Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEmProcess.hh,v 1.3 2004/03/06 13:47:20 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-01 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class header file 28 // GEANT4 Class header file 29 // 29 // 30 // 30 // 31 // File name: G4VEmProcess 31 // File name: G4VEmProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 01.10.2003 35 // Creation date: 01.10.2003 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: >> 38 // 38 // 39 // 39 // Class Description: 40 // Class Description: 40 // 41 // 41 // It is the base class - EM discrete and rest << 42 // It is the unified Rest and/or Discrete process 42 43 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 // 45 // 45 46 46 #ifndef G4VEmProcess_h 47 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 48 #define G4VEmProcess_h 1 48 49 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 #include "G4VRestDiscreteProcess.hh" 50 << 51 #include "G4VDiscreteProcess.hh" << 52 #include "globals.hh" 51 #include "globals.hh" 53 #include "G4Material.hh" 52 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 53 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 54 #include "G4Track.hh" >> 55 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 56 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 57 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" << 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 58 65 class G4Step; 59 class G4Step; 66 class G4VEmModel; 60 class G4VEmModel; >> 61 class G4VEmFluctuationModel; 67 class G4DataVector; 62 class G4DataVector; 68 class G4VParticleChange; 63 class G4VParticleChange; 69 class G4PhysicsTable; 64 class G4PhysicsTable; 70 class G4PhysicsVector; 65 class G4PhysicsVector; 71 class G4EmBiasingManager; << 72 class G4LossTableManager; << 73 66 74 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 68 76 class G4VEmProcess : public G4VDiscreteProcess << 69 class G4VEmProcess : public G4VRestDiscreteProcess 77 { 70 { 78 public: 71 public: 79 72 80 G4VEmProcess(const G4String& name, G4Process << 73 G4VEmProcess(const G4String& name, >> 74 G4ProcessType type = fElectromagnetic); 81 75 82 ~G4VEmProcess() override; << 76 ~G4VEmProcess(); 83 << 84 //------------------------------------------ << 85 // Virtual methods to be implemented in conc << 86 //------------------------------------------ << 87 << 88 void ProcessDescription(std::ostream& outFil << 89 << 90 protected: << 91 77 92 virtual void StreamProcessInfo(std::ostream& << 78 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 93 79 94 virtual void InitialiseProcess(const G4Parti << 80 G4double GetMeanLifeTime(const G4Track& aTrack, >> 81 G4ForceCondition* condition); >> 82 // It is invoked by the ProcessManager of the Positron if this >> 83 // e+ has a kinetic energy null. Then it return 0 to force the >> 84 // call of AtRestDoIt. >> 85 // This function overloads a virtual function of the base class. >> 86 >> 87 virtual G4VParticleChange* AtRestDoIt(const G4Track& aTrack, >> 88 const G4Step& aStep); >> 89 // It computes the final state of the process: >> 90 // e+ (at rest) e- (at rest) ---> gamma gamma, >> 91 // returned as a ParticleChange object. >> 92 // This function overloads a virtual function of the base class. >> 93 // It is invoked by the ProcessManager of the Particle. >> 94 >> 95 virtual void SecondariesPostStep(G4VEmModel*, >> 96 const G4MaterialCutsCouple*, >> 97 const G4DynamicParticle*, >> 98 G4double& tcut, >> 99 G4double& kinEnergy) = 0; 95 100 96 //------------------------------------------ << 101 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 97 // Implementation of virtual methods common << 102 // True for all charged particles 98 //------------------------------------------ << 99 << 100 public: << 101 << 102 // Initialise for build of tables << 103 void PreparePhysicsTable(const G4ParticleDef << 104 103 >> 104 virtual >> 