Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEmProcess.hh,v 1.4 2004/05/17 09:46:56 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-02 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class header file 28 // GEANT4 Class header file 29 // 29 // 30 // 30 // 31 // File name: G4VEmProcess 31 // File name: G4VEmProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 01.10.2003 35 // Creation date: 01.10.2003 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: >> 38 // 38 // 39 // 39 // Class Description: 40 // Class Description: 40 // 41 // 41 // It is the base class - EM discrete and rest << 42 // It is the unified Rest and/or Discrete process 42 43 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 // 45 // 45 46 46 #ifndef G4VEmProcess_h 47 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 48 #define G4VEmProcess_h 1 48 49 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 #include "G4VRestDiscreteProcess.hh" 50 << 51 #include "G4VDiscreteProcess.hh" << 52 #include "globals.hh" 51 #include "globals.hh" 53 #include "G4Material.hh" 52 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 53 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 54 #include "G4Track.hh" >> 55 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 56 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 57 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" << 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 58 65 class G4Step; 59 class G4Step; 66 class G4VEmModel; 60 class G4VEmModel; >> 61 class G4VEmFluctuationModel; 67 class G4DataVector; 62 class G4DataVector; 68 class G4VParticleChange; 63 class G4VParticleChange; 69 class G4PhysicsTable; 64 class G4PhysicsTable; 70 class G4PhysicsVector; 65 class G4PhysicsVector; 71 class G4EmBiasingManager; << 72 class G4LossTableManager; << 73 66 74 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 68 76 class G4VEmProcess : public G4VDiscreteProcess << 69 class G4VEmProcess : public G4VRestDiscreteProcess 77 { 70 { 78 public: 71 public: 79 72 80 G4VEmProcess(const G4String& name, G4Process << 73 G4VEmProcess(const G4String& name, >> 74 G4ProcessType type = fElectromagnetic); 81 75 82 ~G4VEmProcess() override; << 76 ~G4VEmProcess(); 83 << 84 //------------------------------------------ << 85 // Virtual methods to be implemented in conc << 86 //------------------------------------------ << 87 << 88 void ProcessDescription(std::ostream& outFil << 89 << 90 protected: << 91 77 92 virtual void StreamProcessInfo(std::ostream& << 78 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 93 79 94 virtual void InitialiseProcess(const G4Parti << 80 G4double GetMeanLifeTime(const G4Track& aTrack, >> 81 G4ForceCondition* condition); >> 82 // It is invoked by the ProcessManager of the Positron if this >> 83 // e+ has a kinetic energy null. Then it return 0 to force the >> 84 // call of AtRestDoIt. >> 85 // This function overloads a virtual function of the base class. >> 86 >> 87 virtual G4VParticleChange* AtRestDoIt(const G4Track& aTrack, >> 88 const G4Step& aStep); >> 89 // It computes the final state of the process: >> 90 // e+ (at rest) e- (at rest) ---> gamma gamma, >> 91 // returned as a ParticleChange object. >> 92 // This function overloads a virtual function of the base class. >> 93 // It is invoked by the ProcessManager of the Particle. >> 94 >> 95 virtual void SecondariesPostStep(G4VEmModel*, >> 96 const G4MaterialCutsCouple*, >> 97 const G4DynamicParticle*, >> 98 G4double& tcut, >> 99 G4double& kinEnergy) = 0; 95 100 96 //------------------------------------------ << 101 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 97 // Implementation of virtual methods common << 102 // True for all charged particles 98 //------------------------------------------ << 99 << 100 public: << 101 << 102 // Initialise for build of tables << 103 void PreparePhysicsTable(const G4ParticleDef << 104 103 >> 104 virtual void BuildPhysicsTable(const G4ParticleDefinition&); 105 // Build physics table during