4double G4VEmProcess::RecalculateLambda(G4double e, const G4MaterialCutsCouple* couple) 569 { << 570 if(currentCoupleIndex != coupleIdxLambda || << 571 coupleIdxLambda = currentCoupleIndex; << 572 fLambdaEnergy = e; << 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } << 580 << 581 //....oooOO0OOooo........oooOO0OOooo........oo << 582 << 583 inline void << 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { 337 { 586 DefineMaterial(couple); 338 DefineMaterial(couple); 587 SelectModel(energy*massRatio, currentCoupleI << 339 return ComputeCurrentLambda(e); 588 } << 589 << 590 //....oooOO0OOooo........oooOO0OOooo........oo << 591 << 592 inline G4double << 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 594 G4double logKinEnergy) << 595 { << 596 CurrentSetup(couple, kinEnergy); << 597 return GetCurrentLambda(kinEnergy, logKinEne << 598 } << 599 << 600 //....oooOO0OOooo........oooOO0OOooo........oo << 601 << 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 603 { << 604 const G4double kinEnergy = track.GetKineticE << 605 CurrentSetup(track.GetMaterialCutsCouple(), << 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } << 610 << 611 // ======== Get/Set inline methods used at ini << 612 << 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo << 619 << 620 inline G4int G4VEmProcess::LambdaBinning() con << 621 { << 622 return nLambdaBins; << 623 } << 624 << 625 //....oooOO0OOooo........oooOO0OOooo........oo << 626 << 627 inline G4double G4VEmProcess::MinKinEnergy() c << 628 { << 629 return minKinEnergy; << 630 } << 631 << 632 //....oooOO0OOooo........oooOO0OOooo........oo << 633 << 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 635 { << 636 return maxKinEnergy; << 637 } 340 } 638 341 639 //....oooOO0OOooo........oooOO0OOooo........oo 342 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 640 343 641 inline G4double G4VEmProcess::CrossSectionBias << 344 inline G4double G4VEmProcess::ComputeCurrentLambda(G4double e) 642 { 345 { 643 return biasFactor; << 346 G4VEmModel* currentModel = SelectModel(e); >> 347 G4double x = 0.0; >> 348 if(currentModel) x = currentModel->CrossSectionPerVolume(currentMaterial,particle,e); >> 349 return x; 644 } 350 } 645 351 646 //....oooOO0OOooo........oooOO0OOooo........oo 352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 353 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 354 inline G4double G4VEmProcess::GetLambdaFromTable(G4double e) 649 { 355 { 650 return theLambdaTable; << 356 G4bool b; >> 357 return (((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); 651 } 358 } 652 359 653 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 361 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 362 inline void G4VEmProcess::ComputeIntegralLambda(G4double e) 656 { 363 { 657 return theLambdaTablePrim; << 364 meanFreePath = false; >> 365 aboveCSmax = false; >> 366 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex]; >> 367 if (e <= mfpKinEnergy) { >> 368 preStepLambda = GetLambdaFromTable(e); >> 369 } else { >> 370 aboveCSmax = true; >> 371 G4double e1 = e*lambdaFactor; >> 372 if(e1 > mfpKinEnergy) { >> 373 preStepLambda = GetLambdaFromTable(e); >> 374 G4double preStepLambda1 = GetLambdaFromTable(e1); >> 375 if(preStepLambda1 > preStepLambda) { >> 376 mfpKinEnergy = e1; >> 377 preStepLambda = preStepLambda1; >> 378 } >> 379 } else { >> 380 preStepLambda = theCrossSectionMax[currentMaterialIndex]; >> 381 } >> 382 } 658 } 383 } 659 384 660 //....oooOO0OOooo........oooOO0OOooo........oo 385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 386 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 387 inline G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 663 { << 388 G4double, 664 theLambdaTable = ptr; << 389 G4ForceCondition* condition) >> 390 { >> 391 *condition = NotForced; >> 392 preStepKinEnergy = track.GetKineticEnergy(); >> 393 DefineMaterial(track.GetMaterialCutsCouple()); >> 394 if( aboveCSmax && preStepKinEnergy < mfpKinEnergy ) ResetNumberOfInteractionLengthLeft(); >> 395 if (meanFreePath) { >> 396 if(integral) ComputeIntegralLambda(preStepKinEnergy); >> 397 else preStepLambda = GetCurrentLambda(preStepKinEnergy); >> 398 if(0.0 < preStepLambda) preStepMFP = 1.0/preStepLambda; >> 399 else preStepMFP = DBL_MAX; >> 400 } >> 401 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy<< " eCSmax= " >> 402 // <<mfpKinEnergy<< " mfp= "<<preStepMFP<<G4endl; >> 403 return preStepMFP; 665 } 404 } 666 405 667 //....oooOO0OOooo........oooOO0OOooo........oo 406 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 668 407 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 408 inline G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy) 670 { 409 { 671 theLambdaTablePrim = ptr; << 410 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 672 } 411 } 673 412 674 //....oooOO0OOooo........oooOO0OOooo........oo 413 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 414 676 inline std::vector<G4double>* G4VEmProcess::En << 415 inline G4VEmModel* G4VEmProcess::SelectModelForMaterial( >> 416 G4double kinEnergy, size_t& idxRegion) const 677 { 417 { 678 return theEnergyOfCrossSectionMax; << 418 return modelManager->SelectModel(kinEnergy, idxRegion); 679 } 419 } 680 420 681 //....oooOO0OOooo........oooOO0OOooo........oo 421 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 682 422 683 inline void << 423 inline void G4VEmProcess::ResetNumberOfInteractionLengthLeft() 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { 424 { 686 theEnergyOfCrossSectionMax = ptr; << 425 meanFreePath = true; >> 426 aboveCSmax = false; >> 427 G4VProcess::ResetNumberOfInteractionLengthLeft(); 687 } 428 } 688 429 689 //....oooOO0OOooo........oooOO0OOooo........oo 430 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 431 691 inline const G4ParticleDefinition* G4VEmProces 432 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 433 { 693 return particle; 434 return particle; 694 } 435 } 695 436 696 //....oooOO0OOooo........oooOO0OOooo........oo 437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 438 698 inline const G4ParticleDefinition* G4VEmProces 439 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 440 { 700 return secondaryParticle; 441 return secondaryParticle; 701 } 442 } 702 443 703 //....oooOO0OOooo........oooOO0OOooo........oo 444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 445 705 inline void G4VEmProcess::SetCrossSectionType( << 446 inline G4double G4VEmProcess::GetGammaEnergyCut() 706 { << 707 fXSType = val; << 708 } << 709 << 710 //....oooOO0OOooo........oooOO0OOooo........oo << 711 << 712 inline G4CrossSectionType G4VEmProcess::CrossS << 713 { << 714 return fXSType; << 715 } << 716 << 717 //....oooOO0OOooo........oooOO0OOooo........oo << 718 << 719 inline void G4VEmProcess::SetBuildTableFlag(G4 << 720 { << 721 buildLambdaTable = val; << 722 } << 723 << 724 //....oooOO0OOooo........oooOO0OOooo........oo << 725 << 726 inline G4ParticleChangeForGamma* G4VEmProcess: << 727 { << 728 return &fParticleChange; << 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 << 733 inline void G4VEmProcess::SetParticle(const G4 << 734 { << 735 particle = p; << 736 currentParticle = p; << 737 } << 738 << 739 //....oooOO0OOooo........oooOO0OOooo........oo << 740 << 741 inline void G4VEmProcess::SetSecondaryParticle << 742 { << 743 secondaryParticle = p; << 744 } << 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 inline void G4VEmProcess::SetStartFromNullFlag << 749 { << 750 startFromNull = val; << 751 } << 752 << 753 //....oooOO0OOooo........oooOO0OOooo........oo << 754 << 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 756 { << 757 splineFlag = val; << 758 } << 759 << 760 //....oooOO0OOooo........oooOO0OOooo........oo << 761 << 762 inline G4int G4VEmProcess::DensityIndex(G4int << 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { << 771 return (*theDensityFactor)[idx]; << 772 } << 773 << 774 //....oooOO0OOooo........oooOO0OOooo........oo << 775 << 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 777 { << 778 return baseMat; << 779 } << 780 << 781 //....oooOO0OOooo........oooOO0OOooo........oo << 782 << 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 784 { 447 { 785 return currentModel; << 448 return (*theCutsGamma)[currentMaterialIndex]; 786 } << 787 << 788 //....oooOO0OOooo........oooOO0OOooo........oo << 789 << 790 inline void G4VEmProcess::SetEmMasterProcess(c << 791 { << 792 masterProc = ptr; << 793 } 449 } 794 450 795 //....oooOO0OOooo........oooOO0OOooo........oo 451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 796 452 797 inline G4int G4VEmProcess::NumberOfModels() co << 453 inline G4double G4VEmProcess::GetElectronEnergyCut() 798 { 454 { 799 return numberOfModels; << 455 return (*theCutsElectron)[currentMaterialIndex]; 800 } 456 } 801 457 802 //....oooOO0OOooo........oooOO0OOooo........oo 458 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 459 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 460 inline void G4VEmProcess::SetLambdaFactor(G4double val) 805 { 461 { 806 return (index < emModels.size()) ? emModels[ << 462 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 807 } 463 } 808 464 809 //....oooOO0OOooo........oooOO0OOooo........oo 465 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 810 466 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 467 inline G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx) 812 { 468 { 813 return modelManager->GetModel(idx, ver); << 469 return modelManager->GetModel(idx); 814 } 470 } 815 471 816 //....oooOO0OOooo........oooOO0OOooo........oo 472 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 473 818 #endif 474 #endif 819 475