105 void BuildPhysicsTable(const G4ParticleDefinition&); 105 // Build physics table during initialisation 106 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 107 107 108 // Called before tracking of each new G4Trac << 108 virtual void PrintInfoDefinition(); 109 void StartTracking(G4Track*) override; << 110 109 111 // implementation of virtual method, specifi << 110 // Print out of the class parameters 112 G4double PostStepGetPhysicalInteractionLengt << 111 113 const G4Track& tr << 112 G4PhysicsTable* BuildLambdaTable(); 114 G4double previo << 115 G4ForceCondition* << 116 << 117 // implementation of virtual method, specifi << 118 G4VParticleChange* PostStepDoIt(const G4Trac << 119 << 120 // Store PhysicsTable in a file. << 121 // Return false in case of failure at I/O << 122 G4bool StorePhysicsTable(const G4ParticleDef << 123 const G4String& dir << 124 G4bool ascii = fals << 125 << 126 // Retrieve Physics from a file. << 127 // (return true if the Physics Table can be << 128 // (return false if the process has no funct << 129 // File name should is constructed as proces << 130 // should be placed under the directory spec << 131 G4bool RetrievePhysicsTable(const G4Particle << 132 const G4String& << 133 G4bool ascii) ov << 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 << 138 //------------------------------------------ << 139 // Specific methods for Discrete EM post ste << 140 //------------------------------------------ << 141 << 142 // The main method to access cross section p << 143 inline G4double GetLambda(G4double kinEnergy << 144 const G4MaterialCu << 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 << 151 // It returns the cross section of the proce << 152 G4double ComputeCrossSectionPerAtom(G4double << 153 G4double << 154 G4double << 155 << 156 inline G4double MeanFreePath(const G4Track& << 157 << 158 //------------------------------------------ << 159 // Specific methods to build and access Phys << 160 //------------------------------------------ << 161 113 162 // Binning for lambda table << 163 void SetLambdaBinning(G4int nbins); 114 void SetLambdaBinning(G4int nbins); >> 115 // Binning for lambda table 164 116 165 // Min kinetic energy for tables << 166 void SetMinKinEnergy(G4double e); 117 void SetMinKinEnergy(G4double e); >> 118 G4double MinKinEnergy() const; >> 119 // Min kinetic energy for tables 167 120 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 << 171 // Max kinetic energy for tables << 172 void SetMaxKinEnergy(G4double e); 121 void SetMaxKinEnergy(G4double e); >> 122 G4double MaxKinEnergy() const; >> 123 // Max kinetic energy for tables 173 124 174 // Cross section table pointers << 125 G4bool StorePhysicsTable(G4ParticleDefinition*, 175 inline G4PhysicsTable* LambdaTable() const; << 126 const G4String& directory, 176 inline G4PhysicsTable* LambdaTablePrim() con << 127 G4bool ascii = false); 177 inline void SetLambdaTable(G4PhysicsTable*); << 128 // Store PhysicsTable in a file. 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 129 // Return false in case of failure at I/O 179 << 130 180 // Integral method type and peak positions << 131 G4bool RetrievePhysicsTable(G4ParticleDefinition*, 181 inline std::vector<G4double>* EnergyOfCrossS << 132 const G4String& directory, 182 inline void SetEnergyOfCrossSectionMax(std:: << 133 G4bool ascii); 183 inline G4CrossSectionType CrossSectionType() << 134 // Retrieve Physics from a file. 184 inline void SetCrossSectionType(G4CrossSecti << 135 // (return true if the Physics Table can be build by using file) 185 << 136 // (return false if the process has no functionality or in case of failure) 186 //------------------------------------------ << 137 // File name should is constructed as processName+particleName and the 187 // Define and access particle type << 138 // should be placed under the directory specifed by the argument. 