initialisation 105 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 107 106 108 // Called before tracking of each new G4Trac << 107 virtual void PrintInfoDefinition(); 109 void StartTracking(G4Track*) override; << 108 // Print out of the class parameters 110 109 111 // implementation of virtual method, specifi << 110 G4PhysicsTable* BuildLambdaTable(); 112 G4double PostStepGetPhysicalInteractionLengt << 113 const G4Track& tr << 114 G4double previo << 115 G4ForceCondition* << 116 << 117 // implementation of virtual method, specifi << 118 G4VParticleChange* PostStepDoIt(const G4Trac << 119 << 120 // Store PhysicsTable in a file. << 121 // Return false in case of failure at I/O << 122 G4bool StorePhysicsTable(const G4ParticleDef << 123 const G4String& dir << 124 G4bool ascii = fals << 125 << 126 // Retrieve Physics from a file. << 127 // (return true if the Physics Table can be << 128 // (return false if the process has no funct << 129 // File name should is constructed as proces << 130 // should be placed under the directory spec << 131 G4bool RetrievePhysicsTable(const G4Particle << 132 const G4String& << 133 G4bool ascii) ov << 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 << 138 //------------------------------------------ << 139 // Specific methods for Discrete EM post ste << 140 //------------------------------------------ << 141 << 142 // The main method to access cross section p << 143 inline G4double GetLambda(G4double kinEnergy << 144 const G4MaterialCu << 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 << 151 // It returns the cross section of the proce << 152 G4double ComputeCrossSectionPerAtom(G4double << 153 G4double << 154 G4double << 155 << 156 inline G4double MeanFreePath(const G4Track& << 157 << 158 //------------------------------------------ << 159 // Specific methods to build and access Phys << 160 //------------------------------------------ << 161 111 162 // Binning for lambda table << 163 void SetLambdaBinning(G4int nbins); 112 void SetLambdaBinning(G4int nbins); >> 113 // Binning for lambda table 164 114 165 // Min kinetic energy for tables << 166 void SetMinKinEnergy(G4double e); 115 void SetMinKinEnergy(G4double e); >> 116 G4double MinKinEnergy() const; >> 117 // Min kinetic energy for tables 167 118 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 << 171 // Max kinetic energy for tables << 172 void SetMaxKinEnergy(G4double e); 119 void SetMaxKinEnergy(G4double e); >> 120 G4double MaxKinEnergy() const; >> 121 // Max kinetic energy for tables 173 122 174 // Cross section table pointers << 123 G4bool StorePhysicsTable(G4ParticleDefinition*, 175 inline G4PhysicsTable* LambdaTable() const; << 124 const G4String& directory, 176 inline G4PhysicsTable* LambdaTablePrim() con << 125 G4bool ascii = false); 177 inline void SetLambdaTable(G4PhysicsTable*); << 126 // Store PhysicsTable in a file. 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 127 // Return false in case of failure at I/O 179 << 128 180 // Integral method type and peak positions << 129 G4bool RetrievePhysicsTable(G4ParticleDefinition*, 181 inline std::vector<G4double>* EnergyOfCrossS << 130 const G4String& directory, 182 inline void SetEnergyOfCrossSectionMax(std:: << 131 G4bool ascii); 183 inline G4CrossSectionType CrossSectionType() << 132 // Retrieve Physics from a file. 184 inline void SetCrossSectionType(G4CrossSecti << 133 // (return true if the Physics Table can be build by using file) 185 << 134 // (return false if the process has no functionality or in case of failure) 186 //------------------------------------------ << 135 // File name should is constructed as processName+particleName and the 187 // Define and access particle type << 136 // should be placed under the directory specifed by the argument. 