188 //------------------------------------------ << 139 >> 140 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 141 const G4Region* region = 0); >> 142 // Add EM model coupled with fluctuation model for the region >> 143 >> 144 void UpdateEmModel(const G4String&, G4double, G4double); >> 145 // Define new energy range for the model identified by the name >> 146 >> 147 G4double GetLambda(G4double kineticEnergy, const G4MaterialCutsCouple* couple); >> 148 // It returns the Lambda of the process >> 149 >> 150 G4double MicroscopicCrossSection(G4double kineticEnergy, >> 151 const G4MaterialCutsCouple* couple); >> 152 // It returns the cross section of the process for energy/ material >> 153 >> 154 void SetIntegral(G4bool val) {integral = val;}; >> 155 G4bool IsIntegral() const {return integral;} >> 156 >> 157 G4double MeanFreePath(const G4Track& track, >> 158 G4double previousStepSize, >> 159 G4ForceCondition* condition); 189 160 190 inline const G4ParticleDefinition* Particle( << 161 const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary << 162 const G4ParticleDefinition* SecondaryParticle() const; 192 163 193 protected: 164 protected: 194 165 195 //------------------------------------------ << 166 void SetParticle(const G4ParticleDefinition* p); 196 // Specific methods to set, access, modify m << 167 void SetSecondaryParticle(const G4ParticleDefinition* p); 197 //------------------------------------------ << 198 << 199 // Select model in run time << 200 inline G4VEmModel* SelectModel(G4double kinE << 201 << 202 public: << 203 << 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 << 206 st << 207 << 208 // Add model for region, smaller value of or << 209 // model will be selected for a given energy << 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 211 << 212 // Assign a model to a process local list, t << 213 // the derived process should execute AddEmM << 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 215 << 216 inline G4int NumberOfModels() const; << 217 << 218 // return a model from the local list << 219 inline G4VEmModel* EmModel(std::size_t index << 220 << 221 // Access to active model << 222 inline const G4VEmModel* GetCurrentModel() c << 223 << 224 // Access to models << 225 inline G4VEmModel* GetModelByIndex(G4int idx << 226 << 227 // Access to the current G4Element << 228 const G4Element* GetCurrentElement() const; << 229 << 230 // Biasing parameters << 231 void SetCrossSectionBiasingFactor(G4double f << 232 inline G4double CrossSectionBiasingFactor() << 233 << 234 // Activate forced interaction << 235 void ActivateForcedInteraction(G4double leng << 236 const G4Strin << 237 G4bool flag = << 238 << 239 void ActivateSecondaryBiasing(const G4String << 240 G4double energ << 241 << 242 inline void SetEmMasterProcess(const G4VEmPr << 243 << 244 inline void SetBuildTableFlag(G4bool val); << 245 << 246 inline void CurrentSetup(const G4MaterialCut << 247 << 248 inline G4bool UseBaseMaterial() const; << 249 << 250 void BuildLambdaTable(); << 251 << 252 void StreamInfo(std::ostream& outFile, const << 253 G4bool rst=false) const; << 254 << 255 // hide copy constructor and assignment oper << 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 << 259 //------------------------------------------ << 260 // Other generic methods << 261 //------------------------------------------ << 262 << 263 protected: << 264 168 >> 169 virtual 265 G4double GetMeanFreePath(const G4Track& trac 170 G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 171 G4double previousStepSize, 267 G4ForceCondition* c << 172 G4ForceCondition* condition); 268 173 >> 174 virtual 269 G4PhysicsVector* LambdaPhysicsVector(const G 175 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 176 271 inline void DefineMaterial(const G4MaterialC << 177 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 272 << 178 const G4Material*, G4double cut) = 0; 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 << 282 inline G4ParticleChangeForGamma* GetParticle << 283 << 284 inline void SetParticle(const G4ParticleDefi << 285 << 286 inline void SetSecondaryParticle(const G4Par << 287 << 288 inline std::size_t CurrentMaterialCutsCouple << 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 << 292 inline G4bool ApplyCuts() const; << 293 179 294 inline G4double GetGammaEnergyCut(); << 180 G4VEmModel* SelectModel(G4double& kinEnergy); 295 181 296 inline G4double GetElectronEnergyCut(); << 182 size_t CurrentMaterialCutsCoupleIndex() const {return currentMaterialIndex;}; 297 183 298 inline void SetStartFromNullFlag(G4bool val) << 184 void ResetNumberOfInteractionLengthLeft(); 299 << 185 // reset (determine the value of)NumberOfInteractionLengthLeft 300 inline void SetSplineFlag(G4bool val); << 301 << 302 const G4Element* GetTargetElement() const; << 303 << 304 const G4Isotope* GetTargetIsotope() const; << 305 << 306 // these two methods assume that vectors are << 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 186 311 private: 187 private: 312 188 313 void PrintWarning(G4String tit, G4double val << 189 void Initialise(); 314 << 315 void ComputeIntegralLambda(G4double kinEnerg << 316 << 317 inline G4double LogEkin(const G4Track&); << 318 << 319 inline G4double GetLambdaFromTable(G4double << 320 << 321 inline G4double GetLambdaFromTable(G4double << 322 190 323 inline G4double GetLambdaFromTablePrim(G4dou << 191 void DefineMaterial(const G4MaterialCutsCouple* couple); 324 192 325 inline G4double GetLambdaFromTablePrim(G4dou << 193 // hide assignment operator 326 194 327 inline G4double GetCurrentLambda(G4double ki << 195 G4VEmProcess(G4VEmProcess &); 328 << 196 G4VEmProcess & operator=(const G4VEmProcess &right); 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl << 332 << 333 // ======== pointers ========= << 334 << 335 G4EmModelManager* modelManager = << 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 197 360 // ======== pointers ========= << 198 // ===================================================================== 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 << 367 private: << 368 << 369 const std::vector<G4double>* theDensityFacto << 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 << 386 G4double mfpKinEnergy = DBL_MAX; << 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 199 390 private: 200 private: 391 201 392 G4CrossSectionType fXSType = fEmNoIntegral; << 202 G4EmModelManager* modelManager; 393 203 394 G4int numberOfModels = 0; << 204 // tables and vectors 395 G4int nLambdaBins = 84; << 205 G4PhysicsTable* theLambdaTable; 396 206 397 protected: << 207 const G4ParticleDefinition* particle; 398 << 208 const G4ParticleDefinition* baseParticle; 399 G4int mainSecondaries = 1; << 209 const G4ParticleDefinition* secondaryParticle; 400 G4int secID = _EM; << 210 const G4DataVector* theCuts; 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 << 410 G4bool isTheMaster = false; << 411 G4bool baseMat = false; << 412 << 413 private: << 414 << 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 211 426 protected: << 212 // cash >> 213 const G4Material* currentMaterial; >> 214 const G4MaterialCutsCouple* currentCouple; >> 215 size_t currentMaterialIndex; 427 216 428 // ======== particle change ========= << 217 G4int nLambdaBins; 429 std::vector<G4DynamicParticle*> secParticles << 430 G4ParticleChangeForGamma fParticleChange; << 431 218 432 private: << 219 G4double minKinEnergy; >> 220 G4double maxKinEnergy; 433 221 434 // ======== local vectors ========= << 222 G4double preStepLambda; 435 std::vector<G4VEmModel*> emModels; << 223 G4double preStepKinEnergy; 436 224 >> 225 G4bool integral; >> 226 G4bool meanFreePath; 437 }; 227 }; 438 228 439 // ======== Run time inline methods ========== << 440 << 441 //....oooOO0OOooo........oooOO0OOooo........oo << 442 << 443 inline std::size_t G4VEmProcess::CurrentMateri << 444 { << 445 return currentCoupleIndex; << 446 } << 447 << 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 << 450 inline const G4MaterialCutsCouple* G4VEmProces << 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu << 458 { << 459 return (*theCutsGamma)[currentCoupleIndex]; << 460 } << 461 << 462 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 463 << 464 inline G4double G4VEmProcess::GetElectronEnerg << 465 { << 466 return (*theCutsElectron)[currentCoupleIndex << 467 } << 468 << 469 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 231 471 inline void G4VEmProcess::DefineMaterial(const 232 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 233 { 473 if (couple != currentCouple) { << 234 if(couple != currentCouple) { 474 currentCouple = couple; << 235 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 236 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 237 currentMaterialIndex = couple->GetIndex(); 477 fFactor = biasFactor; << 238 if(integral && !meanFreePath) ResetNumberOfInteractionLengthLeft(); 478 mfpKinEnergy = DBL_MAX; << 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } 239 } 486 } 240 } 487 241 488 //....oooOO0OOooo........oooOO0OOooo........oo 242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 243 490 inline << 244 inline G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, G4double, 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 245 G4ForceCondition*) 492 { 246 { 493 if(1 < numberOfModels) { << 247 DefineMaterial(track.GetMaterialCutsCouple()); 494 currentModel = modelManager->SelectModel(k << 248 preStepKinEnergy = track.GetKineticEnergy(); >> 249 if (meanFreePath) { >> 250 G4bool b; >> 251 preStepLambda = (((*theLambdaTable)[currentMaterialIndex])-> >> 252 GetValue(preStepKinEnergy, b)); >> 253 if (integral) meanFreePath = false; 495 } 254 } 496 currentModel->SetCurrentCouple(currentCouple << 255 G4double x = DBL_MAX; 497 return currentModel; << 256 if(0.0 < preStepLambda) x = 1.0/preStepLambda; 498 } << 257 // G4cout << GetProcessName() << ": e= " << preStepKinEnergy << " mfp= " << x << G4endl; 499 << 258 return x; 500 //....oooOO0OOooo........oooOO0OOooo........oo << 501 << 502 inline << 503 G4VEmModel* G4VEmProcess::SelectModelForMateri << 504 << 505 { << 506 return modelManager->SelectModel(kinEnergy, << 507 } << 508 << 509 //....oooOO0OOooo........oooOO0OOooo........oo << 510 << 511 inline G4double G4VEmProcess::GetLambdaFromTab << 512 { << 513 return ((*theLambdaTable)[basedCoupleIndex]) << 514 } << 515 << 516 //....oooOO0OOooo........oooOO0OOooo........oo << 517 << 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } 259 } 529 260 530 //....oooOO0OOooo........oooOO0OOooo........oo 261 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 262 532 inline G4double G4VEmProcess::GetLambdaFromTab << 263 inline void G4VEmProcess::ResetNumberOfInteractionLengthLeft() 533 { 264 { 534 return ((*theLambdaTablePrim)[basedCoupleInd << 265 meanFreePath = true; >> 266 G4VProcess::ResetNumberOfInteractionLengthLeft(); 535 } 267 } 536 268 537 //....oooOO0OOooo........oooOO0OOooo........oo 269 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 270 539 inline G4double G4VEmProcess::GetLambdaFromTab << 271 inline G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy) 540 { 272 { 541 return ((*theLambdaTablePrim)[basedCoupleInd << 273 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 542 } << 543 << 544 //....oooOO0OOooo........oooOO0OOooo........oo << 545 << 546 inline G4double G4VEmProcess::ComputeCurrentLa << 547 { << 548 return currentModel->CrossSectionPerVolume(b << 549 } << 550 << 551 //....oooOO0OOooo........oooOO0OOooo........oo << 552 << 553 inline G4double G4VEmProcess::GetCurrentLambda << 554 { << 555 if(currentCoupleIndex != coupleIdxLambda || << 556 coupleIdxLambda = currentCoupleIndex; << 557 fLambdaEnergy = e; << 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 559 else if(nullptr != theLambdaTable) { fLamb << 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } << 565 << 566 //....oooOO0OOooo........oooOO0OOooo........oo << 567 << 568 inline G4double G4VEmProcess::GetCurrentLambda << 569 { << 570 if(currentCoupleIndex != coupleIdxLambda || << 571 coupleIdxLambda = currentCoupleIndex; << 572 fLambdaEnergy = e; << 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } << 580 << 581 //....oooOO0OOooo........oooOO0OOooo........oo << 582 << 583 inline void << 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { << 586 DefineMaterial(couple); << 587 SelectModel(energy*massRatio, currentCoupleI << 588 } << 589 << 590 //....oooOO0OOooo........oooOO0OOooo........oo << 591 << 592 inline G4double << 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 594 G4double logKinEnergy) << 595 { << 596 CurrentSetup(couple, kinEnergy); << 597 return GetCurrentLambda(kinEnergy, logKinEne << 598 } << 599 << 600 //....oooOO0OOooo........oooOO0OOooo........oo << 601 << 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 603 { << 604 const G4double kinEnergy = track.GetKineticE << 605 CurrentSetup(track.GetMaterialCutsCouple(), << 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } << 610 << 611 // ======== Get/Set inline methods used at ini << 612 << 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo << 619 << 620 inline G4int G4VEmProcess::LambdaBinning() con << 621 { << 622 return nLambdaBins; << 623 } << 624 << 625 //....oooOO0OOooo........oooOO0OOooo........oo << 626 << 627 inline G4double G4VEmProcess::MinKinEnergy() c << 628 { << 629 return minKinEnergy; << 630 } << 631 << 632 //....oooOO0OOooo........oooOO0OOooo........oo << 633 << 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 635 { << 636 return maxKinEnergy; << 637 } << 638 << 639 //....oooOO0OOooo........oooOO0OOooo........oo << 640 << 641 inline G4double G4VEmProcess::CrossSectionBias << 642 { << 643 return biasFactor; << 644 } << 645 << 646 //....oooOO0OOooo........oooOO0OOooo........oo << 647 << 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 649 { << 650 return theLambdaTable; << 651 } << 652 << 653 //....oooOO0OOooo........oooOO0OOooo........oo << 654 << 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 656 { << 657 return theLambdaTablePrim; << 658 } << 659 << 660 //....oooOO0OOooo........oooOO0OOooo........oo << 661 << 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 663 { << 664 theLambdaTable = ptr; << 665 } << 666 << 667 //....oooOO0OOooo........oooOO0OOooo........oo << 668 << 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 670 { << 671 theLambdaTablePrim = ptr; << 672 } << 673 << 674 //....oooOO0OOooo........oooOO0OOooo........oo << 675 << 676 inline std::vector<G4double>* G4VEmProcess::En << 677 { << 678 return theEnergyOfCrossSectionMax; << 679 } << 680 << 681 //....oooOO0OOooo........oooOO0OOooo........oo << 682 << 683 inline void << 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { << 686 theEnergyOfCrossSectionMax = ptr; << 687 } 274 } 688 275 689 //....oooOO0OOooo........oooOO0OOooo........oo 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 277 691 inline const G4ParticleDefinition* G4VEmProces 278 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 279 { 693 return particle; 280 return particle; 694 } 281 } 695 282 696 //....oooOO0OOooo........oooOO0OOooo........oo 283 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 284 698 inline const G4ParticleDefinition* G4VEmProces 285 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 286 { 700 return secondaryParticle; 287 return secondaryParticle; 701 } 288 } 702 289 703 //....oooOO0OOooo........oooOO0OOooo........oo 290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 291 705 inline void G4VEmProcess::SetCrossSectionType( << 292 inline void G4VEmProcess::SetLambdaBinning(G4int nbins) 706 { << 707 fXSType = val; << 708 } << 709 << 710 //....oooOO0OOooo........oooOO0OOooo........oo << 711 << 712 inline G4CrossSectionType G4VEmProcess::CrossS << 713 { << 