188 //------------------------------------------ << 137 189 << 138 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, 190 inline const G4ParticleDefinition* Particle( << 139 const G4Region* region = 0); 191 inline const G4ParticleDefinition* Secondary << 140 // Add EM model coupled with fluctuation model for the region 192 << 141 193 protected: << 142 void UpdateEmModel(const G4String&, G4double, G4double); 194 << 143 // Define new energy range for the model identified by the name 195 //------------------------------------------ << 144 196 // Specific methods to set, access, modify m << 145 G4double GetLambda(G4double& kinEnergy, const G4MaterialCutsCouple* couple); 197 //------------------------------------------ << 146 // It returns the Lambda of the process 198 << 147 199 // Select model in run time << 148 G4double MicroscopicCrossSection(G4double kineticEnergy, 200 inline G4VEmModel* SelectModel(G4double kinE << 149 const G4MaterialCutsCouple* couple); 201 << 150 // It returns the cross section of the process for energy/ material 202 public: << 151 203 << 152 void SetIntegral(G4bool val) {integral = val;}; 204 // Select model by energy and couple index << 153 G4bool IsIntegral() const {return integral;} 205 inline G4VEmModel* SelectModelForMaterial(G4 << 154 206 st << 155 G4double MeanFreePath(const G4Track& track, 207 << 156 G4double previousStepSize, 208 // Add model for region, smaller value of or << 157 G4ForceCondition* condition); 209 // model will be selected for a given energy << 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 211 << 212 // Assign a model to a process local list, t << 213 // the derived process should execute AddEmM << 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 215 << 216 inline G4int NumberOfModels() const; << 217 << 218 // return a model from the local list << 219 inline G4VEmModel* EmModel(std::size_t index << 220 << 221 // Access to active model << 222 inline const G4VEmModel* GetCurrentModel() c << 223 << 224 // Access to models << 225 inline G4VEmModel* GetModelByIndex(G4int idx << 226 << 227 // Access to the current G4Element << 228 const G4Element* GetCurrentElement() const; << 229 << 230 // Biasing parameters << 231 void SetCrossSectionBiasingFactor(G4double f << 232 inline G4double CrossSectionBiasingFactor() << 233 << 234 // Activate forced interaction << 235 void ActivateForcedInteraction(G4double leng << 236 const G4Strin << 237 G4bool flag = << 238 << 239 void ActivateSecondaryBiasing(const G4String << 240 G4double energ << 241 << 242 inline void SetEmMasterProcess(const G4VEmPr << 243 << 244 inline void SetBuildTableFlag(G4bool val); << 245 << 246 inline void CurrentSetup(const G4MaterialCut << 247 << 248 inline G4bool UseBaseMaterial() const; << 249 158 250 void BuildLambdaTable(); << 159 const G4ParticleDefinition* Particle() const; >> 160 const G4ParticleDefinition* SecondaryParticle() const; 251 161 252 void StreamInfo(std::ostream& outFile, const << 162 void ActivateFluorescence(G4bool, const G4Region* r = 0); 253 G4bool rst=false) const; << 163 void ActivateAugerElectronProduction(G4bool, const G4Region* r = 0); 254 164 255 // hide copy constructor and assignment oper << 165 void SetLambdaFactor(G4double val); 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 166 259 //------------------------------------------ << 260 // Other generic methods << 261 //------------------------------------------ << 262 << 263 protected: 167 protected: 264 168 265 G4double GetMeanFreePath(const G4Track& trac << 169 void SetParticle(const G4ParticleDefinition* p); 266 G4double previousSt << 170 void SetSecondaryParticle(const G4ParticleDefinition* p); 267 G4ForceCondition* c << 268 << 269 G4PhysicsVector* LambdaPhysicsVector(const G << 270 << 271 inline void DefineMaterial(const G4MaterialC << 272 << 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 << 282 inline G4ParticleChangeForGamma* GetParticle << 283 << 284 inline void SetParticle(const G4ParticleDefi << 285 << 286 inline void SetSecondaryParticle(const G4Par << 287 << 288 inline std::size_t CurrentMaterialCutsCouple << 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 << 292 inline G4bool ApplyCuts() const; << 293 << 294 inline G4double GetGammaEnergyCut(); << 295 171 296 inline G4double GetElectronEnergyCut(); << 172 virtual G4double GetMeanFreePath(const G4Track& track, >> 173 G4double previousStepSize, >> 174 G4ForceCondition* condition); 297 175 298 inline void SetStartFromNullFlag(G4bool val) << 176 virtual G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 299 177 300 inline void SetSplineFlag(G4bool val); << 178 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, >> 179 const G4Material*, G4double cut) = 0; 301 180 302 const G4Element* GetTargetElement() const; << 181 G4VEmModel* SelectModel(G4double& kinEnergy); 303 182 304 const G4Isotope* GetTargetIsotope() const; << 183 size_t CurrentMaterialCutsCoupleIndex() const {return currentMaterialIndex;}; 305 184 306 // these two methods assume that vectors are << 185 void ResetNumberOfInteractionLengthLeft(); 307 // and idx is within vector length << 186 // reset (determine the value of)NumberOfInteractionLengthLeft 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 187 311 private: 188 private: 312 189 313 void PrintWarning(G4String tit, G4double val << 190 void Initialise(); 314 191 315 void ComputeIntegralLambda(G4double kinEnerg << 192 void DefineMaterial(const G4MaterialCutsCouple* couple); 316 193 317 inline G4double LogEkin(const G4Track&); << 194 G4double GetLambda(G4double kinEnergy); 318 195 319 inline G4double GetLambdaFromTable(G4double << 196 void ComputeLambda(G4double kinEnergy); 320 197 321 inline G4double GetLambdaFromTable(G4double << 198 // hide assignment operator 322 199 323 inline G4double GetLambdaFromTablePrim(G4dou << 200 G4VEmProcess(G4VEmProcess &); >> 201 G4VEmProcess & operator=(const G4VEmProcess &right); 324 202 325 inline G4double GetLambdaFromTablePrim(G4dou << 203 // ===================================================================== 326 << 327 inline G4double GetCurrentLambda(G4double ki << 328 << 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl << 332 << 333 // ======== pointers ========= << 334 << 335 G4EmModelManager* modelManager = << 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 << 360 // ======== pointers ========= << 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 204 367 private: 205 private: 368 206 369 const std::vector<G4double>* theDensityFacto << 207 G4EmModelManager* modelManager; 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 208 384 protected: << 209 // tables and vectors 385 << 210 G4PhysicsTable* theLambdaTable; 386 G4double mfpKinEnergy = DBL_MAX; << 211 G4double* theEnergyOfCrossSectionMax; 387 G4double preStepKinEnergy = 0.0; << 212 G4double* theCrossSectionMax; 388 G4double preStepLambda = 0.0; << 213 389 << 214 const G4ParticleDefinition* particle; 390 private: << 215 const G4ParticleDefinition* baseParticle; 391 << 216 const G4ParticleDefinition* secondaryParticle; 392 G4CrossSectionType fXSType = fEmNoIntegral; << 217 const G4DataVector* theCuts; 393 << 218 394 G4int numberOfModels = 0; << 219 // cash 395 G4int nLambdaBins = 84; << 220 const G4Material* currentMaterial; 396 << 221 const G4MaterialCutsCouple* currentCouple; 397 protected: << 222 size_t currentMaterialIndex; 398 << 223 399 G4int mainSecondaries = 1; << 224 G4int nLambdaBins; 400 G4int secID = _EM; << 225 401 G4int fluoID = _Fluorescence; << 226 G4double minKinEnergy; 402 G4int augerID = _AugerElectron; << 227 G4double maxKinEnergy; 403 G4int biasID = _EM; << 228 G4double lambdaFactor; 404 G4int tripletID = _TripletElectron; << 229 405 std::size_t currentCoupleIndex = 0; << 230 G4double preStepLambda; 406 std::size_t basedCoupleIndex = 0; << 231 G4double preStepMFP; 407 std::size_t coupleIdxLambda = 0; << 232 G4double preStepKinEnergy; 408 std::size_t idxLambda = 0; << 233 G4double mfpKinEnergy; 409 << 410 G4bool isTheMaster = false; << 411 G4bool baseMat = false; << 412 << 413 private: << 414 << 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles << 430 G4ParticleChangeForGamma fParticleChange; << 431 << 432 private: << 433 << 434 // ======== local vectors ========= << 435 