714 return fXSType; << 715 } << 716 << 717 //....oooOO0OOooo........oooOO0OOooo........oo << 718 << 719 inline void G4VEmProcess::SetBuildTableFlag(G4 << 720 { << 721 buildLambdaTable = val; << 722 } << 723 << 724 //....oooOO0OOooo........oooOO0OOooo........oo << 725 << 726 inline G4ParticleChangeForGamma* G4VEmProcess: << 727 { << 728 return &fParticleChange; << 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 << 733 inline void G4VEmProcess::SetParticle(const G4 << 734 { << 735 particle = p; << 736 currentParticle = p; << 737 } << 738 << 739 //....oooOO0OOooo........oooOO0OOooo........oo << 740 << 741 inline void G4VEmProcess::SetSecondaryParticle << 742 { << 743 secondaryParticle = p; << 744 } << 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 inline void G4VEmProcess::SetStartFromNullFlag << 749 { << 750 startFromNull = val; << 751 } << 752 << 753 //....oooOO0OOooo........oooOO0OOooo........oo << 754 << 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 756 { 293 { 757 splineFlag = val; << 294 nLambdaBins = nbins; 758 } 295 } 759 296 760 //....oooOO0OOooo........oooOO0OOooo........oo 297 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 761 298 762 inline G4int G4VEmProcess::DensityIndex(G4int << 299 inline void G4VEmProcess::SetMinKinEnergy(G4double e) 763 { 300 { 764 return (*theDensityIdx)[idx]; << 301 minKinEnergy = e; 765 } 302 } 766 303 767 //....oooOO0OOooo........oooOO0OOooo........oo 304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 305 769 inline G4double G4VEmProcess::DensityFactor(G4 << 306 inline G4double G4VEmProcess::MinKinEnergy() const 770 { 307 { 771 return (*theDensityFactor)[idx]; << 308 return minKinEnergy; 772 } 309 } 773 310 774 //....oooOO0OOooo........oooOO0OOooo........oo 311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 775 312 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 313 inline void G4VEmProcess::SetMaxKinEnergy(G4double e) 777 { 314 { 778 return baseMat; << 315 maxKinEnergy = e; 779 } 316 } 780 317 781 //....oooOO0OOooo........oooOO0OOooo........oo 318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 782 319 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 320 inline G4double G4VEmProcess::MaxKinEnergy() const 784 { 321 { 785 return currentModel; << 322 return maxKinEnergy; 786 } << 787 << 788 //....oooOO0OOooo........oooOO0OOooo........oo << 789 << 790 inline void G4VEmProcess::SetEmMasterProcess(c << 791 { << 792 masterProc = ptr; << 793 } 323 } 794 324 795 //....oooOO0OOooo........oooOO0OOooo........oo 325 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 796 326 797 inline G4int G4VEmProcess::NumberOfModels() co << 327 inline G4double G4VEmProcess::GetLambda(G4double kineticEnergy, >> 328 const G4MaterialCutsCouple* couple) 798 { 329 { 799 return numberOfModels; << 330 DefineMaterial(couple); >> 331 G4double x = DBL_MAX; >> 332 G4bool b; >> 333 if(theLambdaTable) { >> 334 G4double y = (((*theLambdaTable)[currentMaterialIndex])->GetValue(kineticEnergy, b)); >> 335 if(y > 0.0) x = 1.0/y; >> 336 } >> 337 return x; 800 } 338 } 801 339 802 //....oooOO0OOooo........oooOO0OOooo........oo 340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 341 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 342 inline G4double G4VEmProcess::GetMeanLifeTime(const G4Track&, >> 343 G4ForceCondition*) 805 { 344 { 806 return (index < emModels.size()) ? emModels[ << 345 return 0.0; 807 } 346 } 808 347 809 //....oooOO0OOooo........oooOO0OOooo........oo 348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 810 349 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 350 inline G4VParticleChange* G4VEmProcess::AtRestDoIt(const G4Track&, >> 351 const G4Step&) 812 { 352 { 813 return modelManager->GetModel(idx, ver); << 353 return 0; 814 } 354 } 815 355 816 //....oooOO0OOooo........oooOO0OOooo........oo 356 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 357 818 #endif 358 #endif 819 359