std::vector<G4VEmModel*> emModels; << 436 234 >> 235 G4bool integral; >> 236 G4bool meanFreePath; 437 }; 237 }; 438 238 439 // ======== Run time inline methods ========== << 440 << 441 //....oooOO0OOooo........oooOO0OOooo........oo 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 442 << 443 inline std::size_t G4VEmProcess::CurrentMateri << 444 { << 445 return currentCoupleIndex; << 446 } << 447 << 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 << 450 inline const G4MaterialCutsCouple* G4VEmProces << 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu << 458 { << 459 return (*theCutsGamma)[currentCoupleIndex]; << 460 } << 461 << 462 //....oooOO0OOooo........oooOO0OOooo........oo << 463 << 464 inline G4double G4VEmProcess::GetElectronEnerg << 465 { << 466 return (*theCutsElectron)[currentCoupleIndex << 467 } << 468 << 469 //....oooOO0OOooo........oooOO0OOooo........oo 240 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 241 471 inline void G4VEmProcess::DefineMaterial(const 242 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 243 { 473 if (couple != currentCouple) { << 244 if(couple != currentCouple) { 474 currentCouple = couple; << 245 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 246 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 247 currentMaterialIndex = couple->GetIndex(); 477 fFactor = biasFactor; << 248 if(integral && (!meanFreePath || preStepKinEnergy < mfpKinEnergy)) 478 mfpKinEnergy = DBL_MAX; << 249 ResetNumberOfInteractionLengthLeft(); 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } << 486 } << 487 << 488 //....oooOO0OOooo........oooOO0OOooo........oo << 489 << 490 inline << 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 492 { << 493 if(1 < numberOfModels) { << 494 currentModel = modelManager->SelectModel(k << 495 } 250 } 496 currentModel->SetCurrentCouple(currentCouple << 497 return currentModel; << 498 } << 499 << 500 //....oooOO0OOooo........oooOO0OOooo........oo << 501 << 502 inline << 503 G4VEmModel* G4VEmProcess::SelectModelForMateri << 504 << 505 { << 506 return modelManager->SelectModel(kinEnergy, << 507 } << 508 << 509 //....oooOO0OOooo........oooOO0OOooo........oo << 510 << 511 inline G4double G4VEmProcess::GetLambdaFromTab << 512 { << 513 return ((*theLambdaTable)[basedCoupleIndex]) << 514 } << 515 << 516 //....oooOO0OOooo........oooOO0OOooo........oo << 517 << 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab << 533 { << 534 return ((*theLambdaTablePrim)[basedCoupleInd << 535 } 251 } 536 252 537 //....oooOO0OOooo........oooOO0OOooo........oo 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 254 539 inline G4double G4VEmProcess::GetLambdaFromTab << 255 inline G4double G4VEmProcess::GetLambda(G4double& kineticEnergy, >> 256 const G4MaterialCutsCouple* couple) 540 { 257 { 541 return ((*theLambdaTablePrim)[basedCoupleInd << 258 DefineMaterial(couple); >> 259 G4double x = 0.0; >> 260 if(theLambdaTable) x = GetLambda(kineticEnergy); >> 261 return x; 542 } 262 } 543 263 544 //....oooOO0OOooo........oooOO0OOooo........oo 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 265 546 inline G4double G4VEmProcess::ComputeCurrentLa << 266 inline G4double G4VEmProcess::GetLambda(G4double e) 547 { 267 { 548 return currentModel->CrossSectionPerVolume(b << 268 G4bool b; >> 269 return (((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); 549 } 270 } 550 271 551 //....oooOO0OOooo........oooOO0OOooo........oo 272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 273 553 inline G4double G4VEmProcess::GetCurrentLambda << 274 inline void G4VEmProcess::ComputeLambda(G4double e) 554 { 275 { 555 if(currentCoupleIndex != coupleIdxLambda || << 276 meanFreePath = false; 556 coupleIdxLambda = currentCoupleIndex; << 277 mfpKinEnergy = 0.0; 557 fLambdaEnergy = e; << 278 G4double emax = theEnergyOfCrossSectionMax[currentMaterialIndex]; 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 279 if (e <= emax) preStepLambda = GetLambda(e); 559 else if(nullptr != theLambdaTable) { fLamb << 280 else { 560 else { fLambda = ComputeCurrentLambda(e); << 281 e *= lambdaFactor; 561 fLambda *= fFactor; << 282 if(e > emax) { >> 283 mfpKinEnergy = e; >> 284 preStepLambda = GetLambda(e); >> 285 } else preStepLambda = theCrossSectionMax[currentMaterialIndex]; 562 } 286 } 563 return fLambda; << 564 } 287 } 565 288 566 //....oooOO0OOooo........oooOO0OOooo........oo 289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 567 290 568 inline G4double G4VEmProcess::GetCurrentLambda << 291 inline G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, G4double, >> 292 G4ForceCondition*) 569 { 293 { 570 if(currentCoupleIndex != coupleIdxLambda || << 294 preStepKinEnergy = track.GetKineticEnergy(); 571 coupleIdxLambda = currentCoupleIndex; << 295 DefineMaterial(track.GetMaterialCutsCouple()); 572 fLambdaEnergy = e; << 296 if (meanFreePath) { 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 297 if (integral) ComputeLambda(preStepKinEnergy); 574 else if(nullptr != theLambdaTable) { fLamb << 298 else preStepLambda = GetLambda(preStepKinEnergy); 575 else { fLambda = ComputeCurrentLambda(e); << 299 if(0.0 < preStepLambda) preStepMFP = 1.0/preStepLambda; 576 fLambda *= fFactor; << 300 else preStepMFP = DBL_MAX; 577 } 301 } 578 return fLambda; << 302 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy<<" mfp= "<<preStepMFP<<G4endl; 579 } << 303 return preStepMFP; 580 << 581 //....oooOO0OOooo........oooOO0OOooo........oo << 582 << 583 inline void << 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { << 586 DefineMaterial(couple); << 587 SelectModel(energy*massRatio, currentCoupleI << 588 } << 589 << 590 //....oooOO0OOooo........oooOO0OOooo........oo << 591 << 592 inline G4double << 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 594 G4double logKinEnergy) << 595 { << 596 CurrentSetup(couple, kinEnergy); << 597 return GetCurrentLambda(kinEnergy, logKinEne << 598 } << 599 << 600 //....oooOO0OOooo........oooOO0OOooo........oo << 601 << 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 603 { << 604 const G4double kinEnergy = track.GetKineticE << 605 CurrentSetup(track.GetMaterialCutsCouple(), << 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } << 610 << 611 // ======== Get/Set inline methods used at ini << 612 << 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo << 619 << 620 inline G4int G4VEmProcess::LambdaBinning() con << 621 { << 622 return nLambdaBins; << 623 } << 624 << 625 //....oooOO0OOooo........oooOO0OOooo........oo << 626 << 627 inline G4double G4VEmProcess::MinKinEnergy() c << 628 { << 629 return minKinEnergy; << 630 } << 631 << 632 //....oooOO0OOooo........oooOO0OOooo........oo << 633 << 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 635 { << 636 return maxKinEnergy; << 637 } << 638 << 639 //....oooOO0OOooo........oooOO0OOooo........oo << 640 << 641 inline G4double G4VEmProcess::CrossSectionBias << 642 { << 643 return biasFactor; << 644 } 304 } 645 305 646 //....oooOO0OOooo........oooOO0OOooo........oo 306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 307 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 308 inline void G4VEmProcess::ResetNumberOfInteractionLengthLeft() 649 { 309 { 650 return theLambdaTable; << 310 meanFreePath = true; >> 311 G4VProcess::ResetNumberOfInteractionLengthLeft(); 651 } 312 } 652 313 653 //....oooOO0OOooo........oooOO0OOooo........oo 314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 315 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 316 inline G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy) 656 { 317 { 657 return theLambdaTablePrim; << 318 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 658 } << 659 << 660 //....oooOO0OOooo........oooOO0OOooo........oo << 661 << 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 663 { << 664 theLambdaTable = ptr; << 665 } << 666 << 667 //....oooOO0OOooo........oooOO0OOooo........oo << 668 << 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 670 { << 671 theLambdaTablePrim = ptr; << 672 } << 673 << 674 //....oooOO0OOooo........oooOO0OOooo........oo << 675 << 676 inline std::vector<G4double>* G4VEmProcess::En << 677 { << 678 return theEnergyOfCrossSectionMax; << 679 } << 680 << 681 //....oooOO0OOooo........oooOO0OOooo........oo << 682 << 683 inline void << 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { << 686 theEnergyOfCrossSectionMax = ptr; << 687 } 319 } 688 320 689 //....oooOO0OOooo........oooOO0OOooo........oo 321 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 322 691 inline const G4ParticleDefinition* G4VEmProces 323 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 324 { 693 return particle; 325 return particle; 694 } 326 } 695 327 696 //....oooOO0OOooo........oooOO0OOooo........oo 328 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 329 698 inline const G4ParticleDefinition* G4VEmProces 330 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 331 { 700 return secondaryParticle; 332 return secondaryParticle; 701 } 333 } 702 334 703 //....oooOO0OOooo........oooOO0OOooo........oo 335 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 336 705 inline void G4VEmProcess::SetCrossSectionType( << 337 inline G4double G4VEmProcess::GetMeanLifeTime(const G4Track&, 706 { << 338 G4ForceCondition*) 707 fXSType = val; << 708 } << 709 << 710 //....oooOO0OOooo........oooOO0OOooo........oo << 711 << 712 inline G4CrossSectionType G4VEmProcess::CrossS << 713 { << 714 return fXSType; << 715 } << 716 << 717 //....oooOO0OOooo........oooOO0OOooo........oo << 718 << 719 inline void G4VEmProcess::SetBuildTableFlag(G4 << 720 { << 721 buildLambdaTable = val; << 722 } << 723 << 724 //....oooOO0OOooo........oooOO0OOooo........oo << 725 << 726 inline G4ParticleChangeForGamma* G4VEmProcess: << 727 { << 728 return &fParticleChange; << 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 << 733 inline void G4VEmProcess::SetParticle(const G4 << 734 { << 735 particle = p; << 736 currentParticle = p; << 737 } << 738 << 739 //....oooOO0OOooo........oooOO0OOooo........oo << 740 << 741 inline void G4VEmProcess::SetSecondaryParticle << 742 { << 743 secondaryParticle = p; << 744 } << 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 inline void G4VEmProcess::SetStartFromNullFlag << 749 { << 750 startFromNull = val; << 751 } << 752 << 753 //....oooOO0OOooo........oooOO0OOooo........oo << 754 << 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 756 { << 757 splineFlag = val; << 758 } << 759 << 760 //....oooOO0OOooo........oooOO0OOooo........oo << 761 << 762 inline G4int G4VEmProcess::DensityIndex(G4int << 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { << 771 return (*theDensityFactor)[idx]; << 772 } << 773 << 774 //....oooOO0OOooo........oooOO0OOooo........oo << 775 << 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 777 { << 778 return baseMat; << 779 } << 780 << 781 //....oooOO0OOooo........oooOO0OOooo........oo << 782 << 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 784 { << 785 return currentModel; << 786 } << 787 << 788 //....oooOO0OOooo........oooOO0OOooo........oo << 789 << 790 inline void G4VEmProcess::SetEmMasterProcess(c << 791 { << 792 masterProc = ptr; << 793 } << 794 << 795 //....oooOO0OOooo........oooOO0OOooo........oo << 796 << 797 inline G4int G4VEmProcess::NumberOfModels() co << 798 { << 799 return numberOfModels; << 800 } << 801 << 802 //....oooOO0OOooo........oooOO0OOooo........oo << 803 << 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 805 { 339 { 806 return (index < emModels.size()) ? emModels[ << 340 return 0.0; 807 } 341 } 808 342 809 //....oooOO0OOooo........oooOO0OOooo........oo 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 810 344 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 345 inline G4VParticleChange* G4VEmProcess::AtRestDoIt(const G4Track&, >> 346 const G4Step&) 812 { 347 { 813 return modelManager->GetModel(idx, ver); << 348 return 0; 814 } 349 } 815 350 816 //....oooOO0OOooo........oooOO0OOooo........oo 351 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 352 818 #endif 353 #endif 819 354